Macroecological distributions of gene variants highlight the functional organization of soil microbial systems
1.Gupta A, Sharma VK. Using the taxon-specific genes for the taxonomic classification of bacterial genomes. BMC Genom. 2015;16:1–15.Article
CAS
Google Scholar
2.Gil R, Silva FJ, Pereto J, Moya A. Determination of the Core of a Minimal Bacterial Gene Set. Microbiol Mol Biol Rev. 2004;68:518–37.CAS
PubMed
PubMed Central
Article
Google Scholar
3.Mira A, Martín-Cuadrado AB, D’Auria G, Rodríguez-Valera F. The bacterial pan-genome: a new paradigm in microbiology. Int Microbiol. 2010;13:45–57.CAS
PubMed
Google Scholar
4.Escalas A, Troussellier M, Yuan T, Bouvier T, Bouvier C, Mouchet MA, et al. Functional diversity and redundancy across fish gut, sediment and water bacterial communities. Environ Microbiol. 2017;19:3268–82.PubMed
Article
Google Scholar
5.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function — The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Shovonlal R, editors. Biodiversity in Ecosystems—Linking Structure and Function. BoD–Books on Demand; 2015. p. 29–49.6.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed
Article
Google Scholar
7.Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc Lond B Biol Sci. 2006;361:2009–21.PubMed
PubMed Central
Article
Google Scholar
8.Young JPW. Bacteria Are Smartphones and Mobile Genes Are Apps. Trends Microbiol. 2016;24:931–2.CAS
PubMed
Article
Google Scholar
9.Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev. 2014;38:90–118.CAS
PubMed
Article
Google Scholar
10.Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez-Cohen L, et al. Microbial Functional Diversity: from Concepts to Applications. Ecol Evol. 2019;5:12000–16.Article
Google Scholar
11.Barberán A, Casamayor EO, Fierer N. The microbial contribution to macroecology. Front Microbiol. 2014;5:1–8.Article
Google Scholar
12.Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM, Herrmann M, et al. Macroecology to Unite All Life, Large and Small. Trends Ecol Evol. 2018;33:731–44.PubMed
Article
Google Scholar
13.Chase AB, Martiny JB. The importance of resolving biogeographic patterns of microbial microdiversity. Microbiol Aust. 2018;1:5–8.Article
Google Scholar
14.Shoemaker WR, Locey KJ, Lennon JT. A macroecological theory of microbial biodiversity. Nat Ecol Evol. 2017;1:e1450v4.Article
Google Scholar
15.Bachy C, Worden AZ. Microbial ecology: finding structure in the rare biosphere. Curr Biol. 2014;24:R315–R317.16.Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.CAS
PubMed
Article
Google Scholar
17.Pedrós-Alió C. The Rare Bacterial Biosphere. Ann Rev Mar Sci. 2012;4:449–66.PubMed
Article
Google Scholar
18.Rabinowitz D. Seven forms of rarity and their frequency in the flora of the British Isles. In: Soulé ME, editors. Conservation biology: the science of scarcity and diversity. Sinauer Associates; Massachusetts; 1986.19.McGeoch MA, Gaston KJ. Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol Rev Camb Philos Soc. 2002;77:311–31.PubMed
Article
Google Scholar
20.Blackburn TM, Cassey P, Gaston KJ. Variations on a theme: Sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. J Anim Ecol. 2006;75:1426–39.PubMed
Article
Google Scholar
21.Buckley HL, Freckleton RP. Understanding the role of species dynamics in abundance-occupancy relationships. J Ecol. 2010;98:645–58.Article
Google Scholar
22.Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH. Abundance-occupancy relationships. J Appl Ecol. 2000;37:39–59.Article
Google Scholar
23.Miranda LE, Killgore KJ. Abundance–occupancy patterns in a riverine fish assemblage. Freshw Biol. 2019;64:2221–33.Article
Google Scholar
24.Suhonen J, Jokimäki J. Temporally stable species occupancy frequency distribution and abundance-occupancy relationship patterns in urban wintering bird assemblages. Front Ecol Evol. 2019;7:129.Article
Google Scholar
25.Webb TJ, Barry JP, McClain CR. Abundance–occupancy relationships in deep sea wood fall communities. Ecography. 2017;40:1339–47.Article
Google Scholar
26.Amend AS, Oliver TA, Amaral-Zettler LA, Boetius A, Fuhrman JA, Horner-Devine MC, et al. Macroecological patterns of marine bacteria on a global scale. J Biogeogr. 2013;40:800–11.Article
Google Scholar
27.Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.PubMed
Article
CAS
Google Scholar
28.Barnes CJ, Burns CA, van der Gast CJ, McNamara NP, Bending GD. Spatio-temporal variation of core and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus. Front Microbiol. 2016;7:1–12.
Google Scholar
29.Fillol M, Auguet JC, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016;10:665–77.PubMed
Article
Google Scholar
30.Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Saïd OBen, et al. Response of core microbial consortia to chronic hydrocarbon contaminations in coastal sediment habitats. Front Microbiol. 2016;7:1–13.
Google Scholar
31.Lindh MV, Sjöstedt J, Ekstam B, Casini M, Lundin D, Hugerth LW, et al. Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers. Environ Microbiol. 2017;19:1222–36.CAS
PubMed
Article
Google Scholar
32.Logares R, Audic SS, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of Rare and Abundant Marine Microbial Eukaryotes. Curr Biol. 2014;24:813–21.CAS
PubMed
Article
Google Scholar
33.Michelland R, Thioulouse J, Kyselková M, Grundmann GL. Bacterial Community Structure at the Microscale in Two Different Soils. Micro Ecol. 2016;72:717–24.CAS
Article
Google Scholar
34.Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, et al. Species abundance distributions and richness estimations in fungal metagenomics – Lessons learned from community ecology. Mol Ecol. 2011;20:275–85.PubMed
Article
Google Scholar
35.Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J Ecol. 1998;86:902–10.Article
Google Scholar
36.Grime JP. Dominant and subordinate components of plant communities: implications for succession, sta- bility and diversity. In: Gray AJ, Crawley MJ, editors. Colonization, Succession and Stability. Oxford:Blackwell Scientific Publications; 1984. p. 413–28.37.Hanski I. Dynamics of Regional Distribution: the Core and Satellite Species Hypothesis. Oikos. 1982;38:210.Article
Google Scholar
38.Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.CAS
PubMed
Article
Google Scholar
39.Newton R, Shade A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat Micro Ecol. 2016;78:51–63.Article
Google Scholar
40.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio. 2014;5:e01371–14.PubMed
PubMed Central
Article
CAS
Google Scholar
41.Shade A, Gilbert JA. Temporal patterns of rarity provide a more complete view of microbial diversity. Trends Microbiol. 2015;23:335–40.CAS
PubMed
Article
Google Scholar
42.Koch AL. Oligotrophs versus copiotrophs. BioEssays. 2001;23:657–61.CAS
PubMed
Article
Google Scholar
43.Cobo-Simón M, Tamames J. Relating genomic characteristics to environmental preferences and ubiquity in different microbial taxa. BMC Genom. 2017;18:1–11.Article
CAS
Google Scholar
44.Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD, et al. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour. 2014;14:914–28.CAS
PubMed
Google Scholar
45.Xu X, Wang N, Lipson D, Sinsabaugh R, Schimel J, He L, et al. Microbial macroecology: in search of mechanisms governing microbial biogeographic patterns. Glob Ecol Biogeogr. 2020;29:1870–86.Article
Google Scholar
46.Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature. 2001;410:809–12.CAS
PubMed
Article
Google Scholar
47.Field CB, Chapin FS, Chiariello NK, Holland EA, Mooney HA. The Jasper Ridge CO2 Experiment: Design and Motivation. In: Mooney HA, Koch GW, (Editors). Carbon Dioxide and Terrestrial Ecosystems. San Diego, California: Academic Press; 1996. p. 121–45.Chapter
Google Scholar
48.Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, et al. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl Environ Microbiol. 2014;80:1777–86.PubMed
PubMed Central
Article
CAS
Google Scholar
49.Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, et al. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob Chang. Biol. 2017;23:3646–66.
Google Scholar
50.Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeosci. 2015;120:525–37.CAS
Article
Google Scholar
51.Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 2014;8:430–40.CAS
PubMed
Article
Google Scholar
52.Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol. 2013;19:637–48.PubMed
Article
Google Scholar
53.Zhang Y, Cong J, Lu H, Li G, Xue Y, Deng Y, et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Micro Biotechnol. 2015;8:739–46.Article
Google Scholar
54.Zhang Y, Cong J, Lu H, Deng Y, Liu X, Zhou J, et al. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Sci Rep. 2016;6:1–8.Article
CAS
Google Scholar
55.Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, et al. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol. 2014;23:2988–99.PubMed
Article
Google Scholar
56.Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EDC, Paula FS, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci USA. 2013;110:988–93.CAS
PubMed
Article
Google Scholar
57.He Z, Deng Y, Van Nostrand JD, Tu QC, Xu MY, Hemme CL, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. Isme J. 2010;4:1167–79.CAS
PubMed
Article
Google Scholar
58.He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 2007;1:67–77.CAS
PubMed
Article
Google Scholar
59.Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res. 2005;33:6114–23.CAS
PubMed
PubMed Central
Article
Google Scholar
60.Tu Q, He Z, Deng Y, Zhou J. Strain/species-specific probe design for microbial identification microarrays. Appl Environ Microbiol. 2013;79:5085–8.CAS
PubMed
PubMed Central
Article
Google Scholar
61.Wu L, Liu X, Schadt CW, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol. 2006;72:4931–41.CAS
PubMed
PubMed Central
Article
Google Scholar
62.Wu L, Liu X, Schadt CW, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology. 2006;72:4931–41.CAS
PubMed
PubMed Central
Article
Google Scholar
63.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version. 2013;2:1–295.
Google Scholar
64.Anderson MJ, Bueno AS. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar
65.Crow EL, Patil GP. Applications in Ecology. In: Cros E, Shimizu K, editors. Lognormal Distributions. New York and Basel:Marcel Dekker; 1988. p. 303–30.66.Ser-Giacomi E, Zinger L, Malviya S, De Vargas C, Karsenti E, Bowler C, et al. Ubiquitous abundance distribution of non-dominant plankton across the global ocean. Nat Ecol Evol. 2018;2:1243–9.PubMed
Article
Google Scholar
67.Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.CAS
PubMed
Article
Google Scholar
68.Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci. 2016;113:5970–5.CAS
PubMed
PubMed Central
Article
Google Scholar
69.Louca S, Mazel F, Doebeli M, Parfrey LW. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;2:1–30.
Google Scholar
70.Tokeshi M. Dynamics of distribution in animal communities: theory and analysis. Res Popul Ecol (Kyoto). 1992;34:249–73.Article
Google Scholar
71.Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55.PubMed
PubMed Central
Article
Google Scholar
72.Azovsky A, Mazei Y. Do microbes have macroecology? Large-scale patterns in the diversity and distribution of marine benthic ciliates. Glob Ecol Biogeogr. 2013;22:163–72.Article
Google Scholar
73.Noguez AM, Arita HT, Escalante AE, Forney LJ, García-Oliva F, Souza V. Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob Ecol Biogeogr. 2005;14:241–8.Article
Google Scholar
74.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS
PubMed
PubMed Central
Article
Google Scholar
75.Papp L, Izsák J, Papp L, Izsak J. Bimodality in Occurrence Classes: a Direct Consequence of Lognormal or Logarithmic Series Distribution of Abundances- A Numerical Experimentation. Oikos. 1997;79:191.Article
Google Scholar
76.Verberk WCEP, van der Velde G, Esselink H. Explaining abundance-occupancy relationships in specialists and generalists: A case study on aquatic macroinvertebrates in standing waters. J Anim Ecol. 2010;79:589–601.PubMed
Article
Google Scholar
77.Liao J, Cao X, Zhao L, Wang J, Gao Z, Wang MC, et al. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiol Ecol. 2016;92:fiw174.PubMed
Article
CAS
Google Scholar
78.Slatyer RA, Hirst M, Sexton JP. Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett. 2013;16:1104–14.PubMed
Article
Google Scholar
79.Fierer N, Barberán A, Laughlin DC. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front Microbiol. 2014;5:1–6.Article
Google Scholar
80.Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.CAS
PubMed
PubMed Central
Article
Google Scholar
81.Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, et al. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol. 2007;9:2211–9.PubMed
Article
Google Scholar
82.Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, et al. Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol. 2006;8:2162–9.CAS
PubMed
Article
Google Scholar
83.Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE. Soil-Borne microbiome: linking diversity to function. Micro Ecol. 2015;70:255–65.CAS
Article
Google Scholar
84.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome – SM. Science. 2015;348:1261359–1261359.PubMed
Article
CAS
Google Scholar
85.Wohl DL, Arora S, Gladstone JR. Functional redundancy supports biodiversity and ecosystem function in a cloased and constant environment. Ecology. 2008;85:1534–40.Article
Google Scholar
86.Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol. 2019;21:750–8.PubMed
Article
Google Scholar
87.Bergkessel M, Basta DW, Newman DK. The physiology of growth arrest: Uniting molecular and environmental microbiology. Nat Rev Microbiol. 2016;14:549–62.CAS
PubMed
Article
Google Scholar
88.Hofer U. Life in the slow lane. Nat Rev Microbiol. 2019;26:266–7.Article
CAS
Google Scholar
89.Baho DL, Peter H, Tranvik LJ. Resistance and resilience of microbial communities – Temporal and spatial insurance against perturbations. Environ Microbiol. 2012;9:2283–92.Article
Google Scholar
90.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed
PubMed Central
Article
Google Scholar
91.Aanderud ZT, Jones SE, Fierer N, Lennon JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front Microbiol. 2015;6:1–11.Article
Google Scholar
92.Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ Microbiol. 2015;17:4979–93.CAS
PubMed
Article
Google Scholar
93.Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio. 2015;6:e02288–14.CAS
PubMed
PubMed Central
Article
Google Scholar
94.Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 2011;5:1303–13.CAS
PubMed
PubMed Central
Article
Google Scholar
95.Shi Z, Yin H, Van Nostrand JD, Voordeckers JW, Tu Q, Deng Y, et al. Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems. 2019;4:99–117.
Google Scholar More