More stories

  • in

    Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes

    1.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    CAS 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    CAS 

    Google Scholar 
    3.IPCC. Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group I to IPCC AR5. (Cambridge University Press, 2014).4.Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125 LP–125128 (2001).Article 

    Google Scholar 
    5.Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).CAS 
    Article 

    Google Scholar 
    6.Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).8.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645 LP–11611650 (2017).Article 
    CAS 

    Google Scholar 
    9.Keith, D. A. et al. The IUCN red list of ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article 

    Google Scholar 
    10.Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    11.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).Article 

    Google Scholar 
    12.Chauvenet, A. L. M. et al. To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets. One Earth 2, 479–486 (2020).Article 

    Google Scholar 
    13.Wilson, E. O. Half Earth: Our Planets Fight for Life (W.W. Norton and Company, 2016).14.Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).Article 

    Google Scholar 
    15.Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS 

    Google Scholar 
    16.Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).Article 
    CAS 

    Google Scholar 
    17.Finsinger, W., Giesecke, T., Brewer, S. & Leydet, M. Emergence patterns of novelty in European vegetation assemblages over the past 15 000 years. Ecol. Lett. 20, 336–346 (2017).Article 

    Google Scholar 
    18.Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369 (2020).19.Jackson, S. T. Vegetation, environment, and time: the origination and termination of ecosystems. J. Veg. Sci. 17, 549–557 (2006).Article 

    Google Scholar 
    20.Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).Article 

    Google Scholar 
    21.Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579–1247579 (2014).Article 
    CAS 

    Google Scholar 
    22.Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10 (2020).23.Heubes, J. et al. Modelling biome shifts and tree cover change for 2050 in West Africa: Biome shifts and tree cover change in West Africa. J. Biogeogr. 38, 2248–2258 (2011).Article 

    Google Scholar 
    24.Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. 103, 13116–13120 (2006).CAS 
    Article 

    Google Scholar 
    25.Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: CLIMATE CHANGE AND AMAZON BIOME SHIFTS. Geophys. Res. Lett. 37, n/a–n/a (2010).Article 

    Google Scholar 
    26.Yu, D., Liu, Y., Shi, P. & Wu, J. Projecting impacts of climate change on global terrestrial ecoregions. Ecol. Indic. 103, 114–123 (2019).Article 

    Google Scholar 
    27.Iwamura, T., Guisan, A., Wilson, K. A. & Possingham, H. P. How robust are global conservation priorities to climate change? Glob. Environ. Change 23, 1277–1284 (2013).Article 

    Google Scholar 
    28.Littlefield, C. E., Krosby, M., Michalak, J. L. & Lawler, J. J. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ. 17, 270–278 (2019).Article 

    Google Scholar 
    29.McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. 113, 7195 LP–7197200 (2016).Article 
    CAS 

    Google Scholar 
    30.CBD. Zero Draft of post-2020 biodiversity framework. Secr. Conv. Biol. Divers. 1–14 (2020).31.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6 (2020).32.Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).Article 

    Google Scholar 
    33.Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).Article 

    Google Scholar 
    34.Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: irresistible force meets immovable object? Trends Ecol. Evol. 35, 367–376 (2020).Article 

    Google Scholar 
    35.Svenning, J. C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).Article 

    Google Scholar 
    36.Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).
    Google Scholar 
    37.Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).Article 

    Google Scholar 
    38.Araujo. Climate Change and Spatial Conservation Planning. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).39.Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).40.Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    41.Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190218 (2019).42.Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738 LP–5735742 (2007).Article 
    CAS 

    Google Scholar 
    43.OECD. The post-2020 biodiversity framework: targets, indicators and measurability implications at global and national level. (2019).44.Carroll, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 00, 1–13 (2020).
    Google Scholar 
    45.Lovejoy, T. E. & Hannah, L. Avoiding the climate failsafe point. Sci. Adv. 4 (2018).46.Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    47.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327 (2009).CAS 
    Article 

    Google Scholar 
    48.Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. 106, 349–350 (2009).CAS 
    Article 

    Google Scholar 
    49.Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).Article 
    CAS 

    Google Scholar 
    50.Boesing, A. L., Nichols, E. & Metzger, J. P. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41, 1520–1533 (2018).Article 

    Google Scholar 
    51.Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).52.Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).Article 

    Google Scholar 
    53.Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7 (2016).54.Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26 (2020).55.Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24 (2018).56.Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).Article 

    Google Scholar 
    57.Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).Article 

    Google Scholar 
    58.Fitzpatrick, M. C. & Dunn, R. R. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10, 614 (2019).CAS 
    Article 

    Google Scholar 
    59.Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J. & Elston, D. A. Regression analysis of spatial data. Ecol. Lett. 13, 246–264 (2010).Article 

    Google Scholar 
    60.Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    61.Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Change Biol. 23, 3934–3955 (2017).Article 

    Google Scholar 
    62.Fitzpatrick, M. C. et al. How will climate novelty influence ecological forecasts? Using the quaternary to assess future reliability. Glob. Change Biol. 24, 3575–3586 (2018).Article 

    Google Scholar 
    63.Mahony, C. R., MacKenzie, W. H. & Aitken, S. N. Novel climates: trajectories of climate change beyond the boundaries of British Columbia’s forest management knowledge system. For. Ecol. Manag. 410, 35–47 (2018).Article 

    Google Scholar 
    64.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (1998).Article 

    Google Scholar 
    65.Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).Article 

    Google Scholar 
    66.Stephenson, N. L. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).Article 

    Google Scholar 
    67.Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).Article 

    Google Scholar 
    68.Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).Article 

    Google Scholar 
    69.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. U.S.A. 116, 6193–6198 (2019).70.Rodriguez Mega, E. Apocalypic fires are ravaging the worlds largest tropical wetland. Nature 586, 20–21 (2020).71.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2020-69 (2020).72.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909 LP–909914 (2019).Article 
    CAS 

    Google Scholar 
    73.Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).74.Parks, S. A. et al. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 11, 035002 (2016).75.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 (2018).76.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).Article 

    Google Scholar 
    77.Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).CAS 
    Article 

    Google Scholar 
    78.Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    79.Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammal is proportional to home range size. Ecology 83, 2049–2055 (2002).Article 

    Google Scholar 
    80.Smith, A. M. & Green, D. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    81.Sutherland, G., Harestad, A. S., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4 (2000).82.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    83.Michalak, J. L., Lawler, J. J., Roberts, D. R. & Carroll, C. Distribution and protection of climatic refugia in North America. Conserv. Biol. 32, 1414–1425 (2018).Article 

    Google Scholar  More

  • in

    Changes in microbial community phylogeny and metabolic activity along the water column uncouple at near sediment aphotic layers in fjords

    The present study was carried out in six fjords within New Zealand’s Fiordland system, specifically Breaksea Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, Long Sound, and Wet Jacket Arm, as described in Tobias-Hünefeldt et al.15. Analyses were divided into three categories: (1) a multi-fjord analysis comprising five of the tested fjords (excluding Long Sound), (2) a high-resolution study along Long Sound’s horizontal axis, and (3) a depth profile of Long Sound’s deepest location (at 421 m). These categories were established to identify trends across multiple fjords, and then test the trends using a fjord analysed at a higher resolution. Total community composition (via 16S and 18S rRNA gene sequencing) and metabolic potential did not significantly covary across the five studied fjords (Mantel, r  More

  • in

    The effect of estuarine system on the meiofauna and nematodes in the East Siberian Sea

    1.Stein, R. & Macdonald, R. W. Organic carbon budget: Arctic Ocean vs. global ocean. In The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R. W.) (Springer, 2004).Chapter 

    Google Scholar 
    2.Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Oceanogr. Ser. 74, 1–54. https://doi.org/10.1016/S0422-9894(06)74001-6 (2007).Article 

    Google Scholar 
    3.Sheremetevskiy, A. M. Role of meiobenthos of the South Sakhalin shelf, Eastern Kamchatka, and Novosibirsk shallow water area. Issledovaniya Fauny Morei 35, 43 (1987).
    Google Scholar 
    4.Golikov, A. N. Ecosystems of the New Siberian shoals and fauna of the Laptev Sea and adjacent waters of the Arctic Ocean (in Russian). Explor. Fauna Seas 37, 4 (1990).
    Google Scholar 
    5.Golikov, A. N. Fauna of the East Siberian Sea. Part III. Explor. Fauna Seas 49, 57 (1994).
    Google Scholar 
    6.Sirenko, B. I. & Denisenko, S. G. Fauna of the East Siberian Sea, distribution patterns and structure of bottom communities. Explor. Fauna Seas 66, 74 (2010).
    Google Scholar 
    7.Sirenko, B. I. List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor. Fauna Seas 51(59), 1–76 (2001).
    Google Scholar 
    8.Schmidt-Rhaesa, A. Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera Vol. 2, 608 (De Gruyter, 2020).
    Google Scholar 
    9.Udalov, A. et al. Integrity of benthic assemblages along the arctic estuarine-coastal system. Ecol. Indic. 121, 107115. https://doi.org/10.1016/j.ecolind.2020.107115 (2021).Article 

    Google Scholar 
    10.Portnova, D., Fedyaeva, M., Udalov, A. & Tchesunov, A. Community structure of nematodes in the Laptev Sea shelf with notes on the lives of ice nematodes. Reg. Stud. Mar. Sci. 31, 100757. https://doi.org/10.1016/j.rsma.2019.100757 (2019).Article 

    Google Scholar 
    11.Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39(1), 9–25. https://doi.org/10.1007/s12526-009-0003-x (2009).Article 

    Google Scholar 
    12.Lei, Y., Stumm, K., Volkenborn, N., Wickham, S. A. & Berninger, U. G. Impact of Arenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in a marine intertidal flat. Mar. Biol. 157(6), 1271–1282. https://doi.org/10.1007/s00227-010-1407-7 (2010).Article 

    Google Scholar 
    13.Flint, M. V., Poyarkov, S. G. & Rymsky-Korsakov, N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology 58(2), 315–318. https://doi.org/10.1134/S0001437018020042 (2018).ADS 
    Article 

    Google Scholar 
    14.Garlitska, L. A. & Azovsky, A. I. Benthic harpacticoid copepods of the Yenisei Gulf and the adjacent shallow waters of the Kara Sea. J. Nat. Hist. 50, 2941–2959. https://doi.org/10.1080/00222933.2016.1219410 (2016).Article 

    Google Scholar 
    15.Portnova, D., Garlitska, L., Udalov, A. & Kondar, D. Meiobenthos and nematode community in the Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57(1), 1–15. https://doi.org/10.1134/S0001437017010155 (2017).Article 

    Google Scholar 
    16.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96(12), 2079–2105. https://doi.org/10.1175/BAMS-D-13-00177.1 (2005).ADS 
    Article 

    Google Scholar 
    17.Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298(5601), 2171–2173. https://doi.org/10.1126/science.1077445 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. ERL 14(10), 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Lisitzin, A. P. Marginal filter of the oceans. Oceanology 34(5), 735–743 (1994).CAS 

    Google Scholar 
    20.Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, Katja, Ingles, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A, & Vincx, M. Ecology of free-living marine nematodes. In Volume 2 Nematoda, 109–152. De Gruyter (2013)21.Aller, J. Y. & Aller, R. C. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6(1–2), 291–310. https://doi.org/10.1016/0278-4343(86)90065-8 (1986).ADS 
    Article 

    Google Scholar 
    22.Soetaert, K., Vincx, M., Wittoeck, J. & Tulkens, M. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311(1), 185–206. https://doi.org/10.1007/BF00008580 (1995).Article 

    Google Scholar 
    23.Tank, S. E. et al. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coast 35, 401–415. https://doi.org/10.1007/s12237-011-9417-3 (2012).CAS 
    Article 

    Google Scholar 
    24.Galtsova, V. V., Lukina, T. G. & Vladimirov, M. V. Meiobenthos of Chaunskaya Bay, East Siberian Sea. Issledovaniya Fauny Morei 48(56), 67–97 (1994).
    Google Scholar 
    25.Coull, B. C. Role of meiofauna in estuarine soft‐bottom habitats. Austral Ecol. 24(4), 327–343 (1999).Article 

    Google Scholar 
    26.Vincx, M., Meire, P., & Heip, C. The distribution of nematodes communities in the Southern Bight of the North Sea. Cah Biol Mar. 31(1), 107–129 (1990).27.Vanaverbeke, J., Gheskiere, T., Steyaert, M., & Vincx, M. Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3), 197–207. https://doi.org/10.1016/S1385-1101(02)00165-X (2002)ADS 
    Article 

    Google Scholar 
    28.Steyaert, M., et al. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci. 58(2), 353–366 (2003).ADS 
    Article 

    Google Scholar 
    29.Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U. K. 89(8), 1529–1540 (2009).CAS 
    Article 

    Google Scholar 
    30.Garlitska, L. A., Chertoprud, E. S., Portnova, D. A. & Azovsky, A. I. Benthic harpacticoida of the Kara Sea: Species composition and bathymetrically related distribution. Oceanology 59(4), 541–551. https://doi.org/10.1134/S0001437019040064 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Huang, D. et al. Preliminary study on community structures of meiofauna in the middle and eastern Chukchi Sea. Acta Oceanol. Sin. 40(6), 83–91. https://doi.org/10.1007/s13131-021-1777-3 (2021).ADS 
    Article 

    Google Scholar 
    32.Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    33.Semiletov, I. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022490 (2005).Article 

    Google Scholar 
    34.Miroshnikov, A. Y. et al. Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea. Oceanology 60(4), 595–610. https://doi.org/10.31857/S0030157420040152 (2020).Article 

    Google Scholar 
    35.Frontalini, F. et al. The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments. Environ. Toxicol. Chem. 37(9), 2439–2447. https://doi.org/10.1002/etc.4207 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Fonseca, G. & Soltwedel, T. Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol. 30, 607–618. https://doi.org/10.1007/s00300-006-0220-8 (2007).Article 

    Google Scholar 
    37.Portnova, D. & Polukhin, A. Meiobenthos of the eastern shelf of the Kara Sea compared with the meiobenthos of other parts of the sea. Reg. Stud. Mar. Sci. 24, 370–378. https://doi.org/10.1016/j.rsma.2018.10.002 (2018).Article 

    Google Scholar 
    38.Alexeev, D. K., & Galtsova, V. V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Sci. 6(2), 183–195 (2012).ADS 
    Article 

    Google Scholar 
    39.Grzelak, K. & Sørensen, M. V. Diversity and community structure of kinorhynchs around Svalbard: First insights into spatial patterns and environmental drivers. Zool. Anz. 282, 31–43. https://doi.org/10.1016/j.jcz.2019.05.009 (2019).Article 

    Google Scholar 
    40.Landers, S. C. et al. Kinorhynch communities from Alabama coastal waters. Mar. Biol. Res. 16(6–7), 494–504. https://doi.org/10.1080/17451000.2020.1789660 (2020).Article 

    Google Scholar 
    41.Holovachov, O. New and known species of the genus Campylaimus Cobb, 1920 (Nematoda: Araeolaimida: Diplopeltidae) from North European marine habitats. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e46545 (2007).Article 

    Google Scholar 
    42.Sharma, J. & Bluhm, B. A. Diversity of larger free-living nematodes from macrobenthos ( > 250 μm) in the Arctic deep-sea Canada Basin. Mar. Biodivers. 41(3), 455–465. https://doi.org/10.1007/s12526-010-0060-1 (2010).Article 

    Google Scholar 
    43.Kotwicki, L., Grzelak, K. & Bełdowski, J. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res. II 128, 123–130. https://doi.org/10.1016/j.dsr2.2015.12.012 (2016).CAS 
    Article 

    Google Scholar 
    44.Netto, S. A., Pagliosa, P. R., Colling, A., Fonseca, A. L. & Brauk, K. M. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. Braz. Estuaries. https://doi.org/10.1007/978-3-319-77779-5_6 (2018).Article 

    Google Scholar 
    45.Broman, E., et al. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun. Biol. 3(1), 1–12 (2020).46.Zeppilli, D., et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodiver. 48(1), 35–71 (2018).47.Pérez-García, J. A. et al. Nematode diversity of freshwater and anchialine caves of Western Cuba. PBSW 131(1), 144–155. https://doi.org/10.2988/17-00024 (2018).Article 

    Google Scholar 
    48.Bezzubova, E. M., Seliverstova, A. M., Zamyatin, I. A. & Romanova, N. D. Heterotrophic bacterioplankton of the Laptev and East Siberian Sea shelf affected by freshwater inflow areas. Oceanology 60, 62–73. https://doi.org/10.1134/S0001437020010026 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Vanreusel, A. et al. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. I 47, 1855–1879. https://doi.org/10.1016/S0967-063728002900007-8 (2000).Article 

    Google Scholar 
    50.Tahseen, Q. Nematodes in aquatic environments: Adaptations and survival strategies. Biodivers. J. 3(1), 13–40 (2012).
    Google Scholar 
    51.Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Ocean 139, 24–41. https://doi.org/10.1016/j.pocean.2015.07.008 (2015).Article 

    Google Scholar 
    52.Magritsky, D. V. et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 87(2), 177–194. https://doi.org/10.2312/polarforschung.87.2.177 (2018).Article 

    Google Scholar 
    53.Anderson, L. G. et al. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 4, 6. https://doi.org/10.5194/bg-8-1745-2011 (2011).CAS 
    Article 

    Google Scholar 
    54.Dmitrienko, I. A. et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. https://doi.org/10.1029/2009JC006020 (2010).Article 

    Google Scholar 
    55.Stein, R. Arctic Ocean Sediments: Processes, PROXIES, and Paleoenvironment (Elsevier, 2008).
    Google Scholar 
    56.Petrova, V. I., Batova, G. I., Kursheva, A. V. & Litvinenko, I. V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 51(1), 88–97. https://doi.org/10.1016/j.rgg.2009.12.008 (2010).ADS 
    Article 

    Google Scholar 
    57.Millero, F. J. Thermodynamics of the carbon dioxide system in oceans. GCA 59(4), 661–677. https://doi.org/10.12691/wjce-3-6-1 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Pavlova, G. Y. et al. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 48, 438. https://doi.org/10.1134/S0001437008030168 (2008).ADS 
    Article 

    Google Scholar 
    59.Dickson, A. G. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. Version 2 (No. ORNL/CDIAC-74) (1994).60.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0 (2003).CAS 
    Article 

    Google Scholar 
    61.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).Book 

    Google Scholar 
    62.Shiklomanov, A. I., Holmes, J. W., McClelland, S. E., Tank, R. & Spencer, G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20200801 (2020).63.Niemistö, L. A gravity corer for studies of soft sediments. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 238, 33–38 (1974).
    Google Scholar 
    64.Eleftheriou, A. Methods for the Study of Marine Benthos (Wiley, 2013).Book 

    Google Scholar 
    65.Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden, marinen Nematoden. Ark. Zool. 2, 439–484 (1953).
    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    67.Heip, C. & Herman, P. Indices of diversity and evenness. Oceanis 24(4), 61–88 (2001).
    Google Scholar  More

  • in

    Fine-root traits in the global spectrum of plant form and function

    1.Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley and Sons, 2001).2.Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).Article 

    Google Scholar 
    3.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Kattge, J. et al. TRY plant trait database — enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    7.Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).PubMed 
    Article 

    Google Scholar 
    8.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).Article 

    Google Scholar 
    9.McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).PubMed 
    Article 

    Google Scholar 
    10.Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    11.Eissenstat, D. M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15, 763–782 (1992).Article 

    Google Scholar 
    12.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).Article 

    Google Scholar 
    13.Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    14.Shen, Y. et al. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Front. Plant Sci. 10, 1412 (2019).Article 

    Google Scholar 
    15.Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).Article 

    Google Scholar 
    16.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).PubMed 
    Article 

    Google Scholar 
    17.Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.de la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).Article 
    CAS 

    Google Scholar 
    20.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).Article 

    Google Scholar 
    21.Liese, R., Alings, K. & Meier, I. C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant Sci. 8, 315 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).PubMed 
    Article 

    Google Scholar 
    24.Liu, G. et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 188, 543–553 (2010).PubMed 
    Article 

    Google Scholar 
    25.Galland, T., Carmona, C. P., Götzenberger, L., Valencia, E. & de Bello, F. Are redundancy indices redundant? An evaluation based on parameterized simulations. Ecol. Indic. 116, 106488 (2020).Article 

    Google Scholar 
    26.Valverde‐Barrantes, O. J., Maherali, H., Baraloto, C. & Blackwood, C. B. Independent evolutionary changes in fine‐root traits among main clades during the diversification of seed plants. New Phytol. 228, 541–553 (2020).PubMed 
    Article 

    Google Scholar 
    27.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    28.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).Article 

    Google Scholar 
    29.De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).PubMed 
    Article 

    Google Scholar 
    30.Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).Article 

    Google Scholar 
    31.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).Article 

    Google Scholar 
    33.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2021).34.McCormack, M. L. & Iversen, C. M. Physical and functional constraints on viable belowground acquisition strategies. Front. Plant Sci. 10, 1215 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Wells, C. E. & Eissenstat, D. M. Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J. Plant Growth Regul. 21, 324–334 (2002).CAS 
    Article 

    Google Scholar 
    36.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.USDA. USDA PLANTS Database (accessed 3rd July 2020); https://plants.sc.egov.usda.gov38.Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.BGCI. GlobalTreeSearch online database (accessed 3rd July 2020); https://www.bgci.org/globaltree_search.php40.The Plant List. The Plant List (accessed 17th February 2020); http://www.theplantlist.org41.Cayuela, L., Macarro, I., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (2019).42.Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Oliveira, B. F., Sheffers, B. R. & Costa, G. C. Decoupled erosion of amphibians’ phylogenetic and functional diversity due to extinction. Glob. Ecol. Biogeogr. 29, 309–319 (2020).Article 

    Google Scholar 
    44.Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    45.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    46.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    47.Whittakker, R. H. Communities and Ecosystems (Macmillan, 1975).48.Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 https://github.com/valentinitnelav/plotbiomes (2021).49.Ricklefs, R. E. The Economy of Nature (W. H. Freeman and Company, 2008).50.GBIF. GBIF Occurrence Download (accessed 15 December 2019); https://doi.org/10.15468/dl.thlxph51.South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).Article 

    Google Scholar 
    52.Dinno, A. paran: Horn’s Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran (2018).53.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. https://doi.org/10.18637/jss.v022.i04 (2007).54.Duong, T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v021.i07 (2015).55.Duong, T. ks: Kernel smoothing. R package version 1.11.5 https://CRAN.R-project.org/package=ks (2019).56.Carmona, C. P., Bello, F., Mason, N. W. H. & Lepš, J. Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology 100, e02876 (2019).PubMed 
    Article 

    Google Scholar 
    57.Carmona, C. P. TPD: methods for measuring functional diversity based on Trait Probability Density. R package version 1.1.0. https://CRAN.R-project.org/package=TPD (2019).58.Duong, T. & Hazelton, M. L. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).PubMed 
    Article 

    Google Scholar 
    60.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 https://CRAN.R-project.org/package=vegan (2019).63.Carmona, C. P. et al. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. J. Appl. Ecol. 49, 1084–1093 (2012).Article 

    Google Scholar 
    64.Micó, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10, 1520 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 9, 305–319 (2018).Article 

    Google Scholar 
    66.Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. The density awakens: a reply to Blonder. Trends Ecol. Evol. 31, 667–669 (2016).PubMed 
    Article 

    Google Scholar 
    67.Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    68.de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M.-T. & Lepš, J. Which trait dissimilarity for functional diversity: trait means or trait overlap? J. Veg. Sci. 24, 807–819 (2013).Article 

    Google Scholar 
    69.Traba, J., Iranzo, E. C., Carmona, C. P. & Malo, J. E. Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos 126, 1400–1409 (2017).Article 

    Google Scholar 
    70.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex Hull Volume. Ecology 87, 1465–1471 (2006).PubMed 
    Article 

    Google Scholar 
    71.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    72.Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    73.Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    74.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Carmona, C. P., de Bello, F., Sasaki, T., Uchida, K. & Pärtel, M. Towards a common toolbox for rarity: a response to Violle et al. Trends Ecol. Evol. 32, 889–891 (2017).PubMed 
    Article 

    Google Scholar 
    76.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    78.Gower, J. C. General coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    79.Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    80.Gherardi, L. A. & Sala, O. E. Global patterns and climatic controls of belowground net carbon fixation. Proc. Natl Acad. Sci. USA 117, 20038–20043 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Genetic purging in captive endangered ungulates with extremely low effective population sizes

    We have analyzed the inbreeding-purging process in four captive populations of different ungulate species with effective sizes ranging 4–40 and with available pedigrees as well as survival and productivity records. This allows us to explore the role of inbreeding and purging in determining the evolution of fitness traits in a range of scenarios relevant in the context of conservation.In A. lervia (Ne ≈ 4), purging is expected only for the most severely deleterious alleles (those giving dNe  > 1, which implies d  > 0.25 as, for example, in completely recessive alleles with deleterious homozygous disadvantage s  > 0.5). Thus, it could be that purging has not been detected for this species because such severely deleterious alleles had been purged during the demographic decline in the wild, before the foundation of the captive population. This would be consistent with the low and non-significant inbreeding load estimated in this species. It is also possible that these estimates are non-significant due to the relatively small number of individuals available.G. cuvieri and N. dama have significant initial inbreeding loads that, adding up the direct and maternal components, is about 1.25 in both cases, which is on the order of other estimates published for captive populations (Ralls et al. 1988). Since in both species Ne  > 10, purging should be efficient against less severely deleterious alleles than in A. lervia (d  > 0.1). Purging is detected for both species with very low P values. This result is in agreement with Moreno et al. (2015), who suggested that purging had occurred in G. cuvieri as they found an increased juvenile survival parallel to an increased inbreeding coefficient. The relative contribution of severe and mild deleterious effects to the inbreeding load of populations is under a scientific debate with direct implications in conservation biology (Ralls et al. 2020, Kyriazis et al. 2021, Pérez-Pereira et al. 2021). The large d estimates obtained in our analysis indicate that a substantial fraction of the initial inbreeding load is being purged under modest effective population sizes, implying that such substantial fraction is due to relatively severe deleterious mutations in these two populations. As far as we are aware, these are the first estimates of this purging parameter obtained in managed, non-experimental populations. Previous estimates of d were obtained in D. melanogaster bottlenecked populations, first for egg-to-pupae viability in lines with Ne = 6 or 12 under noncompetitive conditions (d = 0.09, Bersabé and García-Dorado 2013), and second in lines with higher Ne ≈ 40–50 under more competitive conditions, giving a larger estimate of d, of the order of that estimated in these two ungulate endangered species (d ≈ 0.3, López-Cortegano et al. 2016).Regarding G. dorcas, given its larger population size, purging is expected even against alleles with mild recessive component of the deleterious effect (d  > 0.025). However, although a significant (if modest) inbreeding load was estimated, no significant purging was detected. Nevertheless, the number of equivalent complete generations by the end of the pedigree (EqG = 7) was smaller than our proposed minimum number of generations required to detect purging (tm = 10). This suggests that, due to the large size of this population, more generations are needed to detect purging.The results above support the use of tm to get an approximate idea about when a pedigree is too shallow for purging to be detected. Should the number of generations available be larger than tm, IP predictions could additionally be computed to search the d values that can be expected to produce detectable purging. Supplementary Fig. S3 shows that the true number of generations required to detect purging becomes increasingly larger than tm for alleles with smaller d values, as they suffer weaker purging each time they are exposed in homozygosis. The tm approach helps to understand the failure of many studies to detect purging. Such is the case of the extensive meta-analyses on 119 zoo populations by Boakes et al. (2007), where the median Ne value was 22.6 while the median number of generations was t = 3 meaning that, for most species, at least 5 more generations were needed before purging could be detectable. On the contrary, and in agreement with this tm approach, purging was experimentally detected in lines of D. melanogaster with Ne = 43 (i.e., tm ≈ 10) where, after an initial period of inbreeding depression, fitness experienced a substantial recovery beginning between generations 10 and 20 (López-Cortegano et al. 2016).A reason why detecting purging in captive populations is challenging is that a fitness rebound can also be due to adaptation to captive conditions or to environmental effects, such as those derived from improved husbandry (Clifford et al. 2007). In fact, this might have been the case in Speke’s gazelle breeding program, where the observed rebound of fitness was first ascribed to purging (Templeton and Read 1984, 1998), while Kalinowski et al. (2000) suggested that husbandry improvements could also be responsible for these findings. Our estimates of d and δ, however, are based on the association between the fitness trait and purged inbreeding at the individual level (Wi, gi) which, in our data, is mainly expressed within cohorts while average survival showed little variation through time. In addition, the analyses included temporal factors (YOB or POM) that should have removed confounding effects from adaptation to captivity or improved husbandry. Therefore, adaptive processes or time-dependent environmental factors are not expected to have biased our IP estimates.For productivity, the estimates of inbreeding load were high (overall inbreeding load ~5, P value  More

  • in

    Persistence of plant-mediated microbial soil legacy effects in soil and inside roots

    1.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. Hvander Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol 11, 789–799 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.De Long, J. R., Fry, E. L., Veen, G. F. & Kardol, P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 33, 118–128 (2019).Article 

    Google Scholar 
    5.Meisner, A., De Deyn, G. B., de Boer, W. & van der Putten, W. H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc. Natl. Acad. Sci. USA. 110, 9835–9838 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, T. M. Legacy effects of aboveground-belowground interactions. Ecol. Lett. 15, 813–821 (2012).PubMed 
    Article 

    Google Scholar 
    7.Heinen, R. et al. Plant community composition steers grassland vegetation via soil legacy effects. Ecol. Lett. 23, 973–982 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Semchenko, M. et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).PubMed 
    Article 

    Google Scholar 
    11.van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    12.Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen-connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).PubMed 
    Article 

    Google Scholar 
    14.Cortois, R., Schröder‐Georgi, T., Weigelt, A., van der Putten, W. H. & De Deyn, G. B. Plant–soil feedbacks: role of plant functional group and plant traits. J. Ecol. 104, 1608–1617 (2016).Article 

    Google Scholar 
    15.Bezemer, T. M., Jing, J., Bakx‐Schotman, J. M. T. & Bijleveld, E.-J. Plant competition alters the temporal dynamics of plant-soil feedbacks. J. Ecol. 106, 2287–2300 (2018).Article 

    Google Scholar 
    16.Kardol, P., Deyn, G. B. D., Laliberté, E., Mariotte, P. & Hawkes, C. V. Biotic plant–soil feedbacks across temporal scales. J. Ecol. 101, 309–315 (2013).Article 

    Google Scholar 
    17.Dudenhöffer, J.-H., Ebeling, A., Klein, A.-M. & Wagg, C. Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. J. Ecol. 106, 230–241 (2018).Article 
    CAS 

    Google Scholar 
    18.Elger, A., Lemoine, D. G., Fenner, M. & Hanley, M. E. Plant ontogeny and chemical defence: older seedlings are better defended. Oikos. 118, 767–773 (2009).CAS 
    Article 

    Google Scholar 
    19.Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2018).CAS 
    Article 

    Google Scholar 
    20.Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Rosenblueth, M. & Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19, 827–837 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Lundberg, D. S. et al. Defining core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Gaiero, J. R. et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100, 1738–1750 (2013).PubMed 
    Article 

    Google Scholar 
    24.Rodriguez, R. J. Jr, Arnold, J. F. W. & Redman, A. E. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Fitzpatrick, C. R. et al. Ecological role of the angiosperm root microbiome. Proc. Natl. Acad. Sci. USA. 115, E1157–E1165 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Hardoim, P. R., van Overbeek, L. S. & Elsas, J. Dvan Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    30.Sikes, B. A., Hawkes, C. V. & Fukami, T. Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology 97, 484–493 (2016).PubMed 
    Article 

    Google Scholar 
    31.Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).CAS 
    Article 

    Google Scholar 
    32.van de Voorde, T. F., van der Putten, W. H. &  Bezemer, T. M. Intra‐and interspecific plant–soil interactions, soil legacies and priority effects during old‐field succession. J. Ecol. 99, 945–953 (2011).Article 

    Google Scholar 
    33.Hannula, S. E. et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. mBio 10, e02635–19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Ampt, E. A., van Ruijven, J., Raaijmakers, J. M., Termorshuizen, A. J. & Mommer, L. Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. Eur. J. Plant Pathol. 154, 141–156 (2019).Article 

    Google Scholar 
    36.Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA. 105, 11512–11519 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rousk, J. & Bååth, E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biol. Biochem. 39, 2173–2177 (2007).CAS 
    Article 

    Google Scholar 
    38.Phillips, M. L. et al. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol. 40, 107–117 (2019).Article 

    Google Scholar 
    39.Carini, P., Marsden, P. & Leff, J. E. A. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2017).CAS 
    Article 

    Google Scholar 
    40.Hannula, S. E., Morrien, E., van der Putter, W. H. & de Boer, W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecol. 48, 100988 (2020).Article 

    Google Scholar 
    41.Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta‐analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed 
    Article 

    Google Scholar 
    42.Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Hannula, S. E. et al. Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soil‐borne pathogen. Environ. Microbiol. 22, 660–676 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Francioli, D. et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil https://doi.org/10.1007/s11104-020-04454-y (2020).45.Craine, J., Froehle, J., Tilman, D., Wedin, D. & Chapin, F. S. III The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).Article 

    Google Scholar 
    46.Tjoelker, M., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Herz, K. et al. Linking root exudates to functional plant traits. PLoS ONE 13, e0204128 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Huberty, M., Choi, Y. H., Heinen, R. & Bezemer, T. M. Above-ground plant metabolomic responses to plant–soil feedbacks and herbivory. J. Ecol. 108, 1703–1712 (2020).CAS 
    Article 

    Google Scholar 
    49.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA. 112, E911–E920 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    51.Hannula, S. E. et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J. 11, 2294–2304 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Koyama, A., Maherali, H. & Antunes, P. M. Plant geographic origin and phylogeny as potential drivers of community structure in root‐inhabiting fungi. J. Ecol. 107, 1720–1736 (2019).Article 

    Google Scholar 
    53.Wemheuer, F., Wemheuer, B., Daniel, R. & Vidal, S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci. Rep. 9, 1–14 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Ma, H. et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468 (2020).Article 

    Google Scholar 
    55.Suárez-Moreno, Z. R. et al. Plant-growth promotion and biocontrol properties of three streptomyces spp. isolates to control bacterial rice pathogens. Front. Microbiol. 10, 290 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).CAS 
    Article 

    Google Scholar 
    57.Liang, M. et al. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology 96, 562–574 (2015).PubMed 
    Article 

    Google Scholar 
    58.Teste, F. P., Veneklaas, E. J., Dixon, K. W. & Lambers, H. Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct. Ecol. 28, 819–828 (2014).Article 

    Google Scholar 
    59.Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 218, 542–553 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.De Long, J. R. et al. How plant–soil feedbacks influence the next generation of plants?. Ecol. Res. 36, 32–44 https://doi.org/10.1111/1440-1703.12165 (2021).CAS 
    Article 

    Google Scholar 
    62.Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).Article 

    Google Scholar 
    63.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Micro. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    66.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    70.Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Oksanen, J. et al. Vegan: Ordination Methods, Diversity Analysis And Other Functions For Community And Vegetation Ecologists (Community Ecol Package Vegan, 2013).73.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Phenotypic plasticity and a new small molecule are involved in a fungal-bacterial interaction

    Synergy between S. cerevisiae and R. etli in biofilm formationWhen S. cerevisiae Mat α Σ1278h and R.etli CE3 were grown in minimal medium with low glucose concentrations (0.1%), these species adhered to abiotic surfaces to form biofilms (Fig. 1). Interestingly, R. etli and S. cerevisiae formed a mixed biofilm whose biomass was ~ 3 times greater than that of either single-species biofilm (Fig. 1a). In addition, at 24 h, the number of colony-forming units (CFU)/cm2 of R. etli CE3 in the mixed biofilm was higher than that in the pure biofilm (Supplementary Fig. 1). Confocal laser scanning microscopy of biofilms stained with the Live/Dead Kit (propidium iodide and SYTO9) showed that in the mixed biofilm, the yeast cells formed patches, and the bacterial cells covered most of the surface (Fig. 1b). In contrast, monospecies biofilms of R. etli and S. cerevisiae had lower structural complexity and contained a greater (80%) number of dead cells, and their individual densities were lower than their populations in the mixed biofilm (Fig. 1b). These results suggest that in mixed biofilms, S. cerevisiae promotes bacterial growth.Figure 1The interaction between S. cerevisiae and Rhizobium etli CE3 results in the formation of a structurally complex and more productive biofilm in terms of biomass. (a) Biofilm formation of R. etli CE3 and S. cerevisiae Σ1278h Mat α and biofilm growth over time in minimal dextrose medium. The data are representative of 3 independent experiments +/− the S.D. values. (b) Top view and cross section of confocal micrographs of the S. cerevisiae-R. etli mixed biofilm and the single-species biofilms. Magnification 40 × . The images are representative of 3 independent experiments. Biofilms were developed on glass microscope slides and stained with a LIVE/DEAD viability kit. Red fluorescence indicates dead cells, and live cells are colored green. Images were acquired 24 h after inoculation.Full size image
    S. cerevisiae secretes dicarboxylic acids that promote R. etli growth and biofilm formationWe found that the R. etli colonies that grew close to S. cerevisiae on solid glucose minimal medium were larger than those growing far from yeast colony (Fig. 2).Figure 2Yeast cells produce dicarboxylic acids that promote the growth of R. etli. (a) R. etli growth in coculture with S. cerevisiae BY4741 mutants (aco1Δ, fum1Δ, sdh1Δ and mdh1Δ) that accumulate dicarboxylic acids and a BY4741 strain with blockade of the aerobic respiratory chain (rho-). (b) Test on solid medium showing that S. cerevisiae BY4741 (*) secretes compounds that promote bacterial growth (  >). In contrast, BY4741 rho- cells (ρ), which do not produce dicarboxylic acids, do not promote the growth of R. etli CE3. R. etli CE3 cells were spread over MMD agar, and yeast cells were spotted in the center. (c) Top view of light micrographs of dual-species biofilms; S. cerevisiae (arrowhead) and R. etli (arrow). Biofilms were developed on glass microscope slides and stained with crystal violet. Magnification 20 × . The images are representative of 3 independent experiments. (d) Growth of R. etli strains in coculture with S. cerevisiae BY4741. The growth of the rhizobium strains was estimated at 24 h. R. etli CE3 strains: wild-type (wt), dctA- containing an empty expression plasmid (dctA-) and dctA- containing a plasmid expressing dctA (dctA-/dctA). The data are representative of 3 independent experiments +/− the S.D. values.Full size imageWe used a visual growth promotion assay on solid medium to screen for S. cerevisiae knockout strains (YKO library) that influenced bacterial growth. 159 yeast mutants were unable to promote R. etli CE3 growth (Supplementary Table 3). In general, these mutants were defective in mitochondrial function. Interestingly, we found that 5 strains with mutations in genes coding for enzymes involved in the TCA cycle showed an enhanced ability to promote bacterial growth compared to that of the wild-type strain (Fig. 2a).To determine how the S. cerevisiae mutants may affect the fungal-bacterial interaction, we analyzed factors that may be altered in mutants with mitochondrial function defects and a compromised TCA cycle.We compared the production of TCA intermediates between the wild-type and mutant yeast strains. Mutants defective in mitochondrial function (mef1Δ, gep5Δ, sdh2Δ, ppa2Δ, imp1Δ, cox7Δ, cyc1Δ and cyc2Δ) produced low amounts of tricarboxylic acids (Supplementary Fig. 2a). In contrast, the aconitase mutant (aco1Δ) produced 60% more citrate and succinate; the fumarase mutant (fum1Δ) resulted in fumarate accumulation; the succinate dehydrogenase mutants (sdh1Δ and sdh4Δ) produced 80% more succinate; and the mitochondrial malate dehydrogenase mutant (mdh1Δ) produced 60% more malate and succinate (Supplementary Fig. 2b). These results suggested that the large quantities of tricarboxylic acids secreted by the mutant yeast played a role in promoting bacterial growth in the cocultures.We analyzed the biomass of mixed biofilms formed by yeast cells defective in mitochondrial function (Σ1278B petit mutant). The ability of the wild-type and the petit mutant strains to form a monospecies biofilm was similar (Supplementary Fig. 3). In contrast, the mixed biofilm formed by yeast cells defective in mitochondrial function was significantly lower in biomass than that formed by the wild-type yeast strain (Fig. 2c). Also, Σ1278B petit mutant produced low amounts of tricarboxylic acids (Supplementary Fig. 2a).We next measured the biomass of the mixed biofilm formed by S. cerevisiae and a Rhizobium mutant unable to take up C4-dicarboxylic acids (dctA-). This evaluation revealed that C4-dicarboxylate uptake by R. etli is necessary to form mixed biofilms with high biomass (Fig. 2d).A symbiotic plasmid is involved in the phenotypic plasticity of R. etli.
    The genome of Rhizobium etli CE3 is composed of a chromosome and 6 plasmids (pA, pB, pC, pD, PE and pF)11. To determine whether elements encoded by these replicons can participate in the establishment of commensalism, we evaluated the formation of biofilms by yeast and R. etli strains lacking these replicons12. We found that lack of pA, pB, pC or pF did not affect the ability of bacteria to coexist with yeast (Fig. 3a). Interestingly, a strain cured of plasmids pA-/pD- could not coexist with S. cerevisiae to form a mixed biofilm and obtain the benefits provided by the fungus (Fig. 3a).Figure 3Plasmids pA and pD encode proteins performing functions that are necessary for the coexistence of bacterial cells with yeast. Growth of R. etli strains in biofilms with S. cerevisiae S1278B. (a) Growth in mixed biofilms of R. etli strains lacking the plasmids; pA, pB, pC, pF and in one case of two plasmids, pA-/pD-. The growth of the rhizobia strains was assessed at 24 h. (b) Scheme of the genes contained in a cosmid that partially complements the growth of the pA-/pD- strain in mixed biofilms. Here, 3, 2 and only one gene was amplified to generate the plasmids AD1, AD2 and AD3, respectively, as indicated in the figure. (c) Growth of R. etli strains in mixed biofilms. Strains AD1 and AD2 are R. etli pA-/pD- cells that carried plasmids AD1 and AD2, respectively. The growth of rhizobium strains in mixed biofilms was estimated at 24 h. The data are representative of 3 independent experiments +/− the S.D. values.Full size imageTo determine the genetic elements from the symbiotic plasmid involved in the interaction with yeast, we complemented the R. etli pA-/pD- strain with a cosmid library containing fragments of partial digestion (EcoRI) of the R. etli CE3 genome13. We found that a cosmid containing 9 ORFs from plasmid pD (GenBank: U80928.5) partially restored the ability of R. etli pA-/pD- to form a mixed biofilm (Fig. 3b). This cosmid contains 7 insertion sequences (IS) and a predicted operon encoding a probable peptide pheromone/bacteriocin exporter (RHE_PD00332) and a probable bacteriocin/lantibiotic ABC transporter (RHE_PD00333) (Fig. 3b).The complete operon or only the ABC transporter gene, including its endogenous promoter and terminator regions, was cloned into plasmid pBBR1MCS-3, and the resultant plasmids were named AD1, AD2 and AD32, respectively (Supplementary table 1 and 2). We found that complementation with the complete operon (plasmid AD2) partially restored the ability of R. etli pA-/pD- to form a mixed biofilm with yeast (Fig. 3c). In contrast, complementing with the RHE_PD00332 gene (plasmid AD3) does not restore the phenotype. It is necessary to complement only with the RHE_PD00333 gene to determine if its product is involved in the phenotypic plasticity of R. etli. These results suggest that the ABC transporter gene (RHE_PD00333) is involved in the fungal-bacteria interaction.
    S. cerevisiae produces a small molecule that affects R. etli growthTo determine how S. cerevisiae affects the growth of R. etli pA-/pD- (Fig. 4a), we evaluated the inhibitory activity of methanol extracts of S. cerevisiae culture supernatants.Figure 4S. cerevisiae s1278B produces a small molecule that only affects the growth of R. etli strains that do not harbor the symbiotic plasmid and plasmid A. (a) S. cerevisiae and R. etli strains were inoculated in close proximity onto MMD soft agar. R. etli pA-/pD- grew, forming a swarm far from the yeast colony. (b) Inhibition of R. etli pA-/pD- growth by 5 µg/mL of a purified compound from the yeast supernatant, which we named Sc2A. (c) Proposed molecular structure of Sc2A.Full size imageInterestingly, we found that the methanol extract inhibited R. etli pA-/pD- growth but had no activity against wild-type R. etli (Fig. 4b). We investigated the chemical constituents of the S. cerevisiae culture supernatants. After succesive organic solvent extractions, the methanolic extract was fractionated by HPLC and 8 fractions were obtained. Each fraction was tested for its determine its effect on the growth of R. etli pA-/pD-. Only a fraction with the ability to inhibit the growth of R. etli pA-/pD- was identified. This resulted in ~ 90% pure sophoroside, judging by its appearance as a dominant peak in the mass spectra obtained by Fast Atom Bombardment Mass Spectroscopy (FAB). As a result, a new sophoroside with bacteriostatic activity, named Sc2A, was isolated (Fig. 4c). The structure of Sc2A was elucidated by a combination of extensive spectroscopic analyses, including 2D NMR and HR-MS.Sc2A was isolated as a crystalline powder with a positive optical rotation ([α]D25 + 13.7°, c0.58, H2O). The molecular formula of Sc2A was determined to be C30H50O24 from its positive-mode FAB data (m/z 794.26 [M + H]+), which was consistent with the 13C NMR data. RMN1H (CD3OD, 400 MHz) data for Sc2A: δ 5.1 d (J = 3.6 Hz), 4.4 d (J = 8 Hz), 4.23 dd (J = 9, 4.8 Hz), 3.79 t (J = 10.8, 14.4 Hz), 3.73 m, 3.67 m, 3.639 m, 3.63 dd (J = 8, 9.2 Hz), 3.53 dd (J = 5.6, 5.2 Hz), 3.36 dd (J = 3.6, 4 Hz), 3.31 dd (J = 8, 8 Hz), 3.10 dd (J = 8, 7.6 Hz), 2.77 dd (J = 4.4, 6.8 Hz), 2.61 m, 2.46 m, 2.33 m, 2.12 m. RMN13C-DEPT (CD3OD, 400 MHz) data for Sc2A: δ 181.2 (C), 175.9 (C), 98.1(CH), 93.8 (CH), 78.05 (CH), 78.02 (CH), 76.30 (CH), 74.92 (CH), 73.80 (CH), 73.11 (CH), 71.78 (CH), 71.72 (CH), 64.37 (CH2), 62.87 (CH2),62.72 (CH2), 57.24 (CH), 30.70 (CH2), 26.19 (CH2), 28.21 (CH2).The IR spectrum of Sc2A displayed characteristic absorptions of 3416.34 cm-1 (O–H), 1642.10 (C = O), 1405.44 (C–OH), 1242.93 (C–O–C), 1040.36 (C-H), and 598.48 (O-C-O).Sc2A possesses a sophorose linked by 2,5 hexanedione to another molecule of sophorose (Fig. 4c).Sc2A induces the expression of genes involved in symbiosisExpression from the nifH and fixA promoters was studied in R. etli monocultures and cocultures with yeast by monitoring GUS activity in living cells. Cells were grown on solid PY-D medium for 1 day, and monitoring of GUS expression showed that the nifH promoter was strongly induced when R. etli was grown with yeast in liquid medium and on solid medium (Fig. 5).Figure 5The expression of Rhizobium etli genes involved in symbiosis is induced in cocultures with yeast or by exposure to the small molecule Sc2A. (a) Activity of different R. etli promoters in monoculture (Re) or in coculture with yeast (+ Sc). Cells were cultured for 24 h in 1 ml of PY-D in 1.5-mL tubes. The tubes were kept closed to generate an environment with a low oxygen concentration. (b) Activity of the nifH promoter in R. etli cells grown alone (Re) or in coculture with yeast (+ Sc) on PY-D agar. (c) Effect of Sc2A on the expression of the nodA gene in R. etli cells grown in liquid culture. Cells stimulated with the flavonoid naringenin were included as a positive induction control. The data are representative of 3 independent experiments +/− the S.D. values.Full size imageAt the beginning of the symbiosis, the legume roots exude flavonoids, which induces in R. etli the expression of a group of genes (nod) involved in the synthesis of lipochitooligosaccharides, also called nodulation factors (NFs). Recognition of NFs by the host plant triggers both rhizobial infection and initiation of nodule organogenesis14. NodA protein is involved in N-acylation of the chitooligosaccharide backbone of NFs. Given the participation of nodA in the interaction of R. etli with a eukaryote, we decided to evaluate the expression of this gene in response to exposure to 5 µg/mL of Sc2A (this concentration is similar to that found in cocultures). We found that Sc2A induces the expression of nodA (Fig. 5c). However, the levels of induction of nodA were moderated compared to the values obtained upon naringenin induction (Fig. 5c). More

  • in

    Nutritional resources of the yeast symbiont cultivated by the lizard beetle Doubledaya bucculenta in bamboos

    Insects and bamboosFive internodes (length: mean ± SD = 44.8 ± 1.1 cm, n = 5; diameter in the middle part of internodes: 21.4 ± 0.8 mm, n = 5) of five living mature culms of P. simonii bamboo were sampled at Kawaminami, Miyazaki Prefecture, Japan [32°9′ N, 131°29′ E] on 6 June, 2019. Per internode, four semi-cylindrical strips (ca. 15 × 2 cm) were made and stored at − 25 °C until use.To obtain fungus-free larvae of D. bucculenta, we sampled five beetle eggs from P. simonii bamboo obtained at Toyota, Aichi Prefecture, Japan [35°9′ N, 137°13′ E] on 9 May, 2019 in the laboratory from ovipositing females collected at Kawaminami on 10 and 11 April, 2019. The eggs were immersed in 99.5% ethanol for 10 s followed by 70% ethanol for 10 s for surface sterilization and then individually placed on potato dextrose agar (PDA) (Difco, Detroit, MI, USA) plates. The plates were incubated at 25 °C in the dark until 30 days after larval hatching to confirm the absence of the formation of yeast or other microbial colonies. Consequently, all five larvae hatched successfully and aseptically.The bamboo used in this study was morphologically identified using the literature29. This is native to the study areas and no other host bamboo species are distributed there29. Therefore, no voucher specimen of this bamboo has been deposited in a publicly available herbarium. No specific permits were required for the described field studies. The location is not privately-owned or protected in any way. The field studies did not involve endangered or protected species. All applicable international, national, and/or institutional guidelines for the care and use of animals and plants were followed. This study is reported in accordance with ARRIVE guidelines.Component analyses of bamboo tissuesFor YP and LP, the yeast W. anomalus originating from D. bucculenta in Kawaminami (strain: DBL05Kawaminami) was cultured on a 9-cm PDA plate to obtain enough biomass for further experiments. Afterwards, yeast cells were suspended in ca. 10 mL of sterilized water, and were inoculated on the inner surface of the autoclaved internode strips using an autoclaved tissue paper immersed with the yeast suspension. For LP, additionally, the fungus-free 2nd instar larvae (weight: mean ± SD = 2.4 ± 0.4 mg, n = 5) were individually placed on the yeast-inoculated strips. Each of these yeast-inoculated and yeast-and-larva-inoculated strips was then put in a sterilized test tube (3.0 cm in diameter and 20 cm tall) with moistened cotton placed at the bottom. Each of the test tubes was covered with a sterilized polypropylene cap, sealed with Parafilm Sealing Film (Pechiney Plastic Packaging, Chicago, IL, USA) on which three small holes were made using a fire-sterilized insect pin to avoid oxygen shortage, and individually put in a plastic zipper bag. These yeasts and insects were incubated at 25 °C in the dark for 47 days for YP (n = 5), and 47 (n = 4) and 73 (n = 1) days until these larvae reached adulthood for LP (adult elytral length: mean ± SD = 9.2 ± 0.4 mm, n = 5). Microbial contamination was invisible to the naked eye.For FP, YP and LP, the inner surface (up to 0.3 mm in thickness, dry weight: 336 to 935 mg) of a strip was sampled using a small U-shaped gouge. In the case of FX, first, the pith of a strip was completely removed, and then xylem tissue (up to 0.5 mm in thickness, dry weight: 729 to 872 mg) was sampled using a small U-shaped gouge. These tissues were individually sampled from five strips derived from five different internodes for each tissue type.Samples were extracted by aqueous ethanol and hydrolyzed by sulfuric acid with reference to the literature30,31,32 as follows. Four types of samples were freeze-dried and pulverized using a rotor-speed mill (Fritsch, PULVERISETTE 14, 0.2 mm mesh). About 80 mg of powdered sample was extracted using 5-mL 80% ethanol aqueous solution (aq.) at 63 °C three times. The volume of the extracts was adjusted to 25 mL, filtered, and analyzed using ion exchange chromatography measurements (extractable sugar analysis). Their extracted residues were hydrolyzed using sulfuric acid as follows: 50-mg samples were immersed in 1.64-g 72% sulfuric acid aq. at 30 °C for 2 h, boiled in 39.4-g 3% sulfuric acid aq. for 4 h, and filtered to collect sulfuric acid residues as sulfuric acid lignin fractions. The volumes of the filtrates were fixed to 100 mL, passed through a sulfuric acid-removing filter (DIONEX OnGuard IIA), and submitted to ion exchange chromatography measurements (structural sugar analysis). For the uronic acid measurements, the sulfuric acid-removing filter was not used.Ion exchange chromatography measurements were conducted using a DIONEX ICS-3000 apparatus. The measurement conditions were as follows: column, CarboPac PA-1 (2.0 mm I.D. × 250 mm L, Dionex corp.); flow rate, 0.3 mL min−1; column temperature, 30 °C; injection volume, 25 µL; eluent, H2O (solvent A), 100 mM NaOHaq. (solvent B), aqueous solution containing 100 mM NaOH and 1.0 M CH3COONa (solvent C), and aqueous solution containing 100 mM NaOH and 150 mM CH3COONa (solvent D). The gradient conditions for monomers, dimers, and uronic acids were as follows: for monomers, with a gradient of B 0.5% C 0% 45 min, C 100% 10 min, B 100% 10 min, B 0.5% C 0% 20 min; for dimers, with a gradient of B 50% C 0% 50 min, C 100% 10 min, B 100% 10 min, B 50% C 0% 15 min; for uronic acids, with a gradient of D 100% 10 min. These extraction, hydrolysis, and measurement procedures were conducted using n = 5 samples. For the structural sugars, their yield was calculated as the dehydrated state. The values of other extractives % were calculated by the subtraction of total extractable sugars % from total extractives %.Elemental analysis (carbon, hydrogen, nitrogen) was conducted by 2400 CHNS Organic Elemental Analyzer (PerkinElmer Japan, Yokohama, Japan). About 1-mg dried samples were burned completely and the produced CO2, H2O, and N2 (after reduction of NOx species) gasses were quantified by a thermal conductivity detector.Means of components of bamboo tissues were compared among tissue types using the Steel–Dwass test after the Kruskal–Wallis test. Calculations were performed using R 3.5.133.Carbon assimilation testThe yeast W. anomalus (DBL05Kawaminami) was cultured aerobically in 20 mL of yeast nitrogen base (YNB) (Difco) containing 0.5% glucose at 25 °C in the dark for 2 days with shaking at 85 rpm. The culture media were centrifuged and cell pellets were suspended in sterile water, in which the OD600 was adjusted to 0.10. Fifty μL of the cell suspension was added into a tube (2 mL) with 1 mL of each of 14 different media containing YNB and one of the following carbon sources: d-glucose, d-galactose, d-mannose, d-xylose, l-arabinose, d-fructose, d-galacturonic acid, d-glucuronic acid, sucrose, cellobiose, starch from corn, xylan from corn, carboxymethyl cellulose, and no carbon source (n = 5 to 6). The concentration of each carbon source was 0.5 g L−1, except for xylan at 1.5 g L−1. The tubes were shaken at 85 rpm and incubated at 25 °C in the dark for 7 days. Afterwards, the presence of visible pellets of yeasts and OD600 were recorded to determine the growth of the strain. The degree of assimilation was scored according to the presence of the pellets and the difference in the turbidity increase (ΔOD600) between culture media containing no and a given carbon source as follows: no growth (without a pellet, ΔOD600  More