Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes
1.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article
CAS
Google Scholar
2.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article
CAS
Google Scholar
3.IPCC. Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group I to IPCC AR5. (Cambridge University Press, 2014).4.Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125 LP–125128 (2001).Article
Google Scholar
5.Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).CAS
Article
Google Scholar
6.Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).8.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645 LP–11611650 (2017).Article
CAS
Google Scholar
9.Keith, D. A. et al. The IUCN red list of ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article
Google Scholar
10.Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, 1–9 (2020).Article
Google Scholar
11.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).Article
Google Scholar
12.Chauvenet, A. L. M. et al. To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets. One Earth 2, 479–486 (2020).Article
Google Scholar
13.Wilson, E. O. Half Earth: Our Planets Fight for Life (W.W. Norton and Company, 2016).14.Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).Article
Google Scholar
15.Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS
Google Scholar
16.Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).Article
CAS
Google Scholar
17.Finsinger, W., Giesecke, T., Brewer, S. & Leydet, M. Emergence patterns of novelty in European vegetation assemblages over the past 15 000 years. Ecol. Lett. 20, 336–346 (2017).Article
Google Scholar
18.Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369 (2020).19.Jackson, S. T. Vegetation, environment, and time: the origination and termination of ecosystems. J. Veg. Sci. 17, 549–557 (2006).Article
Google Scholar
20.Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).Article
Google Scholar
21.Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579–1247579 (2014).Article
CAS
Google Scholar
22.Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10 (2020).23.Heubes, J. et al. Modelling biome shifts and tree cover change for 2050 in West Africa: Biome shifts and tree cover change in West Africa. J. Biogeogr. 38, 2248–2258 (2011).Article
Google Scholar
24.Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. 103, 13116–13120 (2006).CAS
Article
Google Scholar
25.Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: CLIMATE CHANGE AND AMAZON BIOME SHIFTS. Geophys. Res. Lett. 37, n/a–n/a (2010).Article
Google Scholar
26.Yu, D., Liu, Y., Shi, P. & Wu, J. Projecting impacts of climate change on global terrestrial ecoregions. Ecol. Indic. 103, 114–123 (2019).Article
Google Scholar
27.Iwamura, T., Guisan, A., Wilson, K. A. & Possingham, H. P. How robust are global conservation priorities to climate change? Glob. Environ. Change 23, 1277–1284 (2013).Article
Google Scholar
28.Littlefield, C. E., Krosby, M., Michalak, J. L. & Lawler, J. J. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ. 17, 270–278 (2019).Article
Google Scholar
29.McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. 113, 7195 LP–7197200 (2016).Article
CAS
Google Scholar
30.CBD. Zero Draft of post-2020 biodiversity framework. Secr. Conv. Biol. Divers. 1–14 (2020).31.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6 (2020).32.Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).Article
Google Scholar
33.Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).Article
Google Scholar
34.Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: irresistible force meets immovable object? Trends Ecol. Evol. 35, 367–376 (2020).Article
Google Scholar
35.Svenning, J. C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).Article
Google Scholar
36.Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).
Google Scholar
37.Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).Article
Google Scholar
38.Araujo. Climate Change and Spatial Conservation Planning. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).39.Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).40.Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article
Google Scholar
41.Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190218 (2019).42.Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738 LP–5735742 (2007).Article
CAS
Google Scholar
43.OECD. The post-2020 biodiversity framework: targets, indicators and measurability implications at global and national level. (2019).44.Carroll, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 00, 1–13 (2020).
Google Scholar
45.Lovejoy, T. E. & Hannah, L. Avoiding the climate failsafe point. Sci. Adv. 4 (2018).46.Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article
Google Scholar
47.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327 (2009).CAS
Article
Google Scholar
48.Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. 106, 349–350 (2009).CAS
Article
Google Scholar
49.Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).Article
CAS
Google Scholar
50.Boesing, A. L., Nichols, E. & Metzger, J. P. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41, 1520–1533 (2018).Article
Google Scholar
51.Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).52.Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).Article
Google Scholar
53.Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7 (2016).54.Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26 (2020).55.Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24 (2018).56.Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).Article
Google Scholar
57.Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).Article
Google Scholar
58.Fitzpatrick, M. C. & Dunn, R. R. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10, 614 (2019).CAS
Article
Google Scholar
59.Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J. & Elston, D. A. Regression analysis of spatial data. Ecol. Lett. 13, 246–264 (2010).Article
Google Scholar
60.Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article
Google Scholar
61.Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Change Biol. 23, 3934–3955 (2017).Article
Google Scholar
62.Fitzpatrick, M. C. et al. How will climate novelty influence ecological forecasts? Using the quaternary to assess future reliability. Glob. Change Biol. 24, 3575–3586 (2018).Article
Google Scholar
63.Mahony, C. R., MacKenzie, W. H. & Aitken, S. N. Novel climates: trajectories of climate change beyond the boundaries of British Columbia’s forest management knowledge system. For. Ecol. Manag. 410, 35–47 (2018).Article
Google Scholar
64.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (1998).Article
Google Scholar
65.Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).Article
Google Scholar
66.Stephenson, N. L. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).Article
Google Scholar
67.Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).Article
Google Scholar
68.Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).Article
Google Scholar
69.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. U.S.A. 116, 6193–6198 (2019).70.Rodriguez Mega, E. Apocalypic fires are ravaging the worlds largest tropical wetland. Nature 586, 20–21 (2020).71.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2020-69 (2020).72.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909 LP–909914 (2019).Article
CAS
Google Scholar
73.Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).74.Parks, S. A. et al. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 11, 035002 (2016).75.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 (2018).76.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).Article
Google Scholar
77.Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).CAS
Article
Google Scholar
78.Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article
Google Scholar
79.Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammal is proportional to home range size. Ecology 83, 2049–2055 (2002).Article
Google Scholar
80.Smith, A. M. & Green, D. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).Article
Google Scholar
81.Sutherland, G., Harestad, A. S., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4 (2000).82.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article
Google Scholar
83.Michalak, J. L., Lawler, J. J., Roberts, D. R. & Carroll, C. Distribution and protection of climatic refugia in North America. Conserv. Biol. 32, 1414–1425 (2018).Article
Google Scholar More