More stories

  • in

    Functional diversity outperforms taxonomic diversity in revealing short-term trampling effects

    1.Dengler, J. et al. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182(1), 1–14 (2014).Article 

    Google Scholar 
    2.Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Torok, P. et al. Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodivers. Conserv. 25(12), 2187–2195 (2016).Article 

    Google Scholar 
    4.Kuss, F. R. & Graefe, A. R. Effects of recreation trampling on natural area vegetation. J. Leis. Res. 17, 165–183 (1985).Article 

    Google Scholar 
    5.Buckley, R. C. & Pannell, J. Environmental impacts of tourism and recreation in national parks and conservation reserves. J. Tourism Stud. 1, 24–32 (1990).
    Google Scholar 
    6.Yorks, T. et al. Toleration of traffic by vegetation: Life form conclusions and summary extracts from a comprehensive data base. Environ. Manage. 21, 12–131 (1997).Article 

    Google Scholar 
    7.Gouvenain, R. C. Indirect impacts of soil trampling on tree growth and plant succession in the north cascade mountains of Washington (1996).8.Xu, L., Yu, F. H. & Drunen, E. V. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree. Ann. Bot. 109, 1001–1008 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bayfield, N. G. Use and deterioration of some Scottish hill paths. J. Appl. Ecol. 10, 639–648 (1973).Article 

    Google Scholar 
    10.Liddle, M. J. A selective review of the ecological effects of human trampling on natural ecosystems. Biol. Cons. 7, 17–36 (1975).Article 

    Google Scholar 
    11.Frissell, S. S. Judging recreational impacts on wilderness campsites. J. Forest. 76, 481–483 (1978).
    Google Scholar 
    12.Wagar, J. A. How to predict which vegetated areas will stand up best under ‘active’ recreation. Am. Recreat. J. 1, 20–21 (1961).
    Google Scholar 
    13.Cole, D. N. & Bayfield, N. G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Cons. 63(3), 209–215 (1993).Article 

    Google Scholar 
    14.Prescott, O. & Stewart, G. Assessing the impacts of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2, e360 (2014).Article 

    Google Scholar 
    15.Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    17.Petchey, O. L. & Gaston, K. J. Functional diversity, species richness and composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    18.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48(5), 1079–1087 (2011).Article 

    Google Scholar 
    19.Mouillot, D. et al. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    20.Carmona, C. P. et al. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31(5), 382–394 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18, 359–367 (2015).Article 

    Google Scholar 
    22.Pickering, C. M. & Barros, A. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking. J. Environ. Manage. 164, 129–136 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Baraloto, C., Herault, B. & Paine, C. E. T. Contrasting taxonomic and functional responses of a tropic tree community to selective logging. J. Appl. Ecol. 49, 861–870 (2012).Article 

    Google Scholar 
    24.Magnago, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    25.Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).Article 

    Google Scholar 
    26.Roovers, P. et al. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).Article 

    Google Scholar 
    27.Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18(3), 359–367 (2015).Article 

    Google Scholar 
    28.Zamora, R. Functional equivalence in plant-animal interactions: Ecological and evolutionary consequences. Oikos 88(2), 442–447 (2000).Article 

    Google Scholar 
    29.Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).Article 

    Google Scholar 
    30.Mouchet, M. A. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    31.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684–20689 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Suding, K. N. & Goldstein, L. J. Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytol. 180, 559–562 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.De Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    34.Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Tian, K., Guo, H. J. & Yang, Y. M. Ecological structures and functions of plateau wetlands in China (Chinese Science Press, 2009).
    Google Scholar 
    36.Garnier, E. et al. standardized protocol for the determination of specific leaf size and leaf dry matter content. Funct. Ecol. 15, 688–695 (2001).Article 

    Google Scholar 
    37.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    38.Mason, N. W. H. et al. An index of functional diversity. J. Veg. Sci. 14, 571–578 (2003).Article 

    Google Scholar 
    39.Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    40.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    41.Cianciaruso, M. V. et al. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Lepš, J. et al. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography 34, 856–863 (2011).Article 

    Google Scholar 
    43.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: What proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).Article 

    Google Scholar 
    45.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    46.Oksanen, J., Blanchet, F. G., Friendly, M. et al. Vegan: Community Ecology Package. R package version 2.5–7 (2020).47.Laliberté, E., Legendre, P., Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014). More

  • in

    Refocusing multiple stressor research around the targets and scales of ecological impacts

    1.Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Threats Classification Scheme (Version 3.2) (International Union for Conservation of Nature and Natural Resources, 2020); https://www.iucnredlist.org/resources/threat-classification-scheme3.Living Planet Report 2018: Aiming Higher (World Wildlife Fund, 2018).4.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).Article 

    Google Scholar 
    6.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421 (2020).Article 

    Google Scholar 
    8.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Burgess, B. J., Purves, D., Mace, G. & Murrell, D. J. Ecological theory predicts ecosystem stressor interactions in freshwater ecosystems, but highlights the strengths and weaknesses of the additive null model. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.243972 (2020).11.Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ashauer, R. & Jager, T. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ. Sci. Process Impacts 20, 48–57 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Caswell, H. in Ecotoxicology. A Hierarchical Treatment (eds Newman, M. C. & Jagoe, C. H) 255–292 (CRC Press, 1996).18.Judd, A., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    19.Schafer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).Article 

    Google Scholar 
    20.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
    Google Scholar 
    21.Beyer, J. et al. Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar. Environ. Res. 96, 81–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).Article 

    Google Scholar 
    23.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0802 (2017).24.De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).Article 

    Google Scholar 
    25.Goussen, B., Price, O. R., Rendal, C. & Ashauer, R. Integrated presentation of ecological risk from multiple stressors. Sci. Rep. 6, 36004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Liess, M., Foit, K., Knillmann, S., Schafer, R. B. & Liess, H. D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Van den Brink, P. J. et al. Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. Sci. Total Environ. 684, 722–726 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems: Applications to Ecotoxicology (Cambridge Univ. Press, 1993).29.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    30.Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).PubMed 
    Article 

    Google Scholar 
    31.Bolker, B., Holyoak, M., Krivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).Article 

    Google Scholar 
    32.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    33.Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. & Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds G. A. Polis & K. O. Winemiller) 371–395 (Chapman & Hall, 1996).34.Thompson, P. L., MacLennan, M. M. & Vinebrooke, R. D. Species interactions cause non‐additive effects of multiple environmental stressors on communities. Ecosphere 9, e02518 (2018).Article 

    Google Scholar 
    35.Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc. B Biol. Sci. 365, 49–60 (2010).Article 

    Google Scholar 
    36.Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).Article 

    Google Scholar 
    40.Ohlmann, M. et al. Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ohlmann, M. et al. Mapping the imprint of biotic interactions on β‐diversity. Ecol. Lett. 21, 1660–1669 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Brun, P. et al. The productivity–biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2018).PubMed 
    Article 

    Google Scholar 
    44.Bracewell, S. et al. Qualifying the effects of single and multiple stressors on the food web structure of Dutch drainage ditches using a literature review and conceptual models. Sci. Total Environ. 684, 727–740 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Kohler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341, 759–765 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).47.Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).48.Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.01.005 (2021).49.Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).Article 

    Google Scholar 
    50.Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Crespi, E. J., Williams, T. D., Jessop, T. S. & Delehanty, B. Life history and the ecology of stress: how do glucocorticoid hormones influence life‐history variation in animals? Funct. Ecol. 27, 93–106 (2013).Article 

    Google Scholar 
    53.Matthiopoulos, J., Moss, R. & Lambin, X. The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecol. Modell. 127, 53–63 (2000).Article 

    Google Scholar 
    54.Moss, R., Watson, A. & Parr, R. Experimental prevention of a population cycle in red grouse. Ecology 77, 1512–1530 (1996).Article 

    Google Scholar 
    55.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Schmitz, O. J. Press perturbations and the predictability ofecological interactions in a food web. Ecology 78, 55–69 (1997).
    Google Scholar 
    58.Ernest, S. K. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).Article 

    Google Scholar 
    59.Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).Article 

    Google Scholar 
    61.Pawar, S., Dell, A. I., Savage, V. M. & Knies, J. L. Real versus artificial variation in the thermal sensitivity of biological traits. Am. Nat. 187, E41–E52 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Yee, E. & Murray, S. Effects of temperature on activity, food consumption rates, and gut passage times of seaweed-eating Tegula species (Trochidae) from California. Mar. Biol. 145, 895–903 (2004).Article 

    Google Scholar 
    64.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, E429–E441 (2004).Article 

    Google Scholar 
    65.Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2612 (2014).66.Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B Biol. Sci. 367, 2935–2944 (2012).Article 

    Google Scholar 
    69.Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).Article 

    Google Scholar 
    70.Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Robinson, S. I., McLaughlin, Ó. B., Marteinsdóttir, B. & O’Gorman, E. J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. J. Anim. Ecol. 87, 634–646 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.McKee, D. et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr. 48, 707–722 (2003).Article 

    Google Scholar 
    73.McKee, D. et al. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshw. Biol. 47, 1557–1570 (2002).Article 

    Google Scholar 
    74.Allen, A., Gillooly, J. & Brown, J. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).Article 

    Google Scholar 
    75.Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature‐dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Clarke, A. & Fraser, K. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).Article 

    Google Scholar 
    77.Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).Article 

    Google Scholar 
    78.Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B Biol. Sci. 365, 2081–2091 (2010).Article 

    Google Scholar 
    79.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article 

    Google Scholar 
    81.Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).84.Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002).Article 

    Google Scholar 
    85.Jeschke, J. M. & Tollrian, R. Density-dependent effects of prey defences. Oecologia 123, 391–396 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Jorgensen, C., Ernande, B. & Fiksen, O. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol. Appl. 2, 356–370 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kuparinen, A., Kuikka, S. & Merila, J. Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evol. Appl. 2, 234–243 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Day, T., Abrams, P. A. & Chase, J. M. The role of size-specific predation in the evolution and diversification of prey life histories. Evolution 56, 877–887 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Heino, M., Pauli, B. D. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).Article 

    Google Scholar 
    91.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).Article 

    Google Scholar 
    92.Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).Article 
    CAS 

    Google Scholar 
    93.Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).Article 

    Google Scholar 
    96.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Duchet, C. et al. Pesticide‐mediated trophic cascade and an ecological trap for mosquitoes. Ecosphere 9, e02179 (2018).Article 

    Google Scholar 
    100.Halstead, N. T. et al. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecol. Lett. 17, 932–941 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Ferger, S. W. et al. Synergistic effects of climate and land use on avian beta‐diversity. Divers. Distrib. 23, 1246–1255 (2017).Article 

    Google Scholar 
    102.Maris, V. et al. Prediction in ecology: promises, obstacles and clarifications. Oikos 127, 171–183 (2018).Article 

    Google Scholar 
    103.Palmer, M. A. et al. Ecological science and sustainability for the 21st century. Front. Ecol. Environ. 3, 4–11 (2005).Article 

    Google Scholar 
    104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).Article 

    Google Scholar 
    105.Grimm, V. & Berger, U. Structural realism, emergence, and predictions in next-generation ecological modelling: synthesis from a special issue. Ecol. Modell. 326, 177–187 (2016).Article 

    Google Scholar 
    106.Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Rosenblatt, A. E., Smith-Ramesh, L. M. & Schmitz, O. J. Interactive effects of multiple climate change variables on food web dynamics: Modeling the effects of changing temperature, CO2, and water availability on a tri-trophic food web. Food Webs https://doi.org/10.1016/j.fooweb.2016.10.002 (2017).108.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0772-3 (2019).109.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).Article 

    Google Scholar 
    113.Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Beckerman, A. P., Petchey, O. L. & Warren, P. H. Foraging biology predicts food web complexity. Proc. Natl Acad. Sci. USA 103, 13745–13749 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).Article 

    Google Scholar 
    116.Williams, R. J., Brose, U. & Martinez, N. D. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems (eds Rooney, N. et al.) 37–51 (Springer, 2007).117.Blanchard, J. L. et al. How does abundance scale with body size in coupled size‐structured food webs? J. Anim. Ecol. 78, 270–280 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Kerr, S. R. & Dickie, L. M. The Biomass Spectrum: A Predator–Prey Theory of Aquatic Production (Columbia Univ. Press, 2001).120.Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).PubMed 
    Article 

    Google Scholar 
    121.Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).Article 

    Google Scholar 
    122.McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).Article 

    Google Scholar 
    123.Delmas, E., Brose, U., Gravel, D., Stouffer, D. B. & Poisot, T. Simulations of biomass dynamics in community food webs. Methods Ecol. Evol. 8, 881–886 (2017).Article 

    Google Scholar 
    124.Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Tabi, A., Petchey, O. L. & Pennekamp, F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol. Lett. 22, 1061–1071 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    127.O’Brien, A. L., Dafforn, K. A., Chariton, A. A., Johnston, E. L. & Mayer-Pinto, M. After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. Sci. Total Environ. 684, 753–764 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    128.Hampton, S. E. et al. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94, 2663–2669 (2013).PubMed 
    Article 

    Google Scholar 
    129.Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).Article 

    Google Scholar 
    130.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
    Google Scholar 
    131.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Brennan, G. L., Colegrave, N. & Collins, S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc. Natl Acad. Sci. USA 114, 9930–9935 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.De Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).Article 

    Google Scholar 
    136.Ellner, S. P., Seifu, Y. & Smith, R. H. Fitting population dynamic models to time‐series data by gradient matching. Ecology 83, 2256–2270 (2002).Article 

    Google Scholar 
    137.Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Law, R., Plank, M. J., James, A. & Blanchard, J. L. Size‐spectra dynamics from stochastic predation and growth of individuals. Ecology 90, 802–811 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    139.Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).Article 

    Google Scholar 
    140.Ives, A. R. Predicting the response of populations to environmental change. Ecology 76, 926–941 (1995).Article 

    Google Scholar  More

  • in

    Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa

    1.Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Foltz, S. J. & Dodson, S. I. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia 621, 49–62 (2009).Article 

    Google Scholar 
    3.Goldberg, F. J., Quinzio, S. & Vaira, M. Oviposition-site selection by the toad Melanophryniscus rubriventris in an unpredictable environment in Argentina. Can. J. Zool. 84, 699–705 (2006).Article 

    Google Scholar 
    4.Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).5.Resetarits, W. J. & Binckley, C. A. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90, 869–876 (2009).PubMed 
    Article 

    Google Scholar 
    6.Kraus, J. M. & Vonesh, J. R. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 79, 795–802 (2010).PubMed 

    Google Scholar 
    7.Resetarits, W. J. Oviposition site choice and life history evolution. Am. Zool. 36, 205–215 (1996).Article 

    Google Scholar 
    8.Morris, D. W. Toward an ecological synthesis: A case for habitat selection. Oecologia 136, 1–13 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    9.Resetarits, W. J. & Wilbur, H. M. Choice of oviposition site by Hyla chrysoscelis: Role of predators and competitors. Ecology 70, 220–228 (1989).Article 

    Google Scholar 
    10.Resetarits, W. J., Binckley, C. A. & Chalcraft, D. R. Habitat selection, species interactions, and processes of community assembly in complex landscapes: A metacommunity perspective. In Metacommunities: Spatial Dynamics and Ecological Communities (eds. Holyoak, M., Leybold, A. & Holt, R. D.) 374–398 (University of Chicago Press, Chicago, 2005).11.Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    12.Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 139, 1–10 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    13.Åbjörnsson, K., Brönmark, C. & Hansson, L.-A. The relative importance of lethal and non-lethal effects of fish on insect colonisation of ponds: Influence of fish on insect colonisation. Freshw. Biol. 47, 1489–1495 (2002).Article 

    Google Scholar 
    14.Pintar, M. R. & Resetarits, W. J. Jr. Out with the old, in with the new: Oviposition preference matches larval success in cope’s gray treefrog, Hyla chrysoscelis. J. Herpetol. 51, 186–189 (2017).Article 

    Google Scholar 
    15.Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).Article 

    Google Scholar 
    16.Caudill, C. C. & Peckarsky, B. L. Lack of appropriate behavioral or developmental responses by mayfly larvae to trout predators. Ecology 84, 2133–2144 (2003).Article 

    Google Scholar 
    17.Binckley, C. A. & Resetarits, W. J. Functional equivalence of non-lethal effects: Generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102, 623–629 (2003).Article 

    Google Scholar 
    18.Pollard, C. J. et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 81, 720–727 (2017).Article 

    Google Scholar 
    19.Petranka, J. W. & Fakhoury, K. Evidence of a chemically-mediated avoidance response of ovipositing insects to bluegills and green frog tadpoles. Copeia 1991, 234–239 (1991).Article 

    Google Scholar 
    20.McPeek, M. A. Differential dispersal tendencies among Enallagma damselflies (Odonata) inhabiting different habitats. Oikos 56, 187–195 (1989).Article 

    Google Scholar 
    21.Šigutová, H., Šigut, M. & Dolný, A. Intensive fish ponds as ecological traps for dragonflies: An imminent threat to the endangered species Sympetrum depressiusculum (Odonata: Libellulidae). J. Insect Conserv. 19, 961–974 (2015).Article 

    Google Scholar 
    22.Potts, K. M. Survival and development of larval odonates (Anisoptera) and female oviposition site choice in response to predatory fish. https://egrove.olemiss.edu/etd/1854 (2020).23.Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M. & Cohen, J. E. Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency across experimental venue. Oecologia 138, 300–305 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    24.Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): An experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22, 27–44 (1993).25.Wildermuth, H. Habitatselektion bei Libellen. Adv. Odonatol. 6, 223–257 (1994).
    Google Scholar 
    26.Laurila, A. Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21, 484–494 (1998).Article 

    Google Scholar 
    27.Schwind, R. Spectral regions in which aquatic insects see reflected polarized light. J. Comp. Physiol. A 177, 439–448 (1995).Article 

    Google Scholar 
    28.Horváth, G. & Kriska, G. Polarization vision in aquatic insects and ecological traps for polarotactic insects in Aquatic Insects: Challenges to Populations (eds. Lancaster, J. & Briers, R. A.) 204–229 (CAB International Publishing, 2008).29.Schulte, L. M. et al. The smell of success: Choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Anim. Behav. 81, 1147–1154 (2011).Article 

    Google Scholar 
    30.Corbet, P. S. Dragonflies: Behavior and ecology of Odonata. (Harley Books, 1999).31.Nicolet, P. et al. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol. Conserv. 120, 261–278 (2004).Article 

    Google Scholar 
    32.Henrikson, B.-I. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 16, 143–153 (1993).Article 

    Google Scholar 
    33.Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: Ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 537–551 (2001).
    Google Scholar 
    34.Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).PubMed 
    Article 

    Google Scholar 
    35.Abrams, P. A., Cressman, R. & Křivan, V. The role of behavioral dynamics in determining the patch distributions of interacting species. Am. Nat. 169, 505–518 (2007).PubMed 
    Article 

    Google Scholar 
    36.Denton, J. & Beebee, T. J. C. Palatability of anuran eggs and embryos. Amphib. Reptil. 12, 111–112 (1991).Article 

    Google Scholar 
    37.Larson, D. J. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 11, 245–498 (1985).
    Google Scholar 
    38.Mikolajewski, D. J. & Rolff, J. Benefits of morphological defence demonstrated by direct manipulation in larval dragonflies. Evol. Ecol. Res. 6, 619–626 (2004).
    Google Scholar 
    39.Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).Article 

    Google Scholar 
    40.Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).Article 

    Google Scholar 
    41.McCauley, S. J., Davis, C. J. & Werner, E. E. Predator induction of spine length in larval Leucorrhinia intacta (Odonata). Evol. Ecol. Res. 10, 435–447 (2008).
    Google Scholar 
    42.Nöllert, A. & Nöllert, C. Die Amphibien Europas. (Franckh-Kosmos Verlags-GmbH and Company, 1992).43.Maštera, J., Zavadil, V. & Dvořák, J. Vajíčka a larvy obojživelníků České republiky. (Academia, 2015).44.Speybroeck, J., Beukema, W., Bok, B. & Van der Voort, J. Field Guide to the Amphibians and Reptiles of Britain and Europe. (Bloomsbury Natural History, 2016).45.Sternberg, K. & Buchwald, R. Die Libellen Baden-Württembergs. Band 2: Großlibellen (Anisoptera). (Verlag Eugen Ulmer Gmbh & Co., 2000).46.Mikolajewski, D. J. & Johansson, F. Morphological and behavioral defenses in dragonfly larvae: Trait compensation and cospecialization. Behav. Ecol. 15, 614–620 (2004).Article 

    Google Scholar 
    47.Kjærstad, G., Dolmen, D., Olsvik, H. A. & Tilseth, E. The backswimmer Notonecta glauca L. (Hemiptera, Notonectidae) in Central Norway. Nor. J. Entomol. 56, 44–49 (2009).
    Google Scholar 
    48.Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects 22, 81–98 (2000).Article 

    Google Scholar 
    49.Macan, T. T. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 45, 913–922 (1976).Article 

    Google Scholar 
    50.Lock, K., Adriaens, T., Meutter, F. V. D. & Goethals, P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): Results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 49, 121–128 (2013).Article 

    Google Scholar 
    51.Cook, W. L. & Streams, F. A. Fish predation on Notonecta (Hemiptera): Relationship between prey risk and habitat utilization. Oecologia 64, 177–183 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Swevers, L., Lambert, J. G. D. & De Loof, A. Synthesis and metabolism of vertebrate-type steroids by tissues of insects: A critical evaluation. Experientia 47, 687–698 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Bergsten, J. & Miller, K. B. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 31, 145–197 (2005).Article 

    Google Scholar 
    54.Åbjörnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R. & Olsén, K. H. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111, 166–171 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    55.Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana 43(Suppl.), 1–289 (2007).
    Google Scholar 
    56.Gioria, M., Schaffers, A., Bacaro, G. & Feehan, J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133 (2010).Article 

    Google Scholar 
    57.Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).58.Briers, R. A. & Warren, P. H. Competition between the nymphs of two regionally co-occurring species of Notonecta (Hemiptera: Notonectidae). Freshw. Biol. 42, 11–20 (1999).Article 

    Google Scholar 
    59.Wiggins, G. B., Mackay, R. J. & Smith, I. M. Evolutionary and ecological strategies of animals on annual temporary pools. Arch. Für Hydrobiol. Suppl. 58, 197–206 (1980).
    Google Scholar 
    60.Culler, L. E., Ohba, S. & Crumrine, P. Predator-Prey Interactions of Dytiscids. In Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).61.Schuh, R. T. & Slater, J. A. True Bugs of the World (Hemiptera:Heteroptera): Classification and Natural History (Cornell University Press, Cornell, 1995).
    Google Scholar 
    62.Streams, F. A. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 85, 265–273 (1992).Article 

    Google Scholar 
    63.Giacoma, C., Zugolaro, C. & Beani, L. The advertisement calls of the green toad (Bufo viridis): Variability and role in mate choice. Herpetologica 53, 454–464 (1997).
    Google Scholar 
    64.Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124, 86–93 (2018).Article 

    Google Scholar 
    65.Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation for Statistical Computing, Vienna, Austria). https://www.r-project.org/ (2020).67.Wells, K. D. The Ecology and Behavior of Amphibians. (University of Chicago Press, 2007).68.Purrenhage, J. L. & Boone, M. D. Amphibian community response to variation in habitat structure and competitor density. Herpetologica 65, 14–30 (2009).Article 

    Google Scholar 
    69.Formanowicz, D. R. & Bobka, M. S. Predation risk and microhabitat preference: An experimental study of the behavioral responses of prey and predator. Am. Midl. Nat. 121, 379–386 (1989).Article 

    Google Scholar 
    70.Egan, R. S. & Paton, P. W. C. Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24, 1–13 (2004).Article 

    Google Scholar 
    71.Ward, S. A. Optimal habitat selection in time-limited dispersers. Am. Nat. 129, 568–579 (1987).Article 

    Google Scholar 
    72.Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Biotheoretica 19, 16–36 (1970).Article 

    Google Scholar 
    73.Austad, S. N. A classification of alternative reproductive behaviors and methods for field-testing ESS models. Am. Zool. 24, 309–319 (1984).Article 

    Google Scholar 
    74.Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    75.Wildermuth, H. Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: A behavioural field test. Naturwissenschaften 85, 297–302 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).
    Google Scholar 
    77.Dolný, A., Mižičová, H. & Harabiš, F. Natal philopatry in four European species of dragonflies (Odonata: Sympetrinae) and possible implications for conservation management. J. Insect Conserv. 17, 821–829 (2013).Article 

    Google Scholar 
    78.Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).Article 

    Google Scholar 
    79.Brodin, T., Mikolajewski, D. J. & Johansson, F. Behavioural and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia 148, 162–169 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    80.Kershenbaum, A., Spencer, M., Blaustein, L. & Cohen, J. E. Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition. Evol. Ecol. 26, 955–974 (2012).Article 

    Google Scholar 
    81.Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Gioria, M. Habitats. In Ecology, Systematics, and the Natural History of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 307–362 (Springer, Netherlands, 2014).
    Google Scholar 
    83.Diehl, S. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology 73, 1646–1661 (1992).Article 

    Google Scholar 
    84.Giller, P. S. & McNeill, S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50, 789–808 (1981).Article 

    Google Scholar 
    85.Ribera, I. & Nilsson, A. N. Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Can. J. Zool. 73, 2343–2360 (2011).Article 

    Google Scholar 
    86.Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).Article 

    Google Scholar 
    87.Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).PubMed 
    Article 

    Google Scholar 
    88.Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: How alarm cues and kairomones induce different prey defences. Funct. Ecol. 23, 1114–1121 (2009).Article 

    Google Scholar 
    89.McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Author Correction: Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Biodiversity and Natural Resources Program (BNR), International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaMartin Jung, Matthew Lewis, Dmitry Schepaschenko, Myroslava Lesiv, Steffen Fritz, Michael Obersteiner & Piero ViscontiUN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UKAndy Arnell, Shaenandhoa García-Rangel, Jennifer Mark, Lera Miles, Corinna Ravilious, Oliver Tallowin, Arnout van Soesbergen, Valerie Kapos & Neil BurgessFood and Agriculture Organization of the United Nations (FAO), Rome, ItalyXavier de LamoDepartment of Zoology, University of Cambridge, Cambridge, UKMatthew LewisDepartment of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, USACory MerowRoyal Botanic Gardens, Kew, Richmond, UKIan Ondo, Samuel Pironon & Rafaël GovaertsBotanic Gardens Conservation International, Richmondy, UKMalin RiversSiberian Federal University, Krasnoyarsk, RussiaDmitry SchepaschenkoDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABradley L. Boyle, Brian J. Enquist, Brian Maitner & Erica A. NewmanDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengDepartment of Biological Sciences, Macquarie University, North Ryde, New South Wales, AustraliaRachael GallagherSchool of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, IsraelShai Meiri & Gali OferDepartment of Geography, King’s College London, London, UKMark MulliganMitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, IsraelUri RollCIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, PortugalJeffrey O. HansonDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanCenter for Biodiversity and Global Change, Yale University, New Haven, CT, USAWalter Jetz & D. Scott RinnanDepartment of Biology and Biotechnologies, Sapienza University of Rome, Rome, ItalyMoreno Di MarcoThe Nature Conservancy, Arlington, VA, USAJennifer McGowanColumbia University, New York, NY, USAJeffrey D. SachsSchool of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tasmania, AustraliaVanessa M. AdamsCSIRO Land and Water, Canberra, Australian Capital Territory, AustraliaSamuel C. AndrewDepartment of Biology, University of Kentucky, Lexington, KY, USAJoseph R. BurgerBetty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USALee Hannah & Patrick R. RoehrdanzDepartamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetInstituto de Ecología y Biodiversidad (IEB), Santiago, ChilePablo A. MarquetCentro de Cambio Global UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePablo A. MarquetThe Santa Fe Institute, Santa Fe, NM, USAPablo A. MarquetInstituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, ChilePablo A. MarquetManaaki Whenua—Landcare Research, Lincoln, New ZealandJames K. McCarthyCenter for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkNaia Morueta-HolmeDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, DenmarkJens-Christian SvenningCEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FranceCyrille ViolleNaturalis Biodiversity Center, Leiden, The NetherlandsJan J. WieringaWorld Resources Institute, London, UKGraham WynneRio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. StrassburgInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. StrassburgPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgEnvironmental Change Institute, Centre for the Environment, Oxford University, Oxford, UKMichael ObersteinerUN Sustainable Development Solutions Network, Paris, FranceGuido Schmidt-TraubCorrespondence to
    Martin Jung or Piero Visconti. More

  • in

    Persistence and accumulation of environmental DNA from an endangered dragonfly

    We developed environmental DNA (eDNA) detection protocols to assist in habitat identification for conservation for the US federally endangered Hine’s emerald dragonfly (Somatochlora hineana). Larval S. hineana have been observed in groundwater-fed calcareous fen habitats in Illinois, Wisconsin, Michigan, and Missouri in the USA, and Ontario, Canada. Habitat destruction and fragmentation have been the primary cause of S. hineana population decline1. Therefore, a key part of conservation efforts to benefit S. hineana is the identification and protection of any remaining habitat areas. Conventional sampling for the presence of S. hineana often includes both adult and larval sampling.Larval S. hineana surveys include benthic-sampling and the pumping of crayfish burrows. Larval S. hineana are most often found in the burrows of Cambarus (= Lacunicambarus) diogenes throughout the year and are almost exclusively found in C. diogenes burrows during their overwintering period2. Comprehensive larval surveys can take months to complete, require intensive training of field personnel, are reliant on favorable weather conditions, and are only effective if late instar larvae can be collected for identification. Adult S. hineana surveys are difficult due to short flight season, habitat segregation by sex, large potential flight range (adults can range for many kilometers from larval habitat), risk of harm when netting adult dragonflies, and difficulty observing genitalia characteristics necessary for accurate species identification when in flight1.Given the restrictions of conventional sampling techniques, there has been a great need to develop a method to expedite field site identification. Environmental DNA can be used to guide and prioritize locations for conventional surveying methods, increasing the speed at which habitats can be identified for protection and restoration.Environmental DNA (eDNA) is a relatively new surveillance method used to detect the presence of a species within a habitat by collecting environmental samples (e.g., soil and water) that contain cell fragments and exogenous DNA3. Mitochondrial genes, which are more plentiful and have a higher resistance to degradation than nuclear genes, are targeted and amplified to determine species presence or absence4,5,6,7.Currently, there is a taxonomic skew toward fish, amphibian, and mollusk eDNA studies7,8 suggesting the need to determine if eDNA methods can be useful for detecting aquatic insects. Environmental DNA analysis from 27 taxa of freshwater arthropods had been published as of 2019; some of these taxa include Procambarus clarkii, Pacifastacus leniusculus, and Gammarus pulex8. Additionally, the critically endangered plecopteran Isogenus nubecula was detected using eDNA methods9.The potential advantages of using eDNA rather than traditional surveying methods include the reduction of field labor hours10, reduced impact to sensitive habitats7, and a lower threshold of detection11,12. Additionally, eDNA has proven to be an effective tool when traditional methods require timely/costly surveying efforts6 and for detecting cryptic invasive species10.Although there is always some risk of damaging the habitat when studying a system, environmental DNA sampling (i.e., water, soil, ice) is much less invasive and has far less potential for harming native and endangered species than many traditional surveying methods7. For example, electrofishing can cause damage in the form of removing/killing fish from the sample site13. Traditional sampling methods for larval populations of S. hineana include benthic sampling (monitoring populations in stream beds) and burrow-pumping (a novel technique used to locate larvae within crayfish burrows)2. These techniques can disrupt flow patterns within shallow streams, collapse burrows, and harm/kill sampled individuals.While there has been some speculation that eDNA sampling may have high false-positive rates due to ancient DNA contamination from extirpated populations, studies show that eDNA typically becomes undetectable in water within 1–44 days after source removal10,14,15,16,17,18,19,20,21 and approximately 144 days in soil22. This suggests that eDNA surveys are contemporaneous and can be used to inform conservation efforts.Environmental DNA degradation is likely more complex in a field setting, and the persistence (defined here as the length of time eDNA remains detectable within a habitat or mesocosm) and net-accumulation (defined here as the difference between the amount of eDNA produced and the amount of eDNA degraded over time) are likely to vary depending on numerous factors that alter source/sink dynamics3. Spatiotemporal dynamics are especially important in affecting the persistence and accumulation of eDNA in the field and need to be accounted for when developing eDNA methodologies23. Concentrations of eDNA may fluctuate spatially and/or temporally as a result of fluctuations in biomass18,24,25, transport through a flowing system17,26,27,28, age structuring of target populations7,16, feeding activity29, life-history events5, seasonal habitat preference13,30, water temperature24,31,32,33, hydrology13,27, inhibition13,27, and microbial activity34. Some studies show that water pH affects eDNA degradation rates19, while others do not35. Similarly, some studies show that UV light exposure affects eDNA degradation rates17, while others show no such effect36.In this study, we focused on the effects that seasonal shifts in temperature have on the persistence and net-accumulation of larval S. hineana eDNA. Since temperature drives the production of eDNA through metabolic processes31 and directly alters the rate of microbial degradation of eDNA32, it may be the most important variable driving seasonal shifts in eDNA detection.Somatochlora hineana larval molting activity varies with seasonal changes, the net-accumulation of S. hineana eDNA within a habitat. Adult S. hineana females lay eggs within streams and streamlets during their flight period (July–early August). Eggs typically mature over winter. In the following year, hatching of pro-larva from eggs occurs between April and June. All S. hineana larvae go through approximately 12 larval instars (F-11 to F-0). The first 6 larval instars (F-11 through F-6) occur rapidly within the first year, and the final 6 (F-5 through F-0) occur more slowly over a period of 2–4 years1. Since S. hineana larvae take several years to fully mature, they survive overwintering in shallow, partially frozen streams within Cambarus (= Lacunicambarus) diogenes crayfish burrows. While S. hineana larvae overwinter within burrows, they rarely consume food or molt, thus reducing the amount of eDNA shed2.The net-accumulation of larval S. hineana eDNA was likely to increase with increasing temperatures2,31,37, while the persistence of larval S. hineana eDNA was likely to decrease with increasing temperatures32. Therefore, we assessed the seasonal shift in persistence and net-accumulation of larval S. hineana eDNA in temperature-controlled mesocosms that reflect the larval overwintering period (5.0 °C) and the larval active period (16.0 °C). This study provided preliminary information regarding the seasonal shift in eDNA production for larval S. hineana. Understanding the seasonal dynamics of larval S. hineana eDNA is vital for efficient detection of this rare aquatic species using eDNA protocols. Our mesocosm results have informed subsequent field sampling of S. hineana eDNA. More

  • in

    First microsatellite markers for the European Robin (Erithacus rubecula) and their application in analysis of parentage and genetic diversity

    1.Cramp, S. & Perrins, C. M. in The Birds of the Western Palearctic, Vol. 7 (eds. Cramp, S. & Perrins, C. M.) (Oxford University Press, 1993).2.Lack, D. Clutch and brood size in the Robin. Br. Birds 39(98–109), 130–135 (1946).
    Google Scholar 
    3.Lack, D. Further notes on clutch and brood size in the Robin. Br. Birds 41(98–104), 130–137 (1948).
    Google Scholar 
    4.Lack, D. The Life of Robin (Witherby, 1965).
    Google Scholar 
    5.Harper, D. G. C. Pairing strategies and mate choice in female Robins (Erithacus rubecula). Anim. Behav. 33, 862–875 (1985).Article 

    Google Scholar 
    6.Lebedeva, N. V. & Lomadze, N. H. in The Robin Erithacus Rubecula in the North-Western Caucasus (eds. Matishov, G. G. & Lebedeva, N. V.) 252–277 (SSC RAS Publishing, 2007).7.Knysh, N. P. Materials on the biology of Robin in forest-steppe deciduous forests of Sumy region. Berkut 17, 41–60 (2008).
    Google Scholar 
    8.Zimin V. B. in The Robin in the North of the Area, Vol. 1. Distribution. Number. Reproduction (ed. Zimin, V. B.) 401–422 (Karel’skiy nauchnyy centr RAN, 2009).9.Baranovskiy, A. V. & Ivanov, E. S. Features of reproductive biology of robins (Erithacus rubecula) in anthropogenic habitats (for example, the city of Ryazan). Principy èkologii 6, 17–25 (2017).
    Google Scholar 
    10.Wesołowski, T. Primeval conditions—What can we learn from them?. Ibis 149, 64–77 (2007).Article 

    Google Scholar 
    11.Tobias, J. & Seddon, N. Territoriality as a paternity guard in the European robin Erithacus rubecula. Anim. Behav. 60, 165–173 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Tobias, J. & Seddon, N. Female begging in European robins: Do neighbors eavesdrop for extrapair copulations?. Behav. Ecol. 13, 637–642 (2002).Article 

    Google Scholar 
    13.Lubjuhn, T., Strohbach, S., Brün, J., Gerken, T. & Epplen, J. T. Extra-pair paternity in great tits (Parus major)—A long term study. Behaviour 136, 1157–1172 (1999).Article 

    Google Scholar 
    14.Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: A review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Cockburn, A. Prevalence of different modes of parental care in birds. Proc. Biol. Sci. 273, 1375–1383 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    16.Zagalska-Neubauer, M. & Dubiec, A. Techniki i markery molekularne w badaniach zmienności genetycznej ptaków. Not. Ornit. 48, 193–206 (2007).
    Google Scholar 
    17.Brouwer, L. & Griffith, S. C. Extra-pair paternity in birds. Mol. Ecol. 28, 4864–4882 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Petter, S. C., Miles, D. B. & White, M. M. Genetic evidence of mixed reproductive strategy in a monogamous bird. Condor 92, 702–708 (1990).Article 

    Google Scholar 
    19.Jennions, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75, 21–64 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Akçay, E. & Roughgarden, J. Extra-pair paternity in birds: Review of the genetic benefits. Evol. Ecol. Res. 9, 855–868 (2007).
    Google Scholar 
    21.Dietzen, C., Witt, H.-H. & Wink, M. The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: Evidence for a new robin on Gran Canaria?. Avian Sci. 3, 115–131 (2003).
    Google Scholar 
    22.Rodrigues, P. et al. Phylogeography and genetic diversity of the Robin (Erithacus rubecula) in the Azores Islands: Evidence of a recent colonisation. J. Ornithol. 154, 889–900 (2013).Article 

    Google Scholar 
    23.Fulgione, D., Rippa, D., Manganiello, E., Caliendo, M. F. & Rastogi, R. K. Seasonal genetic structure analysis of a resident population of European Robin. Open Zool. J. 1, 11–17 (2008).CAS 
    Article 

    Google Scholar 
    24.Morin, P. A., Messier, J. & Woodruff, D. S. DNA extraction, amplification, and direct sequencing from hornbill feathers. J. Sci. Soc. Thail. 20, 31–41 (1994).CAS 
    Article 

    Google Scholar 
    25.Wright, T. F. et al. Microsatellite variation among divergent populations of stalk-eyed flies, genus Cyrtodiopsis. Genet. Res. 84, 27–40 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yue, G.-H., Kovacs, B. & Orban, L. A new problem with cross-species amplification of microsatellites: Generation of non-homologous products. Dongwuxue Yanjiu 2, 131–140 (2010).
    Google Scholar 
    27.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dąbrowski, M. J., Bornelöv, S., Kruczyk, M., Baltzer, N. & Komorowski, J. ‘True’ null allele detection in microsatellite loci: A comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Primmer, C. R., Møller, A. P. & Ellegren, H. A wide-range survey of cross-species microsatellite amplification in birds. Mol. Ecol. 5, 365–378 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Jaroszewicz, B. et al. Białowieża forest—A relic of the high naturalness of European forests. Forests 10, 849 (2019).Article 

    Google Scholar 
    31.Campos, A. R. et al. How do Robins Erithacus rubecula resident in Iberia respond to seasonal flooding by conspecific migrants?. Bird Study 58, 435–442 (2011).Article 

    Google Scholar 
    32.Owen, J. C. Collecting, processing, and storing avian blood: A review. J. Field Ornithol. 82, 339–354 (2011).Article 

    Google Scholar 
    33.Horváth, M. B., Martínez-Cruz, B., Negro, J. J., Kalmár, L. & Godoy, J. A. An overlooked DNA source for non-invasive genetic analysis in birds. J. Avian Biol. 36, 84–88 (2005).Article 

    Google Scholar 
    34.Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Austin, J. D. et al. Permanent genetic resources added to Molecular Ecology Resources Database 1 February 2011–31 March 2011. Mol. Ecol. Resour. 11, 757–758 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    39.Rousset, F. GENEPOP’007: A complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    40.Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www.unil.ch/izea/softwares/fstat.htlm (2001).41.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grohme, M. A., Soler, R. F., Wink, M. & Frohme, M. Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55, 253–256 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Liljegren, M. M., de Muinck, E. J. & Trosvik, P. Microsatellite length scoring by single molecule real time sequencing-effects of sequence structure and PCR regime. PLoS ONE 11, e0159232 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Dutta, N. et al. Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology. Mol. Biol. Rep. 46, 41–49 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Corner, S., Yuzbasiyan-Gurkan, V., Agnew, D. & Venta, P. J. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. Conserv. Genet. Resour. 11, 487–497 (2019).Article 

    Google Scholar 
    47.Graham, B. A., Carpenter, A. M., Friesen, V. L. & Burg, T. M. A comparison of neutral genetic differentiation and genetic diversity among migratory and resident populations of Golden-crowned-Kinglets (Regulus satrapa). J. Ornithol. 161, 509–519 (2020).Article 

    Google Scholar 
    48.Bensch, S., Grahn, M., Müller, N., Gay, L. & Akesson, S. A. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18, 3087–3096 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Kralj, J., Procházka, P., Fainová, D., Patzenhauerová, H. & Tutiš, V. Intraspecific variation in the wing shape and genetic differentiation of reed warblers Acrocephalus scirpaceus in Croatia. Acta Ornithol. 45, 51–58 (2010).Article 

    Google Scholar 
    50.Mettler, R. et al. Contrasting patterns of genetic differentiation among blackcaps (Sylvia atricapilla) with divergent migratory orientations in Europe. PLoS ONE 8, e81365 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Gyllensten, U., Jakonsson, S. & Temrin, H. No evidence for illegitimate young in monogamous and polygynous warblers. Nature 343, 168–170 (1990).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gil, D., Slater, P. J. B. & Graves, J. A. Extrapair paternity and song characteristics in the willow warbler Phylloscopus trochilus. J. Avian Biol. 38, 291–297 (2007).Article 

    Google Scholar 
    53.Moskalenko, V. N., Belokon, M. M., Belokon, Y. S. & Goretskaia, M. I. Extrapair young in nests of the Wood Warbler (Phylloscopus sibilatrix) in the Middle Russia (poster). In 26th International Ornithological Congress (2014).54.Grendelmeier, A., Arlettaz, R., Olano-Marin, J. & Pasinelli, G. Experimentally provided conspecific cues boost bird territory density but not breeding performance. Behav. Ecol. 28, 174–185 (2017).Article 

    Google Scholar 
    55.Petrie, M. & Kempenaers, B. Extrapair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13, 52–58 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Wagner, R. H. Hidden leks: sexual selection and the clustering of avian territories. Ornithol. Monogr. 49, 123–145 (1998).Article 

    Google Scholar 
    57.Fletcher, R. J. & Miller, C. W. On the evolution of hidden leks and the implications for reproductive and habitat selection behaviours. Anim. Behav. 71, 1247–1251 (2006).Article 

    Google Scholar 
    58.Broughton, R. K., Bubnicki, J. W. & Maziarz, M. Multi-scale settlement patterns of a migratory songbird in a European primeval forest. Behav. Ecol. Sociobiol. 74, 1–12 (2020).Article 

    Google Scholar  More

  • in

    Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).ADS 
    Article 

    Google Scholar 
    4.McWilliam, M., Chase, T. J. & Hoogenboom, M. O. Neighbor diversity regulates the productivity of coral assemblages. Curr. Biol. 28, 3634–3639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Gardner, T. A. Long-term region-wide declines in caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27—year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1208909109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).ADS 
    Article 

    Google Scholar 
    11.Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef: Demographic change in Australia’s corals. Proc. R. Soc. B Biol. Sci. 287, 20201432 (2020).Article 

    Google Scholar 
    12.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 1–10 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).ADS 
    Article 

    Google Scholar 
    14.Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 
    Article 

    Google Scholar 
    15.Hall, T. E. et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecol. Appl. 31, 1–11 (2021).Article 

    Google Scholar 
    16.Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).ADS 
    Article 

    Google Scholar 
    18.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    19.Pratchett, M. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).
    Google Scholar 
    20.Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: Porites growth anomalies on the great barrier reef. PLoS ONE 9, e88720 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Linares, C., Pratchett, M. S. & Coker, D. J. Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 438, 97–104 (2011).ADS 
    Article 

    Google Scholar 
    22.Victor, S., Golbuu, Y., Yukihira, H. & Van Woesik, R. Acropora size-frequency distributions reflect spatially variable conditions on coral reefs of Palau. Bull. Mar. Sci. 85, 149–157 (2009).
    Google Scholar 
    23.Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).ADS 
    Article 

    Google Scholar 
    24.Pratchett, M. S., McWilliam, M. J. & Riegl, B. Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 39, 783–793 (2020).Article 

    Google Scholar 
    25.Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    26.Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    27.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    28.Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).Article 

    Google Scholar 
    29.Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Team, R. C. R: A Language and Environment for Statistical Computing. (2020).35.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    36.Evans, R. D. et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 268, 110666 (2020).Article 

    Google Scholar 
    37.Carlot, J. et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob. Chang. Biol. 27, 2623–2632 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    39.Baird, A., Emslie, M. & Lewis, A. Extended periods of coral recruitment on the Great Barrier Reef. In Proc. 12th Int. Coral Reef Symp. (2012).40.Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Edmunds, P. J. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202, 113–124 (2000).ADS 
    Article 

    Google Scholar 
    42.Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7 (2019).Article 

    Google Scholar 
    46.Abràmoff, M. D., Hospitals, I., Magalhães, P. J. & Abràmoff, M. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar  More

  • in

    Humpback whale song recordings suggest common feeding ground occupation by multiple populations

    1.Clapham, P. J. Humpback whale: Megaptera novaeangliae. In Encyclopedia of Marine Mammals 489–492 (Elsevier, 2018).Chapter 

    Google Scholar 
    2.Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    3.Geijer, C. K. A., Notarbartolo di Sciara, G. & Panigada, S. Mysticete migration revisited: Are Mediterranean fin whales an anomaly?. Mamm. Rev. 46, 284–296 (2016).Article 

    Google Scholar 
    4.Baker, C. S. & Herman, L. M. Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Can. J. Zool. 62, 1922–1937 (1984).Article 

    Google Scholar 
    5.Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).PubMed 
    Article 

    Google Scholar 
    6.Palsbøll, P. J., Clapham, P. J., Mattila, D. K. & Vasquez, O. Composition and dynamics of humpback whale competitive groups in the West Indies. Behaviour 122, 182–194 (1992).Article 

    Google Scholar 
    7.Payne, R. S. & Mcvay, S. Songs of Humpback Whales. Science 173, 585–597 (1971).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Kroodsma, D. E. & Byers, B. E. The function (s) of bird song. Am. Zool. 31, 318–328 (1991).Article 

    Google Scholar 
    9.Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the Ocean Basin Scale. Curr. Biol. 21, 687–691 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495 (2007).Article 

    Google Scholar 
    11.Smith, J. N., Goldizen, A. W., Dunlop, R. A. & Noad, M. J. Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Anim. Behav. 76, 467–477 (2008).Article 

    Google Scholar 
    12.Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 30, 163–179 (2020).Article 

    Google Scholar 
    13.Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Vu, E. T. et al. Humpback whale song occurs extensively on feeding grounds in the western North Atlantic Ocean. Aquat. Biol. 14, 175–183 (2012).Article 

    Google Scholar 
    15.McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).Article 

    Google Scholar 
    16.Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).Article 

    Google Scholar 
    17.Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. B 271, 1051–1057 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetac. Res. Manag. 3, 1–50 (2011).
    Google Scholar 
    19.International Whaling Commission. Annex H: Report of the Sub-Committee on Other Southern Hemisphere Whale Stocks. (2016).20.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Gabriele, C. & Frankel, A. The occurrence and significance of humpback whale songs in Glacier Bay, Southeastern Alaska. Arctic Res. USA 16, 42–47 (2002).
    Google Scholar 
    22.Payne, R. & Guinee, L. Humpback whales (Megaptera novaeangliae) songs as an indicator of stocks. In Communication and Behavior of Whales (ed. Payne, R.) 333–358 (Westview Press, 1983).
    Google Scholar 
    23.Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Z. Tierpsychol. 68, 89–114 (1985).Article 

    Google Scholar 
    24.Winn, H. et al. Song of the humpback whale—population comparisons. Behav. Ecol. Sociobiol. 8, 41–46 (1981).Article 

    Google Scholar 
    25.Winn, H. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    26.Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mamm. Sci. 29, E312–E332 (2013).Article 

    Google Scholar 
    27.Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    28.Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Magnúsdóttir, E. E. et al. Humpback whale (Megaptera novaeangliae) song unit and phrase repertoire progression on a subarctic feeding ground. J. Acoust. Soc. Am. 138, 3362–3374 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    30.Mattila, D. K., Guinee, L. N. & Mayo, C. A. Humpback whale songs on a North Atlantic feeding ground. J. Mammal. 68, 880–883 (1987).Article 

    Google Scholar 
    31.Teschke, K., Pehlke, H., Deininger, M., Jerosch, K. & Brey, T. Scientific Background Document in Support of the Development of a CCAMLR MPA in the Weddell Sea (Antarctica)–Version 2016. (2016).32.Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoust. Soc. Am. 143, 298–304 (2018).Article 
    ADS 

    Google Scholar 
    33.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res.-Oceans 113, C02S03 (2008).Article 
    ADS 

    Google Scholar 
    34.Tynan, C. T. & Thiele, D. Report on Antarctic ice edge definition by the ad hoc working group on ice data collection in the Antarctic. Paper: SC/55/19, submitted to the Scientific Committee of the International Whaling Commission (2003).35.Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).Article 

    Google Scholar 
    36.Kohonen, T. Median strings. Pattern Recogn. Lett. 3, 309–313 (1985).Article 
    ADS 

    Google Scholar 
    37.Schall, E. et al. Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    38.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    39.Darling, J. D., Acebes, J. M. V., Frey, O., Urbán, R. J. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    40.Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    41.Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E. & Boebel, O. Calling in the cold: Pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters. PLoS ONE 8, 1–7 (2013).
    Google Scholar 
    42.Craig, A. S., Herman, L. M., Gabriele, C. M. & Pack, A. A. Migratory timing of humpback whales (Megaptera novaeangliae) in the central north Pacific varies with age, sex and reproductive status. Behaviour 140, 981–1001 (2003).Article 

    Google Scholar 
    43.Dawbin, W. Temporal segregation of humpback whales during migration in southern hemisphere waters. Mem. Qld. Mus. 42, 105–138 (1997).
    Google Scholar 
    44.Magnúsdóttir, E., Rasmussen, M., Lammers, M. & Svavarsson, J. Humpback whale songs during winter in subarctic waters. Polar Biol. 37, 427–433 (2014).Article 

    Google Scholar 
    45.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. Part 1 91, 101–114 (2014).Article 

    Google Scholar 
    46.Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Research (Part II, Topical Studies in Oceanography) 51, 2311–2325 (2004).Article 
    ADS 

    Google Scholar 
    47.Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    48.McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: Using song to identify populations. J. Cetac. Res. Manage. 8, 55–65 (2006).
    Google Scholar 
    49.Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).Article 

    Google Scholar 
    50.Oleson, E. M., Širović, A., Bayless, A. R. & Hildebr, J. A. Synchronous seasonal change in fin whale song in the North Pacific. PLoS ONE 9, e115678 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    52.Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Species Res. 18, 95–103 (2012).Article 

    Google Scholar 
    53.Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).Article 
    ADS 

    Google Scholar 
    54.Brenowitz, E. A., Margoliash, D. & Nordeen, K. W. An introduction to birdsong and the avian song system. J. Neurobiol. 33, 495–500 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Tobias, J., Gamarra-Toledo, V., García-Olaechea, D., Pulgarin, P. & Seddon, N. Year-round resource defence and the evolution of male and female song in suboscine birds: Social armaments are mutual ornaments. J. Evol. Biol. 24, 2118–2138 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Vu, E. T., Clark, C., Catelani, K., Kellar, N. M. & Calambokidis, J. Seasonal blubber testosterone concentrations of male humpback whales (Megaptera novaeangliae). Mar. Mam. Sci. 31, 1258–1264 (2015).Article 

    Google Scholar 
    57.Yamada, K. & Soma, M. Diet and birdsong: Short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    58.Casagrande, S., Pinxten, R., Zaid, E. & Eens, M. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder. PeerJ 4, e2512 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Weinrich, M. Humpback whale competitive groups observed on a high-latitude feeding ground. Mar. Mamm. Sci. 11, 251–254 (1995).Article 

    Google Scholar 
    60.Chittleborough, R. The breeding cycle of the female humpback whale, Megaptera nodosa (Bonnaterre). Mar. Freshw. Res. 9, 1–18 (1958).Article 

    Google Scholar 
    61.Chittleborough, R. Studies on the ovaries of the humback whale, Megaptera nodosa (bonnaterre), on the western Australian coast. Mar. Freshw. Res. 5, 35–63 (1954).Article 

    Google Scholar 
    62.Cerchio, S., Jacobsen, J. K. & Norris, T. F. Temporal and geographical variation in songs of humpback whales, Megaptera novaeangliae: Synchronous change in Hawaiian and Mexican breeding assemblages. Anim. Behav. 62, 313–329 (2001).Article 

    Google Scholar 
    63.Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    64.Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B 285, 20182088 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Stevick, P. T. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetac. Res. Manag. 6, 109–113 (2004).
    Google Scholar 
    66.Engel, M. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253–1262 (2008).CAS 
    Article 

    Google Scholar 
    67.Amaral, A. R. et al. Population genetic structure among feeding aggregations of humpback whales in the Southern Ocean. Mar. Biol. 163, 1–13 (2016).Article 

    Google Scholar 
    68.Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. R. Soc. Open Sci. 5, 172305 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    69.Darling, J. D. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in the western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566 (2005).Article 

    Google Scholar 
    70.Razafindrakoto, Y., Cerchio, S., Collins, T., Rosenbaum, H. & Ngouessono, S. Similarity of humpback whale song from Madagascar and Gabon indicates significant contact between South Atlantic and southwest Indian Ocean populations. PLoS ONE 8, e79422 (2009).
    Google Scholar 
    71.Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetac. Res. Manag. 3, 113–118 (2011).
    Google Scholar 
    72.Rosenbaum, H. C., Maxwell, S. M., Kershaw, F. & Mate, B. Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv. Biol. 28, 604–615 (2014).PubMed 
    Article 

    Google Scholar 
    73.Filun, D. et al. Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter. R. Soc. Open Sci. 7, 192112 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    74.Rettig, S. et al. In International Confence and Exhibition on Underwater Acoustics. (eds Papadakis, J. & Bjorno, L.) 1669–1674.75.Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    76.Klinck, H. et al. Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga). J. Acoust. Soc. Am. 128, 474–479 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    77.Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Schall, E. & Van Opzeeland, I. Calls produced by Ecotype C killer whales (Orcinus orca) off the Eckstrom iceshelf, Antarctica. Aquat. Mamm. 43, 117–126 (2017).Article 

    Google Scholar 
    79.Van Opzeeland, I. et al. Acoustic ecology of Antarctic pinnipeds. Mar. Ecol. Prog. Ser. 414, 267–291 (2010).Article 
    ADS 

    Google Scholar 
    80.Dunlop, R. A., Cato, D. H. & Noad, M. J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mamm. Sci. 24, 613–629 (2008).Article 

    Google Scholar 
    81.Stimpert, A. K., Au, W. W., Parks, S. E., Hurst, T. & Wiley, D. N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoust. Soc. Am. 129, 476–482 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    82.Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).
    Google Scholar 
    83.Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).Article 
    ADS 

    Google Scholar 
    84.Greene, C. A. Daily Antarctic Sea Ice Concentration (2020).85.Schall, E., Roca, I. & Van Opzeeland, I. Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean. J. Acoust. Soc. Am. 149, 4649–4658 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    86.Dalla Rosa, L., Secchi, E., Maia, Y. G., Zerbini, A. & Heide-Jørgensen, M. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).Article 

    Google Scholar 
    87.Zann, R. & Cash, E. Developmental stress impairs song complexity but not learning accuracy in non-domesticated zebra finches (Taeniopygia guttata). Behav. Ecol. Sociobiol. 62, 391–400 (2008).Article 

    Google Scholar 
    88.Woodgate, J. L., Mariette, M. M., Bennett, A. T., Griffith, S. C. & Buchanan, K. L. Male song structure predicts reproductive success in a wild zebra finch population. Anim. Behav. 83, 773–781 (2012).Article 

    Google Scholar 
    89.Boogert, N. J., Giraldeau, L.-A. & Lefebvre, L. Song complexity correlates with learning ability in zebra finch males. Anim. Behav. 76, 1735–1741 (2008).Article 

    Google Scholar 
    90.Templeton, C. N., Laland, K. N. & Boogert, N. J. Does song complexity correlate with problem-solving performance in flocks of zebra finches?. Anim. Behav. 92, 63–71 (2014).Article 

    Google Scholar 
    91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.92.Suzuki, R., Terada, Y. & Shimodaira, H. pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. R Package Version 2.2–0 (2019).93.Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour 149, 1413–1441 (2012).Article 

    Google Scholar 
    94.Van der Loo, M. P. The stringdist package for approximate string matching. R J. 6, 111–122 (2014).Article 

    Google Scholar 
    95.Pawlowicz, R. M_Map: A Mapping Package for MATLAB v. Version 1.4m. www.eoas.ubc.ca/~rich/map.html (2020). More