More stories

  • in

    Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

    1.Vaganov, E. A. et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400(6740), 149–151. https://doi.org/10.1038/22087 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Impacts of a Warming Arctic—Arctic Climate Impact Assessment (ACIA). 144 (Cambridge University Press, 2004).3.Apps, M. J., Shvidenko, A. Z. & Vaganov, E. A. Boreal forests and the environment: A mitigation and adaptation strategies for global change. BFE. 11(1), 1–4 (2006).
    Google Scholar 
    4.Fedotov, A. P. et al. A reconstruction of the thawing of the permafrost during the last 170 years on the Taimyr Peninsula (East Siberia, Russia). Glob. Planet. Change 98–99, 139–152 (2002).
    Google Scholar 
    5.Kharuk, V. I., Dvinskaya, M. L. & Ranson, J. Fire return intervals within the northern boundary of the larch forest in Central Siberia. Int. J. Wildland Fire 22(2), 207–211. https://doi.org/10.1071/WF11181 (2011).Article 

    Google Scholar 
    6.Knorre, A. A., Kirdyanov, A. V., Prokushkin, A. S., Krusic, P. J. & Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 652, 314–319 (2019).ADS 
    Article 

    Google Scholar 
    7.Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6(2), eaax330. https://doi.org/10.1126/sciadv.aax3308 (2020).Article 

    Google Scholar 
    8.Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the permafrost zone of Siberia. Environ. Res. Lett. 15, 034061. https://doi.org/10.1088/1748-9326/ab7469 (2020).ADS 
    Article 

    Google Scholar 
    9.Fritts, H. C. Tree-Rings and Climate 567 (Academic Press, 1976).
    Google Scholar 
    10.Schweingruber, F. H. Tree Rings and Environment Dendroecology (Paul Haupt Publ, 1996).
    Google Scholar 
    11.Hughes, M. K., Vaganov, E. A., Shiyatov, S. G., Touchan, R. & Funkhouser, G. Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5), 603–608 (1999).Article 

    Google Scholar 
    12.Briffa, K. R. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quat. Sci. Rev. 19, 87–105 (2000).ADS 
    Article 

    Google Scholar 
    13.Naurzbaev, M., Vaganov, E. A., Sidorova, O. V. & Schweingruber, F. H. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12(6), 727–736 (2002).ADS 
    Article 

    Google Scholar 
    14.Grudd, H. Torneträsk tree-ring width and density AD 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857 (2008).Article 

    Google Scholar 
    15.Sidorova, O. V., Siegwolf, R., Saurer, M., Naurzbaev, M. M. & Vaganov, E. A. Isotopic composition (δ13C, δ18O) in Siberian tree-ring chronology. Geophys. Res. Biogeosci. 113, G02019. https://doi.org/10.1029/2007JG000473 (2008).CAS 
    Article 

    Google Scholar 
    16.Sidorova, O. V. et al. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Change Biol. 16, 1003–1018. https://doi.org/10.1111/j.1365-2486.2009.02008.x (2010).ADS 
    Article 

    Google Scholar 
    17.Sidorova, O. V. et al. Is the 20th century warming unprecedented in the Siberian north?. Quat. Sci. Rev. 73, 93–102. https://doi.org/10.1016/j.quascirev.2013.05.015 (2013).ADS 
    Article 

    Google Scholar 
    18.Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G. & Schleser, G. H. Climate signals in tree-ring width, density an δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 252, 31–41. https://doi.org/10.1016/j.chemgeo.2008.01.023 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H. & Jungner, H. Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J. Quat. Sci. 24(5), 469–480 (2009).Article 

    Google Scholar 
    20.Loader, N. J., Young, G. H. F., Grudd, H. & McCarroll, D. Stable carbon isotopes from Torneträsk, norther Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 62, 97–113 (2013).ADS 
    Article 

    Google Scholar 
    21.Churakova (Sidorova), O. V. et al. Recent atmospheric drying in Siberia is not unprecedented over the last 1500 years. Sci. Rep. 10, 15024 (2020).CAS 
    Article 

    Google Scholar 
    22.Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507. https://doi.org/10.1007/s00382-011-1246-3 (2012).Article 

    Google Scholar 
    23.Saurer, M., Schweingruber, F., Vaganov, E. A., Shiyatov, S. G. & Siegwolf, R. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. https://doi.org/10.1029/2001GL013739 (2002).Article 

    Google Scholar 
    24.Saurer, M. et al. Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J. Geophys. Res. 117, D05118. https://doi.org/10.1029/2011JD016861 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Butzin, M. et al. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos. Chem. Phys. 14, 5853–5869 (2014).ADS 
    Article 

    Google Scholar 
    27.Gagen, M. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9(8), 630–635 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).ADS 
    Article 

    Google Scholar 
    29.Wang, J. et al. Impacts of the Siberian High and Arctic Oscillation on the East Asia winter monsoon: Driving down welling in the western Bering Sea Aquatic Ecosystem. Health Manag. 15(1), 20–30. https://doi.org/10.1080/14634988.2012.648860 (2012).Article 

    Google Scholar 
    30.Buermann, W. et al. Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El-Nino-Southern Oscillation and the Arctic Oscillation. J. Geophys. Res. 108(D13), 4396. https://doi.org/10.1029/2002JD002630 (2003).Article 

    Google Scholar 
    31.Baltzer, H. et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022526 (2005).Article 

    Google Scholar 
    32.Zhang, J. et al. Analysis of the positive Arctic Oscillation index event and its influence in the winter and spring of 2019/2020. Front. Earth Sci. https://doi.org/10.3389/feart.2020.580601 (2021).Article 

    Google Scholar 
    33.Zielinski, G. A. Use of paleo-records in determining variability within the volcanism- climate system. Quat. Sci. Rev. 19, 417–438 (2000).ADS 
    Article 

    Google Scholar 
    34.Panuyshkina, I. P. & Arbatskaya, M. K. Dendrochronological approach to study flammability of forests in Evenkia (Siberia). Sib. Ecol. J. 2, 167–173 (1999).
    Google Scholar 
    35.Valendik, E. N., Kisilyakhov, E. K., Rizova, V. A., Ponamarev, E. I. & Danilova, I. V. Large fires in taiga landscape of Central Siberia. Geogr. Nat. Resour. 14(1), 52–59 (2014).
    Google Scholar 
    36.Naulier, M. et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Clim. Past. 11, 1153–1164. https://doi.org/10.5194/cp-11-1153-2015 (2015).Article 

    Google Scholar 
    37.Churakova (Sidorova), O. V. et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. https://doi.org/10.5194/cp-2018-70.y (2019).Article 

    Google Scholar 
    38.Furyaev, V. V., Vaganov, E. A., Tchebakova, N. M. & Valendik, E. N. Effects of fire and climate on successions and structural changes in the Siberian boreal forest. Eurasian J. For. Res. 2, 1–15 (2001).
    Google Scholar 
    39.Keller, K. M. et al. 20th-century changes in carbon isotopes and water-use efficiency: Tree-ring based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14, 2641–2673 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    40.D’Arrigo, R. D., Cook, E. R., Mann, M. E. & Jacoby, G. C. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650. Geophys. Res. Lett. 30(11), 1549. https://doi.org/10.1029/2003GL017250 (2003).ADS 
    Article 

    Google Scholar 
    41.Kress, A. et al. Swiss tree rings reveal warm and wet summers during medieval times. Geophys. Res. Lett. 41, 1732–1737. https://doi.org/10.1002/2013GL059081 (2014).ADS 
    Article 

    Google Scholar 
    42.Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196. https://doi.org/10.1038/s41561-021-00698-0 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Kodera, K. & Kuroda, Y. Regional and hemispheric circulation patterns in the northern hemisphere winter, or the NAO and AO. Geophys. Res. Lett. 30(18), 2003. https://doi.org/10.1029/2003GL017290 (1934).Article 

    Google Scholar 
    44.Abaimov, A. P., Bondarev, A. I., Ziryanova, O. A. & Shitova, S. A. Forest Krasnoyarsk Polar (Nauka, 1997).
    Google Scholar 
    45.Ary-Mas Natural Conditions, Flora and Vegetation. (eds. Norin, B.N.) (Nauka, Leningrad, 1978).46.Ogi, M., Yamazaki, K. & Tachibana, Y. The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res. 109, D20114 (2004).ADS 
    Article 

    Google Scholar 
    47.Gagen, M. H., McCarroll, D., Loader, N. J., Robertson, I. & Jalkanen, R. Exorcising the ‘segment length curse’ summer temperature reconstruction since AD 1640 using non de-trend stable carbon isotope ratios from line trees in northern Finland. Holocene 17, 433–444 (2007).ADS 
    Article 

    Google Scholar 
    48.Boettger, T. et al. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: An inter-laboratory comparison. Anal. Chem. 15, 4603–4612 (2007).Article 

    Google Scholar 
    49.Weigt, R. B. et al. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(29), 2233–2244. https://doi.org/10.1002/rcm.7388 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B51, 170–193 (1999).ADS 
    Article 

    Google Scholar  More

  • in

    Novel attempt at discrimination of a bullet-shaped siphonophore (Family Diphyidae) using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF MS)

    1.Pugh, P. The vertical distribution of the siphonophores collected during the SOND cruise, 1965. J. Mar. Biol. Assoc. U.K. 54, 25–90 (1974).Article 

    Google Scholar 
    2.Grossmann, M. M., Collins, A. G. & Lindsay, D. J. Description of the eudoxid stages of Lensia havock and Lensia leloupi (Cnidaria: Siphonophora: Calycophorae), with a review of all known Lensia eudoxid bracts. Syst. Biodivers. 12, 163–180 (2014).Article 

    Google Scholar 
    3.Dunn, C. W. & Wagner, G. P. The evolution of colony-level development in the Siphonophora (Cnidaria: Hydrozoa). Dev. Genes. Evol. 216, 743–754 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Clark, A. E., Kaleta, E. J., Arora, A. & Wolk, D. M. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26, 547–603 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Dvorak, V. et al. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit. Vectors 7, 1–7 (2014).Article 

    Google Scholar 
    7.Rossel, S. & Arbizu, P. M. Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    8.Feltens, R., Görner, R., Kalkhof, S., Gröger-Arndt, H. & von Bergen, M. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol. Biol. 10, 1–15 (2010).Article 
    CAS 

    Google Scholar 
    9.Mazzeo, M. F. et al. Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 56, 11071–11076 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kaufmann, C., Schaffner, F., Ziegler, D., Pflueger, V. & Mathis, A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139, 248–258 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Laakmann, S. et al. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol. Ecol. Resour. 13, 862–876 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Lassen, S., Wiebring, A., Helmholz, H., Ruhnau, C. & Prange, A. Isolation of a Nav channel blocking polypeptide from Cyanea capillata medusae–a neurotoxin contained in fishing tentacle isorhizas. Toxicon 59, 610–616 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Lazcano-Pérez, F., Arellano, R. O., Garay, E., Arreguín-Espinosa, R. & Sánchez-Rodríguez, J. Electrophysiological activity of a neurotoxic fraction from the venom of box jellyfish Carybdea marsupialis. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 191, 177–182 (2017).
    Google Scholar 
    14.Helmholz, H., Naatz, S., Lassen, S. & Prange, A. Isolation of a cytotoxic glycoprotein from the Scyphozoa Cyanea lamarckii by lectin-affinity chromatography and characterization of molecule interactions by surface plasmon resonance. J. Chromatogr. B 871, 60–66 (2008).CAS 
    Article 

    Google Scholar 
    15.Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    17.Park, N. & Lee, W. Four new records of family Diphyidae (Hydrozoa: Siphonophorae) in Korean waters. J. Spec. Res. 9, 131–146 (2020).
    Google Scholar 
    18.Karger, A., Bettin, B., Gethmann, J. M. & Klaus, C. Whole animal matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of ticks–are spectra of Ixodes ricinus nymphs influenced by environmental, spatial, and temporal factors?. PLoS ONE 14, e0210590 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Tayri-Wilk, T. et al. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    20.Rossel, S. & Martínez Arbizu, P. Effects of sample fixation on specimen identification in biodiversity assemblies based on proteomic data (MALDI-TOF). Fron. Mar. Sci. 5, 1–13 (2018).Article 

    Google Scholar 
    21.Zheng, L., He, J., Lin, Y., Cao, W. & Zhang, W. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol. Sin. 33, 55–76 (2014).Article 
    CAS 

    Google Scholar 
    22.Yeom, J., Park, N., Jeong, R. & Lee, W. Integrative description of cryptic Tigriopus species from Korea using MALDI-TOF MS and DNA barcoding. Front. Mar. Sci. 8, 495 (2021).Article 

    Google Scholar 
    23.Peter, S. Molecular characterization and phylogenetic analysis of Diphyes dispar (Siphonophora: Diphyidae) from the Laccadive Sea, off the south-west coast of Arabian Sea, Indian Ocean. Int. J. Fish Aquat. Stud. 4, 30–35 (2016).
    Google Scholar 
    24.Dunn, C. W., Pugh, P. R. & Haddock, S. H. Molecular phylogenetics of the Siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst. Biol. 54, 916–935 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Munro, C. et al. Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution. Mol. Phylogenet. Evol. 127, 823–833 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Totton, A. K. Siphonophora of the Indian Ocean together with systematic and biological notes on related specimens from other oceans. Disc Rep 27, 1–162 (1954).
    Google Scholar 
    27.Totton, A. K., Bargmann, H. E. & British Museum (Natural History). A synopsis of the Siphonophora. (British Museum (Natural History), 1965).28.Mapstone, G. M. Siphonophora (Cnidaria, Hydrozoa) of Canadian Pacific waters. (NRC Research Press, 2009).29.Nishiyama, E. Y., Araujo, E. M. & Oliveira, O. M. Species of Lensia (Cnidaria: Hydrozoa: Siphonophorae) from southeastern Brazilian waters. Zoologia (Curitiba) 33, 2337 (2016).Article 

    Google Scholar 
    30.MALDIquantForeign: Import/Export routines for MALDIquant (2015).31.Gibb, S. & Strimmer, K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28, 2270–2271 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Palarea-Albaladejo, J., Mclean, K., Wright, F. & Smith, D. G. MALDIrppa: quality control and robust analysis for mass spectrometry data. Bioinformatics 34, 522–523 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gibb, S. & Strimmer, K. Species Identification using MALDIquant manual. http://www.strimmerlab.org/software/maldiquant/. (2015).34.Ahdesmäki, M. & Strimmer, K. Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann. Appl. Stat. 4, 503–519 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    35.vegan: Community Ecology Package. R package version 2.5-2. 2018 (2018).36.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Schuchert, P. DNA barcoding of some Pandeidae species (Cnidaria, Hydrozoa, Anthoathecata). Rev. Suisse Zool. 125, 101–127 (2018).
    Google Scholar 
    38.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Collins, A. G. Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18S gene sequence data. Scientia Marina (2000).40.Strychar, K. B., Hamilton, L. C., Kenchington, E. L. & Scott, D. B. Cold-water Corals and Ecosystems 679–690 (Springer, Berlin, 2005).Book 

    Google Scholar 
    41.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    48.Yamaoka, K., Nakagawa, T. & Uno, T. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6, 165–175 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Young, N. D. & Healy, J. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinform. 4, 6 (2003).Article 

    Google Scholar 
    52.Swofford, D. L. & Sullivan, J. Phylogeny inference based on parsimony and other methods using PAUP*. Phylogenet. Handb. Pract. Approach DNA and Protein Phylogeny 7, 160–206 (2003).
    Google Scholar 
    53.Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Large-bodied birds are over-represented in unstructured citizen science data

    1.Pocock, M. J., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Cons. 213, 280–294 (2017).Article 

    Google Scholar 
    3.Chandler, M. et al. Involving citizen scientists in biodiversity observation. In The GEO Handbook on Biodiversity Observation Networks 211–237 (Springer, 2017).4.McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Cons. 208, 15–28 (2017).Article 

    Google Scholar 
    5.Pereira, H. M. et al. Monitoring essential biodiversity variables at the species level. In The GEO Handbook on Biodiversity Observation Networks 79–105 (Springer, 2017).6.Wiggins, A. & Crowston, K. From conservation to crowdsourcing: A typology of citizen science. in 2011 44th Hawaii International Conference on System Sciences 1–10 (IEEE, 2011).7.Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge 105–122 (Springer, 2013).8.Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Welvaert, M. & Caley, P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen science and crowdsourcing in a quantitative data framework. Springerplus 5, 1890 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Callaghan, C. T., Rowley, J. J., Cornwell, W. K., Poore, A. G. & Major, R. E. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 17, e3000357 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project FeederWatch. Front. Ecol. Environ. 10, 305–307 (2012).Article 

    Google Scholar 
    12.Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    13.Burgess, H. K. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Cons. 208, 113–120 (2017).Article 

    Google Scholar 
    14.Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in citizen science data reporting: Implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Cons. 169, 31–40 (2014).Article 

    Google Scholar 
    16.Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves?. PLoS ONE 10, e0139600 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    18.Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 22, 1139–1149 (2016).Article 

    Google Scholar 
    19.Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. Bioscience 71, 55–63 (2021).
    Google Scholar 
    20.Ward, D. F. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753–756 (2014).Article 

    Google Scholar 
    21.Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar 
    22.Martı́n-López, B., Montes, C., Ramı́rez, L. & Benayas, J. What drives policy decision-making related to species conservation? Biol. Conserv. 142, 1370–1380 (2009).23.Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Aceves-Bueno, E. et al. The accuracy of citizen science data: A quantitative review. Bull. Ecol. Soc. Am. 98, 278–290 (2017).Article 

    Google Scholar 
    25.Davies, T. K., Stevens, G., Meekan, M. G., Struve, J. & Rowcliffe, J. M. Can citizen science monitor whale-shark aggregations? Investigating bias in mark–recapture modelling using identification photographs sourced from the public. Wildl. Res. 39, 696–704 (2013).Article 

    Google Scholar 
    26.Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).Article 

    Google Scholar 
    27.van Strien, A. J., van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).Article 

    Google Scholar 
    28.Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).Article 

    Google Scholar 
    29.Tiago, P., Pereira, H. M. & Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 20, 75–85 (2017).Article 

    Google Scholar 
    30.Sullivan, B. L. et al. Using open access observational data for conservation action: A case study for birds. Biol. Cons. 208, 5–14 (2017).Article 

    Google Scholar 
    31.Callaghan, C. T. et al. Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodivers. Conserv. 29, 1323–1337 (2020).Article 

    Google Scholar 
    32.Birkin, L. & Goulson, D. Using citizen science to monitor pollination services. Ecol. Entomol. 40, 3–11 (2015).Article 

    Google Scholar 
    33.Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).Article 

    Google Scholar 
    34.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western north america. Biol. Cons. 214, 343–346 (2017).Article 

    Google Scholar 
    35.Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Cons. 173, 144–154 (2014).Article 

    Google Scholar 
    36.Isaac, N. J., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).Article 

    Google Scholar 
    37.Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).Article 

    Google Scholar 
    38.Bonney, R. et al. Next steps for citizen science. Science 343, 1436–1437 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    39.Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011).PubMed 
    Article 

    Google Scholar 
    40.Crall, A. W. et al. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. 22, 745–764 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Jordan, R. C., Ballard, H. L. & Phillips, T. B. Key issues and new approaches for evaluating citizen-science learning outcomes. Front. Ecol. Environ. 10, 307–309 (2012).Article 

    Google Scholar 
    42.Evans, C. et al. The neighborhood nestwatch program: Participant outcomes of a citizen-science ecological research project. Conserv. Biol. 19, 589–594 (2005).Article 

    Google Scholar 
    43.Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pocock, M. J. et al. A vision for global biodiversity monitoring with citizen science. In Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).45.Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv. 18, 61 (2017).Article 

    Google Scholar 
    46.Isaac, N. J. & Pocock, M. J. Bias and information in biological records. Biol. J. Lin. Soc. 115, 522–531 (2015).Article 

    Google Scholar 
    47.Angulo, E. & Courchamp, F. Rare species are valued big time. PLoS ONE 4, e5215 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: A birdwatching example. Biol. Cons. 144, 2728–2732 (2011).Article 

    Google Scholar 
    49.Rowley, J. J. et al. FrogID: Citizen scientists provide validated biodiversity data on frogs of australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
    Google Scholar 
    50.Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers recording behaviour. Sci. Rep. 6, 33051 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Garrard, G. E., McCarthy, M. A., Williams, N. S., Bekessy, S. A. & Wintle, B. A. A general model of detectability using species traits. Methods Ecol. Evol. 4, 45–52 (2013).Article 

    Google Scholar 
    52.Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 1564–1577 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).Article 

    Google Scholar 
    54.Wood, C., Sullivan, B., Iliff, M., Fink, D. & Kelling, S. eBird: Engaging birders in science and conservation. PLoS Biol 9, 1001220 (2011).Article 
    CAS 

    Google Scholar 
    55.GBIF.org (3rd December 2019). GBIF occurrence download. https://doi.org/10.15468/dl.lpwczr56.Gilfedder, M. et al. Brokering trust in citizen science. Soc. Nat. Resour. 32, 292–302 (2019).Article 

    Google Scholar 
    57.Callaghan, C., Lyons, M., Martin, J., Major, R. & Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 12, 66 (2017).
    Google Scholar 
    58.Johnston, A. et al. Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species distributions. BioRxiv 574392 (2019).59.Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles: Ecological archives E096–269. Ecology 96, 3109–3109 (2015).Article 

    Google Scholar 
    60.Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).62.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    63.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    64.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    65.Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    66.Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).Article 

    Google Scholar 
    67.Henckel, L., Bradter, U., Jönsson, M., Isaac, N. J. & Snäll, T. Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Divers. Distrib. 26, 1276–1290 (2020).Article 

    Google Scholar 
    68.Caley, P., Welvaert, M. & Barry, S. C. Crowd surveillance: Estimating citizen science reporting probabilities for insects of biosecurity concern. J. Pest. Sci. 93, 543–550 (2020).Article 

    Google Scholar 
    69.Périquet, S., Roxburgh, L., le Roux, A. & Collinson, W. J. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front. Ecol. Evol. 6, 15 (2018).Article 

    Google Scholar 
    70.Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).Article 

    Google Scholar 
    71.Schlossberg, S., Chase, M. & Griffin, C. Using species traits to predict detectability of animals on aerial surveys. Ecol. Appl. 28, 106–118 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017).Article 

    Google Scholar 
    73.Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 1–13 (2017).Article 

    Google Scholar 
    74.Schuetz, J. G. & Johnston, A. Characterizing the cultural niches of North American birds. Proc. Natl. Acad. Sci. 22, 10868–10873 (2019).Article 
    CAS 

    Google Scholar 
    75.Lišková, S. & Frynta, D. What determines bird beauty in human eyes?. Anthrozoös 26, 27–41 (2013).Article 

    Google Scholar 
    76.Tulloch, A. I., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Cons. 165, 128–138 (2013).Article 

    Google Scholar 
    77.Kobori, H. et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).CAS 
    Article 

    Google Scholar 
    78.Callaghan, C. T., Poore, A. G., Major, R. E., Rowley, J. J. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B 286, 20191487 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pacifici, K. et al. Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology 98, 840–850 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Robinson, O. J. et al. Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Divers. Distrib. 26, 976–986 (2020).Article 

    Google Scholar 
    81.van Strien, A. J., Termaat, T., Groenendijk, D., Mensing, V. & Kery, M. Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists. Basic Appl. Ecol. 11, 495–503 (2010).Article 

    Google Scholar 
    82.Van der Wal, R. et al. Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording. Ambio 44, 584–600 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Dennis, E. B., Morgan, B. J., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Stoudt, S., Goldstein, B. R. & De Valpine, P. Identifying charismatic bird species and traits with community science data. bioRxiv. https://doi.org/10.1101/2021.06.05.446577 More

  • in

    Coral conservation strikes a balance

    NATURE INDEX
    24 September 2021

    Coral conservation strikes a balance

    Australia–Fiji collaboration matches community needs with reef protection.

    Clare Watson

    0

    Clare Watson

    Clare Watson is a freelance writer in Wollongong, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A spear fisherman catches reef fish, a cultural mainstay on Mali Island in Fiji.Credit: Juergen Freund/naturepl.com

    Coral reefs are under threat, and so too are the livelihoods of more 500 million people who depend on them. Global climate change is causing longer and more frequent marine heatwaves, leading to widespread and repeated coral bleaching. Overfishing and pollution exacerbate the problem, adding pressure to these marine biodiversity hotspots that sustain coastal communities.Reef-management programmes that limit or prohibit fishing and other commercial activities are bound to be ineffective if local communities are not involved in their design and management, says Sangeeta Mangubhai, a coral-reef ecologist in Fiji. “If people haven’t been engaged in the management [of conservation strategies], they’re not as likely to understand what the rules are, or they might not comply with it,” she says. Initiatives that are designed to protect coral reefs without incorporating insights from local communities may also affect them in unintended ways, she adds.
    Nature Index 2021 Science cities
    In collaboration with environmental social scientist, Georgina Gurney, Mangubhai is identifying the conditions that support both conservation outcomes and the wellbeing of coastal communities who often have cultural practices and spiritual ties to the sea. Their work explores the social factors that influence coral-reef-management programmes, such as the perceived fairness of payment schemes that direct tourism revenue back to the communities who manage local reefs (G. G. Gurney et al. Environ. Sci. Policy 124, 23–32; 2021).“First and foremost, it’s an ethical and moral issue,” says Gurney. “Conservation should not impinge on the wellbeing of people; it should promote the wellbeing of people.”Based at James Cook University (JCU) in Townsville, a city on the northeastern coast of Queensland, Australia, Gurney has close access to the Great Barrier Reef, which contains the world’s largest coral reef ecosystem. The university has long-standing ties with researchers in nearby Pacific island nations, such as Papua New Guinea, Fiji and New Caledonia.Townsville was the second most-prolific city in the 82 high-quality natural-sciences journals tracked by the Nature Index for research related to the United Nations’ Sustainable Development Goal (SDG) Life below water (SDG14) in 2015–20, with a Share of 15.59, 52% of which is attributed to JCU. Beijing, placed first by output related to SDG14, had a Share of 17.88 for the same period. (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Georgina Gurney and Sangeeta Mangubhai at a fish market in Suva, Fiji.Credit: Isabelle Gurney

    According to Gurney, successful conservation programmes should evaluate social factors alongside ecological outcomes, such as fish stocks and coral health, although this is rarely the case. With Mangubhai and other collaborators, Gurney has developed a framework that combines 90 social and ecological indicators, from coral cover and fish biomass to household incomes derived from the reef, equitable benefit-sharing and conflicts occurring over marine resources (G. G. Gurney et al. Biol. Conserv. 240, 108298; 2019).In principle, the framework standardizes how outcomes of coral-reef programmes are evaluated to improve data collection and enable cross-country comparisons. It has been adopted by the New York-based non-governmental organization, the Wildlife Conservation Society (WCF), and its partners in 7 countries and more than 130 communities across Africa, Asia and the Pacific.Besides improving conservation efforts, Mangubhai, who leads the WCF’s Fiji programme, says the partnership gives equal footing to local conservation scientists and policymakers, empowering them to direct independent research. “If you have these meaningful collaborations, the outcome is going to have so much more of an impact on the ground,” she says.Incorporating an understanding of the social factors that influence coral-reef conservation into marine-management strategies translates to respect for local traditional cultural practices of Indigenous Fijians, says Mangubhai. Temporary closures called tabu, which are used to maintain the productivity of their customary fishing grounds, are a good example. “It’s a real merging of traditional knowledge and other best practices, such as size limits on fish catch, to help communities achieve the outcomes they want for themselves,” she says.

    doi: https://doi.org/10.1038/d41586-021-02409-6This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    How cities are collaborating to safeguard oceans

    Rising tide of floating plastics spurs surge in research

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Latest on:

    Ocean sciences

    How cities are collaborating to help safeguard oceans
    Nature Index 24 SEP 21

    Rising tide of floating plastics spurs surge in research
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Pursuit of better batteries underpins China’s lead in energy research
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    Rising tide of floating plastics spurs surge in research

    NATURE INDEX
    24 September 2021

    Rising tide of floating plastics spurs surge in research

    Strong government policies and research insights are essential to deliver on a pledge to clean up the sea.

    Michael Eisenstein

    0

    Michael Eisenstein

    Michael Eisenstein is a freelance writer in Philadelphia, Pennsylvania.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A jellyfish swims beneath a slick of floating plastic debris in the Indian Ocean near Sri Lanka.Credit: Alex Mustard/naturepl.com

    Many stories have been written about the ‘Great Pacific garbage patch’, a name evoking a vast Sargasso Sea of plastic bottles and bags. But the reality is that much of this debris has been broken down into a murky suspension of ‘microplastics’ spanning an area three times the size of France.
    Nature Index 2021 Science cities
    These plastic flecks introduce long-lasting chemical pollution into marine and coastal ecosystems, says Daoji Li, an oceanographer at East China Normal University in Shanghai. In 2020, Li and his colleagues found that microplastic debris is highly concentrated in even the deepest underwater trenches (G. Peng et al. Water Res. 168, 115121; 2020). Staving off this influx of pollutants is a target of the United Nations’ Sustainable Development Goal (SDG) Life below water (SDG14), with its aim to “prevent and significantly reduce marine pollution of all kinds” by 2025.Between 4.8 million and 12.7 million tonnes of plastic waste entered the oceans in 2010, according to a study in Science, and those numbers are expected to increase dramatically by 2050 without improvements to waste-management infrastructure (J. Jambeck et al. Science 347, 768–771; 2015). Scientists in China, which is a major producer and importer of plastic waste, are taking the lead in amelioration. According to the 2021 UNESCO Science Report, floating plastic debris was the fastest-growing area of SDG-related research in 2012–19 (see ‘A buoyant field’). Publications from the Chinese mainland on the topic jumped from 7 in the period 2012–15 to 286 in 2016–19, placing it third by volume after the United States and United Kingdom. Much of this work has come from investigators in Beijing, the top-ranked city in the Nature Index for SDG14-related research. (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Source: UNESCO

    Li is sceptical that much can be done to eliminate existing plastic pollution. “But what we can do is stop them entering to the ocean,” he says. His team has developed a monitoring framework that outlines ‘gold-standard’ technologies and assays for detecting and quantifying microplastic contamination.Government action is essential to stem the flow of plastic debris. UNESCO reports that 127 countries have adopted legislation to regulate plastic bags. In 2020, China launched an ambitious effort to ban plastic bags nationwide by 2022 and cut single-use plastic in restaurants by one-third by 2025 — although the COVID-19 pandemic created a surge in demand for delivery that derailed this effort.Despite the many hurdles to overcome, Li feels positive about the future. “I am pretty confident that we could meet the target set for SDG14,” he says, “but when we realize those challenges, we should keep going.”

    Source: UNESCO

    doi: https://doi.org/10.1038/d41586-021-02408-7This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    How cities are collaborating to safeguard oceans

    Coral conservation strikes a balance

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Latest on:

    Ocean sciences

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    How cities are collaborating to help safeguard oceans
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    How cities are collaborating to help safeguard oceans

    NATURE INDEX
    24 September 2021

    How cities are collaborating to help safeguard oceans

    Despite missed deadlines in 2020 for key targets in marine conservation, momentum for these Sustainable Development Goals is growing.

    Michael Eisenstein

    0

    Michael Eisenstein

    Michael Eisenstein is a freelance writer in Philadelphia, Pennsylvania.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Bart Shepherd, co-leader of the Hope for Reefs initiative, guides fish into a decompression chamber while on expedition in Vanuatu.Credit: Luiz Rocha/California Academy of Sciences

    For about 30 minutes each year, vast colonies of corals in the waters of Palau, an island nation in the western Pacific, erupt in an almost perfectly synchronized mass-spawning event. Releasing buoyant packages of sperm and egg cells into the water to be fertilized by neighbouring colonies, these hermaphroditic species must make the most of rare opportunities to seed new life.In one of the world’s few indoor coral-culturing labs, Rebecca Albright and her team at the California Academy of Sciences in San Francisco are recreating the seasonal and lunar shifts that trigger such an event. The aim is to create multiple spawning systems that can be studied under controlled conditions. “Corals are notorious for being fickle animals to keep in captivity,” says Albright, a coral biologist and co-leader of Hope for Reefs, a global initiative to research and restore crucial coral-reef systems. “Most only sexually reproduce once a year, so you have to simulate all these environmental cues to elicit that.”
    Nature Index 2021 Science cities
    Strategies for cultivating and transplanting healthy corals into depleted areas are a crucial part of strengthening populations against what Albright describes as the “one-two punch effect” of climate change. Rising temperatures cause coral bleaching and death, while ocean acidification caused by increased levels of carbon dioxide makes corals less resilient and prevents regrowth. “If we are able to cap warming at 1.5  °C, we’re still going to lose 90% of reefs by 2050,” she says. “And if we edge towards 2 °C, we risk losing 97% to 99%.”Of the United Nations’ 17 Sustainable Development Goals (SDGs), Life below water (SDG14) and other SDGs related to environmental sustainability — Responsible consumption and production (SDG12), Climate action (SDG13) and Life on land (SDG15) — were the weakest in both donor funding and outcomes, attracting less than US$25 billion between them in 2000–13, according to the 2021 UNESCO Science Report (see go.nature.com/3zlojva). SDGs that are more directly related to economic growth — Industry, innovation and infrastructure (SDG9) and Sustainable cities and communities (SDG11) — by comparison, received $130 billion and $147 billion, respectively, over the same period.James Leape, co-director of Stanford University’s Center for Ocean Solutions in California, notes that four of the ten targets for SDG14, which aims to “conserve and sustainably use the oceans, seas and marine resources”, were due in 2020. All were missed. These include controlling the global damage wrought by illegal and unregulated fishing, which remains largely unchecked, and implementing scientifically grounded strategies for restoring affected fish stocks.But there are signs of momentum. The amount of ocean being conserved and managed within marine protected areas (MPAs), for example, has increased from 0.9% to 7.7% since 2000, says Leape. MPAs are regions in which fishing, mining and other activities are restricted. Efforts are under way to further expand the number of MPAs globally.Coastal collaborationsAs the world’s leading fishing nation, responsible for 15% of the reported global wild fish catch, China has ramped up efforts to designate new MPAs. Since 1980, China has designated more than 270 MPAs, comprising about 5% of its national waters. But it’s a long way off efforts by countries such as the United States, which has more than 1,000 MPAs that cover about 26% of its waters, and the United Kingdom, with 371 MPAs comprising 38% of its seas. In a 2019 Nature correspondence, fisheries researchers Yunzhou Li and Yiping Ren, from the Ocean University of China in Qingdao and Yong Chen from the University of Maine, Orono, say that effective monitoring and strict enforcement will also be essential to the success of China’s efforts (see Nature 573, 346; 2019).In a city-based analysis by the Nature Index, Beijing had the greatest output related to SDG14 in the 82 natural-sciences journals tracked by the index in 2015–20, with a Share of 17.88, followed by the coastal city of Townsville in northeastern Queensland, Australia (Share 15.59) and the Boston metropolitan area (Share 13.66). The San Francisco Bay Area, second only to Beijing in output related to all 17 SDGs, had the sixth-highest Share for SDG14 (13.24). (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Residents in the coastal town of Maroantsetra, in northeastern Madagascar, display their catch.Credit: Rebecca Gaal

    Many small island states face serious threats from the rapid decline of their coral reefs, which represent one of the world’s most diverse ecosystems. Gildas Todinanahary, a marine biologist at the Fisheries and Marine Science Institute at the University of Toliara in Madagascar, says the percentage of live coral cover surrounding the island nation has dropped from more than 80% in the 1980s to less than 10%, on average, today. “Decades ago, they used to say there will always be fish in the sea,” says Todinanahary. “Now they say there are no more fish.” This has jeopardized the livelihood of the fishing communities on the island’s western shore, he says.Christopher Golden, an ecologist and epidemiologist at the Harvard School of Public Health in Boston, is working with Todinanahary and his colleagues to deploy a series of small tiered platforms, designed to mimic the cracks and crevices of the reef, into healthy coral communities along the Madagascar coast. Once colonized, these structures are transported into degraded reefs in an effort to repopulate them. “If we can create a healthier reef, we can then rehabilitate some of the fish populations, and that will lead to improved fish-catch and greater access to seafood as a nutritional resource,” says Golden.Todinanahary is enthusiastic about the potential for seeding new reefs in barren coastal stretches, but says education and outreach to fishing communities will be key to ensuring that those restoration efforts endure. “It’s important to help communities change their habits and activities,” he says — for example, by providing training for alternative livelihoods such as aquaculture.Buy-in from community leaders is also crucial to the success of partnerships between researchers in leading science cities and colleagues in low- and middle-income maritime nations in SDG-related projects. In 2016, the government of Palau invited Leape and his team at Stanford to develop a strategy for turning 80% of its exclusive economic zone, a 370-km radius surrounding the island, into a protected area where fishing is prohibited. The initiative went into effect in January 2020. “We’re using satellite tracking to understand the patterns of use of the sanctuary by large pelagic species, and using DNA analysis to monitor biodiversity in the sanctuary,” says Leape. Palau’s programme has helped to motivate other island nations in the region to extend marine protection and conservation efforts as part of the Micronesia Challenge, an initiative to conserve 50% of marine resources and 30% of terrestrial resources by 2030.Golden’s research emphasizes both the sustainability and food-security sides of the fisheries-management coin, with routine health assessments of communities in places such as Madagascar and the Republic of Kiribati, an island nation in the central Pacific Ocean, coupled with close monitoring of the ecological health of their surrounding waters. To help this effort, Golden and his colleagues developed the Aquatic Food Composition Database, which compiles detailed nutritional information on more than 3,700 local plant and animal species to provide ecologically grounded guidance to local fishers. “We can look at what type of resilience there might be if we lose access to one species and have to focus on another,” says Golden. “We can understand the type of nourishment that people are actually getting from their catch.”Stanford’s Center for Ocean Solutions is also leveraging new technologies to guide sustainable fishing practices that benefit small-scale fishers, whose livelihood SDG14 aims to safeguard. “Their catches account for about two-thirds of the seafood we eat, and 90% of the fishery jobs,” says Leape. The centre is partnering with ABALOBI, an organization in South Africa founded by fisheries researcher Serge Raemaekers, from the University of Cape Town. ABALOBI has designed a mobile app toolbox to help fishers track specific fish populations, coordinate boats and crews, and bring catches to market. Leape is hopeful that early pilot testing in Africa and the Indian Ocean will pave the way for broader deployment in the near future.In parallel, Leape’s team is working on strategies to crack down on illegal fishing — currently estimated to account for roughly 20% of the global catch. This is being achieved partly through tools such as the satellite-based fishery monitoring efforts of Global Fishing Watch, a website run by Google in partnership with conservation non-profit organizations Oceana and SkyTruth. But technology is only part of the solution. Leape sees a crucial role for aggressive government enforcement and getting major corporations to engage in closer oversight of fishing practices. “We’ve been using Global Fishing Watch and other data sources to understand the patterns and areas for illegal fishing,” he says. “We’re working with these partners to try to translate that data into a more concerted effort to crack the problem.”

    doi: https://doi.org/10.1038/d41586-021-02407-8This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    Rising tide of floating plastics spurs surge in research

    Coral conservation strikes a balance

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Climate change

    Latest on:

    Ocean sciences

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Rising tide of floating plastics spurs surge in research
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    Refocusing multiple stressor research around the targets and scales of ecological impacts

    1.Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Threats Classification Scheme (Version 3.2) (International Union for Conservation of Nature and Natural Resources, 2020); https://www.iucnredlist.org/resources/threat-classification-scheme3.Living Planet Report 2018: Aiming Higher (World Wildlife Fund, 2018).4.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).Article 

    Google Scholar 
    6.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421 (2020).Article 

    Google Scholar 
    8.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Burgess, B. J., Purves, D., Mace, G. & Murrell, D. J. Ecological theory predicts ecosystem stressor interactions in freshwater ecosystems, but highlights the strengths and weaknesses of the additive null model. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.243972 (2020).11.Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ashauer, R. & Jager, T. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ. Sci. Process Impacts 20, 48–57 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Caswell, H. in Ecotoxicology. A Hierarchical Treatment (eds Newman, M. C. & Jagoe, C. H) 255–292 (CRC Press, 1996).18.Judd, A., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    19.Schafer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).Article 

    Google Scholar 
    20.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
    Google Scholar 
    21.Beyer, J. et al. Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar. Environ. Res. 96, 81–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).Article 

    Google Scholar 
    23.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0802 (2017).24.De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).Article 

    Google Scholar 
    25.Goussen, B., Price, O. R., Rendal, C. & Ashauer, R. Integrated presentation of ecological risk from multiple stressors. Sci. Rep. 6, 36004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Liess, M., Foit, K., Knillmann, S., Schafer, R. B. & Liess, H. D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Van den Brink, P. J. et al. Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. Sci. Total Environ. 684, 722–726 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems: Applications to Ecotoxicology (Cambridge Univ. Press, 1993).29.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    30.Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).PubMed 
    Article 

    Google Scholar 
    31.Bolker, B., Holyoak, M., Krivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).Article 

    Google Scholar 
    32.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    33.Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. & Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds G. A. Polis & K. O. Winemiller) 371–395 (Chapman & Hall, 1996).34.Thompson, P. L., MacLennan, M. M. & Vinebrooke, R. D. Species interactions cause non‐additive effects of multiple environmental stressors on communities. Ecosphere 9, e02518 (2018).Article 

    Google Scholar 
    35.Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc. B Biol. Sci. 365, 49–60 (2010).Article 

    Google Scholar 
    36.Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).Article 

    Google Scholar 
    40.Ohlmann, M. et al. Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ohlmann, M. et al. Mapping the imprint of biotic interactions on β‐diversity. Ecol. Lett. 21, 1660–1669 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Brun, P. et al. The productivity–biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2018).PubMed 
    Article 

    Google Scholar 
    44.Bracewell, S. et al. Qualifying the effects of single and multiple stressors on the food web structure of Dutch drainage ditches using a literature review and conceptual models. Sci. Total Environ. 684, 727–740 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Kohler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341, 759–765 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).47.Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).48.Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.01.005 (2021).49.Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).Article 

    Google Scholar 
    50.Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Crespi, E. J., Williams, T. D., Jessop, T. S. & Delehanty, B. Life history and the ecology of stress: how do glucocorticoid hormones influence life‐history variation in animals? Funct. Ecol. 27, 93–106 (2013).Article 

    Google Scholar 
    53.Matthiopoulos, J., Moss, R. & Lambin, X. The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecol. Modell. 127, 53–63 (2000).Article 

    Google Scholar 
    54.Moss, R., Watson, A. & Parr, R. Experimental prevention of a population cycle in red grouse. Ecology 77, 1512–1530 (1996).Article 

    Google Scholar 
    55.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Schmitz, O. J. Press perturbations and the predictability ofecological interactions in a food web. Ecology 78, 55–69 (1997).
    Google Scholar 
    58.Ernest, S. K. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).Article 

    Google Scholar 
    59.Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).Article 

    Google Scholar 
    61.Pawar, S., Dell, A. I., Savage, V. M. & Knies, J. L. Real versus artificial variation in the thermal sensitivity of biological traits. Am. Nat. 187, E41–E52 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Yee, E. & Murray, S. Effects of temperature on activity, food consumption rates, and gut passage times of seaweed-eating Tegula species (Trochidae) from California. Mar. Biol. 145, 895–903 (2004).Article 

    Google Scholar 
    64.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, E429–E441 (2004).Article 

    Google Scholar 
    65.Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2612 (2014).66.Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B Biol. Sci. 367, 2935–2944 (2012).Article 

    Google Scholar 
    69.Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).Article 

    Google Scholar 
    70.Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Robinson, S. I., McLaughlin, Ó. B., Marteinsdóttir, B. & O’Gorman, E. J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. J. Anim. Ecol. 87, 634–646 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.McKee, D. et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr. 48, 707–722 (2003).Article 

    Google Scholar 
    73.McKee, D. et al. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshw. Biol. 47, 1557–1570 (2002).Article 

    Google Scholar 
    74.Allen, A., Gillooly, J. & Brown, J. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).Article 

    Google Scholar 
    75.Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature‐dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Clarke, A. & Fraser, K. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).Article 

    Google Scholar 
    77.Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).Article 

    Google Scholar 
    78.Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B Biol. Sci. 365, 2081–2091 (2010).Article 

    Google Scholar 
    79.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article 

    Google Scholar 
    81.Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).84.Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002).Article 

    Google Scholar 
    85.Jeschke, J. M. & Tollrian, R. Density-dependent effects of prey defences. Oecologia 123, 391–396 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Jorgensen, C., Ernande, B. & Fiksen, O. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol. Appl. 2, 356–370 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kuparinen, A., Kuikka, S. & Merila, J. Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evol. Appl. 2, 234–243 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Day, T., Abrams, P. A. & Chase, J. M. The role of size-specific predation in the evolution and diversification of prey life histories. Evolution 56, 877–887 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Heino, M., Pauli, B. D. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).Article 

    Google Scholar 
    91.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).Article 

    Google Scholar 
    92.Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).Article 
    CAS 

    Google Scholar 
    93.Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).Article 

    Google Scholar 
    96.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Duchet, C. et al. Pesticide‐mediated trophic cascade and an ecological trap for mosquitoes. Ecosphere 9, e02179 (2018).Article 

    Google Scholar 
    100.Halstead, N. T. et al. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecol. Lett. 17, 932–941 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Ferger, S. W. et al. Synergistic effects of climate and land use on avian beta‐diversity. Divers. Distrib. 23, 1246–1255 (2017).Article 

    Google Scholar 
    102.Maris, V. et al. Prediction in ecology: promises, obstacles and clarifications. Oikos 127, 171–183 (2018).Article 

    Google Scholar 
    103.Palmer, M. A. et al. Ecological science and sustainability for the 21st century. Front. Ecol. Environ. 3, 4–11 (2005).Article 

    Google Scholar 
    104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).Article 

    Google Scholar 
    105.Grimm, V. & Berger, U. Structural realism, emergence, and predictions in next-generation ecological modelling: synthesis from a special issue. Ecol. Modell. 326, 177–187 (2016).Article 

    Google Scholar 
    106.Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Rosenblatt, A. E., Smith-Ramesh, L. M. & Schmitz, O. J. Interactive effects of multiple climate change variables on food web dynamics: Modeling the effects of changing temperature, CO2, and water availability on a tri-trophic food web. Food Webs https://doi.org/10.1016/j.fooweb.2016.10.002 (2017).108.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0772-3 (2019).109.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).Article 

    Google Scholar 
    113.Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Beckerman, A. P., Petchey, O. L. & Warren, P. H. Foraging biology predicts food web complexity. Proc. Natl Acad. Sci. USA 103, 13745–13749 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).Article 

    Google Scholar 
    116.Williams, R. J., Brose, U. & Martinez, N. D. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems (eds Rooney, N. et al.) 37–51 (Springer, 2007).117.Blanchard, J. L. et al. How does abundance scale with body size in coupled size‐structured food webs? J. Anim. Ecol. 78, 270–280 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Kerr, S. R. & Dickie, L. M. The Biomass Spectrum: A Predator–Prey Theory of Aquatic Production (Columbia Univ. Press, 2001).120.Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).PubMed 
    Article 

    Google Scholar 
    121.Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).Article 

    Google Scholar 
    122.McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).Article 

    Google Scholar 
    123.Delmas, E., Brose, U., Gravel, D., Stouffer, D. B. & Poisot, T. Simulations of biomass dynamics in community food webs. Methods Ecol. Evol. 8, 881–886 (2017).Article 

    Google Scholar 
    124.Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Tabi, A., Petchey, O. L. & Pennekamp, F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol. Lett. 22, 1061–1071 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    127.O’Brien, A. L., Dafforn, K. A., Chariton, A. A., Johnston, E. L. & Mayer-Pinto, M. After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. Sci. Total Environ. 684, 753–764 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    128.Hampton, S. E. et al. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94, 2663–2669 (2013).PubMed 
    Article 

    Google Scholar 
    129.Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).Article 

    Google Scholar 
    130.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
    Google Scholar 
    131.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Brennan, G. L., Colegrave, N. & Collins, S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc. Natl Acad. Sci. USA 114, 9930–9935 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.De Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).Article 

    Google Scholar 
    136.Ellner, S. P., Seifu, Y. & Smith, R. H. Fitting population dynamic models to time‐series data by gradient matching. Ecology 83, 2256–2270 (2002).Article 

    Google Scholar 
    137.Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Law, R., Plank, M. J., James, A. & Blanchard, J. L. Size‐spectra dynamics from stochastic predation and growth of individuals. Ecology 90, 802–811 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    139.Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).Article 

    Google Scholar 
    140.Ives, A. R. Predicting the response of populations to environmental change. Ecology 76, 926–941 (1995).Article 

    Google Scholar  More

  • in

    Author Correction: Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaMartin Jung, Matthew Lewis, Dmitry Schepaschenko, Myroslava Lesiv, Steffen Fritz, Michael Obersteiner & Piero ViscontiUN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UKAndy Arnell, Shaenandhoa García-Rangel, Jennifer Mark, Lera Miles, Corinna Ravilious, Oliver Tallowin, Arnout van Soesbergen, Valerie Kapos & Neil BurgessFood and Agriculture Organization of the United Nations (FAO), Rome, ItalyXavier de LamoDepartment of Zoology, University of Cambridge, Cambridge, UKMatthew LewisDepartment of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, USACory MerowRoyal Botanic Gardens, Kew, Richmond, UKIan Ondo, Samuel Pironon & Rafaël GovaertsBotanic Gardens Conservation International, Richmondy, UKMalin RiversSiberian Federal University, Krasnoyarsk, RussiaDmitry SchepaschenkoDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABradley L. Boyle, Brian J. Enquist, Brian Maitner & Erica A. NewmanDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengDepartment of Biological Sciences, Macquarie University, North Ryde, New South Wales, AustraliaRachael GallagherSchool of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelShai Meiri & Gali OferDepartment of Geography, King’s College London, London, UKMark MulliganMitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, IsraelUri RollCIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, PortugalJeffrey O. HansonDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanCenter for Biodiversity and Global Change, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanDepartment of Biology and Biotechnologies, Sapienza University of Rome, Rome, ItalyMoreno Di MarcoThe Nature Conservancy, Arlington, VA, USAJennifer McGowanColumbia University, New York, NY, USAJeffrey D. SachsSchool of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tasmania, AustraliaVanessa M. AdamsCSIRO Land and Water, Canberra, Australian Capital Territory, AustraliaSamuel C. AndrewDepartment of Biology, University of Kentucky, Lexington, KY, USAJoseph R. BurgerBetty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USALee Hannah & Patrick R. RoehrdanzDepartamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetInstituto de Ecología y Biodiversidad (IEB), Santiago, ChilePablo A. MarquetCentro de Cambio Global UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetThe Santa Fe Institute, Santa Fe, NM, USAPablo A. MarquetInstituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, ChilePablo A. MarquetManaaki Whenua—Landcare Research, Lincoln, New ZealandJames K. McCarthyCenter for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkNaia Morueta-HolmeDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningCEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FranceCyrille ViolleNaturalis Biodiversity Center, Leiden, The NetherlandsJan J. WieringaWorld Resources Institute, London, UKGraham WynneRio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. StrassburgInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. StrassburgPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgEnvironmental Change Institute, Centre for the Environment, Oxford University, Oxford, UKMichael ObersteinerUN Sustainable Development Solutions Network, Paris, FranceGuido Schmidt-TraubCorrespondence to
    Martin Jung or Piero Visconti. More