More stories

  • in

    Use of timelapse photography to determine flower opening time and pattern in banana (Musa spp.) for efficient hand pollination

    In banana, bract opening behavior depends on the time of the day, the position of the bract, and sex of the flowers enclosed by the bract. Bract opening is a continuous process especially in the first bracts subtending female flowers of some genotypes; it starts in the evening and continues through the night (Table 1). In cases where bracts did not fully open, the process was halted early morning and resumed in the evening. It is therefore not obvious to judge whether such bracts have opened or not. However, opening is permanent as opposed to some plant species which open and close their flowers at specific times. Ssebuliba et al.16 considered East African Highland bananas ready for pollination when bracts were half way open with stigmas having a creamy white appearance. According to observations made in the current study, it can be said that bract lifting is indicative of flower opening thus pollination can start.Bract lift and bract roll seemed to be a response of a certain light quality6, the response time and speed are genotype dependent. Finger curling also seems to be triggered by the same factors that lead to bract opening. Bract opening and finger curling are likely to be a response of changes in turgor pressures in cells that lead to tissues being pushed in a given direction17. This was evident with upward movement of the inflorescence from the horizontal-pendent toward the horizontal position in the evening and downward movement towards the pendent position by mid-morning. These movements were genotype dependent and small, maximum oscillation was about 10˚. A similar pattern was observed for leaf folding to influence relative canopy cover18.Generally, bracts subtending female flower lifted and started rolling earlier than those subtending male flowers. However, male flowers ended opening before female flowers, resulting in faster bract opening for male flowers (Table 1 and t-test). This might be due to the smaller bract size of male flowers (Fig. 1) or an adaption for female flowers to find male flowers open with ready pollen. Consequently, the strategy ensures maximum pollination success and survival of the Musa spp. Studies have revealed that pollen viability reduces with time after flower opening1. This is in agreement that controlled pollination should be done between 07:00 and 10:00 h7. In comparison to lilies, some flowers were observed also to open starting at 17:00 h while others open during day. Both nocturnal and diurnal pollinators were found to be active flower visitors19. This implies that pollination in banana can start in the evening as long as bracts for parents in the cross of interest lift in time.In Musa itinerans, two nectar production peaks were found, that is between 08:00 to 12:00 h and 20:00 to 24:00 h20. This maybe a close depiction of what happens in edible bananas thus emphasizing the potential importance of diurnal and nocturnal pollinators. Bats, bees, and birds were found to be among the most important pollinators of bananas at Onne, Nigeria10. However, natural pollinators were not the main focus of the study though they are good indicators of when stigmas might be highly receptive. Since nectar quality and quantity varies between different agro-ecologies and seasons21, flower visitations and seed set are also expected to vary accordingly. Different agro-ecologies are also expected to experience variable BOTs due to variable solar radiation. Likewise the different growing seasons (rainy and dry) might also affect BOTs and therefore seed set22. However, a comparison of time from sunrise to beginning of bract lift of Musa AAA Cavendish cultivars in a glasshouse and M. basjoo in the garden in Belgium revealed no significant difference6. But comparison of bract curling time in Mchare in Arusha with short days and Cavendish cultivars in a glasshouse in Belgium with long days in summer, there was early curling in the glasshouse. However, bract lift time may be a better event to use for comparison than bract curling or rolling time.Bracts of both female and male flowers of different genotypes completed opening at different times and this may be partly the reason for variable pollen viability and stigma receptivity (Table 1). Female flowers that finish opening much earlier may set less seed compared to those that finish opening closer to the routine time of hand pollination between 07:00 and 10:00 h. Conversely, male flowers that are ready shortly before the time of hand pollination are expected to have higher pollen viability. This probably explains the high fertility of ‘Calcutta 4’ as it finished opening at 06:30 h. Some male flowers like those of Matooke finished opening as early as 21:54 h (Table 1) and are expected to have pollen with low viability at the time it is measured the next day.All observed inflorescences opened one female bract on the first day, increasing to multiple bracts opening on subsequent days (Fig. 2). One to three bracts subtending female flowers were observed to open per day from the second bract position of the inflorescence. The pattern of opening took on a hyperbolic shape with up to four bracts opening on the fourth day in the midsection of the inflorescence. For hand pollination, more clusters are therefore expected to be pollinated per day during bract opening in the mid-section of the inflorescence. The different clusters of female flowers that open on the same day are likely to have stigmas with varying receptivity. The darker appearance of stigmas of former clusters compared to creamy stigmas in latter clusters reflects higher receptivity in the latter2. This may explain why some clusters set more seed especially in the mid-section of a seemingly fertile inflorescence.Upon complete opening of female and transitional bracts, inflorescences went into a pause period before male flowers opened (Table 2). In additional to spatial separation of flowers, this is temporal separation to promote cross pollination in banana. However, temporal separation of male and female flowers is not very effective for genotypes that had less than 24 h of separation. With aid of crawling insects, self-pollination may happen between the last female cluster and the first male cluster as stigmas are likely to be receptive for more than one day. Once male flowers started opening, one bract opened per day and occasionally two bracts were observed to open on the same day. For highly fertile genotypes like ‘Calcutta 4’, ample pollen is produced to pollinate many female flowers. Male flowers are also produced throughout the inflorescence growth period which ensures constant supply of pollen especially for controlled hand pollination. Averages of bracts subtending male flowers opening per day could not be calculated as there were two to three observed bracts subtending male flowers for most genotypes.It appears that proximal bracts subtending female flowers are less stimulated to lift and roll compared to distal bracts subtending female flowers and all bracts subtending male flowers. This was revealed by low vigour of bract lift and the small angle of lift at 08:00 h especially in the first female flower cluster (Figs. 2, 3). The bract angle of lift increases from proximal to distal end and this has been linked to reduced fertility in proximal clusters2. But it may not be the case since highly female (in all clusters) and male fertile ‘Calcutta 4’ showed the same pattern as edible bananas. The high R2 for female bract roll scores compared to bracts subtending male flowers was a result of more bracts used to calculate averages for bracts subtending female flowers compared to bracts subtending male flowers (Fig. 3). For bracts subtending male flowers, two to three bracts were observed for most genotypes thus the first three data points were close to the trend line. Since the number of female clusters varies, reducing number of data points were used to calculate average bract lift angles in the distal end or larger inflorescences. Besides, bract lift angles of some clusters could not be measured because of obscurity or being in awkward positions. This led to the last two points being far off the trend line for angle of lift and hence a low R2.Flower opening time is said to be genetically and environmentally controlled, results from this study are in agreement since light had considerable influence on bract opening events (Tables 1, 3). Significant effects of temperature, solar radiation, and vapor pressure deficit on flower opening time have been observed in rice11. For Musa spp., only light has a significant relationship with BOT. However, there was early curling under long summer days in the glasshouse in Belgium compared to short days in Arusha field conditions6. This suggested a particular light signal for BOT in Musa spp. It is unclear why high light intensity led to early lift of bracts subtending male flowers and this calls for farther investigation. Since bracts subtending male flowers instinctively open later than bracts subtending female flowers, light intensity had less effect on the former bracts. The small sample size could have also had an impact on the results in the study, the light flush from the camera could have also affected the results. The extent of weather effects on BOT in banana need to be studied in field conditions of locations with significantly different day length for a more reliable conclusion. More

  • in

    Effect of host switching simulation on the fitness of the gregarious parasitoid Anaphes flavipes from a novel two-generation approach

    1.Hairston, N. G., Smith, F. E. & Lawrence, B. S. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    2.Gross, P. Insect behavioral and morphological defenses against parasitoid. Annu. Rev. Entomol. 38, 251–273 (1993).Article 

    Google Scholar 
    3.Tylikinais, J. M., Tscharntke, T. & Klein, A. M. Diversity, ecosystem function and stability of parasitoid—host interactions across a tropical habitat gradient. Ecology 87, 3047–3057 (2006).Article 

    Google Scholar 
    4.Strand, M. R. & Obrycki, J. J. Host specificity of insect parasitoids and predators. Bioscience 46, 422–429 (1996).Article 

    Google Scholar 
    5.Dawkins, R. & Krebs, J. R. Arms races between and within species. Proc. R. Soc. Lond. B. 205, 489–511 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Kraaijeveld, A. R., van Alphen, J. J. M. & Godfray, H. C. J. The coevolution of host resistance and parasitoid virulence. Parasitology 116, 29–45 (1998).Article 

    Google Scholar 
    7.Jeffries, M. J. & Lawton, J. H. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 23, 269–286 (1984).Article 

    Google Scholar 
    8.Grosman, A. H. et al. No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Sci. Rep.-UK 5, 16211 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Diamond, S. E. & Kingsolver, J. G. Fitness consequences of host plant choice: A field experiment. Oikos 119, 542–550 (2010).Article 

    Google Scholar 
    10.Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems. PeerJ 4, e2778 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Forbes, A. A., Powell, T. H., Stelinski, L. L., Smith, J. J. & Feder, J. L. Sequential sympatric speciation across trophic levels. Science 323, 776–779 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Grosman, A. H., Holtz, A. M., Pallini, A., Sabelis, M. W. & Janssen, A. Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomol. Exp. Appl. 162, 261–271 (2017).Article 

    Google Scholar 
    13.Soler, R., Bezemer, T. M., Van Der Putten, W. H., Vet, L. E. & Harvey, J. A. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 74, 1121–1130 (2005).Article 

    Google Scholar 
    14.Ode, P. J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51, 163–185 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Thompson, J. N. Trade-offs in larval performance on normal and novel hosts. Entomol. Exp. Appl. 80, 133–139 (1996).Article 

    Google Scholar 
    16.Lucas, É., Coderre, D. & Brodeur, J. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology 79, 1084–1092 (1998).Article 

    Google Scholar 
    17.Henry, L. M., May, N., Acheampong, S., Gillespie, D. R. & Roitberg, B. D. Host-adapted parasitoids in biological control: Does source matter?. Ecol. Appl. 20, 242–250 (2010).PubMed 
    Article 

    Google Scholar 
    18.Mackauer, M. Sexual size dimorphism in solitary parasitoid wasps: influence of host quality. Oikos 76, 265–272 (1996).Article 

    Google Scholar 
    19.Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and feld conditions. Anim. Behav. 66, 1119–1128 (2003).Article 

    Google Scholar 
    20.Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep.-UK 9, 6081 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Schmidt, J. M. & Smith, J. J. B. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: a possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986).Article 

    Google Scholar 
    22.Boivin, G. & Baaren, J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 3, 469–474 (2000).Article 

    Google Scholar 
    23.Mayhew, P. J. The evolution of gregariousness in parasitoid wasps. P. Roy. Soc. Lond. B. Bio. 265, 383–389 (1998).Article 

    Google Scholar 
    24.Pexton, J. J. & Mayhew, P. J. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia 141, 179–190 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    25.Harvey, P. H. & Partridge, L. Murderous mandibles and black holes in hymenopteran wasps. Nature 326, 128–129 (1987).ADS 
    Article 

    Google Scholar 
    26.Godfray, H. C. J. The evolution of clutch size in parasitic wasps. Am. Nat. 129, 221–233 (1987).Article 

    Google Scholar 
    27.Rosenheim, J. A. Single-sex broods and the evolution of nonsiblicidal parasitoid wasps. Am. Nat. 141, 90–104 (1993).Article 

    Google Scholar 
    28.Mayhew, P. J. & van Alphen, J. J. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav. 58, 131–141 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Pexton, J. J. & Mayhew, P. J. Immobility: The key to family harmony?. Trends. Ecol. Evol. 16, 7–9 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Mayhew, P. J. & Hardy, I. C. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 151, 409–424 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).Article 

    Google Scholar 
    33.Koppik, M., Tiel, A. & Hofmeister, T. S. Adaptive decision making or diferential mortality: What causes ofspring emergence in a gregarious parasitoid?. Entomol. Exp. Appl. 150, 208–216 (2014).Article 

    Google Scholar 
    34.Visser, M. E., Van Alphen, J. J. & Hemerik, L. Adaptive superparasitism and patch time allocation in solitary parasitoids: An ESS model. J. Anim. Ecol. 61, 93–101 (1992).Article 

    Google Scholar 
    35.Waage, J. K. & Ming, N. S. The reproductive strategy of a parasitic wasp: I. optimal progeny and sex allocation in Trichogramma evanescens. J. An. Ecol. 53, 401–415 (1984).Article 

    Google Scholar 
    36.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter-and intraspecific competition in parasitoid wasps. Ann. Rev. Entomol. 58, 333–351 (2013).CAS 
    Article 

    Google Scholar 
    37.Harvey, J. A., Bezemer, T. M., Gols, R., Nakamatsu, Y. & Tanaka, T. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiol. Entomol. 33, 217–225 (2008).Article 

    Google Scholar 
    38.Cloutier, C., Duperron, J., Tertuliano, M. & McNeil, J. N. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomol. Exp. Appl. 97, 29–40 (2000).Article 

    Google Scholar 
    39.Bai, B., Luck, R. F., Forster, L., Stephens, B. & Janssen, J. M. The effect of host size on quality attributes of the egg parasitoid Trichogramma pretiosum. Entomol. Exp. Appl. 64, 37–48 (1992).Article 

    Google Scholar 
    40.Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma Pretiosum. Ecology 76, 412–425 (1995).Article 

    Google Scholar 
    41.Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 143, 441–450 (2019).Article 

    Google Scholar 
    42.Wei, K., Tang, Y. L., Wang, X. Y., Cao, L. M. & Yang, Z. Q. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 39, 101–108 (2014).Article 

    Google Scholar 
    43.May, R. M., Hassell, M. P., Anderson, M. R. & Tonkyn, D. V. Density dependence in host-parasitoid models. J. Anim. Ecol. 50, 855–865 (1981).MathSciNet 
    Article 

    Google Scholar 
    44.Hoddle, M. S., Van Driesche, R. G., Elkinton, J. S. & Sanderson, J. P. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 87, 15–28 (1998).Article 

    Google Scholar 
    45.Samková, A., Raska, J., Hadrava, J. & Skuhrovec, J. An intergenerational approach for prediction of parasitoid population dynamics. BioRxiv. https://doi.org/10.1101/2021.02.22.432341 (2021).Article 

    Google Scholar 
    46.Anderson, R. C. & Paschke, J. D. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 61, 1–5 (1968).Article 

    Google Scholar 
    47.Klomp, H. & Teerink, B. J. The significance of oviposition rates in the egg parasite Trichogramma embryophagum Htg. Arch. Neerl. Zool. 17, 350–375 (1967).Article 

    Google Scholar 
    48.Waage, J. K. & Lane, J. A. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 53, 417–426 (1984).Article 

    Google Scholar 
    49.Dysart, R. J., Maltby, H. L. & Brunson, M. H. Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga 18, 133–167 (1973).Article 

    Google Scholar 
    50.Skuhrovec, J. et al. Insecticidal activity of two formulations of essential oils against the cereal leaf beetle. Acta Agr. Scand. 68, 489–495 (2018).CAS 

    Google Scholar 
    51.Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Ann. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    53.Mackauer, M., Sequeira, R. & Otto, M. Growth and development in parasitoid wasps adaptation to variable host resources. In Vertical Food Web Interactions 191–203 (Springer, 1997).Chapter 

    Google Scholar 
    54.Ode, P. J. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect sci. 32, 118–123 (2019).PubMed 
    Article 

    Google Scholar 
    55.Cronin, J. T. & Abrahamson, W. G. Do parasitoids diversify in response to host-plant shifts by herbivorous insects?. Ecol. Entomol. 26, 347–355 (2001).Article 

    Google Scholar 
    56.Sarfraz, M., Dosdall, L. M. & Keddie, B. A. Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol. Control. 51, 34–41 (2009).CAS 
    Article 

    Google Scholar 
    57.Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).Article 

    Google Scholar 
    58.Cortesero, A. M. & Monge, J. P. Influence of pre-emergence experience on response to host and host plant odours in the larval parasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 72, 281–288 (1994).Article 

    Google Scholar 
    59.Gandolfi, M., Mattiacci, L. & Dorn, S. Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc. Roy. Soc. Lon. Series. B-Biol. Scien. 270, 2623–2629 (2003).Article 

    Google Scholar 
    60.Kester, K. M. & Barbosa, P. Postemergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae). J. Insect Behav. 4, 727–742 (1991).Article 

    Google Scholar 
    61.Vet, L. E. & Groenewold, A. W. Semiochemicals and learning in parasitoids. J. Chem. Ecol. 16, 3119–3135 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Effect of adult feeding and timing of host exposure on the fertility and longevity of the parasitoid Anaphes flavipes. Entomol. Exp. Appl. 167, 932–938 (2019).Article 

    Google Scholar 
    63.Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A. & Kidd, N. A. Life-history strategies in parasitoid wasps: A comparative analysis of ‘ovigeny’. J. Anim. Ecol. 70, 442–458 (2001).Article 

    Google Scholar 
    64.Bjorksten, T. A. & Hoffmann, A. A. Persistence of experience effects in the parasitoid Trichogramma nr. brassicae. Ecol. Entomol. 23, 110–117 (1998).Article 

    Google Scholar 
    65.Lentz, A. J. & Kester, K. M. Postemergence experience affects sex ratio allocation in a gregarious insect parasitoid. J. Insect. Behav. 21, 34–45 (2008).Article 

    Google Scholar 
    66.Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Zvereva, E. L. & Rank, N. E. Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia 140, 516–522 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Roy, H. E., Handley, L. J. L., Schönrogge, K., Poland, R. L. & Purse, B. V. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids?. Biocontrol 56, 451–468 (2011).Article 

    Google Scholar 
    69.Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107 (2003).Article 

    Google Scholar 
    70.Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330 (1989).Article 

    Google Scholar 
    71.Nakashima, Y. & Senoo, N. Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and efects of prior oviposition experience. Entomol. Exp. Appl. 109, 163–166 (2003).Article 

    Google Scholar 
    72.Samková, A., Raška, J., Hadrava, J., Skuhrovec, J. & Janšta, P. Female manipulation of offspring sex ratio in the gregarious parasitoid Anaphes flavipes from a new two-generation approach. BioRxiv https://doi.org/10.1101/2021.02.22.432331 (2021).Article 

    Google Scholar 
    73.Visser, M. E. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). J. Anim. Ecol. 63, 963–978 (1994).Article 

    Google Scholar 
    74.Banks, M. & Thomson, D. J. Lifetime mating success in the damselfly Coenagrion puella. Anim. Behav. 33, 1175–1183 (1985).Article 

    Google Scholar 
    75.Ellers, J. & Jervis, M. Body size and the timing of egg production in parasitoid wasps. Oikos 102, 164–172 (2003).Article 

    Google Scholar 
    76.Anderson, R. C. & Paschke, J. D. Additional Observations on the Biology of Anaphes flavipes (Hymenoptera: Mymaridae), with Special Reference to the Efects of Temperature and Superparasitism on Development. Ann. Entomol. Soc. Am. 62, 1316–1321 (1969).Article 

    Google Scholar 
    77.Bezděk, J. & Baselga, A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae). Acta. Ent. Mus. Nat. Pra. 55, 273–304 (2015).
    Google Scholar 
    78.R. Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing (R Core Team, 2020).
    Google Scholar 
    79.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw 67, 1–48. (2015) URL: https://CRAN.R-project.org/package=Hmisc.80.Harrell, F. E. Jr, Dupont, C., et mult. al. (2020) Hmisc: Harrell Miscellaneous. R package version 4.4–2. URL: https://CRAN.R-project.org/package=Hmisc.81.Signorell et mult. al. (2021). DescTools: Tools for descriptive statistics. R package version 0.99.40. URL: https://cran.r-project.org/package=DescTools. More

  • in

    AusTraits, a curated plant trait database for the Australian flora

    1.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Cornwell, W. K. et al. Functional distinctiveness of major plant lineages. J. Ecol. 102, 345–356 (2014).Article 

    Google Scholar 
    3.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).Article 

    Google Scholar 
    6.Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–745 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    8.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    9.Westoby, M. A leaf-height-seed (LHS) plant ecol. Strategy scheme. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    10.Funk, J. L. et al. Revisiting the holy grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kattge, J. et al. TRY a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    12.Kattge, J. et al. TRY plant trait database enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.CHAH. Australian Plant Census, Centre of Australian National Biodiversity Research. https://id.biodiversity.org.au/tree/51354547 (2020).14.Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4, 294–303 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Chapman, A. D. et al. Numbers of living species in Australia and the world. (Australian Government, 2009).17.Hopper, S. D. & Gioia, P. The Southwest Australian Floristic Region: Evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623–650 (2004).Article 

    Google Scholar 
    18.Madin, J. et al. An ontology for describing and synthesizing ecological observation data. Ecol. Inform. 2, 279–296 (2007).Article 

    Google Scholar 
    19.Garnier, E. et al. Towards a thesaurus of plant characteristics: An ecological contribution. J. Ecol. 105, 298–309 (2017).Article 

    Google Scholar 
    20.Adams, M. A. M, P. & Attiwill. Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans F. Muell. forests. I. Temporal changes in biomass and nutrient content. Aust. J. Bot. 32, 205–215 (1984).CAS 

    Google Scholar 
    21.Ahrens, C. W. et al. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evo. 10, 232–248 (2019).Article 

    Google Scholar 
    22.Australian National Botanic Gardens. The National Seed Bank. http://www.anbg.gov.au/gardens/living/seedbank/ (2018).23.Angevin, T. Species richness and functional trait diversity response to land use in a temperate eucalypt woodland community. (La Trobe University, 2011).24.Apgaua, D. M. G. et al. Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS One 10, e0130799 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Apgaua, D. M. G. et al. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 31, 582–591 (2017).Article 

    Google Scholar 
    26.Ashton, D. H. Studies of litter in Eucalyptus regnans forests. Aust. J. Bot. 23, 413–433 (1975).CAS 
    Article 

    Google Scholar 
    27.Ashton, D. H. Phosphorus in forest ecosystems at Beenak, Victoria. The J. Ecol. 64, 171–186 (1976).CAS 

    Google Scholar 
    28.Attiwill, P. M. Nutrient cycling in a Eucalyptus obliqua (L’Herit.) forest IV: Nutrient uptake and nutrient return. Aust. J. Bot. 28, 199–222 (1980).CAS 
    Article 

    Google Scholar 
    29.Barlow, B. A., Clifford, H. T., George, A. S. & McCusker, A. K. A. Flora of Australia. http://www.environment.gov.au/biodiversity/abrs/online-resources/flora/main/ (1981).30.Bean, A. R. A revision of Baeckea (Myrtaceae) in eastern Australia, Malesia and south-east Asia. Telopea 7, 245–268 (1997).Article 

    Google Scholar 
    31.Bell, L.C. Nutrient requirements for the establishment of native flora at Weipa. (Comalco Aluminium Ltd., 1985).32.Bennett, L. T. & Attiwill, P. M. The nutritional status of healthy and declining stands of Banksia integrifolia on the Yanakie Isthmus, Victoria. Aust. J. Bot. 45, 15–30 (1997).Article 

    Google Scholar 
    33.Bevege, D. I. Biomass and nutrient distribution in indigenous forest ecosystems. vol. 6 20 (Queensland Department of Forestry, 1978).34.Birk, E. M. & Turner, J. Response of flooded gum (E. grandis) to intensive cultural treatments: biomass and nutrient content of eucalypt plantations and native forests. For. Ecol. Manage. 47, 1–28 (1992).Article 

    Google Scholar 
    35.Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113–1123 (2010).PubMed 
    Article 

    Google Scholar 
    36.Blackman, C. J. et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates. Ann. Bot. 114, 435–440 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Blackman, C. J. et al. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Ann. Bot. 122, 59–67 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bloomfield, K. J. et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 32, 1492–1506 (2018).Article 

    Google Scholar 
    39.Bolza, E. Properties and uses of 175 timber species from Papua New Guinea and West Irian. (Victoria (Australia) CSIRO, Div. of Building Research, 1975).40.Bragg, J. G. & Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 16, 633–639 (2002).Article 

    Google Scholar 
    41.Brisbane Rainforest Action and Information Network. Trait measurements for Australian rainforest species. http://www.brisrain.org.au/ (2016).42.Briggs, A. L. & Morgan, J. W. Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol. 212, 91–103 (2010).Article 

    Google Scholar 
    43.Brock, J. & Dunlop, A. Native plants of northern Australia. (Reed New Holland, 1993).44.Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Buckton, G. et al. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 44, 983–994 (2019).Article 

    Google Scholar 
    46.Burgess, S. S. O. & Dawson, T. E. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626–636 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Burrows, G. E. Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales, Australia. Int. J. Plant Sci. 162, 411–430 (2001).Article 

    Google Scholar 
    48.Butler, D. W., Gleason, S. M., Davidson, I., Onoda, Y. & Westoby, M. Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytol. 193, 137–149 (2011).PubMed 
    Article 

    Google Scholar 
    49.CAB International. Forestry Compendium. http://www.cabi.org/fc/ (2009).50.Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann. Bot. 117, 349–361 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    51.Canham, C. A., Froend, R. H. & Stock, W. D. Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound. Western Australia. Plant Cell Envrion. 32, 64–72 (2009).Article 

    Google Scholar 
    52.Carpenter, R. J. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Bot. J. Linn. Soc. 116, 249–303 (1994).Article 

    Google Scholar 
    53.Carpenter, R. J., Hill, R. S. & Jordan, G. J. Leaf Cuticular Morphology Links Platanaceae and Proteaceae. Int. J. Plant Sci. 166, 843–855 (2005).Article 

    Google Scholar 
    54.Catford, J. A., Downes, B. J., Gippel, C. J. & Vesk, P. A. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J. Appl. Ecol. 48, 432–442 (2011).Article 

    Google Scholar 
    55.Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J. & Downes, B. J. Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Divers. Distrib. 20, 1084–1096 (2014).Article 

    Google Scholar 
    56.Cernusak, L. A., Hutley, L. B., Beringer, J. & Tapper, N. J. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Envrion. 29, 632–646 (2006).Article 

    Google Scholar 
    57.Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).ADS 
    Article 

    Google Scholar 
    58.Chandler, G. T., Crisp, M. D., Cayzer, L. W. & Bayer, R. J. Monograph of Gastrolobium (Fabaceae: Mirbelieae). Aust. Syst. Bot. 15, 619–739 (2002).Article 

    Google Scholar 
    59.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    60.Cheal, D. Growth stages and tolerable fire intervals for Victoria’s native vegetation data sets. (Victorian Government Department of Sustainability; Environment Melbourne, 2010).61.Cheesman, A. W., Duff, H., Hill, K., Cernusak, L. A. & McInerney, F. A. Isotopic and morphologic proxies for reconstructing light environment and leaf function of fossil leaves: A modern calibration in the Daintree Rainforest, Australia. Am. J. Bot. 107, 1165–1176 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Chen et al. Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531–538 (2017).Article 

    Google Scholar 
    63.Chinnock, R. J. Eremophila and allied genera: A monograph of the plant family Myoporaceae. (Rosenberg, 2007).64.Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311 (2005).Article 

    Google Scholar 
    65.Choat, B., Ball, M. C., Luly, J. G., Donnelly, C. F. & Holtum, J. A. M. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006).PubMed 
    Article 

    Google Scholar 
    66.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Chudnoff, M. Tropical timbers of the world. 472 (US Department of Agriculture, Forest Service, 1984).68.The French agricultural research and international cooperation organization (CIRAD). Wood density data. http://www.cirad.fr/ (2009).69.Clarke, P. J. et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 534, 31–42 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Cooper, W. & Cooper, W. T. Fruits of the Australian tropical rainforest. (Nokomis Editions, 2004).71.Cooper, W. & Cooper, W. T. Australian rainforest fruits. 272 (CSIRO Publishing, 2013).72.Cornwell, W. K. Causes and consequences of functional trait diversity: plant community assembly and leaf decomposition. (Stanford University, California, 2006).73.Centre for Plant Biodiversity Research. EUCLID 2.0: Eucalypts of Australia. http://apps.lucidcentral.org/euclid/text/intro/index.html (2002).74.Craven, L. A., A taxonomic revision of Calytrix Labill. (Myrtaceae). Brunonia 10, 1–138 (1987).Article 

    Google Scholar 
    75.Craven, L. A., Lepschi, B. J. & Cowley, K. J. Melaleuca (Myrtaceae) of Western Australia: Five new species, three new combinations, one new name and a new state record. Nuytsia 20, 27–36 (2010).
    Google Scholar 
    76.Crisp, M. D., Cayzer, L., Chandler, G. T. & Cook, L. G. A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae). Phytotaxa 300, 1–308 (2017).Article 

    Google Scholar 
    77.Cromer, R. N., Raupach, M., Clarke, A. R. P. & Cameron, J. N. Eucalypt plantations in Australia – the potential for intensive production and utilization. Appita J. 29, 165–173 (1975).
    Google Scholar 
    78.Cross, E. The characteristics of natives and invaders: A trait-based investigation into the theory of limiting similarity. (La Trobe University, 2009).79.Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Chang. Biol. 19, 3790–3807 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    80.Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant. Sci. 10, art664 (2019).Article 

    Google Scholar 
    81.Cunningham, S. A., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69, 569–588 (1999).Article 

    Google Scholar 
    82.Curran, T. J., Clarke, P. J. & Warwick, N. W. M. Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Aust. J. Bot. 57, 629–639 (2009).Article 

    Google Scholar 
    83.Curtis, E. M., Leigh, A. & Rayburg, S. Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust. J. Bot. 60, 471–483 (2012).Article 

    Google Scholar 
    84.Denton, M. D., Veneklaas, E. J., Freimoser, F. M. & Lambers, H. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Envrion. 30, 1557–1565 (2007).CAS 
    Article 

    Google Scholar 
    85.Desch, H. E. & Dinwoodie, J. M. Timber structure, properties, conversion and use. (Palgrave Macmillan, 1996).86.de Tombeur, F. et al. A shift from phenol to silica-based leaf defenses during long-term soil and ecosystem development. Ecol. Lett. 24, 984–995 (2021).PubMed 
    Article 

    Google Scholar 
    87.Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Du, P., Arndt, S. K. & Farrell, C. Relationships between plant drought response, traits, and climate of origin for green roof plant selection. Ecol. Appl. 28, 1752–1761 (2018).PubMed 
    Article 

    Google Scholar 
    90.Du, P., Arndt, S. K. & Farrell, C. Can the turgor loss point be used to assess drought response to select plants for green roofs in hot and dry climates? Plant Soil 441, 399–408 (2019).CAS 
    Article 

    Google Scholar 
    91.Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756–770 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Duncan, R. P. et al. Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob. Ecol. Biog. 20, 509–519 (2011).Article 

    Google Scholar 
    93.Dwyer, J. M. & Laughlin, D. C. Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecol. Lett. 20, 872–882 (2017).PubMed 
    Article 

    Google Scholar 
    94.Dwyer, J. M. & Mason, R. Plant community responses to thinning in densely regenerating Acacia harpophylla forest. Restor. Ecol. 26, 97–105 (2018).Article 

    Google Scholar 
    95.Eamus, D. & Prichard, H. A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiol. 18, 537–545 (1998).PubMed 
    Article 

    Google Scholar 
    96.Eamus, D., Myers, B., Duff, G. & Williams, D. Seasonal changes in photosynthesis of eight savanna tree species. Tree Physiol. 19, 665–671 (1999).PubMed 
    Article 

    Google Scholar 
    97.Myers, B., E., D. & Duff, G. A cost-benefit analysis of leaves of eight Australian savanna tree species of differing life-span. Photosynthetica 36, 575–586 (1999).Article 

    Google Scholar 
    98.Edwards, C., Read, J. & Sanson, G. D. Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia 123, 158–167 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Edwards, C., Sanson, G. D., Aranwela, N. & Read, J. Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst. 134, 261–277 (2000).Article 

    Google Scholar 
    100.Schöenenberger, J. et al. Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: proof-of-concept and challenges ahead. Am. J. Bot. 107, 1433–1448 (2020).Article 

    Google Scholar 
    101.Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, art126771 (2020).Article 

    Google Scholar 
    102.Everingham, S. E., Offord, C. A., Sabot, M. E. B. & Moles, A. T. Time travelling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology 102, e03272 (2020).
    Google Scholar 
    103.Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158, 509–525 (2003).Article 

    Google Scholar 
    104.Falster, D. S. & Westoby, M. Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J. Ecol. 93, 521–535 (2005).Article 

    Google Scholar 
    105.Falster, D. S. & Westoby, M. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111, 57–66 (2005).Article 

    Google Scholar 
    106.Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P. & Williams, N. S. G. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 49, 270–276 (2012).Article 

    Google Scholar 
    107.Farrell, C., Szota, C., Williams, N. S. G. & Arndt, S. K. High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372, 177–193 (2013).CAS 
    Article 

    Google Scholar 
    108.Farrell, C., Szota, C. & Arndt, S. K. Does the turgor loss point characterize drought response in dryland plants? Plant Cell Envrion. 40, 1500–1511 (2017).CAS 
    Article 

    Google Scholar 
    109.Feller, M. C. Biomass and nutrient distribution in two eucalypt forest ecosystems. Austral Ecol. 5, 309–333 (1980).Article 

    Google Scholar 
    110.Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecol. Evo. 3, 400–406 (2019).Article 

    Google Scholar 
    111.Flynn, J. H. & Holder, C. D. A guide to useful woods of the world. (Forest Products Society, 2001).112.Fonseca, C. R., Overton, J. M. C., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).Article 

    Google Scholar 
    113.McDonald, P. G., Fonseca, C. R., Overton, J. M. C. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).Article 

    Google Scholar 
    114.Forster, P. I. A taxonomic revision of Alyxia (Apocynaceae) in Australia. Aust. Syst. Bot. 5, 547–580 (1992).Article 

    Google Scholar 
    115.Forster, P. I. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papusia). Aust. Syst. Bot. 8, 691–701 (1995).Article 

    Google Scholar 
    116.French, B. J., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Cause and effects of a megafire in sedge-heathland in the Tasmanian temperate wilderness. Aust. J. Bot. 64, 513–525 (2016).Article 

    Google Scholar 
    117.Froend, R. H. & Drake, P. L. Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aust. J. Bot. 54, 173–179 (2006).Article 

    Google Scholar 
    118.Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Gallagher, R. V. et al. Invasiveness in introduced Australian acacias: The role of species traits and genome size. Divers. Distrib. 17, 884–897 (2011).Article 

    Google Scholar 
    120.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).Article 

    Google Scholar 
    121.Gardiner, R., Shoo, L. P. & Dwyer John. M. Look to seedling heights, rather than functional traits, to explain survival during extreme heat stress in the early stages of subtropical rainforest restoration. J. Appl. Ecol. 56, 2687–2697 (2019).Article 

    Google Scholar 
    122.Geange, S. R. et al. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Clim. Change Responses 4, 1–12 (2017).Article 

    Google Scholar 
    123.Geange, S. R., Holloway-Phillips, M.-M., Briceno, V. F. & Nicotra, A. B. Aciphylla glacialis mortality, growth and frost resistance: a field warming experiment. Aust. J. Bot. 67, 599–609 (2020).Article 

    Google Scholar 
    124.Ghannoum, O. et al. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Glob. Chang. Biol. 16, 303–319 (2010).ADS 
    Article 

    Google Scholar 
    125.Gleason, S. M., Butler, D. W., Zieminska, K., Waryszak, P. & Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 26, 343–352 (2012).Article 

    Google Scholar 
    126.Gleason, S. M., Butler, D. W. & Waryszak, P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. Int. J. Plant Sci. 174, 1292–1301 (2013).Article 

    Google Scholar 
    127.Gleason, S. M., Blackman, C. J., Cook, A. M., Laws, C. A. & Westoby, M. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiol. 34, 275–284 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    128.Gleason, S. M. et al. Vessel scaling in evergreen angiosperm leaves conforms with Murray’s law and area-filling assumptions: implications for plant size, leaf size and cold tolerance. New Phytol. 218, 1360–1370 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Goble-Garratt, E., Bell, D. & Loneragan, W. Floristic and leaf structure patterns along a shallow elevational gradient. Aust. J. Bot. 29, 329–347 (1981).Article 

    Google Scholar 
    130.Gosper, C. R. Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust. J. Bot. 52, 223–230 (2004).Article 

    Google Scholar 
    131.Gosper, C. R., Yates, C. J. & Prober, S. M. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. J. Veg. Sci. 23, 1071–1081 (2012).Article 

    Google Scholar 
    132.Gosper, C. R., Prober, S. M. & Yates, C. J. Estimating fire interval bounds using vital attributes: implications of uncertainty and among-population variability. Ecol. Appl. 23, 924–935 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Gosper, C. R., Yates, C. J. & Prober, S. M. Floristic diversity in fire-sensitive eucalypt woodlands shows a “U”-shaped relationship with time since fire. J. Appl. Ecol. 50, 1187–1196 (2013).Article 

    Google Scholar 
    134.Gosper, C. R. et al. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 43, 681–695 (2018).Article 

    Google Scholar 
    135.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase – The online world grass flora. http://www.kew.org/data/grasses-db.html (2006).136.Gray, E. F. et al. Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB Plants 11, 1–11 (2019).Article 

    Google Scholar 
    137.Groom, P. K. & Lamont, B. B. Reproductive ecology of non-sprouting and re-sprouting Hakea species (Proteaceae) in southwestern Australia. In Gondwanan heritage (eds. S.D. Hopper M. Harvey, J. C. & George, A. S.) (Surrey Beatty, Chipping Norton, 1996).138.Groom, P. K. & Lamont, B. B. Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecol. 22, 352–355 (1997).Article 

    Google Scholar 
    139.Groom, P. K. & Lamont, B. B. Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant Soil 334, 61–72 (2010).CAS 
    Article 

    Google Scholar 
    140.Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29, 1486–1497 (2015).Article 

    Google Scholar 
    141.Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Shaw, V. Bark traits, decomposition and flammability of Australian forest trees. Aust. J. Bot. 65, 327 (2017).Article 

    Google Scholar 
    142.Grootemaat, S., Wright, I. J., van Bodegom, P. M. & Cornelissen, J. H. C. Scaling up flammability from individual leaves to fuel beds. Oikos 126, 1428–1438 (2017).Article 

    Google Scholar 
    143.Gross, C. L. The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau. Indonesia. Aust. J. Bot. 41, 591–599 (1993).Article 

    Google Scholar 
    144.Gross, C. L. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes–more monoecy but why? Am. J. Bot. 92, 907–919 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    145.Grubb, P. J. & Metcalfe, D. J. Adaptation and inertia in the Australian tropical lowland rain-forest flora: Contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Funct. Ecol. 10, 512–520 (1996).Article 

    Google Scholar 
    146.Grubb, P. J. et al. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: Correlations with toughness and leaf presentation. Ann. Bot. 101, 1379–1389 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Guilherme Pereira, C., Clode, P. L., Oliveira, R. S. & Lambers, H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol. 218, 959–973 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Guilherme Pereira, C. et al. Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot.  J. Ecol. 107, 2006–2023 (2019).CAS 
    Article 

    Google Scholar 
    149.Hacke, U. G. et al. Water transport in vesselless Angiosperms: Conducting efficiency and cavitation safety. Int. J. Plant Sci. 168, 1113–1126 (2007).Article 

    Google Scholar 
    150.Hall, T. J. The nitrogen and phosphorus concentrations of some pasture species in the Dichanthium-Eulalia Grasslands of North-West Queensland. Rangeland J. 3, 67–73 (1981).Article 

    Google Scholar 
    151.Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B. & Evans, J. R. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Envrion. 32, 259–270 (2009).CAS 
    Article 

    Google Scholar 
    152.Hassiotou, F., Evans, J. R., Ludwig, M. & Veneklaas, E. J. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Envrion. 32, 1596–1611 (2009).CAS 
    Article 

    Google Scholar 
    153.Hatch, A. B. Influence of plant litter on the Jarrah forest soils of the Dwellingup region. West. Aust. For. Timber Bur. Leaflet 18 (1955).154.Hayes, P., Turner, B. L., Lambers, H. & Laliberte, E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102, 396–410 (2013).Article 
    CAS 

    Google Scholar 
    155.Hayes, P. E., Clode, P. L., Oliveira, R. S. & Lambers, H. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency. Plant Cell Envrion. 41, 605–619 (2018).CAS 
    Article 

    Google Scholar 
    156.Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).Article 

    Google Scholar 
    157.Hocking, P. J. The nutrition of fruits of two proteaceous shrubs, Grevillea wilsonii and Hakea undulata, from south-western Australia. Aust. J. Bot. 30, 219–230 (1982).CAS 
    Article 

    Google Scholar 
    158.Hocking, P. J. Mineral nutrient composition of leaves and fruits of selected species of Grevillea from southwestern Australia, with special reference to Grevillea leucopteris Meissn. Aust. J. Bot. 34, 155–164 (1986).CAS 
    Article 

    Google Scholar 
    159.Hong, L. T. et al. Plant resources of south east Asia: Timber trees. World biodiversity Database CD rom series (Springer-Verlag Berlin; Heidelberg GmbH; Co. KG, 1999).160.Hopmans, P., Stewart, H. T. L. & Flinn, D. W. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For. Ecol. Manage. 59, 29–51 (1993).Article 

    Google Scholar 
    161.Huang, G., Rymer, P. D., Duan, H., Smith, R. A. & Tissue, D. T. Elevated temperature is more effective than elevated CO2 in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Glob. Chang. Biol. 21, 3800–3813 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    162.Hyland, B. P. M., Whiffin, T., Christophel, D., Gray, B. & Elick, R. W. Australian tropical rain forest plants trees, shrubs and vines. (CSIRO Publishing, 2003).163.World Agroforestry Centre (ICRAF). The wood density database. http://www.worldagroforestry.org/output/wood-density-database (2009).164.Ilic, J., Boland, D., McDonald, M., G., D. & Blakemore, P. Woody density phase 1 – State of knowledge. National Carbon Accounting System. Technical Report 18. (Australian Greenhouse Office, Canberra, Australia, 2000).165.Islam, M., Turner, D. W. & Adams, M. A. Phosphorus availability and the growth, mineral composition and nutritive value of ephemeral forbs and associated perennials from the Pilbara, Western Australia. Aust. J. Exp. Agric. 39, 149–159 (1999).Article 

    Google Scholar 
    166.Islam, M. & Adams, M. A. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland. Trop. Grassl. 33, 193–200 (1999).
    Google Scholar 
    167.Jordan, G. J. An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Aust. J. Bot. 49, 333–340 (2001).Article 

    Google Scholar 
    168.Jordan, G. J., Weston, P. H., Carpenter, R. J., Dillon, R. A. & Brodribb, T. J. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am. J. Bot. 95, 521–530 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    169.Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A. & Brodribb, T. J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 205, 608–617 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    170.Jordan, G. J. et al. Links between environment and stomatal size through evolutionary time in Proteaceae. Proc. R. Soc. Lond. B Biol. Sci. 287, 20192876 (2020).CAS 

    Google Scholar 
    171.Jurado, E. Diaspore weight, dispersal, growth form and perenniality of central Australian plants. J. Ecol. 79, 811–828 (1991).Article 

    Google Scholar 
    172.Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Austral Ecol. 17, 341–348 (1992).Article 

    Google Scholar 
    173.Kanowski, J. Ecological determinants of the distribution and abundance of the folivorous marsupials endemic to the rainforests of the Atherton uplands, north Queensland. (James Cook University, Townsville, 1999).174.Keighery, G. Taxonomy of the Calytrix ecalycata complex (Myrtaceae). Nuytsia 15, 261–268 (2004).
    Google Scholar 
    175.Royal Botanic Gardens Kew. Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).176.Royal Botanic Gardens Kew. Seed protein data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).177.Royal Botanic Gardens Kew. Oil content data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).178.Royal Botanic Gardens Kew. Seed dispersal data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).179.Royal Botanic Gardens Kew. Germination data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).180.Knox, K. J. E. & Clarke, P. J. Fire severity and nutrient availability do not constrain resprouting in forest shrubs. Plant Ecol. 212, 1967–1978 (2011).Article 

    Google Scholar 
    181.Körner, C. & Cochrane, P. M. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66, 443–455 (1985).ADS 
    PubMed 
    Article 

    Google Scholar 
    182.Kooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biog. 20, 707–716 (2011).Article 

    Google Scholar 
    183.Kotowska, M. M., Wright, I. J. & Westoby, M. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front. Plant. Sci. 11, art86 (2020).Article 

    Google Scholar 
    184.Kuo, J., Hocking, P. & Pate, J. Nutrient reserves in seeds of selected Proteaceous species from South-western Australia. Aust. J. Bot. 30, 231–249 (1982).CAS 
    Article 

    Google Scholar 
    185.Laliberté, E. et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J. Ecol. 100, 631–642 (2012).Article 
    CAS 

    Google Scholar 
    186.Lambert, M. J. Sulphur relationships of native and exotic tree species. (Macquarie University, Sydney, 1979).187.Lamont, B. B., Groom, P. K. & Cowling, R. M. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct. Ecol. 16, 403–412 (2002).Article 

    Google Scholar 
    188.Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytol. 207, 942–947 (2015).PubMed 
    Article 

    Google Scholar 
    189.Landsberg, J. Dieback of rural eucalypts: response of foliar dietary quality and herbivory to defoliation. Austral Ecol. 15, 89–96 (1990).Article 

    Google Scholar 
    190.Landsberg, J. & Gillieson, D. S. Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Aust. J. Ecol. 20, 299–315 (1995).Article 

    Google Scholar 
    191.Lawes, M. J., Adie, H., Russell-Smith, J., Murphy, B. & Midgley, J. J. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2, 1–13 (2011).Article 

    Google Scholar 
    192.Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057–2069 (2011).Article 

    Google Scholar 
    193.Lawes, M. J., Midgley, J. J. & Clarke, P. J. Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast. J. Ecol. 101, 517–524 (2012).Article 

    Google Scholar 
    194.Lawson, J. R., Fryirs, K. A. & Leishman, M. R. Data from: Hydrological conditions explain wood density in riparian plants of south-eastern Australia. Dryad Digital Repository https://doi.org/10.5061/dryad.72h45 (2015).195.Laxton, E. Relationship between leaf traits, insect communities and resource availability. (Macquarie University, 2005).196.Lee, M. R. et al. Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology 100, e02790 (2019).PubMed 
    Article 

    Google Scholar 
    197.Leigh, A. & Nicotra, A. B. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Aust. J. Bot. 51, 509–514 (2003).Article 

    Google Scholar 
    198.Leigh, A., Cosgrove, M. J. & Nicotra, A. B. Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella? J. Ecol. 94, 1261–1271 (2006).Article 

    Google Scholar 
    199.Leishman, M. R. & Westoby, M. Classifying plants into groups on the basis of associations of individual traits–Evidence from Australian semi-arid woodlands. J. Ecol. 80, 417–424 (1992).Article 

    Google Scholar 
    200.Leishman, M. R., Westoby, M. & Jurado, E. Correlates of seed size variation: A comparison among five temperate floras. J. Ecol. 83, 517–529 (1995).Article 

    Google Scholar 
    201.Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 176, 635–643 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    202.Lemmens, R. H. M. J. & Soerjanegara, I. Prosea, Volume 5/1: Timber Trees – Major Commercial Timbers. (Pudoc/Prosea, 1993).203.Lenz, T. I., Wright, I. J. & Westoby, M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. 127, 423–433 (2006).CAS 
    Article 

    Google Scholar 
    204.Leuning, R., Cromer, R. N. & Rance, S. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88, 504–510 (1991).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    205.Lewis, J. D. et al. Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Funct. Plant. Bio. 42, 836–850 (2015).CAS 
    Article 

    Google Scholar 
    206.Lim, F. K. S., Pollock, L. J. & Vesk, P. A. The role of plant functional traits in shrub distribution around alpine frost hollows. J. Veg. Sci. 28, 585–594 (2017).Article 

    Google Scholar 
    207.Lord, J. et al. Larger seeds in tropical floras: Consistent patterns independent of growth form and dispersal mode. J. Biogeogr. 24, 205–211 (1997).Article 

    Google Scholar 
    208.Lusk, C. H., Onoda, Y., Kooyman, R. & Gutiurrez-Giron, A. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol. 186, 429–438 (2010).PubMed 
    Article 

    Google Scholar 
    209.Lusk, C. H., Kelly, J. W. G. & Gleason, S. M. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits. Ann. Bot. 111, 479–488 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    210.Lusk, C. H., Sendall, K. M. & Clarke, P. J. Seedling growth rates and light requirements of subtropical rainforest trees associated with basaltic and rhyolitic soils. Aust. J. Bot. 62, 48–55 (2014).Article 

    Google Scholar 
    211.Macinnis-Ng, C., McClenahan, K. & Eamus, D. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney. Funct. Plant. Bio. 31, 429–439 (2004).Article 

    Google Scholar 
    212.Macinnis-Ng, C. M. O., Zeppel, M. J. B., Palmer, A. R. & Eamus, D. Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils. J. Arid Environ. 129, 102–110 (2016).ADS 
    Article 

    Google Scholar 
    213.Marsh, N. R. & Adams, M. A. Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust. J. Bot. 43, 39–49 (1995).Article 

    Google Scholar 
    214.Maslin, B. WATTLE, Interactive Identification of Australian Acacia. Version 2. (Australian Biological Resources Study, Canberra, 2014).215.McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. R. Soc. Lond. B Biol. Sci. 286, 20192221 (2019).
    Google Scholar 
    216.McClenahan, K., Macinnis-Ng, C. & Eamus, D. Hydraulic architecture and water relations of several species at diverse sites around Sydney. Aust. J. Bot. 52, 509–518 (2004).Article 

    Google Scholar 
    217.McGlone, M. S., Richardson, S. J. & Jordan, G. J. Comparative biogeography of New Zealand trees: Species richness, height, leaf traits and range sizes. New Zealand J. Ecol. 34, 137–151 (2010).
    Google Scholar 
    218.McGlone, M. S., Richardson, S. J., Jordan, G. J. & Perry, G. L. W. Is there a “suboptimal” woody species height? A response to Scheffer et al. Trends in Ecol. Evo. 30, 4–5 (2015).Article 

    Google Scholar 
    219.McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their relationship to disturbance response in herbaceous vegetation. The J. Ecol. 83, 31–44 (1995).Article 

    Google Scholar 
    220.Meers, T. Role of plant functional traits in determining the response of vegetation to land use change on the Delatite Peninsula, Victoria. (University of Melbourne, 2007).221.Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 19, 515–524 (2008).Article 

    Google Scholar 
    222.Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust. J. Bot. 58, 257–270 (2010).Article 

    Google Scholar 
    223.Meers, T. L., Kasel, S., Bell, T. L. & Enright, N. J. Conversion of native forest to exotic Pinus radiata plantation: response of understorey plant composition using a plant functional trait approach. For. Ecol. Manage. 259, 399–409 (2010).Article 

    Google Scholar 
    224.Meier, E. The wood database. http://www.wood-database.com/ (2007).225.Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    226.Milberg, P. & Lamont, B. B. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol. 137, 665–672 (1997).Article 

    Google Scholar 
    227.Milberg, P., Pérez-Fernández, M. A. & Lamont, B. B. Seedling growth response to added nutrients depends on seed size in three woody genera. J. Ecol. 86, 624–632 (1998).Article 

    Google Scholar 
    228.Mokany, K. & Ash, J. Are traits measured on pot grown plants representative of those in natural communities? J. Veg. Sci. 19, 119–126 (2008).Article 

    Google Scholar 
    229.Mokany, K., Thomson, J. J., Lynch, A. J. J., Jordan, G. J. & Ferrier, S. Linking changes in community composition and function under climate change. Ecol. Appl. 25, 2132–2141 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    230.Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).Article 

    Google Scholar 
    231.Moles, A. T., Warton, D. I. & Westoby, M. Seed size and survival in the soil in arid Australia. Austral Ecol. 28, 575–585 (2003).Article 

    Google Scholar 
    232.Moles, A. T. et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777–788 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    233.Mooney, H. A., Ferrar, P. J. & Slatyer, R. O. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36, 103–111 (1978).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    234.Moore, A. W., Russell, J. S. & Coaldrake, J. E. Dry matter and nutrient content of a subtropical semiarid forest of Acacia harpophylla F. Muell. (Brigalow). Aust. J. Bot. 15, 11–24 (1967).Article 

    Google Scholar 
    235.Moore, N. A., Camac, J. S. & Morgan, J. W. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytol. 221, 1424–1433 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    236.Morgan, H. Root system architecture, water use and rainfall responses of perennial species. (Macquarie University, 2005).237.Muir, A. M., Vesk, P. A. & Hepworth, G. Reproductive trajectories over decadal time-spans after fire for eight obligate-seeder shrub species in south-eastern Australia. Aust. J. Bot. 62, 369–379 (2014).Article 

    Google Scholar 
    238.Munroe, S. E. M. et al. The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network. Scientific Data 8, 97 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    239.National Herbarium of NSW. Trait measurements for NSW rainforest species from PLantNET. http://plantnet.rbgsyd.nsw.gov.au/ (2016).240.Nicholson, A., Prior, L. D., Perry, G. L. W. & Bowman, D. M. J. S. High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation. Int. J. Wildland Fire 26, 532–537 (2017).Article 

    Google Scholar 
    241.Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus – Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 54, 391–407 (2006).Article 

    Google Scholar 
    242.Nicolle, D. Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. (Currency Creek Arboretum Eucalypt Research, 2018).243.Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    244.Kenny, B., Orscheg, C., Tasker, E., Gill, M. A. & Bradstock, R. NSW Flora Fire Response Database, v2.1. (NSW Department of Planning Industry; Environment, 2014).245.Northern Territory Herbarium. Flora of the Darwin Region Online. http://www.lrm.nt.gov.au/plants-and-animals/herbarium/darwin_flora_online (2014).246.Onoda, Y., Richards, A. E. & Westoby, M. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493–501 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    247.O’Reilly-Nugent, A. et al. Measuring competitive impact: Joint‐species modelling of invaded plant communities. J. Ecol. 108, 449–459 (2018).Article 

    Google Scholar 
    248.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    249.Paczkowska G. & Chapman, A.R. The Western Australian flora: A descriptive catalogue. 652 (CALM, Kings Park; Botanic Gardens; Wildflower Society of Western Australia, 2000).250.Palma, E. et al. Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40, 875–886 (2017).Article 

    Google Scholar 
    251.Pate, J. S., Rasins, E., Rullo, J. & Kuo, J. Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Ann. Bot. 57, 747–770 (1986).CAS 
    Article 

    Google Scholar 
    252.Pearcy, R. W. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct. Ecol. 1, 169–178 (1987).Article 

    Google Scholar 
    253.Peeters, P. J. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77, 43–65 (2002).Article 

    Google Scholar 
    254.Pekin, B. K., Wittkuhn, R. S., Boer, M. M., Macfarlane, C. & Grierson, P. F. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J. Veg. Sci. 22, 1009–1020 (2011).Article 

    Google Scholar 
    255.Pickering, C., Green, K., Barros, A. A. & Venn, S. A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alp. Bot. 124, 93–103 (2014).Article 

    Google Scholar 
    256.Pickup, M., Westoby, M. & Basden, A. Dry mass costs of deploying leaf area in relation to leaf size. Funct. Ecol. 19, 88–97 (2005).Article 

    Google Scholar 
    257.Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2011).Article 

    Google Scholar 
    258.Pollock, L. J. et al. Combining functional traits, the environment and multiple surveys to understand semi-arid tree distributions. J. Veg. Sci. 29, 967–977 (2018).Article 

    Google Scholar 
    259.Prior, L. D., Eamus, D. & Bowman, D. M. J. S. Leaf attributes in the seasonally dry tropics: A comparison of four habitats in northern Australia. Funct. Ecol. 17, 504–515 (2003).Article 

    Google Scholar 
    260.Prior, L. D., Bowman, D. M. J. S. & Eamus, D. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct. Ecol. 18, 707–718 (2004).Article 

    Google Scholar 
    261.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmainian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    262.Oxford Forestry Institute. Prospect: The wood database. http://dps.plants.ox.ac.uk/ofi/prospect/index.htm (2009).263.Royal Botanic Gardens Kew. Seed Information Database (SID). http://data.kew.org/sid/ (2014).264.Royal Botanic Gardens Sydney. PLantNET. http://plantnet.rbgsyd.nsw.gov.au/search/simple.htm (2014).265.Royal Botanic Gardens Sydney. PLantNET: NSW flora online. http://plantnet.rbgsyd.nsw.gov.au/ (2014).266.Read, J. & Sanson, G. D. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol. 160, 81–99 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    267.Read, J., Sanson, G. D. & Lamont, B. B. Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil 276, 95–113 (2005).CAS 
    Article 

    Google Scholar 
    268.Reid, J. B., Hill, R., Brown, M. & and M. Hovenden. Vegetation of Tasmania. 456 (1999).269.Reynolds, V. A., Anderegg, L. D. L., Loy, X., HilleRisLambers, J. & Mayfield, M. M. Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiol. 38, 664–677 (2017).Article 
    CAS 

    Google Scholar 
    270.Rice, K. J., Matzner, S. L., Byer, W. & Brown, J. R. Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitation. Oecologia 139, 190–198 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    271.Richards, A. E. et al. Physiological profiles of restricted endemic plants and their widespread congenors in the North Queensland wet tropics, Australia. Biol. Conserv. 111, 41–52 (2003).Article 

    Google Scholar 
    272.Roderick, M. L., Berry, S. L. & Noble, I. R. The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytol. 143, 63–72 (1999).Article 

    Google Scholar 
    273.Roderick, M. L. & Cochrane, M. J. On the conservative nature of the leaf mass-area relationship. Ann. Bot. 89, 537–542 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    274.Rosell, J. A., Gleason, S., Mendez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486–497 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    275.Rye, B. L. A revision of south-western Australian species of Micromyrtus (Myrtaceae) with five antisepalous ribs on the hypanthium. Nuytsia 15, 101–122 (2002).
    Google Scholar 
    276.Rye, B. L. A partial revision of the south-western Australian species of Micromyrtus (Myrtaceae: Chamelaucieae). Nuytsia 16, 117–147 (2006).
    Google Scholar 
    277.Rye, B. L. Reinstatement of the Western Australian genus Oxymyrrhine (Myrtaceae: Chamelaucieae) with three new species. Nuytsia 19, 149–165 (2009).
    Google Scholar 
    278.Rye, B. L. A revision of the Micromyrtus racemosa complex (Myrtaceae: Chamelaucieae) of south-western Australia. Nuytsia 20, 37–56 (2010).
    Google Scholar 
    279.Rye, B. L., Wilson, P. G. & Keighery, G. J. A revision of the species of Hypocalymma (Myrtaceae: Chamelaucieae) with smooth or colliculate seeds. Nuytsia 23, 283–312 (2013).
    Google Scholar 
    280.Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 1. Calytrix. Nuytsia 23, 483–501 (2013).
    Google Scholar 
    281.Rye, B. L. A revision of the south-western Australian genus Babingtonia (Myrtaceae: Chamelaucieae). Nuytsia 25, 219–250 (2015).
    Google Scholar 
    282.Jessop, J. P. & Toelken, H. R. Flora of South Australia, 4th edition, 4 vols. (Government Printer, Adelaide, 1986).283.Sams, M. A. et al. Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Glob. Ecol. Biog. 26, 1165–1176 (2017).Article 

    Google Scholar 
    284.Sauquet, H. et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    285.Schmidt, S. & Stewart, G. R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Envrion. 20, 1231–1241 (1997).Article 

    Google Scholar 
    286.Schmidt, S. & Stewart, G. R. d15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    287.Schmidt, S., Lamble, R. E., Fensham, R. J. & Siddique, I. Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant Soil 331, 79–90 (2009).Article 
    CAS 

    Google Scholar 
    288.Schulze, E., Kelliher, F. M., Körner, C., Lloyd, J. & Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25, 629–662 (1994).Article 

    Google Scholar 
    289.Schulze, E.-D. et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant. Physiol. 25, 413–425 (1998).
    Google Scholar 
    290.Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient. Physiol. Plant. 127, 434–444 (2006).CAS 
    Article 

    Google Scholar 
    291.Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 26, 479–492 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    292.Turner, N. C., Schulze, E.-D., Nicolle, D., Schumacher, J. & Kuhlmann, I. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiol. Plant. 132, 440–445 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    293.Schulze, E. D. et al. Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia. Trees 28, 1125–1135 (2014).CAS 
    Article 

    Google Scholar 
    294.Scott, A. J. Vegetation recovery and recruitment processes in south-eastern Australian semi-arid old fields. (La Trobe University, 2010).295.Sendall, K. M., Lusk, C. H. & Reich, P. B. Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Funct. Ecol. 30, 845–855 (2015).Article 

    Google Scholar 
    296.Seng, O. D. Specific gravity of Indonesian Woods and its significance for practical use. (FPRDC Forestry Department, Bogor, Indonesia, 1951).297.Sjöström, A. & Gross, C. L. Life-history characters and phylogeny are correlated with extinction risk in the Australian angiosperms. J. Biogeogr. 33, 271–290 (2006).Article 

    Google Scholar 
    298.Smith, B. Community-level Convergence and Community Structure of temperate Nothofagus forests. (University of Otago, Dunedin, New Zealand, 1996).299.Smith, R. A., Lewis, J. D., Ghannoum, O. & Tissue, D. T. Leaf structural responses to pre-industrial, current and elevated atmospheric CO2 and temperature affect leaf function in Eucalyptus sideroxylon. Funct. Plant. Bio. 39, 285–296 (2012).CAS 
    Article 

    Google Scholar 
    300.Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Systs. 14, 402–410 (2012).Article 

    Google Scholar 
    301.Soper, F. M. et al. Natural abundance (delta15N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient. Oecologia 178, 297–308 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    302.Specht, R. L. et al. Mediterranean-type ecosystems: A data source book. 248 (Springer, 1988).303.Specht, R. L. & Rundel, P. W. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38, 459–474 (1990).Article 

    Google Scholar 
    304.Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y. & Sikkema, E. H. Hydraulic consequences of vessel evolution in Angiosperms. Int. J. Plant Sci. 168, 1127–1139 (2007).Article 

    Google Scholar 
    305.Staples, T., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biog. 28, 1417–1429 (2019).Article 

    Google Scholar 
    306.Stewart, G., Turnbull, M., Schmidt, S. & Erskine, P. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Funct. Plant. Bio. 22, 51–55 (1995).Article 

    Google Scholar 
    307.Stock, W. D., Pate, J. S. & Rasins, E. Seed developmental patterns in Banksia attenuata R. Br. and B. laricina C. Gardner in relation to mechanical defence costs. New Phytol. 117, 109–114 (1991).CAS 
    Article 

    Google Scholar 
    308.Tait, C. J., Daniels, C. B. & Hill, R. S. Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecol. Appl. 15, 346–359 (2005).Article 

    Google Scholar 
    309.Taseski, G., Keith, D. A., Dalrymple, R. L. & Cornwell, W. K. Shifts in fine root traits within and among species along a small-scale hydrological gradient. (University of New South Wales, 2017).310.Taylor, D. & Eamus, D. Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and implications for carbon gain. Tree Physiol. 28, 1169–1177 (2008).PubMed 
    Article 

    Google Scholar 
    311.Thomas, F. M. & Vesk, P. A. Growth races in The Mallee: Height growth in woody plants examined with a trait-based model. Austral Ecol. 42, 790–800 (2017).Article 

    Google Scholar 
    312.Thomas, F. M. & Vesk, P. A. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits. PLoS One 12, e0176959 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    313.Thompson, I. R. Morphometric analysis and revision of eastern Australian Hovea (Brongniartieae-Fabaceae). Aust. Syst. Bot. 14, 1–99 (2001).Article 

    Google Scholar 
    314.Tasmanian Herbarium. Flora of Tasmania Online. http://www.tmag.tas.gov.au/floratasmania (2009).315.Tng, D. Y. P., Jordan, G. J. & Bowman, D. M. J. S. Plant traits demonstrate that temperate and tropical giant Eucalypt forests are ecologically convergent with rainforest not savanna. PLoS One 8, e84378 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    316.Toelken, H. R. A revision of the genus Kunzea (Myrtaceae) I. The western Australian section Zeanuk. J. Adel. Bot. Gard. 17, 29–106 (1996).
    Google Scholar 
    317.Tomlinson, K. W. et al. Biomass partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100, 1113–1121 (2012).Article 

    Google Scholar 
    318.Tomlinson, K. W. et al. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430–440 (2013).Article 

    Google Scholar 
    319.Tomlinson, K. W. et al. Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. J. Ecol. 107, 1051–1066 (2019).Article 

    Google Scholar 
    320.Tremont, R. M. Life-history attributes of plants in grazed and ungrazed grasslands on the Northern Tablelands of New South Wales. Aust. J. Bot. 42, 511–530 (1994).Article 

    Google Scholar 
    321.Trudgen, M. E. & Rye, B. L. Astus, a new western Australian genus of Myrtaceae with heterocarpidic fruits. Nuytsia 14, 495–512 (2005).
    Google Scholar 
    322.Trudgen, M. E. & Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 2. Cyathostemon. Nuytsia 24, 7–16 (2014).
    Google Scholar 
    323.Turner, J. & Lambert, M. J. Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales. For. Ecol. Manage. 6, 155–168 (1983).CAS 
    Article 

    Google Scholar 
    324.Turner, N. C., Schulze, E.-D., Nicolle, D. & Kuhlmann, I. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Tree Physiol. 30, 741–747 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    325.Veneklaas, E. J. & Poot, P. Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant Soil 257, 295–304 (2003).CAS 
    Article 

    Google Scholar 
    326.Venn, S. E., Green, K., Pickering, C. M. & Morgan, J. W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 212, 1491–1499 (2011).Article 

    Google Scholar 
    327.Venn, S., Pickering, C. & Green, K. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants 6, plu008 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    328.Vesk, P. A., Leishman, M. R. & Westoby, M. Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J. Appl. Ecol. 41, 22–31 (2004).Article 

    Google Scholar 
    329.Vesk, P. A. & Yen, J. D. L. Plant resprouting: How many sprouts and how deep? Flexible modelling of multispecies experimental disturbances. Perspect. Plant Ecol. Evol. Systs. 41, 125497 (2019).Article 

    Google Scholar 
    330.Vlasveld, C., O’Leary, B., Udovicic, F. & Burd, M. Leaf heteroblasty in eucalypts: biogeographic evidence of ecological function. Aust. J. Bot. 66, 191–201 (2018).Article 

    Google Scholar 
    331.Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au (1998).332.Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au/ (2016).333.Warren, C. R., Tausz, M. & Adams, M. A. Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiol. 25, 1369–1378 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    334.Warren, C. R., Dreyer, E., Tausz, M. & Adams, M. A. Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common gardens. Funct. Ecol. 20, 929–940 (2006).Article 

    Google Scholar 
    335.Weerasinghe, L. K. et al. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol. 34, 564–584 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    336.Wells, J. A. Phylogeny and inter-relations of ecological traits and seed dispersal in rainforest plants: Exploring aspects of functional diversity in primary and secondary rainforests in Australia’s Wet Tropics. (University of Queensland, 2012).337.Westman, W. E. & Roggers, R. V. Nutrient stocks in a subtropical eucalypt forest, North Stradbroke Island. Austral Ecol. 2, 447–460 (1977).Article 

    Google Scholar 
    338.Westoby, M. et al. Seed size and plant growth form as factors in dispersal spectra. Ecology 71, 1307–1315 (1990).Article 

    Google Scholar 
    339.Westoby, M. & Wright, I. J. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    340.Wheeler, J. R., Marchant, N. G. & Lewington, M. Flora of the south west: Bunbury, Augusta, Denmark. (Australian Biological Resources Study; University of Western Australia Press, 2002).341.White, M., Sinclair, S. & Frood, D. Victorian Vital Attributes Database. (Department of Environment, Land, Water; Planning, Victoria, 2020).342.Williams, N. S. G., Morgan, J. W., McDonnell, M. J. & McCarthy, M. A. Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J. Ecol. 93, 1203–1213 (2005).Article 

    Google Scholar 
    343.Wills, J. et al. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees. Ecol. Appl. 28, 1116–1125 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    344.Wilson, P. G. & Rowe, R. A revision of the Indigofereae (Fabaceae) in Australia. 2. Indigofera species with trifoliolate and alternately pinnate leaves. Telopea 12, 293–307 (2008).Article 

    Google Scholar 
    345.Wright, I. J. et al. A survey of seed and seedling characters in 1744 Australian dicotyledon species: Cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biol. J. Linn. Soc. 69, 521–547 (2000).Article 

    Google Scholar 
    346.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    347.Wright, I. J. & Westoby, M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155, 403–416 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    348.Wright, I. J., Westoby, M. & Reich, P. B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 90, 534–543 (2002).Article 

    Google Scholar 
    349.Wright, I. J., Falster, D. S., Pickup, M. & Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 127, 445–456 (2006).CAS 
    Article 

    Google Scholar 
    350.Wright, I. J. et al. Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecol. 44, 339–350 (2018).Article 

    Google Scholar 
    351.Yates, C. J. et al. Mallee woodlands and shrublands: the mallee, muruk/muert and maalok vegetation of Southern Australia. in Australian Vegetation (Cambridge University Press, 2017).352.Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).353.Zieminska, K., Butler, D. W., Gleason, S. M., Wright, I. J. & Westoby, M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5, plt046 (2013).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    354.Zieminska, K., Westoby, M. & Wright, I. J. Broad anatomical variation within a narrow wood density range – A study of twig wood across 69 Australian Angiosperms. PLoS One 10, e0124892 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    355.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).356.Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    357.Stephens, J. Yaml: Methods to convert r data to YAML and back (r package version 2.1. 13). (2014).358.FitzJohn, R. Remake: Make-like build management. R package version 0.2.0. (2016).359.Xie, Y. Dynamic documents with R and Knitr. (2015).360.Allaire, J. et al. Rmarkdown: Dynamic documents for R. R package version 0.5.1. (2015).361.CHAH. Australian Plant Name Index (continuously updated), Centre of Australian National Biodiversity Research. (https://www.biodiversity.org.au/nsl/services/apni (14/05/2020), 2020).362.Chamberlain, S. A. & Szöcs, E. Taxize: Taxonomic search and retrieval in R. F1000Res. 2, 191 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    363.Falster, D. et al. AusTraits: a curated plant trait database for the Australian flora. Zenodo https://doi.org/10.5281/zenodo.3568417 (2021).364.Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016).365.Falster, D. S., FitzJohn, R. G., Pennell, M. W. & Cornwell, W. K. Datastorr: A workflow and package for delivering successive versions of ‘evolving data’ directly into R. GigaScience 8, giz035 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    366.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    367.Jin, Y. V.PhyloMaker: Make phylogenetic hypotheses for vascular plants, etc.. R package version 0.1.0. (2020).368.Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Gtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecol. Evo. 8, 28–36 (2017).Article 

    Google Scholar 
    369.Stefan, V. & Levin, S. Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001. (2020).370.Whittaker, R. H. Communities and ecosystems. (MacMillan Publishers, 1975).371.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar  More

  • in

    Drying up

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey

    Study site, field survey, and in situ filtration
    The field survey was performed in Tateyama Bay (34° 60′ N, 139° 48′ E), central Japan, in the proximity of the Kuroshio warm current facing the Pacific Ocean (Fig. 1). This area has many artificial reefs (ARs) created to improve fishing efficiency for fishers. Among the ARs, we focused on one high-rise steel AR (AR1), with a height of 30 m, where fish tended to aggregate (Fig. 1 and S1). Sampling stations were set up at the AR1 and at six linear distant points extending northeast and southwest. These stations were named E150, E500, E750, W150, W500, and W750, where “W” or “E” and the number of each station name represented northeast or southwest and distance in meters from the AR1, respectively (Table S1 and Fig. 1). Another station was set up at a second AR (AR2: 25 m height) 220 m from AR1 because we found AR2 by chance during the survey (Table S1 and Fig. 1), and it might affect the eDNA concentration at other stations.Figure 1(a) Location of sampling stations, cruise track, and a set net in Tateyama Bay. Gray areas indicate landmasses, a gray bold line indicates cruise track, and gray thin lines indicate depth contours with an interval of 20 m. The maps were created using ArcGIS Software 10.6.0.8321 by ESRI (https://www.esri.com/) based on the municipal boundary data of Japan (Esri Japan) and Global Map Japan (Geospatial information Authority of Japan) as well as the M7000-series isobath data set (Japan Hydrographic Association). A picture of the artificial reef (AR1) (b) taken one year after this survey (June 2019) and pictures of the dominant species, (c) splendid alfonsino (Beryx splendens), (d) chicken grunt (Parapristipoma trilineatum), (e) chub mackerel (Scomber japonicus), (f) red seabream (Pagrus major), and (g) jack mackerel (Trachurus japonicus). Photograph credits: (b) Nariaki Inoue, (c) Fumie Yamaguchi, (d, e, g) Yutaro Kawano, and (f) Masaaki Sato.Full size imageWe conducted water sampling at eight stations for eDNA analysis and performed an acoustic survey for estimating relative fish density using research vessel Takamaru (Japan Fisheries Research and Education Agency: FRA) on May 23, 2018. We started the echo sounder survey at the eastern part of the bay and continued it during the water sampling (Fig. 1). Although the echo sounder survey could not differentiate between fish species, we collected this data to assess the association between the estimated concentration of fish eDNA and the echo intensity measured by the echo sounder. Water sampling began at E750, then continued along the transect line to E150, AR1, W150, W500, W750, before going back to AR2. At each sampling station, we collected 10 L of seawater from both the middle and bottom layers by one cast of two Niskin water samplers (5L × 2 samples) and measured vertical profiles of water temperature and salinity with a conductivity-temperature-depth sensor (RINKO profiler, JFE Advantech Co., Ltd.). We subsampled 2L seawater from the 5 L seawater of Niskin sampler using measuring bottle and remaining 3 L seawater was used for pre-wash of measuring bottle and filtration devices. Two 2L samples were collected from two Niskin water samples, and then immediately filtered using a combination of Sterivex filter cartridges (nominal pore size = 0.45 μm; Merck Millipore) through an aspirator (i.e., the two filters were subsets of a single water collection) in a laboratory on the research vessel. After filtration (average time of 15 min), an outlet port of the filter cartridge was sealed with an outlet luer cap, 1.5 ml RNAlater (Thermo Fisher Scientific Inc., Waltham, MA) was injected into the cartridge using a filtered pipette tip to prevent eDNA degradation, and an inlet port was also sealed with an inlet luer cap14. The Niskin water samplers were bleached before each water collection using a commercial bleach solution while filtering devices (i.e., filter funnels and measuring cups used for filtration) were bleached after every filtration. We filtered 2L MilliQ water with a filter funnel and measuring cup as a field negative control to test for possible contamination. The filter cartridges were placed in a freezer immediately after filtration until eDNA extraction. In total we collected and filtered 32 eDNA samples (eight stations × two depth layers × two replicates). Disposable latex or nitrile gloves were worn during sampling and replaced between each sampling station.DNA extraction and purificationWorkspaces were sterilized prior to DNA extraction using 10% commercial bleach, and filter tip pipettes were used to safeguard against cross-contamination. Following the method developed by Miya et al.15, the eDNA was extracted and purified. Briefly, after removing RNAlater inside the cartridge using a centrifuge, proteinase-K solution was injected into the cartridge from the inlet port, and the port was re-capped with the inlet lure cap. The eDNA captured on the filter membrane was extracted by constant stirring of the cartridge at a speed of 20 rpm using a roller shaker placed in an incubator heated at 56 °C for 20 min. The eDNA extracts were transferred to a 2-ml tube from the inlet of the filter cartridges by centrifugation. The collected DNA was purified using a DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s protocol. After the purification, DNA was eluted using 100 μl of the elution buffer (buffer AE). All DNA extracts were frozen at − 20 °C until paired-end library preparation.Preparation of internal standard DNAsFive artificially designed and synthetic internal standard DNAs, which were similar but not identical to the region of any existing fish mitochondrial 12S rRNA, were included in the library preparation process to estimate the number of fish DNA copies [i.e., quantitative MiSeq sequencing (qMiseq)]7,16. They were designed to have the MiFish primer‐binding regions as those of known existing fishes and to have the conserved regions in the insert region. Variable regions in the insert region were replaced with random bases so that no known existing fish sequences had the same sequences as the standard sequences. The standard DNA size distribution of the library was estimated using an Agilent 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA), and the concentration of double-stranded DNA of the library was quantified using a Qubit dsDNA HS assay kit and a Qubit fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Based on the quantification values obtained using the Qubit fluorometer, the copy number of the standard DNAs was adjusted as follows: Std. A (100 copies/µl), Std. B (50 copies/µl), Std. C (25 copies/µl), Std. D (12.5 copies/µl) and Std. E (2.5 copies/µl). Then, these standard DNAs were mixed.Paired-end library preparationTwo PCR‐level negative controls (i.e., each with and without internal standard DNAs) were employed for MiSeq run to monitor contamination during the experiments. The first-round PCR (1st PCR) was carried out with a 12-µl reaction volume containing 6.0 µl of 2 × KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland), 0.7 µl of each primer (5 µM), 2.6 µl of sterilized distilled H2O, 1.0 µl of standard DNA mix and 1.0 µl of template. Note that the standard DNA mix was included for each sample. The final concentration of each primer was 0.3 µM. We used a mixture of the following four PCR primers modified from original MiFish primers16: MiFish-U-forward (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNG TCG GTA AAA CTC GTG CCA GC-3′) and MiFish-U-reverse (5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN CAT AGT GGG GTA TCT AAT CCC AGT TTG-3′), MiFish-E-forward (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNG TTG GTA AAT CTC GTG CCA GC-3′), and MiFish-E-reverse (5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN CAT AGT GGG GTA TCT AAT CCT AGT TTG-3′). These primer pairs co-amplify a hypervariable region of the fish mitochondrial 12S rRNA gene (around 172 bp) and append primer-binding sites (5′ ends of the sequences before five Ns) for sequencing at both ends of the amplicon. The five random bases were used to enhance cluster separation on the flow cells during initial base call calibrations on the MiSeq platform. The thermal cycle profile after an initial 3 min denaturation at 95 (^circ)C was as follows (35 cycles): denaturation at 98 (^circ)C for 20 s; annealing at 65 (^circ)C for 15 s; and extension at 72 (^circ)C for 15 s, with a final extension at the same temperature for 5 min. Eight replications were performed for the 1st PCR, and the replicates were pooled to minimize the PCR dropouts. The 1st PCR products from the eight tubes were pooled in a single 1.5-ml tube. Then, we sent the 1st PCR products to IDEA consultants, Inc. to outsource the following MiSeq sequencing processes. The pooled products were purified and size-selected for 200–400 bp using a SPRIselect (Beckman Coulter, Inc.) to remove dimers and monomers following the manufacturer’s protocol.The second-round PCR (2nd PCR) was carried out with a 24 µl reaction volume containing 12 µl of 2 × KAPA HiFi HotStart ReadyMix, 2.8 µl of each primer (5 µM), 4.4 µl of sterilized distilled H2O, and 2.0 µl of template. We used the following two primers to append the dual-index sequences (8 nucleotides indicated by Xs) and flowcell-binding sites for the MiSeq platform (5′ ends of the sequences before eight Xs): 2nd-PCR-forward (5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACX XXX XXX XAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T-3′); and 2nd- PCR-reverse (5′-CAA GCA GAA GAC GGC ATA CGA GAT XXX XXX XXG TGA CTG GAG TTC AGA CGT GTG CTC TTC CGA TCT-3′). The thermal cycle profile after an initial 3 min denaturation at 95 (^circ)C was as follows (12 cycles): denaturation at 98 (^circ)C for 20 s; combined annealing and extension at 72 (^circ)C for 15 s, with a final extension at 72 (^circ)C for 5 min. The concentration of each second PCR product was measured by quantitative PCR using TB Green Fast qPCR Mix (Takara inc.). Each sample was diluted to a fixed concentration and combined (i.e., one pooled 2nd PCR product that included all samples). The pooled 2nd PCR product was size-selected to approximately 370 bp using BluePippin (Sage Science). The size-selected library was purified using the Agencourt AMPure XP beads, adjusted to 4 nM by quantitative PCR using TB Green Fast qPCR Mix (Takara Bio Inc.), and sequenced on the MiSeq platform using a MiSeq v2 Reagent Kit (2 × 150 bp) (Illumina, Inc.).Data preprocessing and taxonomic assignmentThe raw MiSeq data were converted into FASTQ files using the bcl2fastq program provided by Illumina (bcl2fastq v2.18). The FASTQ files were then demultiplexed using the command implemented in Claident17. We adopted this process rather than using FASTQ files demultiplexed by the Illumina MiSeq default program in order to remove sequences with low-quality scores and PCR artifacts (chimeras).The processed reads were subjected to a BLASTN search against the full NCBI database. We excluded unique sequences of the following settings: the sequence belonged to organisms other than bony fishes, sharks, and rays; the sequence similarity between queries and the top BLASTN hit was  More

  • in

    Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions

    1.Leach JE, Tringe SG. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Rev Biol Fertil Soils. 2015;51:403–21.CAS 
    Article 

    Google Scholar 
    3.Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871:1473–89.Article 

    Google Scholar 
    4.Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Leach JE, Triplett LR, Argueso CT, Trivedi P. Communication in the phytobiome. Cell. 2017;169:587–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. PTRBAE. 2020;375:20190250.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. Glycan utilization and cross-feeding activities by Bifidobacteria. Trends Microbiol. 2018;26:339–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 2020;28:732–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. The classification and evolution of bacterial cross-feeding. Front Ecol Evol. 2019;7:153.Article 

    Google Scholar 
    12.Santoyo G, del Orozco-Mosqueda MC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol. 2012;22:855–72.Article 

    Google Scholar 
    13.Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in agrobiology: plant growth responses. Springer: Berlin; 2011. 41–76.14.Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.CAS 
    Article 

    Google Scholar 
    15.Qin Y, Shang Q, Zhang Y, Li P, Chai Y. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front Microbiol. 2017;8:2620.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, et al. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils. 2011;47:495–506.CAS 
    Article 

    Google Scholar 
    18.Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol. 2013;79:808–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol plant. 2016;158:34–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Blake C, Nordgaard Christensen M, Kovács ÁT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact. 2020;34:15–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res. 2018;25:29910–20.CAS 
    Article 

    Google Scholar 
    22.Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cel Rep. 2019;29:1192–202.CAS 
    Article 

    Google Scholar 
    23.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.CAS 
    Article 

    Google Scholar 
    24.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Zhou C, Shi L, Ye B, Feng H, Zhang J, Zhang R, et al. pheS *, an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol. 2017;101:217–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lambertsen L, Sternberg C, Molin S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol. 2004;6:726–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018;46:7542–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol. 2020;38:272–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8:1–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    38.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ C(T) method. Methods. 2001;25:402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ling N, Raza W, Ma J, Huang Q, Shen Q. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol. 2011;47:374–9.CAS 
    Article 

    Google Scholar 
    41.Gordillo F, Chávez FP, Jerez CA. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol. 2007;60:322–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–.e5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008;163:173–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lynne AM, Haarmann D, Louden BC. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12:51–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 2019;9:1–12.
    Google Scholar 
    47.Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease. Mol Ecol. 2019;28:1154–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–E5120.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ren D, Madsen JS, Sørensen SJ, Burmølle M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 2015;9:81–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, et al. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13:1–23.
    Google Scholar 
    52.Gallegos-Monterrosa R, Mhatre E, Kovács ÁT. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology. 2016;162:1922–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Shao J, Xu Z, Zhang N, Shen Q, Zhang R. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils. 2015;51:321–30.CAS 
    Article 

    Google Scholar 
    54.Stopnisek N, Shade A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 2021;15:2708–22.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res. 2014;9:1265–77.
    Google Scholar 
    56.Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, et al. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil. 2010;328:483–93.CAS 
    Article 

    Google Scholar 
    57.Gómez Expósito R, Postma J, Raaijmakers JM, de Bruijn I. Diversity and activity of Lysobacter species from disease suppressive soils. Front Microbiol. 2015;6:1243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Peterson SB, Dunn AK, Klimowicz AK, Handelsman J. Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl Environ Microbiol. 2006;72:5421–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8:137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Kumar A, Singh J. Biofilms forming microbes: diversity and potential application in plant-microbe interaction and plant growth. Springer: Cham; 2020. 173−97.62.Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, et al. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 2017;121:102–17.Article 

    Google Scholar 
    63.Madsen JS, Røder HL, Russel J, Sørensen H, Burmølle M, Sørensen SJ. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ Microbiol. 2016;18:2565–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8:894–907.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yannarell SM, Grandchamp GM, Chen SY, Daniels KE, Shank EA. A dual-species biofilm with emergent mechanical and protective properties. J Bacteriol. 2019;201:e00670–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:1–11.Article 
    CAS 

    Google Scholar 
    68.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation, and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Estrela S, Sanchez-Gorostiaga A, Vila JCC, Sanchez A. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife. 2021;10:e65948.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun. 2019;10:1919.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Yan Q, Lopes LD, Shaffer BT, Kidarsa TA, Vining O, Philmus B, et al. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens. mBio. 2018;9:e01845–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA. 2014;111:E2149–E2156.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Evans R, Beckerman AP, Wright RCT, McQueen-Mason S, Bruce NC, Brockhurst MA. Eco-evolutionary dynamics set the tempo and trajectory of metabolic evolution in multispecies communities. Curr Biol. 2020;30:1–5.Article 
    CAS 

    Google Scholar 
    77.Gamez RM, Ramirez S, Montes M, Cardinale M. Complementary dynamics of banana root colonization by the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006 at spatial and temporal scales. Micro Ecol. 2020;80:656–68.CAS 
    Article 

    Google Scholar 
    78.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant Microbe interact. 2018;31:995–1005.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ. Phytopathology. 2019;109:36–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    To methanotrophy and beyond! New insight into functional and ecological roles for copper chelators

    1.Kang CS, Liang X, Dershwitz P, Gu W, Schepers A, Flatley A, et al. Evidence for methanobactin “theft” and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. ISME J. 2021;https://doi.org/10.1038/s41396-021-01062-1.2.Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett. 2020;367:fnaa045.CAS 
    Article 

    Google Scholar 
    3.Kim HJ, Graham DW, DiSpiito AA, Alterman MA, Galeva N, Larive CK, et al. Methanobactin: a copper-acquisition compound from methane-oxidizing bacteria. Science. 2004;305:1612–5.CAS 
    Article 

    Google Scholar 
    4.Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, Semrau JD, et al. Methylmercury uptake and degradation by methanotrophs. Sci Adv. 2017;3:e1700041.Article 

    Google Scholar 
    5.Ve T, Mathisen K, Helland R, Karlsen OA, Fjellbirkeland A, Røhr ÅK, et al. The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper. PLoS ONE. 2012;7:e43146.CAS 
    Article 

    Google Scholar 
    6.DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev. 2016;80:387–409.CAS 
    Article 

    Google Scholar 
    7.Kenney GE, Rosenzweig AC. Genome mining for methanobactins. BMC Biol. 2013;11:17.CAS 
    Article 

    Google Scholar 
    8.Yu Z, Zheng Y, Huang J, Chistoserdova L. Systems biology meets enzymology: recent insights into communal metabolism of methane and the role of lanthanides. Curr Issues Mol Biol. 2019;33:183–96.Article 

    Google Scholar 
    9.Gwak J-H, Jung M-Y, Hong HY, Kim J-G, Quan Z-X, Reinfelder JR, et al. Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME J. 2020;14:335–46.CAS 
    Article 

    Google Scholar 
    10.Chang J, Kim DD, Semrau JD, Lee J, Heo H, Gu W, et al. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Appl Environ Microbiol. 2020;87:e02301–20.
    Google Scholar  More

  • in

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Indigenous territories, long a bulwark against deforestation in the Amazon, are under increasing threat in Brazil, according to an analysis of 36 years’ worth of satellite imagery. The data show that illicit mining operations on Indigenous lands and in other areas formally protected by law have hit a record high in the past few years, under the administration of President Jair Bolsonaro, underscoring fears that his policies and rhetoric are undermining both human rights and environmental protection across the world’s largest rainforest. These operations strip the land of vegetation and pollute waterways with mercury.
    When will the Amazon hit a tipping point?
    The analysis, released in late August, comes as scientists and environmentalists warn of a deteriorating situation in Brazil; Indigenous groups have frequently found themselves in violent clashes with miners since Bolsonaro took office in 2019 — and they are demanding more protection for their land. Although Indigenous territories are legally protected, Bolsonaro has openly called for mining and other development in them.“This is definitely the worst it’s been for Indigenous peoples since the constitution was signed in 1988,” says Glenn Shepard, an anthropologist with the Emílio Goeldi Museum in Belém. Before this, Brazil was ruled by a military dictatorship.Researchers at MapBiomas, a consortium of academic, business and non-governmental organizations that has been conducting geospatial studies across Brazil, developed algorithms that they used in conjunction with Google Earth Engine to conduct the analysis. After training the algorithms on images of mining operations — desolate landscapes where forests have been converted into a collection of sand dunes pockmarked by mining ponds — the team ran its analysis on a freely available archive of imagery captured by the US Landsat programme, and then analysed trends on Indigenous lands and other formally protected areas where mining is not allowed.Over the past decade, illegal mining incursions — mostly small-scale gold extraction operations — have increased fivefold on Indigenous lands and threefold in other protected areas of Brazil such as parks, the data show (see ‘Mining incursions’). The findings agree broadly with reports from Brazil’s National Institute for Space Research (INPE) in São José dos Campos, which monitors the country’s forests and has been issuing alerts about mining incursions for several years. “We kind of knew that this was happening, but to see numbers like this is scary even for us,” says Cesar Diniz, a geologist with the geospatial-analysis company Solved in Belém, Brazil, who led the analysis for MapBiomas.Clashes on multiple frontsAside from being home to their people, Indigenous territories play a part in protecting the Amazon’s biodiversity and the enormous pool of carbon that is locked away in its trees and soils. Numerous studies have found that Indigenous lands, as well as other conservation areas, are effective buffers against tropical deforestation in the Amazon1,2, which is responsible for around 8% of global carbon emissions.Earlier this month, the International Union for Conservation of Nature (IUCN) approved a motion, put forward by Indigenous groups, calling on governments to protect 80% of the Amazon basin by 2025. Indigenous representatives say they plan to fight for implementation across the Amazon, but the proposal faces a particularly tough sell in Brazil under Bolsonaro, whose pro-business conservative government has scaled back enforcement of existing environmental laws and halted efforts to demarcate new Indigenous territories.

    Sources: MapBiomas/Amazon Geo-Referenced Socio-Environmental Information Network/Terrabrasilis

    Indigenous groups have also taken their case to the International Criminal Court in The Hague, the Netherlands. On 9 August, the Articulation of Indigenous Peoples of Brazil (APIB), which represents Indigenous groups across the country, filed a complaint with the court accusing the Bolsonaro administration of violating human rights and, they claim, paving a path for genocide by undermining Indigenous rights, reducing environmental protections and inciting incursions and violence through calls for mining and land development. APIB also made it clear that it’s not just Indigenous rights at stake, drawing a direct link between the protection of their territories and of the globe.

    Members of the Munduruku people sit in front of equipment from an illegal mining operation on their land.Credit: Meridith Kohut/The New York Times/eyevine

    “Defending the traditional territories of Amazonian communities is the best way to save the forest,” says Luiz Eloy Terena, an anthropologist and lawyer from the village of Ipegue who coordinates legal affairs for APIB. “What is needed is a state commitment on the demarcation and protection of Indigenous lands, which are the last barrier against deforestation and forest degradation.”During an address to the United Nations General Assembly on 21 September, Bolsonaro said he was committed to protecting the Amazon and emphasized that 600,000 Indigenous people live “in freedom” on reserves totalling 1.1 million square kilometres of land, equivalent to 14% of Brazil’s territory. In the past, Bolsonaro has publicly said that Indigenous peoples have too much land given their sparse population, and at times called for their “integration”. The Bolsonaro administration did not respond to Nature’s requests for comment regarding illegal mining in the Amazon, its Indigenous and environmental policies or the accusations filed with the International Criminal Court.Existential threatBrazil earned recognition as a leader in sustainable development during the 2000s. Former president Luiz Inácio ‘Lula’ da Silva and his Workers’ Party put in place policies that helped to curb deforestation in the Amazon by more than 80% between 2004 and 2012.

    Source: Brazilian National Institute for Space Research

    But the party was dogged by corruption charges that would later land Lula in jail, and its environmental agenda ultimately faltered. In 2012, the increasingly conservative Brazilian Congress weakened a once-vaunted forest-protection law. With each successive government, funding for the country’s main environmental enforcement agency, the Institute of Environment and Renewable Natural Resources (IBAMA), has decreased: IBAMA had 1,500 enforcement agents in 2012, compared with just 600 today, says Suely Araújo, a political scientist in Brasília who spent nearly three decades working in the Brazilian Congress and led IBAMA from 2016 to 2018.The rate of deforestation in the Amazon, which includes land converted for mining, agriculture and other development, began rising anew after 2012 and shot up by 44% during Bolsonaro’s first two years in office, according to INPE (see ‘Razing the rainforest’). Many expect yet another increase when the numbers for 2021 are released later this year.But the biggest threats are yet to come, says Araújo. The current government is now pushing legislation in Congress — as well as arguments in a case that is pending before Brazil’s Supreme Court — that would make it harder to establish new Indigenous lands and could even allow the government to repossess existing lands. Other legislation that has been advanced by Bolsonaro’s supporters in Congress would open up Indigenous lands to industrial development, grant amnesty to people who have illegally invaded public lands and gut regulations governing major infrastructure projects such as mines, roads and dams.
    The scientists restoring a gold-mining disaster zone in the Peruvian Amazon
    “It’s painful,” says Araújo, who decided to forgo retirement and join Brazil’s Climate Observatory, a coalition of activist and academic groups fighting to preserve the country’s social and environmental protections. “This has become my mission.”For Indigenous tribes, the growing damage to their lands and the rainforest pose an existential threat. More than 6,000 Indigenous people descended on Brasília, the country’s capital, in August and September in protest against Bolsonaro’s policies on land demarcation and the environment. They also travelled to Marseille, France, for the IUCN’s World Conservation Congress earlier this month to promote their motion to protect the Amazon basin.“We will not give up,” says José Gregorio Diaz Mirabal, a member of the Wakueni Kurripaco people of Venezuela and the elected leader of the Congress of Indigenous Organizations of the Amazon Basin. “Science supports us, and the world is waking up.”

    doi: https://doi.org/10.1038/d41586-021-02644-x

    References1.Blackman, A., Corral, L., Lima, E. S. & Asner, G. P. Proc. Natl Acad. Sci. USA 114, 4123–4128 (2017).PubMed 
    Article 

    Google Scholar 
    2.Walker, W. S. et al. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).PubMed 
    Article 

    Google Scholar 
    Download references

    Related Articles

    The scientists restoring a gold-mining disaster zone in the Peruvian Amazon

    When will the Amazon hit a tipping point?

    To save Brazil’s rainforest, boost its science

    Subjects

    Anthropology

    Politics

    Government

    Climate change

    Biodiversity

    Latest on:

    Anthropology

    Ancient Maya capital housed a copy of a rival city’s pyramid
    Research Highlight 30 SEP 21

    Ancient footprints could be oldest traces of humans in the Americas
    News 23 SEP 21

    Modern Polynesian genomes offer clues to early eastward migrations
    News & Views 22 SEP 21

    Politics

    Climate change to loom large in talks to form new German government
    News 27 SEP 21

    Indonesia’s science super-agency must earn researchers’ trust
    Editorial 08 SEP 21

    The global research community must not abandon Afghanistan
    Editorial 01 SEP 21

    Government

    Climate change to loom large in talks to form new German government
    News 27 SEP 21

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    University under pressure to rehire scientist acquitted of hiding China links
    News 24 SEP 21

    Jobs

    Project manager target identification and validation for Alzheimer’s disease

    Flanders Institute for Biotechnology (VIB)
    Leuven, Belgium

    PhD Positions in the Wisnovsky Lab, UBC Pharmaceutical Sciences

    The University of British Columbia (UBC)
    Vancouver, Canada

    Post-doctoral Fellow – NAD Metabolism in Heart Disease

    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States

    Research Scientist – High Performance Computing (HPC) / Machine Learning (ML)

    Jülich Research Centre (FZJ)
    Jülich, Germany More