More stories

  • in

    Heterothermy as a mechanism to offset energetic costs of environmental and homeostatic perturbations

    1.Wingfield, J. C., Vleck, C. M. & Moore, M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J. Exp. Zool. 264, 419–428 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108 (2004).PubMed 
    Article 

    Google Scholar 
    3.Lind, J. & Cresswell, W. Determining the fitness consequences of antipredation behavior. Behav. Ecol. 16, 945–956 (2005).Article 

    Google Scholar 
    4.Boyles, J. G., Smit, B. & McKechnie, A. E. A new comparative metric for estimating heterothermy in endotherms. Physiol. Biochem. Zool. 84, 115–123 (2011).PubMed 
    Article 

    Google Scholar 
    5.Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).Article 

    Google Scholar 
    6.Canale, C. I., Levesque, D. L. & Lovegrove, B. G. Tropical heterothermy: Does the exception prove the rule or force a re-definition? In Living in a Seasonal World: Thermoregulatory and Metabolic adaptations (eds Ruf, T. et al.) 29–40 (Springer, Berlin, 2012).Chapter 

    Google Scholar 
    7.Dammhahn, M., Landry-Cuerrier, M., Réale, D., Garant, D. & Humphries, M. M. Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct. Ecol. 31, 866–875 (2017).Article 

    Google Scholar 
    8.McGuire, L. P., Jonasson, K. A. & Guglielmo, C. G. Bats on a budget: Torpor-assisted migration saves time and energy. PLoS ONE 9, e115724 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Glazier, D. S. Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Funct. Ecol. 23, 963–968 (2009).Article 

    Google Scholar 
    10.Turbill, C. & Stojanovski, L. Torpor reduces predation risk by compensating for the energetic cost of antipredator foraging behaviours. Proc. R. Soc. B Biol. Sci. 285, 1–9 (2018).
    Google Scholar 
    11.Angilletta, M. J., Cooper, B. S., Schuler, M. S. & Boyles, J. G. The evolution of thermal physiology in endotherms. Front. Biosci. 2, 861–881 (2010).
    Google Scholar 
    12.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).Book 

    Google Scholar 
    13.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34, 2292–2301 (2020).Article 

    Google Scholar 
    15.Humphries, M. M. & Careau, V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr. Comp. Biol. 51, 419–431 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Daly, M., Behrends, P. R., Wilson, M. I. & Jacobs, L. F. Behavioural modulation of predation risk: Moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44, 1–9 (1992).Article 

    Google Scholar 
    17.Price, M. V., Waser, N. M. & Bass, T. A. Effects of moonlight on microhabitat use by desert rodents. J. Mammal. 65, 353–356 (1984).Article 

    Google Scholar 
    18.Roschlau, C. & Scheibler, E. Foraging behaviour of a desert rodent community: Habitat or moon—Which is more influential?. Ethol. Ecol. Evol. 28, 394–413 (2016).Article 

    Google Scholar 
    19.Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).
    Google Scholar 
    20.Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, 35–38 (2011).Article 
    CAS 

    Google Scholar 
    21.Upham, N. S. & Hafner, J. C. Do nocturnal rodents in the great basin desert avoid moonlight?. J. Mammal. 94, 59–72 (2013).Article 

    Google Scholar 
    22.Price, M. V. Structure of desert rodent communities: A critical review of questions and approaches. Integr. Comp. Biol. 26, 39–49 (1986).
    Google Scholar 
    23.Bennett, A. M. et al. Acute changes in whole body corticosterone in response to perceived predation risk: A mechanism for anti-predator behavior in anurans? Gen. Comp. Endocrinol. 229, 62–66 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hernández, M. C., Navarro-Castilla, Á., Planillo, A., Sánchez-González, B. & Barja, I. The landscape of fear: Why some free-ranging rodents choose repeated live-trapping over predation risk and how it is associated with the physiological stress response. Behav. Process. 157, 125–132 (2018).Article 

    Google Scholar 
    25.Thaker, M., Lima, S. L. & Hews, D. K. Acute corticosterone elevation enhances antipredator behaviors in male tree lizard morphs. Horm. Behav. 56, 51–57 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Mitra, R. & Sapolsky, R. M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. 105, 5573–5578 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Schroder, G. D. Foraging behavior and home range utilization of the bannertial kangaroo rat (Dipodomys spectabilis). Ecology 60, 657–665 (1979).ADS 
    Article 

    Google Scholar 
    29.Andersen, M. C. & Kay, F. R. Banner-tailed kangaroo rat burrow mounds and desert grassland habitats. J. Arid Environ. 41, 147–160 (1999).ADS 
    Article 

    Google Scholar 
    30.Harris, J. H. An experimental analysis of desert rodent foraging ecology. Ecology 65, 1579–1584 (1984).Article 

    Google Scholar 
    31.Lockard, R. B. Seasonal change in the activity pattern of Dipodomys spectabilis. J. Mammal. 59, 563–568 (1978).Article 

    Google Scholar 
    32.Lockard, R. B. & Owings, D. H. Seasonal variation in moonlight avoidance by bannertail kangaroo rats. J. Mammal. 55, 189–193 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Dawson, W. R. The relaxation of oxygen consumption to temperature in desert rodents. J. Mammal. 36, 543–553 (1955).Article 

    Google Scholar 
    34.Hart, J. S. Rodents. In Mammals. 1–149 (Academic Press, 1971).35.Quispe, R., Trappschuh, M., Gahr, M. & Goymann, W. Towards more physiological manipulations of hormones in field studies: Comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax. Gen. Comp. Endocrinol. 212, 100–105 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Sahores, A. et al. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS ONE 8, e64049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Akana, S. F. et al. Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology 131, 585–594 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bush, V. L., Middlemiss, D. N., Marsden, C. A. & Fone, K. C. F. Implantation of a slow release rorticosterone pellet induces long-term alterations in serotonergic neurochemistry in the rat brain. J. Neuroendocrinol. 15, 607–613 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Meyer, J. S., Micco, D. J., Stephenson, B. S., Krey, L. C. & McEwen, B. S. Subcutaneous implantation method for chronic glucocorticoid replacement therapy. Physiol. Behav. 22, 867–870 (1979).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Chang, C. C. & Kincl, F. A. Sustained release hormonal preparations: 3. Biological effectiveness of 6-methyl-1717α-acetoxypregna-4,6-diene-3,20-dione. Steroids 12, 689–696 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Kratochvíl, P., Benagiano, G. & Kincl, F. A. Sustained release hormonal preparations. 6. Permeability constant of various steroids. Steroids 15, 505–511 (1970).PubMed 
    Article 

    Google Scholar 
    43.Nash, H. A., Robertson, D. N., Moo Young, A. J. & Atkinson, L. E. Steroid release from silastic capsules and rods. Contraception 18, 367–394 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Borrow, A. P. et al. Chronic variable stress alters hypothalamic–pituitary–adrenal axis function in the female mouse. Physiol. Behav. 209, 112613 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Lajud, N., Roque, A., Cajero, M., Gutiérrez-Ospina, G. & Torner, L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37, 410–420 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Mateo, J. M. & Cavigelli, S. A. A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels. Physiol. Biochem. Zool. 78, 1069–1084 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Touma, C., Palme, R. & Sachser, N. Analyzing corticosterone metabolites in fecal samples of mice: A noninvasive technique to monitor stress hormones. Horm. Behav. 45, 10–22 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Torres-Medina, F. et al. Corticosterone implants produce stress-hyporesponsive birds. J. Exp. Biol. 221, jeb173864 (2018).PubMed 
    Article 

    Google Scholar 
    49.Adzic, M. et al. Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J. Endocrinol. 202, 87–97 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ellis, M. V. Development of a compact system for field euthanasia of small mammals. J. Mammal. 98, 1211–1214 (2017).Article 

    Google Scholar 
    51.Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75 (2011).Article 

    Google Scholar 
    52.McGuire, L. P. & Guglielmo, C. G. Quantitative magnetic resonance: A rapid, noninvasive body composition analysis technique for live and salvaged bats. J. Mammal. 91, 1375–1380 (2010).Article 

    Google Scholar 
    53.Warner, D. A., Johnson, M. S. & Nagy, T. R. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J. Exp. Zool. Part A Ecol. Genet. Physiol. 325, 588–597 (2016).CAS 
    Article 

    Google Scholar 
    54.Boyles, J. G. A brief introduction to methods for describing body temperature in endotherms. Physiol. Biochem. Zool. 92, 365–372 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Monson, G. & Kessler, W. Life history notes on the banner-tailed kangaroo rat, Merriam’s kangaroo rat, and the white-throated wood rat in Arizona and New Mexico. J. Wildl. Manag. 4, 37–43 (1940).Article 

    Google Scholar 
    56.Smit, B., Boyles, J. G., Brigham, R. M. & Mckechnie, A. E. Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J. Biol. Rhythms 26, 241–248 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kay, F. R. & Whitford, W. G. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in southcentral New Mexico. Am. Midl. Nat. 99, 270–279 (1978).Article 

    Google Scholar 
    58.Randall, J. A. Territorial-defense interactions with neighbors and strangers in banner-tailed kangaroo rats. J. Mammal. 70, 308–315 (1989).Article 

    Google Scholar 
    59.Randall, J. A. Mating strategies of a nocturnal, desert rodent (Dipodomys spectabilis). Behav. Ecol. Sociobiol. 28, 215–220 (1991).Article 

    Google Scholar 
    60.Ward, D. W. & Randall, J. A. Territorial defense in the bannertail kangaroo rat (Dipodomys spectabilis): footdrumming and visual threats. Behav. Ecol. Sociobiol. 20, 323–328 (1987).Article 

    Google Scholar 
    61.Brown, J. S., Kotler, B. P., Smith, R. J. & Wirtz, W. O. The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia 76, 408–415 (1988).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Navarro-Castilla, Á., Barja, I. & Díaz, M. Foraging, feeding, and physiological stress responses of wild wood mice to increased illumination and common genet cues. Curr. Zool. 64, 409–417 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Sargunaraj, F., Kotler, B. P., Juliana, J. R. S. & Wielebnowski, N. Stress as an adaptation II: Does experimental cortisol supplementation affect predation risk assessment in foraging gerbils?. Evol. Ecol. Res. 18, 587–598 (2017).
    Google Scholar 
    64.Voellmy, I. K., Goncalves, I. B., Barrette, M. F., Monfort, S. L. & Manser, M. B. Mean fecal glucocorticoid metabolites are associated with vigilance, whereas immediate cortisol levels better reflect acute anti-predator responses in meerkats. Horm. Behav. 66, 759–765 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Kotler, B. P., Brown, J., Mukherjee, S., Berger-Tal, O. & Bouskila, A. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc. R. Soc. B Biol. Sci. 277, 1469–1474 (2010).Article 

    Google Scholar 
    66.Pravosudov, V. V. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory. Proc. R. Soc. B Biol. Sci. 270, 2599–2604 (2003).CAS 
    Article 

    Google Scholar 
    67.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    68.Humphries, M. M., Kramer, D. L. & Thomas, D. W. The role of energy availability in mammalian hibernation: An experimental test in free-ranging eastern chipmunks. Physiol. Biochem. Zool. 76, 165–179 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Munro, D., Thomas, D. W. & Humphries, M. M. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J. Anim. Ecol. 74, 692–700 (2005).Article 

    Google Scholar 
    70.Ernest, S. K. M. et al. Rodents, plants, and precipitation: Spatial and temporal dynamics of consumers and resources. Oikos 88, 470–482 (2017).Article 

    Google Scholar 
    71.Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91, 1628–1638 (2010).PubMed 
    Article 

    Google Scholar 
    72.Warne, R. W., Baer, S. G. & Boyles, J. G. Community physiological ecology. Trends Ecol. Evol. 34, 510–518 (2019).PubMed 
    Article 

    Google Scholar  More

  • in

    Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish

    1.Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).PubMed 
    Article 

    Google Scholar 
    2.Grandjean, P. & Landrigan, P. J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13, 330–338 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Boix, J., Cauli, O. & Felipo, V. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats mechanisms involved. Neuroscience 167, 994–1003 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Boucher, O., Muckle, G. & Bastien, C. H. Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environ. Health Perspect. 117, 7–16 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Ennaceur, S., Gandoura, N. & Driss, M. R. Distribution of polychlorinated biphenyls and organochlorine pesticides in human breast milk from various locations in Tunisia: Levels of contamination, influencing factors, and infant risk assessment. Environ. Res. 108, 86–93 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Lancz, K. et al. Duration of breastfeeding and serum PCB 153 concentrations in children. Environ. Res. 136, 35–39 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Herbstman, J. B. et al. Determinants of prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in an urban population. Environ. Health Perspect. 115, 1794–1800 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Lancz, K. et al. Ratio of cord to maternal serum PCB concentrations in relation to their congener-specific physicochemical properties. Int J. Hyg. Env. Health 218, 91–98 (2015).CAS 
    Article 

    Google Scholar 
    9.Bergonzi, R. et al. Distribution of persistent organochlorine pollutants in maternal and foetal tissues: data from an Italian polluted urban area. Chemosphere 76, 747–754 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Patel, J. F., Hartman, T. J., Sjodin, A., Northstone, K. & Taylor, E. V. Prenatal exposure to polychlorinated biphenyls and fetal growth in British girls. Environ. Int. 116, 116–121 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Rice, D. & Barone, S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 108, 511–533 (2000).PubMed 
    PubMed Central 

    Google Scholar 
    12.Trnovec, T. et al. Serum PCB concentrations and cochlear function in 12-year-old children. Environ. Sci. Technol. 44, 2884–2889 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Jusko, T. A. et al. Prenatal and postnatal serum PCB concentrations and cochlear function in children at 45 months of age. Environ. Health Perspect. 122, 1246–1252 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Ribas-Fitó, N., Sala, M., Kogevinas, M. & Sunyer, J. Polychlorinated biphenyls (PCBs) and neurological development in children: A systematic review. J. Epidemiol. Community Health 55, 537–546 (2001).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Walkowiak, J. et al. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 358, 1602–1607 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Chen, Y.-C. J., Guo, Y.-L., Hsu, C.-C. & Rogan, W. J. Cognitive development of Yu-Cheng (‘Oil Disease’) children prenatally exposed to heat-degraded PCBs. JAMA 268, 3213 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Berger, D. F. et al. Hyperactivity and impulsiveness in rats fed diets supplemented with either Aroclor 1248 or PCB-contaminated St. Lawrence river fish. Behav. Brain Res. 126, 1–11 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Johansen, E. B. et al. Behavioral changes following PCB 153 exposure in the spontaneously hypertensive rat—an animal model of attention-deficit/hyperactivity disorder. Behav. Brain Funct. 10, 1–19 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Crofton, K. M., Ding, D.-L., Padich, R., Taylor, M. & Henderson, D. Hearing loss following exposure during development to polychlorinated biphenyls: a cochlear site of action. Hear. Res. 144, 196–204 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Goldey, E. S., Kehn, L. S., Lau, C., Rehnberg, G. L. & Crofton, K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol. Appl. Pharmacol. 135, 77–88 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lilienthal, H., Korkalainen, M., Andersson, P. L. & Viluksela, M. Developmental exposure to purity-controlled polychlorinated biphenyl congeners (PCB74 and PCB95) in rats: Effects on brainstem auditory evoked potentials and catalepsy. Toxicology 327, 22–31 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Lilienthal, H., Heikkinen, P., Andersson, P. L., van der Ven, L. T. M. & Viluksela, M. Auditory effects of developmental exposure to purity-controlled polychlorinated biphenyls (PCB52 and PCB180) in rats. Toxicol. Sci. 122, 100–111 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Poon, E., Bandara, S. B., Allen, J. B., Sadowski, R. N. & Schantz, S. L. Developmental PCB exposure increases susceptibility to audiogenic seizures in adulthood. Neurotoxicology 46, 117–124 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci. 37, 264–278 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Fonnum, F. & Mariussen, E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J. Neurochem. 111, 1327–1347 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dervola, K. S. N., Johansen, E. B., Walaas, S. I. & Fonnum, F. Gender-dependent and genotype-sensitive monoaminergic changes induced by polychlorinated biphenyl 153 in the rat brain. Neurotoxicology 50, 38–45 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Campagna, R. et al. Cerebellum Proteomics addressing the cognitive deficit of rats perinatally exposed to the food-relevant polychlorinated biphenyl 138. Toxicol. Sci. 123, 170–179 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Enayah, S. H., Vanle, B. C., Fuortes, L. J., Doorn, J. A. & Ludewig, G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394, 93–101 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Langeveld, W. T., Meijer, M. & Westerink, R. H. S. Differential effects of 20 non-dioxin-like PCBs on basal and depolarization-evoked intracellular calcium levels in PC12 cells. Toxicol. Sci. 126, 487–496 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Keil, K. P., Sethi, S. & Lein, P. J. Sex-dependent effects of 2,2′,3,5′,6-pentachlorobiphenyl on dendritic arborization of primary mouse neurons. Toxicol. Sci. 168, 95–109 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Pruitt, D. L., Meserve, L. A. & Bingman, V. P. Reduced growth of intra- and infra-pyramidal mossy fibers is produced by continuous exposure to polychlorinated biphenyl. Toxicology 138, 11–17 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Yang, D. et al. Developmental exposure to polychlorinated biphenyls interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats. Environ. Health Perspect. 117, 426–435 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lein, P. J. et al. Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. Environ. Health Perspect. 115, 556–563 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tropepe, V. & Sive, H. L. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes. Brain Behav. 2, 268–281 (2003).CAS 

    Google Scholar 
    35.Maximino, C. & Herculano, A. M. A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish 7, 359–378 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Wolman, M. A. A. et al. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 85, 1200–1211 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Meserve Id, J. H. et al. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet. 17, e1008943 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Voesenek, C. J., Muijres, F. T. & Van Leeuwen, J. L. Biomechanics of swimming in developing larval fish. J. Exp. Biol. 221, jeb149583 (2018).40.Roberts, A. Early functional organization of spinal neurons in developing lower vertebrates. Brain Res. Bull. 53, 585–593 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Liu, Y. C. & Hale, M. E. Local spinal cord circuits and bilateral mauthner cell activity function together to drive alternative startle behaviors. Curr. Biol. 27, 697–704 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Burgess, H. A. & Granato, M. Sensorimotor gating in larval zebrafish. J. Neurosci. 27, 4984–4994 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Troconis, E. L. et al. Intensity-dependent timing and precision of startle response latency in larval zebrafish. J. Physiol. 595, 265–282 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Smith, N. L. & Kimelman, D. Establishing the body plan: The first 24 h of zebrafish development. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications, https://doi.org/10.1016/B978-0-12-812431-4.00007-5 (Elsevier, 2019).45.Meyers, J. R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Tabor, K. M. et al. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J. Neurophysiol. 112, 834–844 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jain, R. A. et al. A forward genetic screen in zebrafish identifies the G-protein-coupled receptor CaSR as a modulator of sensorimotor decision making. Curr. Biol. 28, 1357–1369.e5 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Mariussen, E. & Fonnum, F. The effect of polychlorinated biphenyls on the high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate and GABA, into rat brain synaptosomes. Toxicology 159, 11–21 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Wigestrand, M. B., Stenberg, M., Walaas, S. I., Fonnum, F. & Andersson, P. L. Non-dioxin-like PCBs inhibit [3H]WIN-35,428 binding to the dopamine transporter: a structure–activity relationship study. Neurotoxicology 39, 18–24 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Oikonomou, G. et al. The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103, 686–701.e8 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fosque, B. F. et al. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Klocke, C. & Lein, P. J. Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. Int. J. Mol. Sci. 21, 1013 (2020).53.Puel JL, Pujol R, Ladrech S, Eybalin M. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid electrophysiological and neurotoxic effects in the guinea-pig cochlea. Neuroscience. Nat. Rev. Neurosci. 45, 63–72. https://doi.org/10.1016/0306-4522(91)90103-u (1991).CAS 
    Article 

    Google Scholar 
    54.Sebe JY, et al. Ca2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci. 37, 6162–6175. https://doi.org/10.1523/JNEUROSCI.3644-16.2017 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Lacoste, A. M. B. et al. A convergent and essential interneuron pathway for mauthner-cell-mediated escapes. Curr. Biol. 25, 1526–1534 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Kang, K. S., Wilson, M. R., Hayashi, T., Chang, C. C. & Trosko, J. E. Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures. Environ. Health Perspect. 104, 192–200 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bager, Y., Lindebro, M. C., Martel, P., Chaumontet, C. & Wärngård, L. Altered function, localization and phosphorylation of gap junctions in rat liver epithelial, IAR 20, cells after treatment with PCBs or TCDD. Environ. Toxicol. Pharmacol. 3, 257–266 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Machala, M. et al. Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: Inhibitory potencies and screening for potential mode(s) of action. Toxicol. Sci. 76, 187–195 (2003).Article 
    CAS 

    Google Scholar 
    60.Nyffeler, J. et al. A structure–activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Arch. Toxicol. 92, 1225–1247 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Kang, K.-S., Park, J.-E., Ryu, D.-Y. & Lee, Y.-S. Effects and neuro-toxic mechanisms of 2,2’,4,4’,5,5’-hexachlorobiphenyl and endosulfan in neuronal stem cells. J. Vet. Med. Sci. 63, 1183–1190 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Aluru, N., Krick, K. S., Mcdonald, A. M. & Karchner, S. I. Developmental exposure to PCB153 (2,2′,4,4′,5,5′-hexachlorobiphenyl) alters circadian rhythms and the expression of clock and metabolic genes. Toxicol. Sci. 173, 41–52 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.GEO Accession viewer. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2450663 (2017).64.Serrano-Velez, J. L. et al. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front. Neural Circuits 8, 66 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Tanaka, Y. et al. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. Chemosphere 193, 1207–1215 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Rungta, R. L. et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 161, 610–621 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cesetti, T., Ciccolini, F. & Li, Y. GABA not only a neurotransmitter: osmotic regulation by GABA AR signaling. Front Cell Neurosci. 6, 3 (2012).68.Fernandes, E. C. A. et al. Potentiation of the human GABAA receptor as a novel mode of action of lower-chlorinated non-dioxin-like PCBs. Environ. Sci. Technol. 44, 2864–2869 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Magnusson, O., Mohringe, B., Thorell, G. & Lake-Bakaar, D. M. Effects of the dopamine D2 selective receptor antagonist remoxipride on dopamine turnover in the rat brain after acute and repeated administration. Pharmacol. Toxicol. 60, 368–373 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Seegal, R. F., Bush, B. & Shain, W. Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture. Toxicol. Appl. Pharmacol. 106, 136–144 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Toro, C. et al. Dopamine modulates the activity of sensory hair cells. J. Neurosci. 35, 16494–16503 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Gafni, J., Wong, P. W. & Pessah, I. N. Non-coplanar 2,2’,3,5’,6-pentachlorobiphenyl (PCB 95) amplifies ionotropic glutamate receptor signaling in embryonic cerebellar granule neurons by a mechanism involving ryanodine receptors. Toxicol. Sci. 77, 72–82 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Ta, T. A., Feng, W., Molinski, T. F. & Pessah, I. N. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Mol. Pharmacol. 69, 532–538 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Brunelli, L. et al. Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls. J. Proteomics. 75, 2417–2430 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).Article 

    Google Scholar 
    76.Lai, Z. et al. Residual distribution and risk assessment of polychlorinated biphenyls in surface sediments of the Pearl River Delta, South China. Bull. Environ. Contam. Toxicol. 95, 37–44 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Gräns, J. et al. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor. Aquat. Toxicol. 159, 198–207 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    78.Hudspeth, A. The cellular basis of hearing: the biophysics of hair cells. Science 230, 745–752 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Nakayama, H. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Pujol-Martí, J. & López-Schier, H. Developmental and architectural principles of the lateral-line neural map. Front. Neural Circuits 7, 47 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Panlilio, J. M., Jones, I. T., Salanga, M. C., Aluru, N. & Hahn, M. E. Developmental exposure to domoic acid disrupts startle response behavior and circuitry in zebrafish. Toxicol. Sci. 182, 310–326 (2021).PubMed 
    Article 

    Google Scholar 
    82.Park, H.-C., Shin, J., Roberts, R. K. & Appel, B. An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Dev. Dyn. 236, 3402–3407 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Shin, J., Park, H.-C., Topczewska, J. M., Mawdsley, D. J. & Appel, B. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci. 25, 7–14 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Takada, N., Kucenas, S. & Appel, B. Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia 58, 996–1006 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    85.Almeida, R. G., Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138, 4443–4450 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Kimmel, C. B. Patterning the brain of the zebrafish embryo. Annu. Rev. Neurosci. 16, 707–732 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Ranasinghe, P. et al. Embryonic exposure to 2,2′,3,5′,6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish. Environ. Toxicol. Chem. 39, 162–170 (2019).Article 
    CAS 

    Google Scholar 
    88.Jönsson, M. E., Kubota, A., Timme-Laragy, A. R., Woodin, B. & Stegeman, J. J. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol. Appl. Pharmacol. 265, 166–174 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Panlilio, J. M., Aluru, N. & Hahn, M. E. Developmental neurotoxicity of the harmful algal bloom toxin domoic acid: Cellular and molecular mechanisms underlying altered behavior in the zebrafish model. Environ. Health Perspect. 128, 117002 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Inoue, D. & Wittbrodt, J. One for all-a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6, 1–7 (2011).Article 
    CAS 

    Google Scholar 
    91.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    Article 

    Google Scholar 
    92.Edwards KA, Hoppa MB, Bosco G. The Photoconvertible Fluorescent Probe, CaMPARI, Labels Active Neurons in Freely-Moving Intact Adult Fruit Flies. Front Neural Circuits. 14, 22 https://doi.org/10.3389/fncir.2020.00022. (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Zhao, Y. et al. Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06632 (2020).94.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar  More

  • in

    Aposematism facilitates the diversification of parental care strategies in poison frogs

    1.Clutton-Brock, T. H. The Evolution of Parental Care Vol. 64 (Princeton University Press, 1991).Book 

    Google Scholar 
    2.Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).Book 

    Google Scholar 
    3.Hansell, M. Bird Nests and Construction Behaviour (Cambridge University Press, 2000).Book 

    Google Scholar 
    4.Doody, J. S., Freedberg, S. & Keogh, J. S. Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Q. Rev. Biol. 84, 229–252 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Boness, D. J. & Don Bowen, W. The evolution of maternal care in pinnipeds: new findings raise questions about the evolution of maternal feeding strategies. Bioscience 46, 645–654 (1996).Article 

    Google Scholar 
    6.Salomon, M., Mayntz, D., Toft, S. & Lubin, Y. Maternal nutrition affects offspring performance via maternal care in a subsocial spider. Behav. Ecol. Sociobiol. 65, 1191–1202 (2011).Article 

    Google Scholar 
    7.Summers, K. Mating and aggressive behaviour in dendrobatid frogs from Corcovado National Park, Costa Rica: a comparative study. Behaviour 137, 7–24 (2000).Article 

    Google Scholar 
    8.Li, D. & Jackson, R. R. A predator’s preference for egg-carrying prey: a novel cost of parental care. Behav. Ecol. Sociobiol. 55, 129–136 (2003).Article 

    Google Scholar 
    9.Stiver, K. A. & Alonzo, S. H. Parental and mating effort: is there necessarily a trade-off?. Ethology 115, 1101–1126 (2009).Article 

    Google Scholar 
    10.Ercit, K., Martinez-Novoa, A. & Gwynne, D. T. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis). PLoS ONE 9, e110298 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494–497 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Thorogood, R., Ewen, J. G. & Kilner, R. M. Sense and sensitivity: responsiveness to offspring signals varies with the parents’ potential to breed again. Philos. Trans. R. Soc. B. 278, 2638–2645 (2011).
    Google Scholar 
    13.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    14.Weir, B. J. & Rowlands, I. Reproductive strategies of mammals. Annu. Rev. Ecol. Evol. Syst. 4, 139–163 (1973).Article 

    Google Scholar 
    15.Kvarnemo, C. In Evolutionary Behavioral Ecology (ed. FoxWestneat, C. W.) (Oxford University Press, 2010).
    Google Scholar 
    16.Alonso-Alvarez, C. & Velando, A. Benefits and costs of parental care. The evolution of parental care, 40–61 (2012).17.Farmer, C. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Ar, A. & Yom-Tov, Y. The evolution of parental care in birds. Evolution 32, 655–669 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gubernick, D. J. Parent and infant attachment in mammals. In Parental care in mammals 243–305 (Springer, 1981).20.Case, T. J. Endothermy and parental care in the terrestrial vertebrates. Am. Nat. 112, 861–874 (1978).Article 

    Google Scholar 
    21.Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Balshine, S. Patterns of parental care in vertebrates. Evol. Parental Care 62, 80 (2012).
    Google Scholar 
    23.Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    24.Schulte, L. M., Ringler, E., Rojas, B. & Stynoski, J. L. Developments in amphibian parental care research: history, present advances, and future perspectives. Herpetol. Monogr. 34, 71–97 (2020).Article 

    Google Scholar 
    25.Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).
    Google Scholar 
    26.Weygoldt, P. Evolution of parental care in dart poison frogs (Amphibia: Anura: Dendrobatidae). J. Zoolog. Syst. Evol. 25, 51–67 (1987).Article 

    Google Scholar 
    27.Summers, K. & Tumulty, J. in Sexual Selection 289–320 (Elsevier, 2014).28.Lehtinen, R., Lannoo, M. J. & Wassersug, R. J. Phytotelm-breeding anurans: past, present and future research. Misc. Publ. Museum Zool. Univ. Michigan 193, 1–9 (2004).
    Google Scholar 
    29.Brust, D. G. Maternal brood care by Dendrobates pumilio: a frog that feeds its young. J. Herpetol. 27, 96–98 (1993).Article 

    Google Scholar 
    30.Bourne, G. R., Collins, A. C., Holder, A. M. & McCarthy, C. L. Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J. Herpetol. 35, 272–281 (2001).Article 

    Google Scholar 
    31.Schulte, L. M. Feeding or avoiding? Facultative egg feeding in a Peruvian poison frog (Ranitomeya variabilis). Ethol. Ecol. Evol. 26, 58–68. https://doi.org/10.1080/03949370.2013.850453 (2014).Article 

    Google Scholar 
    32.Beck, K. B., Loretto, M.-C., Ringler, M., Hödl, W. & Pašukonis, A. Relying on known or exploring for new? Movement patterns and reproductive resource use in a tadpole-transporting frog. PeerJ 5, e3745 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Pašukonis, A., Loretto, M.-C. & Rojas, B. How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. Evol. Ecol. 33, 613–623 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Summers, K. Metabolism and parental care in ectotherms: a comment on Beekman et al. Behav. Ecol. 30, 593–594 (2019).Article 

    Google Scholar 
    35.Santos, J. C. & Cannatella, D. C. Phenotypic integration emerges from aposematism and scale in poison frogs. Proc. Natl. Acad. Sci. 108, 6175–6180 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Stynoski, J. L., Schulte, L. M. & Rojas, B. Poison frogs. Curr. Biol. 25, R1026–R1028 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Rojas, B., Valkonen, J. & Nokelainen, O. Aposematism. Curr. Biol. 25, R350–R351 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1990).
    Google Scholar 
    39.Santos, J. C., Coloma, L. A. & Cannatella, D. C. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. 100, 12792–12797 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215–226 (2003).Article 

    Google Scholar 
    41.Daly, J. W. et al. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32, 657–663 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Saporito, R. A., Spande, T. F., Garraffo, H. M. & Donnelly, M. A. Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79, 277–297 (2009).CAS 
    Article 

    Google Scholar 
    43.Santos, J. C. et al. Aposematism increases acoustic diversification and speciation in poison frogs. Philos. Trans. R. Soc. B. 281, 20141761 (2014).
    Google Scholar 
    44.Caldwell, J. P. The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). J. Zool. 240, 75–101 (1996).Article 

    Google Scholar 
    45.Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Philos. Trans. R. Soc. B. 266, 2141–2145 (1999).CAS 

    Google Scholar 
    46.Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).
    Google Scholar 
    47.Summers, K. & McKeon, C. S. The evolutionary ecology of phytotelmata use in Neotropical poison frogs. Misc. Publ. Mus. Zool. Univ. Mich. 193, 55–73 (2004).
    Google Scholar 
    48.Summers, K., Sea McKeon, C. & Heying, H. The evolution of parental care and egg size: a comparative analysis in frogs. Philos. Trans. R. Soc. B. 273, 687–692 (2006).
    Google Scholar 
    49.Wells, K. D. Courtship and parental behavior in a Panamanian poison-arrow frog (Dendrobates auratus). Herpetologica 34, 148–155 (1978).
    Google Scholar 
    50.Summers, K. Sexual selection and intra-female competition in the green poison-dart frog, Dendrobates auratus. Anim. Behav. 37, 797–805 (1989).Article 

    Google Scholar 
    51.Summers, K. Paternal care and the cost of polygyny in the green dart-poison frog. Behav. Ecol. Sociobiol. 27, 307–313 (1990).Article 

    Google Scholar 
    52.Summers, K. & Amos, W. Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav. Ecol. 8, 260–267 (1997).Article 

    Google Scholar 
    53.Limerick, S. Courtship behavior and oviposition of the poison-arrow frog Dendrobates pumilio. Herpetologica 36, 69–71 (1980).
    Google Scholar 
    54.Pröhl, H. & Hödl, W. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav. Ecol. Sociobiol. 46, 215–220 (1999).Article 

    Google Scholar 
    55.Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436–446 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Yang, Y., Blomenkamp, S., Dugas, M. B., Richards-Zawacki, C. L. & Pröhl, H. Mate choice versus mate preference: inferences about color-assortative mating differ between field and lab assays of poison frog behavior. Am. Nat. 193, 598–607 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Wells, K. D. Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behav. Ecol. Sociobiol. 6, 199–209 (1980).Article 

    Google Scholar 
    58.Luddecke, H. Behavioral aspects of the reproductive biology of the Andean frog Colostethus palmatus (Amphibia: Dendrobatidae). Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 23, S303–S303 (1999).
    Google Scholar 
    59.Montanarin, A., Kaefer, I. L. & Lima, A. P. Courtship and mating behaviour of the brilliant-thighed frog Allobates femoralis from Central Amazonia: Implications for the study of a species complex. Ethol. Ecol. Evol. 23, 141–150 (2011).Article 

    Google Scholar 
    60.Ursprung, E., Ringler, M., Jehle, R. & Hoedl, W. Strong male/male competition allows for nonchoosy females: High levels of polygynandry in a territorial frog with paternal care. Mol. Ecol. 20, 1759–1771 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Stückler, S. et al. Spatio-temporal characteristics of the prolonged courtship in brilliant-thighed poison frogs, Allobates femoralis. Herpetologica 75, 268–279 (2019).Article 

    Google Scholar 
    62.Symula, R., Schulte, R. & Summers, K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Philos. Trans. R. Soc. B 268, 2415–2421 (2001).CAS 

    Google Scholar 
    63.Summers, K. Mating strategies in two species of dart-poison frogs: a comparative study. Anim. Behav. 43, 907–919 (1992).Article 

    Google Scholar 
    64.Rojas, B. & Pašukonis, A. From habitat use to social behavior: natural history of a voiceless poison frog, Dendrobates tinctorius. PeerJ 7, e7648 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Maan, M. E. & Cummings, M. E. Poison frog colors are honest signals of toxicity, particularly for bird predators. Am. Nat. 179, E1–E14 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull. Am. Mus. Nat. 2006, 1–262 (2006).
    Google Scholar 
    67.Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). S. Am. J. Herpetol. 12, S1–S90 (2017).Article 

    Google Scholar 
    68.Duellman, W. E. Frogs of the genus Colostethus (Anura; Dendrobatidae) in the Andes of northern Peru (2004).69.Fairbairn, D. J. Odd Couples: Extraordinary Differences Between the Sexes in the Animal Kingdom (Princeton University Press, 2013).Book 

    Google Scholar 
    70.Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).Book 

    Google Scholar 
    71.Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Parental care and the evolution of terrestriality in frogs. Philos. Trans. R. Soc. B. 286, 20182737 (2019).
    Google Scholar 
    72.Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    73.Kelber, A., Vorobyev, M. & Osorio, D. Animal colour vision–behavioural tests and physiological concepts. Biol. Rev. 78, 81–118 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).Article 

    Google Scholar 
    76.Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods. Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649–659 (2018).Article 

    Google Scholar 
    79.Bergeron, Z. T. & Fuller, R. C. Using human vision to detect variation in avian coloration: how bad is it?. Am. Nat. 191, 269–276 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series. B. Stat. Methodo. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    84.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    85.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    86.Barker, D., Meade, A. & Pagel, M. Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23, 14–20 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Lindstedt, C., Boncoraglio, G., Cotter, S. C., Gilbert, J. D. J. & Kilner, R. M. Parental care shapes evolution of aposematism and provides lifelong protection against predators. bioRxiv 25, 644864 (2019).
    Google Scholar 
    88.Donnelly, M. A. Demographic effects of reproductive resource supplementation in a territorial frog, Dendrobates pumilio. Ecol. Monogr. 59, 207–221 (1989).Article 

    Google Scholar 
    89.Rojas, B. & Endler, J. A. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 27, 739–753 (2013).Article 

    Google Scholar 
    90.Pröhl, H. Territorial behavior in dendrobatid frogs. J. Herpetol. 39, 354–365 (2005).Article 

    Google Scholar 
    91.Speed, M. P., Brockhurst, M. A. & Ruxton, G. D. The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution 64, 1622–1633 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Fincke, O. M. Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol. Entomol. 24, 13–23 (1999).Article 

    Google Scholar 
    93.Summers, K. The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools. Oecologia 119, 557–564 (1999).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.McKeon, C. S. & Summers, K. Predator driven reproductive behavior in a tropical frog. Evol. Ecol. 27, 725–737 (2013).Article 

    Google Scholar 
    95.Amézquita, A., Castro, L., Arias, M., González, M. & Esquivel, C. Field but not lab paradigms support generalisation by predators of aposematic polymorphic prey: the Oophaga histrionica complex. Evol. Ecol. 27, 769–782 (2013).Article 

    Google Scholar 
    96.Lawrence, J. P. et al. Weak warning signals can persist in the absence of gene flow. PNAS 116, 19037–19045 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Lack, D. The natural regulation of animal numbers. The Natural Regulation of Animal Numbers. (1954).98.Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).Article 

    Google Scholar 
    99.Brown, J., Morales, V. & Summers, K. Divergence in parental care, habitat selection and larval life history between two species of Peruvian poison frogs: an experimental analysis. J. Evol. Biol. 21, 1534–1543 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Brown, J. L., Morales, V. & Summers, K. Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs. Biol. Lett. 5, 148–151 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Brown, J. L., Morales, V. & Summers, K. Home range size and location in relation to reproductive resources in poison frogs (Dendrobatidae): a Monte Carlo approach using GIS data. Anim. Behav. 77, 547–554 (2009).Article 

    Google Scholar 
    102.Kok, P. J., Willaert, B. & Means, D. B. A new diagnosis and description of Anomaloglossus roraima (La Marca, 1998) (Anura: Aromobatidae: Anomaloglossinae), with description of its tadpole and call. S. Am. J. Herpetol. 8, 29–45 (2013).Article 

    Google Scholar 
    103.Pašukonis, A. et al. The significance of spatial memory for water finding in a tadpole-transporting frog. Anim. Behav. 116, 89–98 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Pašukonis, A., Warrington, I., Ringler, M. & Hödl, W. Poison frogs rely on experience to find the way home in the rainforest. Biol. Lett. 10, 20140642 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Poelman, E. H. & Dicke, M. Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evol. Ecol. 21, 215–227 (2007).Article 

    Google Scholar 
    106.Caldwell, J. P. & de Araujo, M. C. Cannibalistic interactions resulting from indiscriminate predatory behavior in tadpoles of poison frogs (Anura: Dendrobatidae). Biotropica 30, 92–103 (1998).Article 

    Google Scholar 
    107.Gray, H. M., Summers, K. & Ibáñez, R. Kin discrimination in cannibalistic tadpoles of the Green Poison Frog, Dendrobates auratus (Anura, Dendrobatidae). Phyllomedusa (2009).108.Rojas, B. Strange parental decisions: fathers of the dyeing poison frog deposit their tadpoles in pools occupied by large cannibals. Behav. Ecol. Sociobiol. 68, 551–559 (2014).Article 

    Google Scholar 
    109.Schulte, L. M. & Mayer, M. Poison frog tadpoles seek parental transportation to escape their cannibalistic siblings. J. Zool. 303, 83–89, 12472 (2017).110.Ringler, E., Pašukonis, A., Hödl, W. & Ringler, M. Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Front. Zool. 10, 67 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Pröhl, H. Variation in male calling behaviour and relation to male mating success in the strawberry poison frog (Dendrobates pumilio). Ethology 109, 273–290 (2003).Article 

    Google Scholar 
    112.Summers, K. & Earn, D. J. The cost of polygyny and the evolution of female care in poison frogs. Biol. J. Linn. Soc. 66, 515–538 (1999).Article 

    Google Scholar 
    113.Ringler, E. et al. Flexible compensation of uniparental care: female poison frogs take over when males disappear. Behav. Ecol. 26, 1219–1225 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Pyron, R. A. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Streicher, J. W. et al. Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. Mol. Phylogenet. Evol. 119, 128–143 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Gilbert, J. D. Thrips domiciles protect larvae from desiccation in an arid environment. Behav. Ecol. 25, 1338–1346 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49–66 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. Learning to learn: advanced behavioural flexibility in a poison frog. Anim. Behav. 111, 167–172 (2016).Article 

    Google Scholar 
    121.Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. A cognitive map in a poison frog. J. Exp. Biol. 222, jeb97467 (2019).Article 

    Google Scholar 
    122.Liu, Y., Jones, C. D., Day, L. B., Summers, K. & Burmeister, S. S. Cognitive phenotype and differential gene expression in a hippocampal homologue in two species of frog. Integr. Comp Biol. 60, 1007–1023 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

    1.Vaganov, E. A. et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400(6740), 149–151. https://doi.org/10.1038/22087 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Impacts of a Warming Arctic—Arctic Climate Impact Assessment (ACIA). 144 (Cambridge University Press, 2004).3.Apps, M. J., Shvidenko, A. Z. & Vaganov, E. A. Boreal forests and the environment: A mitigation and adaptation strategies for global change. BFE. 11(1), 1–4 (2006).
    Google Scholar 
    4.Fedotov, A. P. et al. A reconstruction of the thawing of the permafrost during the last 170 years on the Taimyr Peninsula (East Siberia, Russia). Glob. Planet. Change 98–99, 139–152 (2002).
    Google Scholar 
    5.Kharuk, V. I., Dvinskaya, M. L. & Ranson, J. Fire return intervals within the northern boundary of the larch forest in Central Siberia. Int. J. Wildland Fire 22(2), 207–211. https://doi.org/10.1071/WF11181 (2011).Article 

    Google Scholar 
    6.Knorre, A. A., Kirdyanov, A. V., Prokushkin, A. S., Krusic, P. J. & Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 652, 314–319 (2019).ADS 
    Article 

    Google Scholar 
    7.Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6(2), eaax330. https://doi.org/10.1126/sciadv.aax3308 (2020).Article 

    Google Scholar 
    8.Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the permafrost zone of Siberia. Environ. Res. Lett. 15, 034061. https://doi.org/10.1088/1748-9326/ab7469 (2020).ADS 
    Article 

    Google Scholar 
    9.Fritts, H. C. Tree-Rings and Climate 567 (Academic Press, 1976).
    Google Scholar 
    10.Schweingruber, F. H. Tree Rings and Environment Dendroecology (Paul Haupt Publ, 1996).
    Google Scholar 
    11.Hughes, M. K., Vaganov, E. A., Shiyatov, S. G., Touchan, R. & Funkhouser, G. Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5), 603–608 (1999).Article 

    Google Scholar 
    12.Briffa, K. R. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quat. Sci. Rev. 19, 87–105 (2000).ADS 
    Article 

    Google Scholar 
    13.Naurzbaev, M., Vaganov, E. A., Sidorova, O. V. & Schweingruber, F. H. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12(6), 727–736 (2002).ADS 
    Article 

    Google Scholar 
    14.Grudd, H. Torneträsk tree-ring width and density AD 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857 (2008).Article 

    Google Scholar 
    15.Sidorova, O. V., Siegwolf, R., Saurer, M., Naurzbaev, M. M. & Vaganov, E. A. Isotopic composition (δ13C, δ18O) in Siberian tree-ring chronology. Geophys. Res. Biogeosci. 113, G02019. https://doi.org/10.1029/2007JG000473 (2008).CAS 
    Article 

    Google Scholar 
    16.Sidorova, O. V. et al. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Change Biol. 16, 1003–1018. https://doi.org/10.1111/j.1365-2486.2009.02008.x (2010).ADS 
    Article 

    Google Scholar 
    17.Sidorova, O. V. et al. Is the 20th century warming unprecedented in the Siberian north?. Quat. Sci. Rev. 73, 93–102. https://doi.org/10.1016/j.quascirev.2013.05.015 (2013).ADS 
    Article 

    Google Scholar 
    18.Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G. & Schleser, G. H. Climate signals in tree-ring width, density an δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 252, 31–41. https://doi.org/10.1016/j.chemgeo.2008.01.023 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H. & Jungner, H. Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J. Quat. Sci. 24(5), 469–480 (2009).Article 

    Google Scholar 
    20.Loader, N. J., Young, G. H. F., Grudd, H. & McCarroll, D. Stable carbon isotopes from Torneträsk, norther Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 62, 97–113 (2013).ADS 
    Article 

    Google Scholar 
    21.Churakova (Sidorova), O. V. et al. Recent atmospheric drying in Siberia is not unprecedented over the last 1500 years. Sci. Rep. 10, 15024 (2020).CAS 
    Article 

    Google Scholar 
    22.Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507. https://doi.org/10.1007/s00382-011-1246-3 (2012).Article 

    Google Scholar 
    23.Saurer, M., Schweingruber, F., Vaganov, E. A., Shiyatov, S. G. & Siegwolf, R. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. https://doi.org/10.1029/2001GL013739 (2002).Article 

    Google Scholar 
    24.Saurer, M. et al. Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J. Geophys. Res. 117, D05118. https://doi.org/10.1029/2011JD016861 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Butzin, M. et al. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos. Chem. Phys. 14, 5853–5869 (2014).ADS 
    Article 

    Google Scholar 
    27.Gagen, M. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9(8), 630–635 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).ADS 
    Article 

    Google Scholar 
    29.Wang, J. et al. Impacts of the Siberian High and Arctic Oscillation on the East Asia winter monsoon: Driving down welling in the western Bering Sea Aquatic Ecosystem. Health Manag. 15(1), 20–30. https://doi.org/10.1080/14634988.2012.648860 (2012).Article 

    Google Scholar 
    30.Buermann, W. et al. Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El-Nino-Southern Oscillation and the Arctic Oscillation. J. Geophys. Res. 108(D13), 4396. https://doi.org/10.1029/2002JD002630 (2003).Article 

    Google Scholar 
    31.Baltzer, H. et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022526 (2005).Article 

    Google Scholar 
    32.Zhang, J. et al. Analysis of the positive Arctic Oscillation index event and its influence in the winter and spring of 2019/2020. Front. Earth Sci. https://doi.org/10.3389/feart.2020.580601 (2021).Article 

    Google Scholar 
    33.Zielinski, G. A. Use of paleo-records in determining variability within the volcanism- climate system. Quat. Sci. Rev. 19, 417–438 (2000).ADS 
    Article 

    Google Scholar 
    34.Panuyshkina, I. P. & Arbatskaya, M. K. Dendrochronological approach to study flammability of forests in Evenkia (Siberia). Sib. Ecol. J. 2, 167–173 (1999).
    Google Scholar 
    35.Valendik, E. N., Kisilyakhov, E. K., Rizova, V. A., Ponamarev, E. I. & Danilova, I. V. Large fires in taiga landscape of Central Siberia. Geogr. Nat. Resour. 14(1), 52–59 (2014).
    Google Scholar 
    36.Naulier, M. et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Clim. Past. 11, 1153–1164. https://doi.org/10.5194/cp-11-1153-2015 (2015).Article 

    Google Scholar 
    37.Churakova (Sidorova), O. V. et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. https://doi.org/10.5194/cp-2018-70.y (2019).Article 

    Google Scholar 
    38.Furyaev, V. V., Vaganov, E. A., Tchebakova, N. M. & Valendik, E. N. Effects of fire and climate on successions and structural changes in the Siberian boreal forest. Eurasian J. For. Res. 2, 1–15 (2001).
    Google Scholar 
    39.Keller, K. M. et al. 20th-century changes in carbon isotopes and water-use efficiency: Tree-ring based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14, 2641–2673 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    40.D’Arrigo, R. D., Cook, E. R., Mann, M. E. & Jacoby, G. C. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650. Geophys. Res. Lett. 30(11), 1549. https://doi.org/10.1029/2003GL017250 (2003).ADS 
    Article 

    Google Scholar 
    41.Kress, A. et al. Swiss tree rings reveal warm and wet summers during medieval times. Geophys. Res. Lett. 41, 1732–1737. https://doi.org/10.1002/2013GL059081 (2014).ADS 
    Article 

    Google Scholar 
    42.Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196. https://doi.org/10.1038/s41561-021-00698-0 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Kodera, K. & Kuroda, Y. Regional and hemispheric circulation patterns in the northern hemisphere winter, or the NAO and AO. Geophys. Res. Lett. 30(18), 2003. https://doi.org/10.1029/2003GL017290 (1934).Article 

    Google Scholar 
    44.Abaimov, A. P., Bondarev, A. I., Ziryanova, O. A. & Shitova, S. A. Forest Krasnoyarsk Polar (Nauka, 1997).
    Google Scholar 
    45.Ary-Mas Natural Conditions, Flora and Vegetation. (eds. Norin, B.N.) (Nauka, Leningrad, 1978).46.Ogi, M., Yamazaki, K. & Tachibana, Y. The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res. 109, D20114 (2004).ADS 
    Article 

    Google Scholar 
    47.Gagen, M. H., McCarroll, D., Loader, N. J., Robertson, I. & Jalkanen, R. Exorcising the ‘segment length curse’ summer temperature reconstruction since AD 1640 using non de-trend stable carbon isotope ratios from line trees in northern Finland. Holocene 17, 433–444 (2007).ADS 
    Article 

    Google Scholar 
    48.Boettger, T. et al. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: An inter-laboratory comparison. Anal. Chem. 15, 4603–4612 (2007).Article 

    Google Scholar 
    49.Weigt, R. B. et al. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(29), 2233–2244. https://doi.org/10.1002/rcm.7388 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B51, 170–193 (1999).ADS 
    Article 

    Google Scholar  More

  • in

    Novel attempt at discrimination of a bullet-shaped siphonophore (Family Diphyidae) using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF MS)

    1.Pugh, P. The vertical distribution of the siphonophores collected during the SOND cruise, 1965. J. Mar. Biol. Assoc. U.K. 54, 25–90 (1974).Article 

    Google Scholar 
    2.Grossmann, M. M., Collins, A. G. & Lindsay, D. J. Description of the eudoxid stages of Lensia havock and Lensia leloupi (Cnidaria: Siphonophora: Calycophorae), with a review of all known Lensia eudoxid bracts. Syst. Biodivers. 12, 163–180 (2014).Article 

    Google Scholar 
    3.Dunn, C. W. & Wagner, G. P. The evolution of colony-level development in the Siphonophora (Cnidaria: Hydrozoa). Dev. Genes. Evol. 216, 743–754 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Clark, A. E., Kaleta, E. J., Arora, A. & Wolk, D. M. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26, 547–603 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Dvorak, V. et al. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit. Vectors 7, 1–7 (2014).Article 

    Google Scholar 
    7.Rossel, S. & Arbizu, P. M. Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    8.Feltens, R., Görner, R., Kalkhof, S., Gröger-Arndt, H. & von Bergen, M. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol. Biol. 10, 1–15 (2010).Article 
    CAS 

    Google Scholar 
    9.Mazzeo, M. F. et al. Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 56, 11071–11076 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kaufmann, C., Schaffner, F., Ziegler, D., Pflueger, V. & Mathis, A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139, 248–258 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Laakmann, S. et al. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol. Ecol. Resour. 13, 862–876 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Lassen, S., Wiebring, A., Helmholz, H., Ruhnau, C. & Prange, A. Isolation of a Nav channel blocking polypeptide from Cyanea capillata medusae–a neurotoxin contained in fishing tentacle isorhizas. Toxicon 59, 610–616 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Lazcano-Pérez, F., Arellano, R. O., Garay, E., Arreguín-Espinosa, R. & Sánchez-Rodríguez, J. Electrophysiological activity of a neurotoxic fraction from the venom of box jellyfish Carybdea marsupialis. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 191, 177–182 (2017).
    Google Scholar 
    14.Helmholz, H., Naatz, S., Lassen, S. & Prange, A. Isolation of a cytotoxic glycoprotein from the Scyphozoa Cyanea lamarckii by lectin-affinity chromatography and characterization of molecule interactions by surface plasmon resonance. J. Chromatogr. B 871, 60–66 (2008).CAS 
    Article 

    Google Scholar 
    15.Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    17.Park, N. & Lee, W. Four new records of family Diphyidae (Hydrozoa: Siphonophorae) in Korean waters. J. Spec. Res. 9, 131–146 (2020).
    Google Scholar 
    18.Karger, A., Bettin, B., Gethmann, J. M. & Klaus, C. Whole animal matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of ticks–are spectra of Ixodes ricinus nymphs influenced by environmental, spatial, and temporal factors?. PLoS ONE 14, e0210590 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Tayri-Wilk, T. et al. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    20.Rossel, S. & Martínez Arbizu, P. Effects of sample fixation on specimen identification in biodiversity assemblies based on proteomic data (MALDI-TOF). Fron. Mar. Sci. 5, 1–13 (2018).Article 

    Google Scholar 
    21.Zheng, L., He, J., Lin, Y., Cao, W. & Zhang, W. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol. Sin. 33, 55–76 (2014).Article 
    CAS 

    Google Scholar 
    22.Yeom, J., Park, N., Jeong, R. & Lee, W. Integrative description of cryptic Tigriopus species from Korea using MALDI-TOF MS and DNA barcoding. Front. Mar. Sci. 8, 495 (2021).Article 

    Google Scholar 
    23.Peter, S. Molecular characterization and phylogenetic analysis of Diphyes dispar (Siphonophora: Diphyidae) from the Laccadive Sea, off the south-west coast of Arabian Sea, Indian Ocean. Int. J. Fish Aquat. Stud. 4, 30–35 (2016).
    Google Scholar 
    24.Dunn, C. W., Pugh, P. R. & Haddock, S. H. Molecular phylogenetics of the Siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst. Biol. 54, 916–935 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Munro, C. et al. Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution. Mol. Phylogenet. Evol. 127, 823–833 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Totton, A. K. Siphonophora of the Indian Ocean together with systematic and biological notes on related specimens from other oceans. Disc Rep 27, 1–162 (1954).
    Google Scholar 
    27.Totton, A. K., Bargmann, H. E. & British Museum (Natural History). A synopsis of the Siphonophora. (British Museum (Natural History), 1965).28.Mapstone, G. M. Siphonophora (Cnidaria, Hydrozoa) of Canadian Pacific waters. (NRC Research Press, 2009).29.Nishiyama, E. Y., Araujo, E. M. & Oliveira, O. M. Species of Lensia (Cnidaria: Hydrozoa: Siphonophorae) from southeastern Brazilian waters. Zoologia (Curitiba) 33, 2337 (2016).Article 

    Google Scholar 
    30.MALDIquantForeign: Import/Export routines for MALDIquant (2015).31.Gibb, S. & Strimmer, K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28, 2270–2271 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Palarea-Albaladejo, J., Mclean, K., Wright, F. & Smith, D. G. MALDIrppa: quality control and robust analysis for mass spectrometry data. Bioinformatics 34, 522–523 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gibb, S. & Strimmer, K. Species Identification using MALDIquant manual. http://www.strimmerlab.org/software/maldiquant/. (2015).34.Ahdesmäki, M. & Strimmer, K. Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann. Appl. Stat. 4, 503–519 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    35.vegan: Community Ecology Package. R package version 2.5-2. 2018 (2018).36.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Schuchert, P. DNA barcoding of some Pandeidae species (Cnidaria, Hydrozoa, Anthoathecata). Rev. Suisse Zool. 125, 101–127 (2018).
    Google Scholar 
    38.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Collins, A. G. Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18S gene sequence data. Scientia Marina (2000).40.Strychar, K. B., Hamilton, L. C., Kenchington, E. L. & Scott, D. B. Cold-water Corals and Ecosystems 679–690 (Springer, Berlin, 2005).Book 

    Google Scholar 
    41.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    48.Yamaoka, K., Nakagawa, T. & Uno, T. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6, 165–175 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Young, N. D. & Healy, J. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinform. 4, 6 (2003).Article 

    Google Scholar 
    52.Swofford, D. L. & Sullivan, J. Phylogeny inference based on parsimony and other methods using PAUP*. Phylogenet. Handb. Pract. Approach DNA and Protein Phylogeny 7, 160–206 (2003).
    Google Scholar 
    53.Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Large-bodied birds are over-represented in unstructured citizen science data

    1.Pocock, M. J., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Cons. 213, 280–294 (2017).Article 

    Google Scholar 
    3.Chandler, M. et al. Involving citizen scientists in biodiversity observation. In The GEO Handbook on Biodiversity Observation Networks 211–237 (Springer, 2017).4.McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Cons. 208, 15–28 (2017).Article 

    Google Scholar 
    5.Pereira, H. M. et al. Monitoring essential biodiversity variables at the species level. In The GEO Handbook on Biodiversity Observation Networks 79–105 (Springer, 2017).6.Wiggins, A. & Crowston, K. From conservation to crowdsourcing: A typology of citizen science. in 2011 44th Hawaii International Conference on System Sciences 1–10 (IEEE, 2011).7.Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge 105–122 (Springer, 2013).8.Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Welvaert, M. & Caley, P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen science and crowdsourcing in a quantitative data framework. Springerplus 5, 1890 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Callaghan, C. T., Rowley, J. J., Cornwell, W. K., Poore, A. G. & Major, R. E. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 17, e3000357 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project FeederWatch. Front. Ecol. Environ. 10, 305–307 (2012).Article 

    Google Scholar 
    12.Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    13.Burgess, H. K. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Cons. 208, 113–120 (2017).Article 

    Google Scholar 
    14.Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in citizen science data reporting: Implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Cons. 169, 31–40 (2014).Article 

    Google Scholar 
    16.Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves?. PLoS ONE 10, e0139600 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    18.Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 22, 1139–1149 (2016).Article 

    Google Scholar 
    19.Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. Bioscience 71, 55–63 (2021).
    Google Scholar 
    20.Ward, D. F. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753–756 (2014).Article 

    Google Scholar 
    21.Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar 
    22.Martı́n-López, B., Montes, C., Ramı́rez, L. & Benayas, J. What drives policy decision-making related to species conservation? Biol. Conserv. 142, 1370–1380 (2009).23.Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Aceves-Bueno, E. et al. The accuracy of citizen science data: A quantitative review. Bull. Ecol. Soc. Am. 98, 278–290 (2017).Article 

    Google Scholar 
    25.Davies, T. K., Stevens, G., Meekan, M. G., Struve, J. & Rowcliffe, J. M. Can citizen science monitor whale-shark aggregations? Investigating bias in mark–recapture modelling using identification photographs sourced from the public. Wildl. Res. 39, 696–704 (2013).Article 

    Google Scholar 
    26.Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).Article 

    Google Scholar 
    27.van Strien, A. J., van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).Article 

    Google Scholar 
    28.Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).Article 

    Google Scholar 
    29.Tiago, P., Pereira, H. M. & Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 20, 75–85 (2017).Article 

    Google Scholar 
    30.Sullivan, B. L. et al. Using open access observational data for conservation action: A case study for birds. Biol. Cons. 208, 5–14 (2017).Article 

    Google Scholar 
    31.Callaghan, C. T. et al. Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodivers. Conserv. 29, 1323–1337 (2020).Article 

    Google Scholar 
    32.Birkin, L. & Goulson, D. Using citizen science to monitor pollination services. Ecol. Entomol. 40, 3–11 (2015).Article 

    Google Scholar 
    33.Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).Article 

    Google Scholar 
    34.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western north america. Biol. Cons. 214, 343–346 (2017).Article 

    Google Scholar 
    35.Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Cons. 173, 144–154 (2014).Article 

    Google Scholar 
    36.Isaac, N. J., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).Article 

    Google Scholar 
    37.Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).Article 

    Google Scholar 
    38.Bonney, R. et al. Next steps for citizen science. Science 343, 1436–1437 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    39.Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011).PubMed 
    Article 

    Google Scholar 
    40.Crall, A. W. et al. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. 22, 745–764 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Jordan, R. C., Ballard, H. L. & Phillips, T. B. Key issues and new approaches for evaluating citizen-science learning outcomes. Front. Ecol. Environ. 10, 307–309 (2012).Article 

    Google Scholar 
    42.Evans, C. et al. The neighborhood nestwatch program: Participant outcomes of a citizen-science ecological research project. Conserv. Biol. 19, 589–594 (2005).Article 

    Google Scholar 
    43.Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pocock, M. J. et al. A vision for global biodiversity monitoring with citizen science. In Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).45.Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv. 18, 61 (2017).Article 

    Google Scholar 
    46.Isaac, N. J. & Pocock, M. J. Bias and information in biological records. Biol. J. Lin. Soc. 115, 522–531 (2015).Article 

    Google Scholar 
    47.Angulo, E. & Courchamp, F. Rare species are valued big time. PLoS ONE 4, e5215 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: A birdwatching example. Biol. Cons. 144, 2728–2732 (2011).Article 

    Google Scholar 
    49.Rowley, J. J. et al. FrogID: Citizen scientists provide validated biodiversity data on frogs of australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
    Google Scholar 
    50.Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers recording behaviour. Sci. Rep. 6, 33051 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Garrard, G. E., McCarthy, M. A., Williams, N. S., Bekessy, S. A. & Wintle, B. A. A general model of detectability using species traits. Methods Ecol. Evol. 4, 45–52 (2013).Article 

    Google Scholar 
    52.Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 1564–1577 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).Article 

    Google Scholar 
    54.Wood, C., Sullivan, B., Iliff, M., Fink, D. & Kelling, S. eBird: Engaging birders in science and conservation. PLoS Biol 9, 1001220 (2011).Article 
    CAS 

    Google Scholar 
    55.GBIF.org (3rd December 2019). GBIF occurrence download. https://doi.org/10.15468/dl.lpwczr56.Gilfedder, M. et al. Brokering trust in citizen science. Soc. Nat. Resour. 32, 292–302 (2019).Article 

    Google Scholar 
    57.Callaghan, C., Lyons, M., Martin, J., Major, R. & Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 12, 66 (2017).
    Google Scholar 
    58.Johnston, A. et al. Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species distributions. BioRxiv 574392 (2019).59.Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles: Ecological archives E096–269. Ecology 96, 3109–3109 (2015).Article 

    Google Scholar 
    60.Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).62.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    63.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    64.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    65.Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    66.Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).Article 

    Google Scholar 
    67.Henckel, L., Bradter, U., Jönsson, M., Isaac, N. J. & Snäll, T. Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Divers. Distrib. 26, 1276–1290 (2020).Article 

    Google Scholar 
    68.Caley, P., Welvaert, M. & Barry, S. C. Crowd surveillance: Estimating citizen science reporting probabilities for insects of biosecurity concern. J. Pest. Sci. 93, 543–550 (2020).Article 

    Google Scholar 
    69.Périquet, S., Roxburgh, L., le Roux, A. & Collinson, W. J. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front. Ecol. Evol. 6, 15 (2018).Article 

    Google Scholar 
    70.Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).Article 

    Google Scholar 
    71.Schlossberg, S., Chase, M. & Griffin, C. Using species traits to predict detectability of animals on aerial surveys. Ecol. Appl. 28, 106–118 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017).Article 

    Google Scholar 
    73.Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 1–13 (2017).Article 

    Google Scholar 
    74.Schuetz, J. G. & Johnston, A. Characterizing the cultural niches of North American birds. Proc. Natl. Acad. Sci. 22, 10868–10873 (2019).Article 
    CAS 

    Google Scholar 
    75.Lišková, S. & Frynta, D. What determines bird beauty in human eyes?. Anthrozoös 26, 27–41 (2013).Article 

    Google Scholar 
    76.Tulloch, A. I., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Cons. 165, 128–138 (2013).Article 

    Google Scholar 
    77.Kobori, H. et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).CAS 
    Article 

    Google Scholar 
    78.Callaghan, C. T., Poore, A. G., Major, R. E., Rowley, J. J. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B 286, 20191487 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pacifici, K. et al. Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology 98, 840–850 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Robinson, O. J. et al. Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Divers. Distrib. 26, 976–986 (2020).Article 

    Google Scholar 
    81.van Strien, A. J., Termaat, T., Groenendijk, D., Mensing, V. & Kery, M. Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists. Basic Appl. Ecol. 11, 495–503 (2010).Article 

    Google Scholar 
    82.Van der Wal, R. et al. Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording. Ambio 44, 584–600 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Dennis, E. B., Morgan, B. J., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Stoudt, S., Goldstein, B. R. & De Valpine, P. Identifying charismatic bird species and traits with community science data. bioRxiv. https://doi.org/10.1101/2021.06.05.446577 More

  • in

    Coral conservation strikes a balance

    NATURE INDEX
    24 September 2021

    Coral conservation strikes a balance

    Australia–Fiji collaboration matches community needs with reef protection.

    Clare Watson

    0

    Clare Watson

    Clare Watson is a freelance writer in Wollongong, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A spear fisherman catches reef fish, a cultural mainstay on Mali Island in Fiji.Credit: Juergen Freund/naturepl.com

    Coral reefs are under threat, and so too are the livelihoods of more 500 million people who depend on them. Global climate change is causing longer and more frequent marine heatwaves, leading to widespread and repeated coral bleaching. Overfishing and pollution exacerbate the problem, adding pressure to these marine biodiversity hotspots that sustain coastal communities.Reef-management programmes that limit or prohibit fishing and other commercial activities are bound to be ineffective if local communities are not involved in their design and management, says Sangeeta Mangubhai, a coral-reef ecologist in Fiji. “If people haven’t been engaged in the management [of conservation strategies], they’re not as likely to understand what the rules are, or they might not comply with it,” she says. Initiatives that are designed to protect coral reefs without incorporating insights from local communities may also affect them in unintended ways, she adds.
    Nature Index 2021 Science cities
    In collaboration with environmental social scientist, Georgina Gurney, Mangubhai is identifying the conditions that support both conservation outcomes and the wellbeing of coastal communities who often have cultural practices and spiritual ties to the sea. Their work explores the social factors that influence coral-reef-management programmes, such as the perceived fairness of payment schemes that direct tourism revenue back to the communities who manage local reefs (G. G. Gurney et al. Environ. Sci. Policy 124, 23–32; 2021).“First and foremost, it’s an ethical and moral issue,” says Gurney. “Conservation should not impinge on the wellbeing of people; it should promote the wellbeing of people.”Based at James Cook University (JCU) in Townsville, a city on the northeastern coast of Queensland, Australia, Gurney has close access to the Great Barrier Reef, which contains the world’s largest coral reef ecosystem. The university has long-standing ties with researchers in nearby Pacific island nations, such as Papua New Guinea, Fiji and New Caledonia.Townsville was the second most-prolific city in the 82 high-quality natural-sciences journals tracked by the Nature Index for research related to the United Nations’ Sustainable Development Goal (SDG) Life below water (SDG14) in 2015–20, with a Share of 15.59, 52% of which is attributed to JCU. Beijing, placed first by output related to SDG14, had a Share of 17.88 for the same period. (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Georgina Gurney and Sangeeta Mangubhai at a fish market in Suva, Fiji.Credit: Isabelle Gurney

    According to Gurney, successful conservation programmes should evaluate social factors alongside ecological outcomes, such as fish stocks and coral health, although this is rarely the case. With Mangubhai and other collaborators, Gurney has developed a framework that combines 90 social and ecological indicators, from coral cover and fish biomass to household incomes derived from the reef, equitable benefit-sharing and conflicts occurring over marine resources (G. G. Gurney et al. Biol. Conserv. 240, 108298; 2019).In principle, the framework standardizes how outcomes of coral-reef programmes are evaluated to improve data collection and enable cross-country comparisons. It has been adopted by the New York-based non-governmental organization, the Wildlife Conservation Society (WCF), and its partners in 7 countries and more than 130 communities across Africa, Asia and the Pacific.Besides improving conservation efforts, Mangubhai, who leads the WCF’s Fiji programme, says the partnership gives equal footing to local conservation scientists and policymakers, empowering them to direct independent research. “If you have these meaningful collaborations, the outcome is going to have so much more of an impact on the ground,” she says.Incorporating an understanding of the social factors that influence coral-reef conservation into marine-management strategies translates to respect for local traditional cultural practices of Indigenous Fijians, says Mangubhai. Temporary closures called tabu, which are used to maintain the productivity of their customary fishing grounds, are a good example. “It’s a real merging of traditional knowledge and other best practices, such as size limits on fish catch, to help communities achieve the outcomes they want for themselves,” she says.

    doi: https://doi.org/10.1038/d41586-021-02409-6This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    How cities are collaborating to safeguard oceans

    Rising tide of floating plastics spurs surge in research

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Latest on:

    Ocean sciences

    How cities are collaborating to help safeguard oceans
    Nature Index 24 SEP 21

    Rising tide of floating plastics spurs surge in research
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Pursuit of better batteries underpins China’s lead in energy research
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    Rising tide of floating plastics spurs surge in research

    NATURE INDEX
    24 September 2021

    Rising tide of floating plastics spurs surge in research

    Strong government policies and research insights are essential to deliver on a pledge to clean up the sea.

    Michael Eisenstein

    0

    Michael Eisenstein

    Michael Eisenstein is a freelance writer in Philadelphia, Pennsylvania.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A jellyfish swims beneath a slick of floating plastic debris in the Indian Ocean near Sri Lanka.Credit: Alex Mustard/naturepl.com

    Many stories have been written about the ‘Great Pacific garbage patch’, a name evoking a vast Sargasso Sea of plastic bottles and bags. But the reality is that much of this debris has been broken down into a murky suspension of ‘microplastics’ spanning an area three times the size of France.
    Nature Index 2021 Science cities
    These plastic flecks introduce long-lasting chemical pollution into marine and coastal ecosystems, says Daoji Li, an oceanographer at East China Normal University in Shanghai. In 2020, Li and his colleagues found that microplastic debris is highly concentrated in even the deepest underwater trenches (G. Peng et al. Water Res. 168, 115121; 2020). Staving off this influx of pollutants is a target of the United Nations’ Sustainable Development Goal (SDG) Life below water (SDG14), with its aim to “prevent and significantly reduce marine pollution of all kinds” by 2025.Between 4.8 million and 12.7 million tonnes of plastic waste entered the oceans in 2010, according to a study in Science, and those numbers are expected to increase dramatically by 2050 without improvements to waste-management infrastructure (J. Jambeck et al. Science 347, 768–771; 2015). Scientists in China, which is a major producer and importer of plastic waste, are taking the lead in amelioration. According to the 2021 UNESCO Science Report, floating plastic debris was the fastest-growing area of SDG-related research in 2012–19 (see ‘A buoyant field’). Publications from the Chinese mainland on the topic jumped from 7 in the period 2012–15 to 286 in 2016–19, placing it third by volume after the United States and United Kingdom. Much of this work has come from investigators in Beijing, the top-ranked city in the Nature Index for SDG14-related research. (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Source: UNESCO

    Li is sceptical that much can be done to eliminate existing plastic pollution. “But what we can do is stop them entering to the ocean,” he says. His team has developed a monitoring framework that outlines ‘gold-standard’ technologies and assays for detecting and quantifying microplastic contamination.Government action is essential to stem the flow of plastic debris. UNESCO reports that 127 countries have adopted legislation to regulate plastic bags. In 2020, China launched an ambitious effort to ban plastic bags nationwide by 2022 and cut single-use plastic in restaurants by one-third by 2025 — although the COVID-19 pandemic created a surge in demand for delivery that derailed this effort.Despite the many hurdles to overcome, Li feels positive about the future. “I am pretty confident that we could meet the target set for SDG14,” he says, “but when we realize those challenges, we should keep going.”

    Source: UNESCO

    doi: https://doi.org/10.1038/d41586-021-02408-7This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    How cities are collaborating to safeguard oceans

    Coral conservation strikes a balance

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Latest on:

    Ocean sciences

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    How cities are collaborating to help safeguard oceans
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More