More stories

  • in

    Changes in microbial community phylogeny and metabolic activity along the water column uncouple at near sediment aphotic layers in fjords

    The present study was carried out in six fjords within New Zealand’s Fiordland system, specifically Breaksea Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, Long Sound, and Wet Jacket Arm, as described in Tobias-Hünefeldt et al.15. Analyses were divided into three categories: (1) a multi-fjord analysis comprising five of the tested fjords (excluding Long Sound), (2) a high-resolution study along Long Sound’s horizontal axis, and (3) a depth profile of Long Sound’s deepest location (at 421 m). These categories were established to identify trends across multiple fjords, and then test the trends using a fjord analysed at a higher resolution. Total community composition (via 16S and 18S rRNA gene sequencing) and metabolic potential did not significantly covary across the five studied fjords (Mantel, r  More

  • in

    The effect of estuarine system on the meiofauna and nematodes in the East Siberian Sea

    1.Stein, R. & Macdonald, R. W. Organic carbon budget: Arctic Ocean vs. global ocean. In The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R. W.) (Springer, 2004).Chapter 

    Google Scholar 
    2.Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Oceanogr. Ser. 74, 1–54. https://doi.org/10.1016/S0422-9894(06)74001-6 (2007).Article 

    Google Scholar 
    3.Sheremetevskiy, A. M. Role of meiobenthos of the South Sakhalin shelf, Eastern Kamchatka, and Novosibirsk shallow water area. Issledovaniya Fauny Morei 35, 43 (1987).
    Google Scholar 
    4.Golikov, A. N. Ecosystems of the New Siberian shoals and fauna of the Laptev Sea and adjacent waters of the Arctic Ocean (in Russian). Explor. Fauna Seas 37, 4 (1990).
    Google Scholar 
    5.Golikov, A. N. Fauna of the East Siberian Sea. Part III. Explor. Fauna Seas 49, 57 (1994).
    Google Scholar 
    6.Sirenko, B. I. & Denisenko, S. G. Fauna of the East Siberian Sea, distribution patterns and structure of bottom communities. Explor. Fauna Seas 66, 74 (2010).
    Google Scholar 
    7.Sirenko, B. I. List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor. Fauna Seas 51(59), 1–76 (2001).
    Google Scholar 
    8.Schmidt-Rhaesa, A. Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera Vol. 2, 608 (De Gruyter, 2020).
    Google Scholar 
    9.Udalov, A. et al. Integrity of benthic assemblages along the arctic estuarine-coastal system. Ecol. Indic. 121, 107115. https://doi.org/10.1016/j.ecolind.2020.107115 (2021).Article 

    Google Scholar 
    10.Portnova, D., Fedyaeva, M., Udalov, A. & Tchesunov, A. Community structure of nematodes in the Laptev Sea shelf with notes on the lives of ice nematodes. Reg. Stud. Mar. Sci. 31, 100757. https://doi.org/10.1016/j.rsma.2019.100757 (2019).Article 

    Google Scholar 
    11.Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39(1), 9–25. https://doi.org/10.1007/s12526-009-0003-x (2009).Article 

    Google Scholar 
    12.Lei, Y., Stumm, K., Volkenborn, N., Wickham, S. A. & Berninger, U. G. Impact of Arenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in a marine intertidal flat. Mar. Biol. 157(6), 1271–1282. https://doi.org/10.1007/s00227-010-1407-7 (2010).Article 

    Google Scholar 
    13.Flint, M. V., Poyarkov, S. G. & Rymsky-Korsakov, N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology 58(2), 315–318. https://doi.org/10.1134/S0001437018020042 (2018).ADS 
    Article 

    Google Scholar 
    14.Garlitska, L. A. & Azovsky, A. I. Benthic harpacticoid copepods of the Yenisei Gulf and the adjacent shallow waters of the Kara Sea. J. Nat. Hist. 50, 2941–2959. https://doi.org/10.1080/00222933.2016.1219410 (2016).Article 

    Google Scholar 
    15.Portnova, D., Garlitska, L., Udalov, A. & Kondar, D. Meiobenthos and nematode community in the Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57(1), 1–15. https://doi.org/10.1134/S0001437017010155 (2017).Article 

    Google Scholar 
    16.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96(12), 2079–2105. https://doi.org/10.1175/BAMS-D-13-00177.1 (2005).ADS 
    Article 

    Google Scholar 
    17.Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298(5601), 2171–2173. https://doi.org/10.1126/science.1077445 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. ERL 14(10), 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Lisitzin, A. P. Marginal filter of the oceans. Oceanology 34(5), 735–743 (1994).CAS 

    Google Scholar 
    20.Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, Katja, Ingles, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A, & Vincx, M. Ecology of free-living marine nematodes. In Volume 2 Nematoda, 109–152. De Gruyter (2013)21.Aller, J. Y. & Aller, R. C. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6(1–2), 291–310. https://doi.org/10.1016/0278-4343(86)90065-8 (1986).ADS 
    Article 

    Google Scholar 
    22.Soetaert, K., Vincx, M., Wittoeck, J. & Tulkens, M. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311(1), 185–206. https://doi.org/10.1007/BF00008580 (1995).Article 

    Google Scholar 
    23.Tank, S. E. et al. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coast 35, 401–415. https://doi.org/10.1007/s12237-011-9417-3 (2012).CAS 
    Article 

    Google Scholar 
    24.Galtsova, V. V., Lukina, T. G. & Vladimirov, M. V. Meiobenthos of Chaunskaya Bay, East Siberian Sea. Issledovaniya Fauny Morei 48(56), 67–97 (1994).
    Google Scholar 
    25.Coull, B. C. Role of meiofauna in estuarine soft‐bottom habitats. Austral Ecol. 24(4), 327–343 (1999).Article 

    Google Scholar 
    26.Vincx, M., Meire, P., & Heip, C. The distribution of nematodes communities in the Southern Bight of the North Sea. Cah Biol Mar. 31(1), 107–129 (1990).27.Vanaverbeke, J., Gheskiere, T., Steyaert, M., & Vincx, M. Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3), 197–207. https://doi.org/10.1016/S1385-1101(02)00165-X (2002)ADS 
    Article 

    Google Scholar 
    28.Steyaert, M., et al. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci. 58(2), 353–366 (2003).ADS 
    Article 

    Google Scholar 
    29.Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U. K. 89(8), 1529–1540 (2009).CAS 
    Article 

    Google Scholar 
    30.Garlitska, L. A., Chertoprud, E. S., Portnova, D. A. & Azovsky, A. I. Benthic harpacticoida of the Kara Sea: Species composition and bathymetrically related distribution. Oceanology 59(4), 541–551. https://doi.org/10.1134/S0001437019040064 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Huang, D. et al. Preliminary study on community structures of meiofauna in the middle and eastern Chukchi Sea. Acta Oceanol. Sin. 40(6), 83–91. https://doi.org/10.1007/s13131-021-1777-3 (2021).ADS 
    Article 

    Google Scholar 
    32.Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    33.Semiletov, I. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022490 (2005).Article 

    Google Scholar 
    34.Miroshnikov, A. Y. et al. Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea. Oceanology 60(4), 595–610. https://doi.org/10.31857/S0030157420040152 (2020).Article 

    Google Scholar 
    35.Frontalini, F. et al. The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments. Environ. Toxicol. Chem. 37(9), 2439–2447. https://doi.org/10.1002/etc.4207 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Fonseca, G. & Soltwedel, T. Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol. 30, 607–618. https://doi.org/10.1007/s00300-006-0220-8 (2007).Article 

    Google Scholar 
    37.Portnova, D. & Polukhin, A. Meiobenthos of the eastern shelf of the Kara Sea compared with the meiobenthos of other parts of the sea. Reg. Stud. Mar. Sci. 24, 370–378. https://doi.org/10.1016/j.rsma.2018.10.002 (2018).Article 

    Google Scholar 
    38.Alexeev, D. K., & Galtsova, V. V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Sci. 6(2), 183–195 (2012).ADS 
    Article 

    Google Scholar 
    39.Grzelak, K. & Sørensen, M. V. Diversity and community structure of kinorhynchs around Svalbard: First insights into spatial patterns and environmental drivers. Zool. Anz. 282, 31–43. https://doi.org/10.1016/j.jcz.2019.05.009 (2019).Article 

    Google Scholar 
    40.Landers, S. C. et al. Kinorhynch communities from Alabama coastal waters. Mar. Biol. Res. 16(6–7), 494–504. https://doi.org/10.1080/17451000.2020.1789660 (2020).Article 

    Google Scholar 
    41.Holovachov, O. New and known species of the genus Campylaimus Cobb, 1920 (Nematoda: Araeolaimida: Diplopeltidae) from North European marine habitats. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e46545 (2007).Article 

    Google Scholar 
    42.Sharma, J. & Bluhm, B. A. Diversity of larger free-living nematodes from macrobenthos ( > 250 μm) in the Arctic deep-sea Canada Basin. Mar. Biodivers. 41(3), 455–465. https://doi.org/10.1007/s12526-010-0060-1 (2010).Article 

    Google Scholar 
    43.Kotwicki, L., Grzelak, K. & Bełdowski, J. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res. II 128, 123–130. https://doi.org/10.1016/j.dsr2.2015.12.012 (2016).CAS 
    Article 

    Google Scholar 
    44.Netto, S. A., Pagliosa, P. R., Colling, A., Fonseca, A. L. & Brauk, K. M. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. Braz. Estuaries. https://doi.org/10.1007/978-3-319-77779-5_6 (2018).Article 

    Google Scholar 
    45.Broman, E., et al. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun. Biol. 3(1), 1–12 (2020).46.Zeppilli, D., et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodiver. 48(1), 35–71 (2018).47.Pérez-García, J. A. et al. Nematode diversity of freshwater and anchialine caves of Western Cuba. PBSW 131(1), 144–155. https://doi.org/10.2988/17-00024 (2018).Article 

    Google Scholar 
    48.Bezzubova, E. M., Seliverstova, A. M., Zamyatin, I. A. & Romanova, N. D. Heterotrophic bacterioplankton of the Laptev and East Siberian Sea shelf affected by freshwater inflow areas. Oceanology 60, 62–73. https://doi.org/10.1134/S0001437020010026 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Vanreusel, A. et al. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. I 47, 1855–1879. https://doi.org/10.1016/S0967-063728002900007-8 (2000).Article 

    Google Scholar 
    50.Tahseen, Q. Nematodes in aquatic environments: Adaptations and survival strategies. Biodivers. J. 3(1), 13–40 (2012).
    Google Scholar 
    51.Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Ocean 139, 24–41. https://doi.org/10.1016/j.pocean.2015.07.008 (2015).Article 

    Google Scholar 
    52.Magritsky, D. V. et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 87(2), 177–194. https://doi.org/10.2312/polarforschung.87.2.177 (2018).Article 

    Google Scholar 
    53.Anderson, L. G. et al. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 4, 6. https://doi.org/10.5194/bg-8-1745-2011 (2011).CAS 
    Article 

    Google Scholar 
    54.Dmitrienko, I. A. et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. https://doi.org/10.1029/2009JC006020 (2010).Article 

    Google Scholar 
    55.Stein, R. Arctic Ocean Sediments: Processes, PROXIES, and Paleoenvironment (Elsevier, 2008).
    Google Scholar 
    56.Petrova, V. I., Batova, G. I., Kursheva, A. V. & Litvinenko, I. V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 51(1), 88–97. https://doi.org/10.1016/j.rgg.2009.12.008 (2010).ADS 
    Article 

    Google Scholar 
    57.Millero, F. J. Thermodynamics of the carbon dioxide system in oceans. GCA 59(4), 661–677. https://doi.org/10.12691/wjce-3-6-1 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Pavlova, G. Y. et al. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 48, 438. https://doi.org/10.1134/S0001437008030168 (2008).ADS 
    Article 

    Google Scholar 
    59.Dickson, A. G. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. Version 2 (No. ORNL/CDIAC-74) (1994).60.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0 (2003).CAS 
    Article 

    Google Scholar 
    61.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).Book 

    Google Scholar 
    62.Shiklomanov, A. I., Holmes, J. W., McClelland, S. E., Tank, R. & Spencer, G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20200801 (2020).63.Niemistö, L. A gravity corer for studies of soft sediments. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 238, 33–38 (1974).
    Google Scholar 
    64.Eleftheriou, A. Methods for the Study of Marine Benthos (Wiley, 2013).Book 

    Google Scholar 
    65.Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden, marinen Nematoden. Ark. Zool. 2, 439–484 (1953).
    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    67.Heip, C. & Herman, P. Indices of diversity and evenness. Oceanis 24(4), 61–88 (2001).
    Google Scholar  More

  • in

    Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil

    Soil and litter samplingMineral soil (0–15 cm) was collected at the Elizabeth Woods site, a 120-year-old deciduous forest in West Virginia, US (39° 32′ 50.6″ N, − 80° 00′ 00.4″ W). Soils were collected from four 20 × 20 m plots dominated by either AM-associated trees (i.e. Liriodendron tulipifera and Acer saccharum), or ECM-associated trees (i.e. Quercus rubra, Quercus velutina and Carya ovata). These sites have been characterized previously as Culleoka-Westmoreland silt loam soils at the AM sites and Dormont and Guernsey silt loams at the ECM sites40. Soils were also characterized by C:N ratios 11.7 and 14.1 for the AM and ECM soils respectively, with a pH of 6.8 for both soils. Soils with the same mycorrhizal status were pooled and homogenized, air-dried at room temperature for ~ 24 h and sieved through 2.0 mm mesh before the initiation of the experiment. Uniformly 13C labeled litter ( > 97 atom % 13C) from Quercus robur (i.e., ECM substrate) and Liriodendron tulipifera (i.e. AM substrate) leaves (Isolife BV, Wageningen, NL) were incubated in soil mesocosms in a factorial design with five replicates for each treatment combination (2 soil types × 2 substrate types), along with five replicate controls (no 13C substrate addition) for each soil type. The 13C enriched substrates were dried and ground to a powder and added in a suspension of 0.5 ml sterile water to 20 g of soil at a concentration of 400 ug 13C g−1 soil. The control soils received 0.5 ml sterile water additions. These incubations were well mixed and kept at 60% water-holding capacity for the 21-day period at room-temperature18. Chemical characteristics of soils and plant substrates are provided in Table S1.DNA processing and qSIPFor quantitative stable isotope probing, DNA was extracted, quantified, ultracentrifuged, fractionated and sequenced as described in18,26. DNA was extracted using a MoBio PowerSoil HTP Kit following the manufacturer’s instructions. For stable isotope probing, 5 ug of DNA was loaded into a 5-ml ultracentrifuge tube with ~ 3.5 ml of a saturated cesium chloride (CsCl) solution and ~ 900 ml gradient buffer (200 mM Tris, 200 mM KCl, 2 mM EDTA). DNA was separated via ultracentrifugation at 127,000g for 72 h using a TLN-100 rotor in an Optima Max bench top ultracentrifuge (Beckman Coulter, Fullerton, CA, USA). Tubes were fractionated into ~ 25 fractions of 150 µl each, and the density of each fraction was measured with a Raichart AR200 digital refractometer. DNA was purified using an isopropanol precipitation method. The 16S rRNA gene was subsequently quantified and sequenced in samples containing DNA, within the density range 1.660–1.735 gml−1 (~ 10 fractions per sample). To quantify the 16S rRNA gene, quantitative PCR was performed in triplicate using a QuantStudio 5 applied biosystems (Thermo Fisher Scientific) and primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACVSGGGTATCTAAT-3′)41. The PCR program used was as follows: 95 °C for 2 min followed by 45 cycles of 95 °C for 30 s, 64.5 °C for 30 s and 72 °C for 1 min. Libraries were sequenced on an Illumina MiSeq instrument (Illumina, Inc., San Diego, CA, USA) using a 300-cycle v2 reagent kit. Fungal 18S rRNA gene copies in each fraction were also quantified using primers 1380F (5′-CCCTGCCHTTTGTACACAC-3′) and 1510R (5′-CCTTCYGCAGGTTCACCTAC-3′). The PCR program used was as follows: 98 °C for 3 min followed by 40 cycles of 98 °C for 45 s, 60 °C for 45 s and 72 °C for 30 s. DNA fractions were amplified for fungal ITS rRNA genes using primers ITS4F (5′-AGCCTCCGCTTATTGATATGCTTAART-3′) and 5.8SF (5′-AACTTTYRRCAAYGGATCWCT-3′)42 and 300-bp paired-end read chemistry on an IlluminaMiSeq (Illumina, Inc., San Diego, CA, USA). The PCR program used was as follows: 95 °C for 6 min followed by 35 cycles of 95 °C for 15 s, 55 °C for 30 s, and 72 °C for 1 min. DNA fractions were then sequenced using a 500 cycle v2 reagent kit.Files came pre-split and joined multiple paired ends that we combined to pick operational taxonomic units (OTU). Open reference OTUs were picked at 97% identity using SILVA 128 release database for Bacteria and RDP database for Fungi. Taxa were analyzed at the ‘OTU’ level from the QIIME L7 table. Calculation of 13C excess atom fraction (EAF) was performed for each taxon as described previously18,19. Briefly, using the CsCl density gradient data, a weighted average density (WAD) was computed for each taxon’s DNA extracted from control soils that did not receive an isotopically enriched substrate. This natural abundance WAD was then compared to the taxon’s WAD following incubation with the 13C enriched material. The change in WAD can be used to quantify the amount of isotope incorporated into the DNA17,18. Preliminary data analysis revealed an effect of ultracentrifuge tube on estimation of phylotype weighted average density, probably a consequence of slight differences in CsCl density gradients between tubes. This technical error was corrected as previously described18,19. In addition to the samples subjected to qSIP analysis we also extracted and analyzed fungal and bacterial OTU’s from control soils where the DNA was extracted prior to incubation.FTICR-MS and lipidomic analysesSoil from substrate-incubated and controls mesocosms were processed and analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), using a 12 T Bruker SolariX FTICR mass spectrometer at the Environmental Molecular Sciences Laboratory in Richland, WA, as described in Fudyma et al.43. Briefly, 100 mg of dried soil or litter substrate was extracted using an adjusted Folch extraction44. Extraction was performed on each sample by sequentially adding 2 ml MeOH, followed by a 5 s vortex; 4 ml CHCl3, followed by a 5 s vortex; sonication at 25 °C for 1 h (CPX3800 Ultrasonic Bath, Fisherbrand); addition of 1.25 ml of H2O, followed by a slight mix to achieve bi‐layer separation; and incubated at 4 °C overnight. The top, aqueous layer (metabolite—polar) was pipetted off into 1 ml glass vials and stored at − 80 °C until FTICR‐MS. The bottom, chloroform layer was dried down and stored in 50:50 methanol:chloroform until lipidomics analysis.A standard Bruker electrospray ionization (ESI) source was used to generate negatively charged molecular ions in the metabolite fraction. Samples were then introduced directly to the ESI source. The instrument settings were optimized by tuning on a Suwannee River fulvic acid (SRFA) standard, purchased from International Humic Substances Society (IHCC). Blanks (HPLC grade methanol) were analyzed at the beginning and end of the day to monitor potential carry over from one sample to another. The instrument was flushed between samples using a mixture of water and methanol. One hundred and forty‐four individual scans were averaged for each sample and internally calibrated using an organic matter homologous series separated by 14 Da (CH2 groups). The mass measurement accuracy was less than 1 ppm for singly charged ions across a broad m/z range (m/z 300– 800). Data analysis software (Bruker Daltonik version 4.2) was used to convert raw spectra to a list of m/z values, applying the FTMS peak picker module with a signal-to noise ratio (S/N) threshold set to 7 and absolute intensity threshold set to the default value of 100. Chemical formulae were then assigned using in-house software following the compound identification algorithm that was described in Tolić et al.45. Peaks below 200 and above 800 were dropped to select only for calibrated and assigned peaks. Chemical formulae were assigned based on the following criteria: S/N  > 7 and mass measurement error  800 were not detected in our samples. The m/z values represent the molecular mass (in Dalton) of the detected ions since all detected ions were singly charged ions. While our results do not represent a quantitative characterization of OM, the values presented are relative differences and should be representative of the samples. Finally, we would like to acknowledge that we were not able to see any clear evidence of 13C label in our FTICR-MS analysis of the soil samples. The lack of 13C label in our FTICR-MS analysis of the soil samples even though they received labeled substrate could be either due to the fact that most of the labeled substrates produced by microbial activities were of low molecular weight, which cannot be detected by FTICR-MS and/or the leftover labeled substrate was of low abundance compared to the organic compounds previously present in the soil matrix. As such, we used the FTCIR-MS data to identify shifts in the overall composition of the chemical compounds in each soil.Lipids in the chloroform fraction were analyzed by LC‐MS/MS in both positive and negative ESI modes using a linear trap quadropole (LTQ) Orbitrap Velos mass spectrometer (Thermo Fisher Scientific), as described in detail previously46. Lipid species were identified using the LIQUID tool46 followed by manual data inspection. Confidently identified lipid species were quantified using MZmine47 and the peak intensities were normalized by linear regression and central tendency (i.e., identifying a central or typical value for a probability distribution) using InfernoRDN.Statistical analysisAll data analyses were performed using R 3.2.048. To examine the effects of soil type, substrate type and their interaction in the bacterial, fungal and chemical composition of DOM and the lipid pool; Bray–Curtis distance matrices were compared with permutational multivariate analysis of variance (PerMANOVA) and visualized with Principle Coordinate Analysis (PCoA) using vegan package49. PerMANOVA analysis were run on the relative abundance and on the 13C EAF of individual microbial taxa, separately for both bacterial and fungal communities.The analyses for FTICR-MS were performed separately for control and incubated soils using all assigned molecular formulae remaining after quality filtering31. In all cases, we applied a Z-score standardization before calculating Bray–Curtis distance matrices49. We analyzed the results from FTICR-MS as resulting from the decomposition of the added substrates for two reasons. First, this is a fully factorial design where individual soil samples were split to either receive AM poplar or ECM oak litter substrate. Thus, each soil sample starts with the same characteristics and the changes at the end of the incubation period should reflect the processing of litter. Second, we excluded molecular formulae present in the litters and thus, the differences we report in each soil type are derived from this processing (or the lack of it).We calculated aggregated indices that characterize both the composition and the physicochemical properties of the microbial (both bacteria and fungi) and the SOM and lipid pool34,36. For bacterial and fungal communities, we quantified Shannon–Weaver diversity index for each sample H′ = (-{sum }_{i=1}^{S} pi ln(pi)) (where pi is the proportion of species I) using the relative abundance of individual microbial taxa50. To find the percent of substrate assimilation by individual taxa, we calculated the proportion of C assimilated by each group as previously described18,51 as a percent. For SOM and lipid molecular formulae, we separately calculated weighted means of formula-based characteristics (i.e. m/z, Aromaticity Index—AI; H/C, O/C, and Nominal Oxidation State of Carbon-NOSC) as the sum of the product of the single-formula information (i.e. m/zi, AIi, H/Ci and NOSCi) and the relative intensity (Ii) divided by the sum of all intensities (e.g., m/z sample1 = ({sum }_{i=1}^{S})(m/zi ·Ii)/Σ(Ii)). With these metrics we obtained sample-level information related to the molecular size (i.e. m/z), the molecular bioavailability (i.e. higher H/C ratio), the molecular reactiveness (i.e. lower AI) and the energetic rewards from molecular oxidative degradation (i.e. higher NOSC) of the SOM, which allows to infer the potential of decomposition products to form stable SOM12,31,35. Detailed information of the calculated indices can be found in the literature31,35,36.We further tested the effects of soil type, substrate type and their interaction on each index using the “lm” function from the “stats” package. In these analyses, P values were approximated by an F test using Type II ANOVA tests with Kenward-Roger Degrees of Freedom52. When interactions between soil and substrate type were found at P  More

  • in

    Effects of ownership patterns on cross-boundary wildfires

    1.Stanfield, B. J., Bliss, J. C. & Spies, T. A. Land ownership and landscape structure: A spatial analysis of sixty-six Oregon (USA) Coast Range watersheds. Landsc. Ecol. 17, 685–697 (2002).Article 

    Google Scholar 
    2.Spies, T. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol Soc 22, 25. https://doi.org/10.5751/ES-08841-220125 (2017).Article 

    Google Scholar 
    3.Zald, H. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 28, 1068–1080 (2018).Article 

    Google Scholar 
    4.Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS ONE 12, e0172867. https://doi.org/10.1371/journal.pone.0172867 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Abatzoglou, J. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sheehan, T., Let, D. B. & Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 317, 16–29 (2015).Article 

    Google Scholar 
    7.Spies, T. A. et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 19, 9. https://doi.org/10.5751/ES-06584-190309 (2014).Article 

    Google Scholar 
    8.Watkins, T. H. Untrammeled by man: The making of the Wilderness Act of 1964. Audubon 91, 74–90 (1989).
    Google Scholar 
    9.Huffman, D. W., Roccaforte, J. P., Springer, J. D. & Crouse, J. E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 16, 18. https://doi.org/10.1186/s42408-020-00077-x (2020).Article 

    Google Scholar 
    10.Charnley, S., Spies, T. A., Barros, A. M. G., White, E. M. & Olsen, K. A. Diversity in forest management to reduce wildfire losses: Implications for resilience. Ecol. Soc. 22, 1. https://doi.org/10.5751/ES-08753-220122 (2017).Article 

    Google Scholar 
    11.Lake, F. K. & Long, J. W. Fire and tribal cultural resources. Report No. PSW-GTR-274, (USDA USFS Pacific Southwest Research Station, Albany, CA, 2014).12.Binkley, C. S., Aronow, M. E., Washburn, C. L. & New, D. Global perspectives on intensively managed plantations: Implications for the Pacific Northwest. J. For. 103, 61–64 (2005).
    Google Scholar 
    13.Palaiologou, P. et al. Fine-scale assessment of cross-boundary wildfire events in the western United States. Nat. Hazards Earth Syst. Sci. 19, 1755–1777. https://doi.org/10.5194/nhess-19-1755-2019 (2019).ADS 
    Article 

    Google Scholar 
    14.Ager, A. A., Palaiologou, P., Evers, C., Day, M. A. & Barros, A. M. Assessment of wildfire transmission from national forests to communities in the Western United States. 52 (USDA Forest Service, 2017).15.Steelman, T. U. S. wildfire governance as a social-ecological problem. Ecol. Soc. 21, 3. https://doi.org/10.5751/ES-08681-210403 (2016).Article 

    Google Scholar 
    16.Charnley, S., Kelly, E. C. & Fischer, A. P. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ. Res. Lett. 15, 025007 (2020).ADS 
    Article 

    Google Scholar 
    17.USDA Forest Service. Towards shared stewardship across landscapes: An outcome-based investment strategy. Report No. FS-118, (USDA Forest Service, Washington, DC, 2018).18.USDA Forest Service. National Cohesive Wildland Fire Management Strategy. http://www.forestsandrangelands.gov/strategy/index.shtml (2015).19.Marsik, M. et al. Regional-scale management maps for forested areas of the Southeastern United States and the US Pacific Northwest. Sci. Data 5, 1–13 (2018).Article 

    Google Scholar 
    20.Franklin, J. F. & Dyrness, C. T. in General Technical Report PNW-GTR-008 427 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 1973).21.Simpson, M. Central Oregon Area Ecology and Forest Health Program (ed Pacific Northwest Region USDA Forest Service) (Bend, OR, 2013).22.MTBS. MTBS Data Access: Burned areas boundaries. https://www.mtbs.gov/index.php/direct-download. (2020).23.Picotte, J. J. et al. Changes to the monitoring trends in burn severity program mapping production procedures and data products. Fire Ecol. 16, 1–13 (2020).Article 

    Google Scholar 
    24.Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Abatzoglou, J. & Hudak, A. T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 9, e02029 (2018).Article 

    Google Scholar 
    25.USGS. (USGS Gap Analysis Program (GAP), 2016).26.Gaines, L., Hemstrom, M., Kagan, J. & Salwasser, J. Integrated landscape assessment project final report. 62 (The Institute for Natural Resources, Oregon State University, Corvallis, Or, 2013).27.Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 

    Google Scholar 
    28.Manly, B., McDonald, L. & Thomas, D. Resource Selection by Animals (Chapman & Hall, 1993).Book 

    Google Scholar 
    29.Bajocco, S., Pezzatti, G. B., Mazzoleni, S. & Ricotta, C. Wildfire seasonality and land use: When do wildfires prefer to burn?. Envrion. Monit. Assess. 164, 445–452 (2010).CAS 
    Article 

    Google Scholar 
    30.Bajocco, S. & Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land cover classes do wildfires prefer?. Landsc. Ecol. 23, 241–248 (2008).Article 

    Google Scholar 
    31.Barros, A. M. G. & Pereira, J. M. C. Wildfire selectivity for land cover type: Does size matter?. PLoS ONE 9, e84760 (2014).ADS 
    Article 

    Google Scholar 
    32.R Package ‘phuassess’ (2016).33.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package “phuassess” for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).Article 

    Google Scholar 
    34.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. A permutation-based combination of sign tests for assessing habitat selection. Environ. Ecol. Stat. 21, 161–187 (2013).MathSciNet 
    Article 

    Google Scholar 
    35.R: A Language and Environment for Statistical Computing v.3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2019).36.ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).37.MATLAB Release 2019a v. 2019a (The Mathworks, Inc., 2019).38.Collins, B. & Stephens, S. Fire scarring patterns in Sierra Nevada wilderness areas burned by multiple wildland fire use fires. Fire Ecol. 3, 53–67 (2007).Article 

    Google Scholar 
    39.Reilly, M. J. et al. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains USA. Ecol. Appl. 28, 291–308 (2018).Article 

    Google Scholar 
    40.Johnston, J. D., Kilbride, J. B., Meigs, G. W., Dunn, C. J. & Kennedy, R. E. Does conserving roadless wildland increase wildfire activity in western US national forests?. Environ. Res. Lett. 16, 084040 (2021).ADS 
    Article 

    Google Scholar 
    41.Schultz, C. A., Thompson, M. P. & McCaffrey, S. M. Forest service fire management and the elusiveness of change. Fire Ecol. 15, 1–15 (2019).Article 

    Google Scholar 
    42.Ager, A. A., Houtman, R., Day, M. A., Ringo, C. & Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 434, 99–109 (2019).Article 

    Google Scholar 
    43.NWCG. Guidance for Implementation of Federal Wildland Fire Management Policy (2009).44.Franklin, J. F. et al. Extent and Distribution of Old Forest Conditions on Washington Department of Natural Resources-Managed Forest Lands in Eastern Washington (Washington Department of Natural Resources, 2007).45.Stephens, S. L. et al. Fire and climate change: Conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    46.Long, J., Lake, F. K., Lynn, K. & Viles, C. Tribal ecocultural resources and engagement. Report No. General Technical Report PNW-GTR-966, 851-917 (USDA – USFS, 2018).47.Scott, J. H. & Burgan, R. E. Standard fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. Report No. RMRS-GTR-153, 72 (USDA Forest Service, Rocky Mountain Research Station, 2005).48.Fernandes, P. M., Pacheco, A. P., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).Article 

    Google Scholar 
    49.WADNR, W. D. o. N. R. Forest Health Assessment and Treatment Framework (RCW 76.06.200) (Washington State Department of Natural Resources, 2020).50.Collins, B. M. & Stephens, S. L. Managing natural wildfires in Sierra Nevada wilderness areas. Front. Ecol. Environ. 5, 523–527 (2007).Article 

    Google Scholar 
    51.Holden, Z. A., Morgan, P., Rollins, M. G. & Kavanagh, K. Effects of multiple wildland fires on ponderosa pine stand structure in two southwestern wilderness areas, USA. Fire Ecol. 3, 18–33 (2007).Article 

    Google Scholar 
    52.Hunter, M. E., Iniguez, J. M. & Farris, C. A. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2014). More

  • in

    Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies

    1.Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 27, 125–141 (2018).Article 

    Google Scholar 
    4.Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A. & Reeder, T. W. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579–596 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Wiens, J. J., Sukumaran, J., Pyron, R. A. & Brown, R. M. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63, 1217–1231 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Jansson, R., Rodríguez-Castañeda, G. & Harding, L. E. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses: phylogenies and the latitudinal diversity gradient. Evolution 67, 1741–1755 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Stephens, P. R. & Wiens, J. J. Explaining species richness from continents to communities: the time‐for‐speciation effect in Emydid turtles. Am. Nat. 161, 112–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climatic Change 1–31 (Springer Berlin Heidelberg, 2007). https://doi.org/10.1007/978-3-540-48842-2_1.11.Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity: phylogeny and latitudinal diversity gradient. Ecol. Lett. 15, 267–277 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora: dispersal and the latitudinal gradient of Carnivora. Glob. Ecol. Biogeogr. 24, 1059–1071 (2015).Article 

    Google Scholar 
    14.Fischer, A. G. Latitudinal variations in organic diversity. Evolution 14, 64 (1960).Article 

    Google Scholar 
    15.Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Rosenzweig, M. L. Species diversity in space and time. (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511623387.17.Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. 103, 9130–9135 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Schemske, D. W. Ecological and evolutionary perspectives on the origins of tropical diversity. In Foundations of tropical forest biology (eds Chazdon, R. & Whitmore, T.) 163–173 (University of Chicago Press, Chicago, IL, 2002).19.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    20.Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B. 276, 4295–4302 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aduse-Poku, K. et al. Systematics and historical biogeography of the old world butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae). BMC Evol. Biol. 15, 167 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Kozak, K. M. et al. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Chazot, N. et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 28, 1118–1132 (2019).Article 

    Google Scholar 
    24.Chazot, N. et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 68, 797–813 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Wahlberg, N., Wheat, C. W. & Peña, C. Timing and patterns in the taxonomic diversification of Lepidoptera (Butterflies and Moths). PLoS ONE 8, e80875 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B. 279, 1093–1099 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Condamine, F. L., Nabholz, B., Clamens, A.-L., Dupuis, J. R. & Sperling, F. A. H. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating: mito-phylogenomics of swallowtail butterflies. Syst. Entomol. 43, 460–480 (2018).Article 

    Google Scholar 
    28.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018). e5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Crisp, M. & Cook, L. Do early branching lineages signify ancestral traits? Trends Ecol. Evol. 20, 122–128 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Meseguer, A. S. & Condamine, F. L. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient*. Evolution 74, 1966–1987 (2020).Article 

    Google Scholar 
    32.Ziegler, A. et al. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–254 (2003).Article 

    Google Scholar 
    33.Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394, 364–367 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Archibald, S. B., Bossert, W. H., Greenwood, D. R. & Farrell, B. D. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36, 374–398 (2010).Article 

    Google Scholar 
    35.Baker, W. J. & Couvreur, T. L. P. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J. Biogeogr. 40, 274–285 (2013).Article 

    Google Scholar 
    36.Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Eldrett, J. S., Greenwood, D. R., Harding, I. C. & Huber, M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. USA 116, 12895–12900 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Hawkins, B. A. & DeVries, P. J. Tropical niche conservatism and the species richness gradient of North American butterflies. J. Biogeogr. 36, 1698–1711 (2009).Article 

    Google Scholar 
    40.Mayr, G. Two-phase extinction of “Southern Hemispheric” birds in the Cenozoic of Europe and the origin of the Neotropic avifauna. Palaeobio. Palaeoenv. 91, 325–333 (2011).Article 

    Google Scholar 
    41.Veizer, J. & Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146, 92–104 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).ADS 
    Article 

    Google Scholar 
    44.Jacobs, B. F. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B 359, 1573–1583 (2004).Article 

    Google Scholar 
    45.Jaramillo, C. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Stebbins, G. L. Flowering plants: evolution above the species level. (Harvard University Press, 1974). https://doi.org/10.4159/harvard.9780674864856.47.Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57, 231–242 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Nee, S. Birth-Death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).Article 

    Google Scholar 
    50.Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Lambert, A. & Stadler, T. Birth–death models and coalescent point processes: the shape and probability of reconstructed phylogenies. Theor. Popul. Biol. 90, 113–128 (2013).PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies: estimating extinction from molecular phylogenies. Evolution 64, 1816–1824 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Burin, G., Alencar, L. R. V., Chang, J., Alfaro, M. E. & Quental, T. B. How well can we estimate diversity dynamics for clades in diversity decline? Syst. Biol. 68, 47–62 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1 (2017).Article 

    Google Scholar 
    59.Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773. https://doi.org/10.1093/molbev/msw260 (2016).64.Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).Article 

    Google Scholar 
    65.Beeravolu Reddy, C. & Condamine, F. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv. https://doi.org/10.1101/038695 (2016).66.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).Article 

    Google Scholar 
    68.Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. 108, 16327–16332 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar  More

  • in

    Fine-root traits in the global spectrum of plant form and function

    1.Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley and Sons, 2001).2.Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).Article 

    Google Scholar 
    3.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Kattge, J. et al. TRY plant trait database — enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    7.Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).PubMed 
    Article 

    Google Scholar 
    8.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).Article 

    Google Scholar 
    9.McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).PubMed 
    Article 

    Google Scholar 
    10.Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    11.Eissenstat, D. M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15, 763–782 (1992).Article 

    Google Scholar 
    12.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).Article 

    Google Scholar 
    13.Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    14.Shen, Y. et al. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Front. Plant Sci. 10, 1412 (2019).Article 

    Google Scholar 
    15.Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).Article 

    Google Scholar 
    16.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).PubMed 
    Article 

    Google Scholar 
    17.Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.de la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).Article 
    CAS 

    Google Scholar 
    20.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).Article 

    Google Scholar 
    21.Liese, R., Alings, K. & Meier, I. C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant Sci. 8, 315 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).PubMed 
    Article 

    Google Scholar 
    24.Liu, G. et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 188, 543–553 (2010).PubMed 
    Article 

    Google Scholar 
    25.Galland, T., Carmona, C. P., Götzenberger, L., Valencia, E. & de Bello, F. Are redundancy indices redundant? An evaluation based on parameterized simulations. Ecol. Indic. 116, 106488 (2020).Article 

    Google Scholar 
    26.Valverde‐Barrantes, O. J., Maherali, H., Baraloto, C. & Blackwood, C. B. Independent evolutionary changes in fine‐root traits among main clades during the diversification of seed plants. New Phytol. 228, 541–553 (2020).PubMed 
    Article 

    Google Scholar 
    27.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    28.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).Article 

    Google Scholar 
    29.De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).PubMed 
    Article 

    Google Scholar 
    30.Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).Article 

    Google Scholar 
    31.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).Article 

    Google Scholar 
    33.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2021).34.McCormack, M. L. & Iversen, C. M. Physical and functional constraints on viable belowground acquisition strategies. Front. Plant Sci. 10, 1215 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Wells, C. E. & Eissenstat, D. M. Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J. Plant Growth Regul. 21, 324–334 (2002).CAS 
    Article 

    Google Scholar 
    36.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.USDA. USDA PLANTS Database (accessed 3rd July 2020); https://plants.sc.egov.usda.gov38.Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.BGCI. GlobalTreeSearch online database (accessed 3rd July 2020); https://www.bgci.org/globaltree_search.php40.The Plant List. The Plant List (accessed 17th February 2020); http://www.theplantlist.org41.Cayuela, L., Macarro, I., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (2019).42.Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Oliveira, B. F., Sheffers, B. R. & Costa, G. C. Decoupled erosion of amphibians’ phylogenetic and functional diversity due to extinction. Glob. Ecol. Biogeogr. 29, 309–319 (2020).Article 

    Google Scholar 
    44.Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    45.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    46.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    47.Whittakker, R. H. Communities and Ecosystems (Macmillan, 1975).48.Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 https://github.com/valentinitnelav/plotbiomes (2021).49.Ricklefs, R. E. The Economy of Nature (W. H. Freeman and Company, 2008).50.GBIF. GBIF Occurrence Download (accessed 15 December 2019); https://doi.org/10.15468/dl.thlxph51.South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).Article 

    Google Scholar 
    52.Dinno, A. paran: Horn’s Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran (2018).53.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. https://doi.org/10.18637/jss.v022.i04 (2007).54.Duong, T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v021.i07 (2015).55.Duong, T. ks: Kernel smoothing. R package version 1.11.5 https://CRAN.R-project.org/package=ks (2019).56.Carmona, C. P., Bello, F., Mason, N. W. H. & Lepš, J. Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology 100, e02876 (2019).PubMed 
    Article 

    Google Scholar 
    57.Carmona, C. P. TPD: methods for measuring functional diversity based on Trait Probability Density. R package version 1.1.0. https://CRAN.R-project.org/package=TPD (2019).58.Duong, T. & Hazelton, M. L. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).PubMed 
    Article 

    Google Scholar 
    60.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 https://CRAN.R-project.org/package=vegan (2019).63.Carmona, C. P. et al. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. J. Appl. Ecol. 49, 1084–1093 (2012).Article 

    Google Scholar 
    64.Micó, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10, 1520 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 9, 305–319 (2018).Article 

    Google Scholar 
    66.Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. The density awakens: a reply to Blonder. Trends Ecol. Evol. 31, 667–669 (2016).PubMed 
    Article 

    Google Scholar 
    67.Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    68.de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M.-T. & Lepš, J. Which trait dissimilarity for functional diversity: trait means or trait overlap? J. Veg. Sci. 24, 807–819 (2013).Article 

    Google Scholar 
    69.Traba, J., Iranzo, E. C., Carmona, C. P. & Malo, J. E. Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos 126, 1400–1409 (2017).Article 

    Google Scholar 
    70.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex Hull Volume. Ecology 87, 1465–1471 (2006).PubMed 
    Article 

    Google Scholar 
    71.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    72.Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    73.Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    74.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Carmona, C. P., de Bello, F., Sasaki, T., Uchida, K. & Pärtel, M. Towards a common toolbox for rarity: a response to Violle et al. Trends Ecol. Evol. 32, 889–891 (2017).PubMed 
    Article 

    Google Scholar 
    76.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    78.Gower, J. C. General coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    79.Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    80.Gherardi, L. A. & Sala, O. E. Global patterns and climatic controls of belowground net carbon fixation. Proc. Natl Acad. Sci. USA 117, 20038–20043 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A doubling of stony coral cover on shallow forereefs at Carrie Bow Cay, Belize from 2014 to 2019

    1.Hughes, T. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    3.Brander, L. M., Van Beukering, P. & Cesar, H. S. The recreational value of coral reefs: A meta-analysis. Ecol. Econ. 63, 209–218 (2007).Article 

    Google Scholar 
    4.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. Catastrophes, phase shifts, and large-scale degradation of a Caribbean Coral Reef. Science 265, 1547–1551 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Hughes, T. P., Bellwood, D. R., Folke, C. S., McCook, L. J. & Pandolfi, J. M. No-take areas, herbivory and coral reef resilience. Trends Ecol. Evol. 22, 1–3 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Edgar, G. J. et al. Reef Life Survey: Establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    10.Chabanet, P., Bigot, L., Garnier, R., Tessier, E. & Moyne-Picard, M. Coral reef monitoring at Reunion island (Western Indian Ocean) using the GCRMN method. Proc. 9th Int. Coral Reef Symp. 2, 873–878 (2000).
    Google Scholar 
    11.Lang, J. C., Marks, K. W., Kramer, P. A., Kramer, P. R. & Ginsburg, R. N. AGRRA Protocols Version 5.4. (2010).12.Cortés, J. et al. The CARICOMP network of Caribbean Marine Laboratories (1985–2007): History, key findings, and lessons learned. Front. Mar. Sci. 5, 519 (2019).Article 

    Google Scholar 
    13.Dethier, M. N., Graham, E. S., Cohen, S. & Tear, L. M. Visual versus random-point percent cover estimations: ‘objective’ is not always better. Mar. Ecol. Prog. Ser. 96, 93–100 (1993).Article 

    Google Scholar 
    14.Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G. & Kriegman, D. Automated annotation of coral reef survey images. In 2012 IEEE Conference on Computer Vision and Pattern Recognition 1170–1177 (IEEE, 2012).15.Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PloS One 10, e0130312 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Williams, I. D. et al. Leveraging automated image analysis tools to transform our capacity to assess status and trends of coral reefs. Front. Mar. Sci. 6, 222 (2019).Article 

    Google Scholar 
    17.Roelfsema, C. et al. Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018. Sci. Data 8, 1–7 (2021).MathSciNet 
    Article 

    Google Scholar 
    18.Gonzalez-Rivero, M. et al. Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach. Remote Sens. 12, 489 (2020).Article 

    Google Scholar 
    19.Cairns, S. D. Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. Smithson. Contrib. Mar. Sci. 21, 271–302 (1982).
    Google Scholar 
    20.Rutzler, K. & Macintyre, I. G. The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize, 1: Structure and Communities (Smithsonian Institution Press, 1982). https://doi.org/10.5479/si.01960768.12.539.Book 

    Google Scholar 
    21.Rutzler, K. Caribbean coral reef ecosystems: Thirty-five years of smithsonian marine science in Belize. In Proceedings of the Smithsonian Marine Science Symposium (2009).22.McField, M. et al. Mesoamerican Reef Report Card. (2020).23.Cox, C. E. et al. Genetic testing reveals some mislabeling but general compliance with a ban on herbivorous fish harvesting in Belize. Conserv. Lett. 6, 132–140 (2013).Article 

    Google Scholar 
    24.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).
    Google Scholar 
    25.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    26.R Core Team. A language and environment for statistical computing. (2020).27.Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS One 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Goatley, C. H., Bonaldo, R. M., Fox, R. J. & Bellwood, D. R. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol. Soc. 21(1), 29 (2016).Article 

    Google Scholar 
    29.Connell, S., Foster, M. & Airoldi, L. What are algal turfs? Towards a better description of turfs. Mar. Ecol. Prog. Ser. 495, 299–307 (2014).Article 

    Google Scholar 
    30.Lozada-Misa, P., Schumacher, B. D. & Vargas-Angel, B. Analysis of benthic survey images via CoralNet: A summary of standard operating procedures and guidelines. Pacific
    Islands Fish. Sci. Cent. Natl. Mar. Fish. Serv. https://doi.org/10.7289/V5%2FAR-PIFSC-H-17-02 (2017).Article 

    Google Scholar 
    31.Obura, D. & Grimsditch, G. Resilience Assessment of Coral Reefs: Assessment Protocol for Coral Reefs, Focusing on Coral Bleaching and Thermal Stress (Citeseer, 2009).
    Google Scholar 
    32.Broeke, J., Pérez, J. M. M., & Pascau, J. Image processing with ImageJ. (Packt Publishing Ltd, 2015).
    Google Scholar 
    33.Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).MATH 
    Book 

    Google Scholar 
    34.Fasiolo, M., Nedellec, R., Goude, Y. & Wood, S. N. Scalable visualization methods for modern generalized additive models. J. Comput. Graph. Stat. 29, 78–86 (2020).MathSciNet 
    Article 

    Google Scholar 
    35.Oksanen, J. et al. Community ecology package. R Package Version 2, (2013).36.Arnold, S. N. & Steneck, R. S. Settling into an increasingly hostile world: The rapidly closing ‘“Recruitment Window”’ for corals. PLoS One. https://doi.org/10.1371/journal.pone.0028681 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS One 5, e8657 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Adam, T. C., Burkepile, D. E., Ruttenberg, B. I. & Paddack, M. J. Herbivory and the resilience of Caribbean coral reefs: Knowledge gaps and implications for management. Mar. Ecol. Prog. Ser. 520, 1–20 (2015).Article 

    Google Scholar 
    39.Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Arnold, S. N., Steneck, R. S. & Mumby, P. J. Running the gauntlet: Inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).Article 

    Google Scholar 
    41.Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).Article 

    Google Scholar 
    42.Williams, I. & Polunin, N. Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs 19, 358–366 (2001).Article 

    Google Scholar 
    43.Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Mumby, P. J., Steneck, R. S., Roff, G. & Paul, V. J. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conserv. Biol. https://doi.org/10.1111/cobi.13738 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Aronson, R., Precht, W., Toscano, M. & Koltes, K. The 1998 bleaching event and its aftermath on a coral reef in Belize. Mar. Biol. 141, 435–447 (2002).Article 

    Google Scholar 
    46.Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).Article 

    Google Scholar 
    47.Roff, G., Joseph, J. & Mumby, P. J. Multi-decadal changes in structural complexity following mass coral mortality on a Caribbean reef. Biogeosciences 17, 5909–5918 (2020).Article 

    Google Scholar 
    48.Graham, N. & Nash, K. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    49.Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. Ecol. Etiol. New. Emerg. Mar. Dis. 159, 25–38 (2001).
    Google Scholar 
    50.Aronson, R. B., Macintyre, I. G., Precht, W. F., Murdoch, T. J. & Wapnick, C. M. The expanding scale of species turnover events on coral reefs in Belize. Ecol. Monogr. 72, 233–249 (2002).Article 

    Google Scholar 
    51.McField, M. et al. Status of the Mesoamerican Reef after the 2005 coral bleaching event. Status Caribb. Coral Reefs Bleach. Hurric. In 45–60 (2005).52.Arias-González, J. E. et al. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLoS One 12, e0174855 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Miller, S. Automatically Annotating 175,000+ Images with the CoralNet API. CoralNet (Accessed 23 August 2021); https://coralnet.ucsd.edu/blog/automatically-annotating-175000-images-with-the-coralnet-api/ (2020).54.Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front. Mar. Sci. 7, 163 (2020).Article 

    Google Scholar 
    55.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Weil, E. et al. Spread of the new coral disease “SCTLD” into the Caribbean: implications for Puerto Rico. Reef Encount. 34, 38–43 (2019).
    Google Scholar 
    57.Heres, M. M., Farmer, B. H., Elmer, F. & Hertler, H. Ecological consequences of Stony Coral Tissue Loss Disease in the Turks and Caicos Islands. Coral Reefs 40, 609–624 (2021).Article 

    Google Scholar 
    58.Walton, C. J., Hayes, N. K. & Gilliam, D. S. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front. Mar. Sci. 5, 323 (2018).Article 

    Google Scholar  More

  • in

    Persistence of plant-mediated microbial soil legacy effects in soil and inside roots

    1.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. Hvander Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol 11, 789–799 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.De Long, J. R., Fry, E. L., Veen, G. F. & Kardol, P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 33, 118–128 (2019).Article 

    Google Scholar 
    5.Meisner, A., De Deyn, G. B., de Boer, W. & van der Putten, W. H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc. Natl. Acad. Sci. USA. 110, 9835–9838 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, T. M. Legacy effects of aboveground-belowground interactions. Ecol. Lett. 15, 813–821 (2012).PubMed 
    Article 

    Google Scholar 
    7.Heinen, R. et al. Plant community composition steers grassland vegetation via soil legacy effects. Ecol. Lett. 23, 973–982 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Semchenko, M. et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).PubMed 
    Article 

    Google Scholar 
    11.van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    12.Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen-connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).PubMed 
    Article 

    Google Scholar 
    14.Cortois, R., Schröder‐Georgi, T., Weigelt, A., van der Putten, W. H. & De Deyn, G. B. Plant–soil feedbacks: role of plant functional group and plant traits. J. Ecol. 104, 1608–1617 (2016).Article 

    Google Scholar 
    15.Bezemer, T. M., Jing, J., Bakx‐Schotman, J. M. T. & Bijleveld, E.-J. Plant competition alters the temporal dynamics of plant-soil feedbacks. J. Ecol. 106, 2287–2300 (2018).Article 

    Google Scholar 
    16.Kardol, P., Deyn, G. B. D., Laliberté, E., Mariotte, P. & Hawkes, C. V. Biotic plant–soil feedbacks across temporal scales. J. Ecol. 101, 309–315 (2013).Article 

    Google Scholar 
    17.Dudenhöffer, J.-H., Ebeling, A., Klein, A.-M. & Wagg, C. Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. J. Ecol. 106, 230–241 (2018).Article 
    CAS 

    Google Scholar 
    18.Elger, A., Lemoine, D. G., Fenner, M. & Hanley, M. E. Plant ontogeny and chemical defence: older seedlings are better defended. Oikos. 118, 767–773 (2009).CAS 
    Article 

    Google Scholar 
    19.Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2018).CAS 
    Article 

    Google Scholar 
    20.Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Rosenblueth, M. & Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19, 827–837 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Lundberg, D. S. et al. Defining core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Gaiero, J. R. et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100, 1738–1750 (2013).PubMed 
    Article 

    Google Scholar 
    24.Rodriguez, R. J. Jr, Arnold, J. F. W. & Redman, A. E. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Fitzpatrick, C. R. et al. Ecological role of the angiosperm root microbiome. Proc. Natl. Acad. Sci. USA. 115, E1157–E1165 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Hardoim, P. R., van Overbeek, L. S. & Elsas, J. Dvan Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    30.Sikes, B. A., Hawkes, C. V. & Fukami, T. Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology 97, 484–493 (2016).PubMed 
    Article 

    Google Scholar 
    31.Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).CAS 
    Article 

    Google Scholar 
    32.van de Voorde, T. F., van der Putten, W. H. &  Bezemer, T. M. Intra‐and interspecific plant–soil interactions, soil legacies and priority effects during old‐field succession. J. Ecol. 99, 945–953 (2011).Article 

    Google Scholar 
    33.Hannula, S. E. et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. mBio 10, e02635–19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Ampt, E. A., van Ruijven, J., Raaijmakers, J. M., Termorshuizen, A. J. & Mommer, L. Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. Eur. J. Plant Pathol. 154, 141–156 (2019).Article 

    Google Scholar 
    36.Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA. 105, 11512–11519 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rousk, J. & Bååth, E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biol. Biochem. 39, 2173–2177 (2007).CAS 
    Article 

    Google Scholar 
    38.Phillips, M. L. et al. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol. 40, 107–117 (2019).Article 

    Google Scholar 
    39.Carini, P., Marsden, P. & Leff, J. E. A. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2017).CAS 
    Article 

    Google Scholar 
    40.Hannula, S. E., Morrien, E., van der Putter, W. H. & de Boer, W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecol. 48, 100988 (2020).Article 

    Google Scholar 
    41.Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta‐analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed 
    Article 

    Google Scholar 
    42.Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Hannula, S. E. et al. Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soil‐borne pathogen. Environ. Microbiol. 22, 660–676 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Francioli, D. et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil https://doi.org/10.1007/s11104-020-04454-y (2020).45.Craine, J., Froehle, J., Tilman, D., Wedin, D. & Chapin, F. S. III The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).Article 

    Google Scholar 
    46.Tjoelker, M., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Herz, K. et al. Linking root exudates to functional plant traits. PLoS ONE 13, e0204128 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Huberty, M., Choi, Y. H., Heinen, R. & Bezemer, T. M. Above-ground plant metabolomic responses to plant–soil feedbacks and herbivory. J. Ecol. 108, 1703–1712 (2020).CAS 
    Article 

    Google Scholar 
    49.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA. 112, E911–E920 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    51.Hannula, S. E. et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J. 11, 2294–2304 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Koyama, A., Maherali, H. & Antunes, P. M. Plant geographic origin and phylogeny as potential drivers of community structure in root‐inhabiting fungi. J. Ecol. 107, 1720–1736 (2019).Article 

    Google Scholar 
    53.Wemheuer, F., Wemheuer, B., Daniel, R. & Vidal, S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci. Rep. 9, 1–14 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Ma, H. et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468 (2020).Article 

    Google Scholar 
    55.Suárez-Moreno, Z. R. et al. Plant-growth promotion and biocontrol properties of three streptomyces spp. isolates to control bacterial rice pathogens. Front. Microbiol. 10, 290 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).CAS 
    Article 

    Google Scholar 
    57.Liang, M. et al. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology 96, 562–574 (2015).PubMed 
    Article 

    Google Scholar 
    58.Teste, F. P., Veneklaas, E. J., Dixon, K. W. & Lambers, H. Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct. Ecol. 28, 819–828 (2014).Article 

    Google Scholar 
    59.Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 218, 542–553 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.De Long, J. R. et al. How plant–soil feedbacks influence the next generation of plants?. Ecol. Res. 36, 32–44 https://doi.org/10.1111/1440-1703.12165 (2021).CAS 
    Article 

    Google Scholar 
    62.Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).Article 

    Google Scholar 
    63.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Micro. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    66.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    70.Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Oksanen, J. et al. Vegan: Ordination Methods, Diversity Analysis And Other Functions For Community And Vegetation Ecologists (Community Ecol Package Vegan, 2013).73.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More