More stories

  • in

    Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria

    We analyse weekly reported counts of suspected and confirmed human cases and deaths attributed to LF (as defined in Supplementary Table 1), between 1 January 2012 and 30 December 2019, from across the entire of Nigeria. The weekly counts were reported from 774 LGAs in 36 Federal states and the Federal Capital Territory, under Integrated Disease Surveillance and Response (IDSR) protocols, and collated by the NCDC. All suspected cases, confirmed cases and deaths from notifiable infectious diseases (including viral haemorrhagic fevers; VHFs) are reported weekly to the LGA Disease Surveillance and Notification Officer (DSNO) and State Epidemiologist (SE). IDSR routine data on priority diseases are collected from inpatient and outpatient registers in health facilities, and forwarded to each LGA’s DSNO using SMS or paper form. Subsequently, individual LGA DSNOs collate and forward the data to their respective SE, also by SMS and paper form, for weekly and monthly reporting respectively to NCDC. From mid-2017 onwards, data entry in 18 states has been conducted using a mobile phone-based electronic reporting system called mSERS, with the data entered using a customised Excel spreadsheet that is used to manually key into NCDC-compatible spreadsheets. Data from this surveillance regime (WERs) were collated by epidemiologists at NCDC throughout the period 2012 to March 2018 (Supplementary Fig. 1).Throughout the study period, within-country LF surveillance and response has been strengthened under NCDC coordination2,20,33. LGAs are now required to notify immediately any suspected case to the state-level, which in turn reports to NCDC within 24 h, and also sends a cumulative weekly report of all reported cases. A dedicated, multi-sectoral NCDC LF TWG was set up in 2016 with the responsibility of coordinating all LF preparedness and response activities across states. Further capacity building occurred in 2017 to 2019, with the opening of three additional LF diagnostic laboratories in Abuja (Federal Capital Territory), Abakaliki (Ebonyi state) and Owo (Ondo state) (to a total of five; Fig. 2) and the rollout of intensive country-wide training on surveillance, clinical case management and diagnosis. We note that, due to the rapid expansion in a test capacity, the definition of a suspected case in our data has subtly changed over the surveillance period: from 2012 to 2016, suspected cases include probable cases that were not lab-tested, whereas from 2017 to 2019, all suspected cases were tested and confirmed to be negative.In addition to the WERs data, since 2017 LF case reporting data has also been collated by the LF TWG and used to inform the weekly NCDC LF Situation Reports (SitRep data; https://ncdc.gov.ng/diseases/sitreps). This regime includes post hoc follow-ups to ensure more accurate case counts, so our analyses use WER-derived case data from 2012 to 2016, and SitRep-derived case data from 2017 to 2019 (see Fig. 1 for full time series). A visual comparison of the data from each separate time series, including the overlap period (2017 to March 2018) is provided in Supplementary Fig. 1, and all statistical models considered random intercepts for the different surveillance regimes. Where other studies of recent Nigeria LF incidence have been more spatially and temporally restricted34,35, the extended monitoring period and fine spatial granularity of these data provide the opportunity for a detailed empirical perspective on the local drivers of LF at a country-wide scale and their relationship to changes in reporting effort.Recent trends in LF surveillance in NigeriaWe visualised temporal and seasonal trends in suspected and confirmed LF cases within and between years, for both surveillance datasets. Weekly case counts were aggregated to country-level and visualised as both annual case accumulation curves, and aggregated weekly case totals (Fig. 1 and Supplementary Fig. 1). We also mapped annual counts of suspected and confirmed cases across Nigeria at the LGA-level to examine spatial changes in reporting over the surveillance period (Fig. 2). State and LGA shapefiles used for modelling and mapping were obtained from Humanitarian Data Exchange under a CC-BY-IGO license (https://data.humdata.org/dataset/nga-administrative-boundaries).Analyses of aggregated district data are sensitive to differences in scale and shape of aggregation (the modifiable areal unit problem; MAUP36), and LGA geographical areas in Nigeria are highly skewed and vary over >3 orders of magnitude (median 713 km2, mean 1175 km2, range 4–11,255 km2). We therefore also aggregated all LGAs across Nigeria into 130 composite districts with a more even distribution of geographical areas, using distance-based hierarchical clustering on LGA centroids (implemented using hclust in R), with the constraint that each new cluster must contain only LGAs from within the same state (to preserve potentially important state-level differences in surveillance regime). Weekly and annual suspected and confirmed LF case totals were then calculated for each aggregated district. We used these spatially aggregated districts to test for the effects of scale on spatial drivers of LF occurrence and incidence.Statistical analysisWe analysed the full case time series (Fig. 1) to characterise the spatiotemporal incidence and drivers of LF in Nigeria, while controlling for year-on-year increases and expansions of surveillance effort. We firstly modelled annual LF occurrence and incidence at a country-wide scale, to identify the spatial, climatic and socio-ecological correlates of disease risk across Nigeria. Secondly, we modelled seasonal and temporal trends in weekly LF incidence within hyperendemic areas in the north and south of Nigeria, to identify the seasonal climatic conditions associated with LF risk dynamics and evaluate the scope for forecasting. All data processing and modelling was conducted in R v.3.4.1 with the packages R-INLA v.20.03.1737, raster v.3.4.1338 and velox v0.2.039. Statistical modelling was conducted using hierarchical regression in a Bayesian inference framework (integrated nested Laplace approximation (INLA)), which provides fast, stable and accurate posterior approximation for complex, spatially and temporally-structured regression models37,40, and has been shown to outperform alternative methods for modelling environmental phenomena with evidence of spatially biased reporting41.Processing climatic and socio-ecological covariatesWe collated geospatial data on socio-ecological and climatic factors that are hypothesised to influence either M. natalensis distribution and population ecology (rainfall, temperature and vegetation patterns), frequency and mode of human–rodent contact (poverty and improved housing prevalence), both of the above (agricultural and urban land cover) or likelihood of LF reporting (travel time to nearest laboratory with LF diagnostic capacity and travel time to nearest hospital). For each LGA we extracted the mean value for each covariate across the LGA polygon. The full suite of covariates tested across all analyses, data sources and associated hypotheses are described in Supplementary Table 5.We collated climate data spanning the full monitoring period and up until the date of analysis (July 2011 to January 2021). We obtained daily precipitation rasters for Africa42 from the Climate Hazards Infrared Precipitation with Stations (CHIRPS) project; this dataset is based on combining sparse weather station data with satellite observations and interpolation techniques, and is designed to support hydrologic forecasts in areas with poor weather station coverage (such as tropical West Africa)42. A recent study ground-truthing against weather station data showed that CHIRPS provides greater overall accuracy than other gridded precipitation products in Nigeria43. Air temperature daily minimum and maximum rasters were obtained from NOAA and were also averaged to calculate daily mean temperature. EVI, a measure of vegetation quality, was obtained from processing 16-day composite layers from NASA (National Aeronautics and Space Administration) (excluding all grid cells with unreliable observations due to cloud cover and linearly interpolating between observations to give daily values; Supplementary Table 5).We derived several spatial bioclimatic variables to capture conditions across the full monitoring period (Jan 2012 to Dec 2019): mean precipitation of the driest annual month, mean precipitation of the wettest annual month, precipitation seasonality (coefficient of variation), annual mean air temperature, air temperature seasonality, annual mean EVI and EVI seasonality. We also calculated monthly total precipitation, 3-month SPI44, average daily mean (Tmean), minimum (Tmin) and maximum (Tmax) temperature and EVI variables at sequential time lags prior to reporting week for seasonal modelling (described below in Temporal drivers). SPI is a standardised measure of drought or wetness conditions relative to the historical average conditions for a given period of the year. SPI was calculated within a rolling 3-month window across the full 40-year historical CHIRPS rainfall time series (1981–2020) using the R package SPEI v.1.744.We accessed annual human population rasters at 100 m resolution from WorldPop. We accessed the proportion of the population living in poverty in 2010 ( More

  • in

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya

    1.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, 6332 (2017).Article 
    CAS 

    Google Scholar 
    3.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Wiens, J. J., Litvinenko, Y., Harris, L. & Jezkova, T. Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change. J. Biogeogr. 46, 2115–2125 (2019).Article 

    Google Scholar 
    5.Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Global Chang. Biol. 23, 4094–4105 (2017).ADS 
    Article 

    Google Scholar 
    7.Winkler, E. & Fischer, M. The role of vegetative spread and seed dispersal for optimal life histories of clonal plants: A simulation study. In Ecology and Evolutionary Biology of Clonal Plants 59–79 (Springer, 2002).8.Neiman, M., Meirmans, S. & Meirmans, P. What can asexual lineage age tell us about the maintenance of sex?. Ann. N. Y. Acad. Sci. 1168, 185–200 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Steffen, W. et al. Trajectories of the earth system in the anthropocene. PNAS 115, 8252–8259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science 332, 53–58 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar 
    14.Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal) adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    15.Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. PNAS 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Honnay, O. & Jacquemyn, H. A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evol. Ecol. 22, 299–312 (2008).Article 

    Google Scholar 
    19.Arnaud-Haond, S. et al. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. J. Hered. 96, 434–440 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Wolfe, A. D. & Liston, A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In Molecular systematics of plants II 43–86 (Springer, 1998).21.Nicolè, S. et al. Biodiversity studies in Phaseolus species by DNA barcoding. Genome 54, 529–545 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Baldwin, B. G. et al. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard. 1, 247–277 (1995).Article 

    Google Scholar 
    23.Álvarez, I. J. F. W. & Wendel, J. F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Choudhary, N. et al. Insight into the origin of common bean (Phaseolus vulgaris L.) grown in the state of Jammu and Kashmir of North-Western Himalayas. Genet. Resour. Crop Evol. 65, 963–977 (2018).Article 

    Google Scholar 
    25.Doh, E. J., Kim, J. H., Oh, S. E. & Lee, G. Identification and monitoring of Korean medicines derived from Cinnamomum spp. by using ITS and DNA marker. Genes Genom. 39, 101–109 (2017).CAS 
    Article 

    Google Scholar 
    26.Singh, S. K., Meghwal, P. R., Pathak, R., Bhatt, R. K. & Gautam, R. Assessment of genetic diversity among Indian jujube varieties based on nuclear ribosomal DNA and RAPD polymorphism. Agric. Res. 3, 218–228 (2014).CAS 
    Article 

    Google Scholar 
    27.Urbatsch, L. E., Baldwin, B. G. & Donoghue, M. J. Phylogeny of the coneflowers and relatives (Heliantheae: Asteraceae) based on nuclear rDNA internal transcribed spacer (ITS) sequences and chlorplast DNA restriction site data. Syst. Bot. 1, 539–565 (2000).Article 

    Google Scholar 
    28.Eriksson, T. & Donoghue, M. J. Phylogenetic relationships of Sambucus and Adoxa (Adoxoideae, Adoxaceae) based on nuclear ribosomal ITS sequences and preliminary morphological data. Syst. Bot. 1, 555–573 (1997).Article 

    Google Scholar 
    29.Ferrero, V. et al. Global patterns of reproductive and cytotype diversity in an invasive clonal plant. Biol. Invasions 3, 1–13 (2020).
    Google Scholar 
    30.Hamrick, J. L. & Godt, M. J. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources 44–64 (Sinauer Associates Inc, 1989).31.Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    32.Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Ecoscience 12, 316–329 (2005).Article 

    Google Scholar 
    33.Peakall, R. & Beattie, A. J. The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution 45, 1837–1848 (1991).PubMed 

    Google Scholar 
    34.Sydes, M. A. & Peakall, R. O. D. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Mol. Ecol. 7, 87–93 (1998).Article 

    Google Scholar 
    35.Brzosko, E., Wróblewska, A., Tałałaj, I. & Wasilewska, E. Genetic diversity of Cypripedium calceolus in Poland. Plant Syst. Evol. 295, 83–96 (2011).Article 

    Google Scholar 
    36.Guerra-García, A., Golubov, J. & Mandujano, M. C. Invasion of Kalanchoe by clonal spread. Biol. Invasions 17, 1615–1622 (2015).Article 

    Google Scholar 
    37.Ellstrand, N. C. & Roose, M. L. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123–131 (1987).Article 

    Google Scholar 
    38.Chung, M. G. & Epperson, B. K. Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53, 1068–1078 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Stehlik, I. & Holderegger, R. Spatial genetic structure and clonal diversity of Anemone nemorosa in late successional deciduous woodlands of Central Europe. J. Ecol. 88, 424–435 (2000).Article 

    Google Scholar 
    40.Kudoh, H., Shibaike, H., Takasu, H., Whigham, D. F. & Kawano, S. Genet structure and determinants of clonal structure in a temperate deciduous woodland herb, Uvularia perfoliata. J. Ecol. 87, 244–257 (1999).Article 

    Google Scholar 
    41.Pornon, A., Escaravage, N., Thomas, P. & Taberlet, P. Dynamics of genotypic structure in clonal Rhododendron ferrugineum (Ericaceae) populations. Mol. Ecol. 9, 1099–1111 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Brzosko, E., Wróblewska, A. & Ratkiewicz, M. Spatial genetic structure and clonal diversity of island populations of lady’s slipper (Cypripedium calceolus) from the Biebrza National Park (northeast Poland). Mol. Ecol. 11, 2499–2509 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Smith, A. L. et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. PNAS 117, 4218–4227 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dong, M. E. I., Lu, B. R., Zhang, H. B., Chen, J. K. & Li, B. O. Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers. Plant Species Biol. 21, 13–18 (2006).Article 

    Google Scholar 
    45.You, W., Fan, S., Yu, D., Xie, D. & Liu, C. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments. PLoS ONE 9, e97246 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).Article 

    Google Scholar 
    47.Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41, 193–213 (2010).Article 

    Google Scholar 
    48.Uesugi, A., Baker, D. J., de Silva, N., Nurkowski, K. & Hodgins, K. A. A lack of genetically compatible mates constrains the spread of an invasive weed. New Phytol. 226, 1864–1872 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 1, 24–30 (2003).Article 

    Google Scholar 
    50.Pluess, A. R. & Stöcklin, J. Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am. J. Bot. 91, 2013–2021 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bialozyt, R., Ziegenhagen, B. & Petit, R. J. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).Article 

    Google Scholar 
    53.Roman, J. & Darling, J. A. Paradox lost: Genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22, 454–464 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Shirk, R. Y., Hamrick, J. L., Zhang, C. & Qiang, S. Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae). Heredity 112, 497–507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Nobarinezhad, M. H., Challagundla, L. & Wallace, L. E. Small-scale population connectivity and genetic structure in Canada thistle (Cirsium arvense). Int. J. Plant Sci. 181, 473–484 (2020).Article 

    Google Scholar 
    57.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    58.Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).Article 

    Google Scholar 
    59.Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Montague, J. L., Barrett, S. C. H. & Eckert, C. G. Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). J. Evol. Biol. 21, 234–245 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Prentis, P. J., Wilson, J. R., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Colautti, R. I., Maron, J. L. & Barrett, S. C. Common garden comparisons of native and introduced plant populations: Latitudinal clines can obscure evolutionary inferences. Evol. Appl. 2, 187–199 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Colautti, R. I., Eckert, C. G. & Barrett, S. C. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant. Proc. Roy. Soc. B 277, 1799–1806 (2010).Article 

    Google Scholar 
    64.Barrett, S. C., Colautti, R. I. & Eckert, C. G. Plant reproductive systems and evolution during biological invasion. Mol. Ecol. 17, 373–383 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Pappert, R. A., Hamrick, J. L. & Donovan, L. A. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. Am. J. Bot. 87, 1240–1245 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Duchoslav, M. & Staňková, H. Population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot. 50, 123–136 (2015).Article 

    Google Scholar 
    67.Nevo, E. Genetic variation in natural populations: Patterns and theory. Theor. Popul. Biol. 13, 121–177 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gargiulo, R., Ilves, A., Kaart, T., Fay, M. F. & Kull, T. High genetic diversity in a threatened clonal species, Cypripedium calceolus (Orchidaceae), enables long-term stability of the species in different biogeographical regions in Estonia. Bot. J. Linn. Soc. 186, 560–571 (2018).Article 

    Google Scholar 
    69.Xia, L., Geng, Q. & An, S. Rapid genetic divergence of an invasive species, Spartina alterniflora, in China. Front. Genet. 11, 284 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Rosenthal, D. M., Ramakrishnan, A. P. & Cruzan, M. B. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv, North America. Mol. Ecol. 17, 4657–4669 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Lembicz, M. et al. Microsatellite identification of ramet genotypes in a clonal plant with phalanx growth: The case of Cirsium rivulare (Asteraceae). Flora 206, 792–798 (2011).Article 

    Google Scholar 
    72.Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lucardi, R. D., Wallace, L. E. & Ervin, G. N. Patterns of genetic diversity in highly invasive species: Cogongrass (Imperata cylindrica) expansion in the invaded range of the southern United States (US). Plants 9, 423 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    74.Barbosa, C., Trevisan, R., Estevinho, T. F., Castellani, T. T. & Silva-Pereira, V. Multiple introductions and efficient propagule dispersion can lead to high genetic variability in an invasive clonal species. Biol. Invasions 21, 3427–3438 (2019).Article 

    Google Scholar 
    75.Hutchinson, J. Notes on the Indian species of Sambucus. Bull. Misc. Inf. 1909, 191–193 (1909).
    Google Scholar 
    76.Acharya, J. & Mukherjee, A. An account of Sambucus L. in the Himalayan regions of India. Indian J. Life Sci. 4, 77–84 (2014).
    Google Scholar 
    77.Rodgers, W. A. & Panwar, S. H. Biogeographical Classification of India (New Forest, 1988).
    Google Scholar 
    78.Shafiq, M. U., Rasool, R., Ahmed, P. & Dimri, A. P. Temperature and precipitation trends in Kashmir Valley, North Western Himalayas. Theor. Appl. Climatol. 135, 293–304 (2019).ADS 
    Article 

    Google Scholar 
    79.Clarke, J. B. & Tobutt, K. R. Development of microsatellite primers and two multiplex polymerase chain reactions for the common elder (Sambucus nigra). Mol. Ecol. Notes 6, 453–455 (2006).CAS 
    Article 

    Google Scholar 
    80.DARwin software v. 6.0. http://darwin.cirad.fr/darwin (2006).81.Gascuel, O. Concerning the NJ algorithm and its unweighted version, UNJ. Math. Hierarchies Biol. 37, 149–171 (1997).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    82.Peakall, R. O. D. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    83.Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    84.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D. & Sorrells, M. E. Optimizing parental selection for genetic linkage maps. Genome 36, 181–186 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Pritchard, J. K., Wen, X. & Falush, D. Documentation for STRUCTURE Software, Version 2.3 (University of Chicago, 2010).
    Google Scholar 
    87.Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    88.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Sneath, P. H. & Sokal, R. R. Numerical Taxonomy. The Principles and Practice of Numerical Classification (W.H. Freeman and Company, 1973).MATH 

    Google Scholar 
    94.Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 

    Google Scholar 
    95.Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101, 11030–11035 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series 95–98 (Information Retrieval Ltd., c1979–c2000 1999).98.Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
    Google Scholar  More

  • in

    A state-space approach to understand responses of organisms, populations and communities to multiple environmental drivers

    1.Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).Article 

    Google Scholar 
    2.Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2011).Article 

    Google Scholar 
    3.González-Ortegón, E., Blasco, J., Vay, L. L. & Giménez, L. A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. J. Hazard. Mater. 263, 233–238 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Keeling, R. F., Kärtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).Article 

    Google Scholar 
    6.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    7.Griffen, B., Belgrad, B. A., Cannizzo, Z. J., Knotts, E. R. & Hancock, E. R. Rethinking our approach to multiple stressor studies in marine environments. Mar. Ecol. Prog. Ser. 543, 273–281 (2016).Article 

    Google Scholar 
    8.Gunderson, A., Armstrong, E. & Stillman, J. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).Article 

    Google Scholar 
    9.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B. 287, 20200421 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob. Change Biol. 21, 1887–1906 (2015).Article 

    Google Scholar 
    11.Tekin, E. et al. Using a newly introduced framework to measure ecological stressor interactions. Ecol. Lett. 23, 1391–1403 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B: Biol. Sci. 283, 20152592 (2016).Article 

    Google Scholar 
    13.Breitburg, D. L. et al. In Successes, Limitations, and Frontiers in Ecosystem Science (eds. Pace, M. L. & Groffman, P. M.) Ch. 17 (Springer, 1998).14.Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Vinebrooke, D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).Article 

    Google Scholar 
    16.Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Glob. Change Biol. 24, 2239–2261 (2018).Article 

    Google Scholar 
    17.De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).Article 

    Google Scholar 
    18.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Meth. Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    19.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).Article 

    Google Scholar 
    20.Dunham, A. E. & Beaupre, S. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 2 (Oxford Univ. Press, 1998).21.Morin, P. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 3 (Oxford Univ. Press, 1998).22.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).Article 

    Google Scholar 
    23.Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Appelbaum, S. L., Pan, T. C. F., Hedgecock, D. & Manahan, D. T. Separating the nature and nurture of the allocation of energy in response to global change. Integr. Comp. Biol. 54, 284–295 (2014).Article 

    Google Scholar 
    26.Barner, A. K. et al. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Glob. Change Biol. 24, 4464–4477 (2018).Article 

    Google Scholar 
    27.Spitzner, F., Giménez, L., Meth, R., Harzsch, S. & Torres, G. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Mar. Biol. 166, 112 (2019).Article 
    CAS 

    Google Scholar 
    28.Torres, G., Thomas, D. N., Whiteley, N. M., Wilcockson, D. & Giménez, L. Maternal and cohort effects modulate offspring responses to multiple stressors. Proc. R. Soc. B 287, 20200492 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).30.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Coleman, R. et al. A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia 147, 556–564 (2006).PubMed 
    Article 

    Google Scholar 
    32.Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale‐dependent systems. Am. Nat. 169, 398–408 (2007).PubMed 
    Article 

    Google Scholar 
    33.Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    34.Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).Article 

    Google Scholar 
    35.Benedetti-Cecchi, L. Variance in ecological consumer-resource interactions. Nature 407, 370–374 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Schäfer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).Article 

    Google Scholar 
    37.Hastie, T, Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).38.Garfinkel, A., Shevtsov, J. & Guo, Y. Modelling Life (Springer, 2017).39.Durrant, H. M. S., Clark, G. F., Dworjanyn, S. A., Byrne, M. & Johnston, E. L. Seasonal variation in the effects of ocean warming and acidification on a native bryozoan, Celleporaria nodulosa. Mar. Biol. 160, 1903–1911 (2013).Article 

    Google Scholar 
    40.Jensen, G. C., McDonald, P. S. & David, A. A. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).Article 

    Google Scholar 
    41.Jungblut, S., Beermann, J., Boos, K., Saborowski, R. & Hagen, W. Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. Aquat. Inv. 12, 85–96 (2017).Article 

    Google Scholar 
    42.Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398 (2010).CAS 
    Article 

    Google Scholar 
    43.Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).Article 

    Google Scholar 
    44.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Progr. Oceanogr. 141, 227–238 (2016).Article 

    Google Scholar 
    45.Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).CAS 
    Article 

    Google Scholar 
    46.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    47.Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).Article 

    Google Scholar 
    49.Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).Article 

    Google Scholar 
    50.Gouvêa, L. P. et al. Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga. Limnol. Oceanogr. 62, 2056–2075 (2017).Article 
    CAS 

    Google Scholar 
    51.Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Change Biol. 26, 4800–4811 (2020).Article 

    Google Scholar 
    52.Von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014-2016. Mar. Ecol. Prog. Ser. 613, 171–182 (2019).Article 

    Google Scholar 
    53.Dawirs, R. R., Püschel, C. & Schorn, F. Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis. J. Exp. Mar. Biol. Ecol. 100, 47–74 (1986).Article 

    Google Scholar 
    54.Torres, G. & Giménez, L. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol. 34, 1564–1576 (2020).Article 

    Google Scholar 
    55.Roman, J. O. E. & Palumbi, S. R. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol. Ecol. 13, 2891–2898 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Zeng, C., Rotllant, G., Gimenez, L. & Romano, N. In The Natural History of Crustacea: Developmental Biology and Larval Ecology (eds Anger, K., Harzsch, S. & Thiel, M.) Vol. 7, Ch. 7 (Oxford Univ. Press, 2020).57.Nougué, O., Svendsen, N., Jabbour-Zahab, R., Lenormand, T. & Chevin, L.-M. The ontogeny of tolerance curves: habitat quality vs. acclimation in a stressful environment. J. Anim. Ecol. 85, 1625–1635 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Epifanio, C. E., Dittel, A. I., Park, S., Schwalm, S. & Fouts, A. Early life history of Hemigrapsus sanguineus, a non-indigenous crab in the Middle Atlantic Bight (USA). Mar. Ecol. Prog. Ser. 170, 231–238 (1998).Article 

    Google Scholar 
    61.Karlsson, R., Obst, M. & Berggren, M. Analysis of potential distribution and impacts for two species of alien crabs in Northern Europe. Biol. Inv. 21, 3109–3119 (2019).Article 

    Google Scholar 
    62.Sulkin, S., Blanco, A., Chan, J. & Bryant, M. Effects of limiting access to prey on development of first zoeal stage of the brachyuran crabs Cancer magister and Hemigrapsus oregonensis. Mar. Biol. 131, 515–521 (1998).Article 

    Google Scholar 
    63.Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).PubMed 
    Article 

    Google Scholar 
    64.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 

    Google Scholar 
    65.Zuur, A., Ieno, E. N., Walker, N., Savaliev, A. A. & Smith, G. M. Mixed Effect Models and Extensions in Ecology with R (Springer, 2009).66.R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2017).67.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. (2018).68.Giménez, L. & Torres, G. Effect of simulated heatwaves on larval performance of two marine invertebrates. PANGAEA https://doi.org/10.1594/PANGAEA.934715 (2021). More

  • in

    Histological findings of sperm storage in green turtle (Chelonia mydas) oviduct

    1.Hamann, M., Jessop, T., Limpus, C. & Whittier, J. Interactions among endocrinology, seasonal reproductive cycles and the nesting biology of the female green sea turtle. Mar. Biol. 140, 823–830 (2002).CAS 
    Article 

    Google Scholar 
    2.Chaloupka, M. et al. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr. 17, 297–304 (2007).Article 

    Google Scholar 
    3.Kitayama, C. et al. Infection by and molecular features of Learedius learedi (Digenea: Schistosomatoidea) in green sea turtles (Chelonia mydas) on the Ogasawara islands, Japan. J Parasitol. 105(4), 533–538 (2019).Article 

    Google Scholar 
    4.Kondo, S., Morimoto, Y., Sato, T. & Suganuma, H. Factors affecting the long-term population dynamics of green turtles (Chelonia mydas) in Ogasawara, Japan: Influence of natural and artificial production of hatchlings and harvest pressure. Chelonian Conserv. Biol. 16, 83–92 (2017).Article 

    Google Scholar 
    5.Hatase, H., Sato, K., Yamaguchi, M., Takahashi, K. & Tsukamoto, K. Individual variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): Are they obligately neritic herbivores? Oecologia 149, 52–64 (2006).ADS 
    Article 

    Google Scholar 
    6.Nishizawa, H. et al. Composition of green turtle feeding aggregations along the Japanese archipelago: Implications for changes in composition with current flow. Mar. Biol. 160(10), 2671–2685 (2013).Article 

    Google Scholar 
    7.Wood, J. R. & Wood, F. E. Reproductive biology of captive green sea turtles (Chelonia mydas). Am. Zool. 20, 499–505 (1980).Article 

    Google Scholar 
    8.Ulrich, G. F. & Parkes, A. S. The green sea turtle (Chelonia mydas): Further observations on breeding in captivity. J. Zool. 185(2), 237–251 (1978).Article 

    Google Scholar 
    9.Gist, D. H. & Congdon, J. D. Oviductal sperm storage as a reproductive tactic of turtles. J. Exp. Zool. 282, 526–534 (1998).CAS 
    Article 

    Google Scholar 
    10.Gist, D. H. & Jones, J. M. Sperm storage within the oviduct of turtles. J. Morphol. 199, 379–384 (1989).Article 

    Google Scholar 
    11.Holt, W. V. Mechanisms of sperm storage in the female reproductive tract: An interspecies comparison. Reprod. Domest. Anim. 46, 68–74 (2011).Article 

    Google Scholar 
    12.Orr, T. J. & Brennan, P. L. R. Sperm storage: Distinguishing selective processes and evaluating criteria. Trends Ecol. Evol. 30, 261–272 (2015).Article 

    Google Scholar 
    13.Blackburn, D. G. Structure, function, and evolution of the oviducts of squamate reptiles, with special reference to viviparity and placentation. J. Exp. Zool. 282, 560–617 (1998).CAS 
    Article 

    Google Scholar 
    14.Matsuzaki, M. & Sasanami, T. Sperm storage in the female reproductive tract: A conserved reproductive strategy for better fertilization success. In Avian Reproduction. Advances in Experimental Medicine and Biology Vol. 1001 (ed. Sasanami, T.) 173–186 (Springer, 2017).
    Google Scholar 
    15.Girling, J. E. The reptilian oviduct: A review of structure and function and directions for future research. J. Exp. Zool. 293, 141–170 (2002).Article 

    Google Scholar 
    16.Almeida-Santos, S. M. & Salomão, M. G. Long-term sperm storage in the female Neotropical Rattlesnake Crotalus durissus terrificus (Viperidae: Crotalinae). Jpn. J. Herpetol. 17, 46–52 (1997).Article 

    Google Scholar 
    17.Sever, D. M. & Hopkins, W. A. Oviductal sperm storage in the ground skink Scincella laterale Holbrook (Reptilia: Scincidae). J. Exp. Biol. 301, 599–611 (2004).
    Google Scholar 
    18.Bakst, M. R. Fate of fluorescent stained sperm following insemination: New light on oviducal sperm transport and storage in the turkey. Biol. Reprod. 50, 987–992 (1994).CAS 
    Article 

    Google Scholar 
    19.Sasanami, T., Matsuzaki, M., Mizushima, S. & Hiyama, G. Sperm storage in the female reproductive tract in birds. J. Reprod. Dev. 59, 334–338 (2013).Article 

    Google Scholar 
    20.Palmer, B. D. & Guillette, L. J. Jr. Histology and functional morphology of the female reproductive tract of the tortoise Gopherus polyphemus. Am. J. Anat. 183, 200–211 (1988).CAS 
    Article 

    Google Scholar 
    21.Xiangkun, H. et al. Seasonal changes of sperm storage and correlative structures in male and female soft-shelled turtles, Trionyx sinensis. Anim. Reprod. Sci. 108, 435–445 (2008).Article 

    Google Scholar 
    22.Seminoff, J. A. The IUCN Red List of Threatened Species 2004: e.T4615A11037468. https://doi.org/10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en (2004)23.Bjorndal, K. A. & Jackson, J. B. C. Roles of sea turtles in marine ecosystems: Reconstructing the past. In The Biology of Sea Turtles Vol. 2 (eds Lutz, P. L. et al.) 259–273 (CRC Press, 2003).
    Google Scholar 
    24.Gist, D. H., Bagwill, A., Lance, V., Sever, D. M. & Elsey, R. M. Sperm storage in the oviduct of the American alligator. J. Exp. Zool. 309, 581–587 (2008).Article 

    Google Scholar 
    25.Gist, D. H. & Fischer, E. N. Fine structure of the sperm storage tubules in the box turtle oviduct. J. Reprod. Fertil. 97, 463–468 (1993).CAS 
    Article 

    Google Scholar 
    26.Chen, S. et al. Sperm storage and spermatozoa interaction with epithelial cells in oviduct of Chinese soft-shelled turtle, Pelodiscus sinensis. Ecol. Evol. 5, 3023–3030 (2015).Article 

    Google Scholar 
    27.Miller, J. D. Reproduction in sea turtles. In The Biology of Sea Turtles (eds Lutz, P. L. & Musick, J. A.) 51–81 (CRC Press, 1997).
    Google Scholar 
    28.Pearse, D. E. & Avise, J. C. Turtle mating systems: Behavior, sperm storage, and genetic paternity. J. Hered. 92, 206–211 (2001).CAS 
    Article 

    Google Scholar 
    29.Pearse, D. E., Janzen, F. J. & Avise, J. C. Genetic markers substantiate long-term storage and utilization of sperm by female painted turtles. Heredity 86, 378–384 (2001).CAS 
    Article 

    Google Scholar 
    30.Sarkar, S., Sarkar, N. & Maiti, B. Oviductal sperm storage structure and their changes during the seasonal (dissociated) reproductive cycle in the soft-shelled turtle Lissemys punctata punctata. J. Exp. Zool. A Comp. Exp. Biol. 295, 83–91 (2003).PubMed 

    Google Scholar 
    31.Bagwill, A., Sever, D. M. & Elsey, R. M. Seasonal variation of the oviduct of the American alligator, Alligator mississippiensis (Reptilia: Crocodylia). J. Morphol. 270, 702–713 (2009).Article 

    Google Scholar 
    32.Han, X. et al. Ultrastructure of anterior uterus of the oviduct and the stored sperm in female soft-shelled turtle, Trionyx sinensis. Anat. Rec. 291, 335–351 (2008).Article 

    Google Scholar 
    33.Nogueira, K. O. P. C., Araújo, V. A., Sartori, S. S. R. & Neves, C. A. Phagocytosis of spermatozoa by epithelial cells in the vagina of the lizard Hemidactylus mabouia (Reptilia, Squamata). Micron 42, 377–380 (2011).Article 

    Google Scholar  More

  • in

    Emergent biogeochemical risks from Arctic permafrost degradation

    1.Mcguire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009). Details Arctic changes under RCP scenarios using a multi-model approach forecasting vegetation offsets of some carbon emissions.
    Google Scholar 
    2.Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).
    Google Scholar 
    3.Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).CAS 

    Google Scholar 
    4.Karjalainen, O. et al. Data descriptor: circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 6, 190037 (2019).
    Google Scholar 
    5.Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).CAS 

    Google Scholar 
    6.Abramov, A., Vishnivetskaya, T. & Rivkina, E. Are permafrost microorganisms as old as permafrost? FEMS Microbiol. Ecol. 97, fiaa260 (2021).CAS 

    Google Scholar 
    7.Ricketts, M. P. et al. The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils. Soil Biol. Biochem. 148, 107882 (2020).CAS 

    Google Scholar 
    8.Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).CAS 

    Google Scholar 
    9.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020). Seminal paper that identifies abrupt permafrost thaw as an important mechanism in rapid Arctic change.CAS 

    Google Scholar 
    10.Nikrad, M. P., Kerkhof, L. J. & Aggblom, M. M. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol. Ecol. 92, fiw081 (2016).
    Google Scholar 
    11.Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).CAS 

    Google Scholar 
    12.Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).CAS 

    Google Scholar 
    13.Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
    Google Scholar 
    14.Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).CAS 

    Google Scholar 
    15.Hong, E., Perkins, R. & Trainor, S. Thaw settlement hazard of permafrost related to climate warming in Alaska. Arctic 67, 93–103 (2014).
    Google Scholar 
    16.Trofimenko, Y. V., Evgenev, G. I. & Shashina, E. V. Functional loss risks of highways in permafrost areas due to climate change. Procedia Eng. 189, 258–264 (2017).
    Google Scholar 
    17.Wurzbacher, C., Nilsson, R. H., Rautio, M. & Peura, S. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds. ISME J. 11, 1938–1941 (2017).
    Google Scholar 
    18.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 

    Google Scholar 
    19.Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).CAS 

    Google Scholar 
    20.Walsh, M. G., De Smalen, A. W. & Mor, S. M. Climatic influence on anthrax suitability in warming northern latitudes. Sci. Rep. 8, 9269 (2018).
    Google Scholar 
    21.Zolkos, S. et al. Mercury export from Arctic great rivers. Environ. Sci. Technol. 54, 4140–4148 (2020).CAS 

    Google Scholar 
    22.Ewing, S. A. et al. Uranium isotopes and dissolved organic carbon in loess permafrost: modeling the age of ancient ice. Geochim. Cosmochim. Acta 152, 143–165 (2015).CAS 

    Google Scholar 
    23.Eriksson, M. On Weapons Plutonium in the Arctic Environment (Thule, Greenland). PhD thesis, Lund Univ. (2002).24.Colgan, W. et al. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate. Geophys. Res. Lett. 43, 8091–8096 (2016).
    Google Scholar 
    25.Anisimov, O., Kokorev, V. & Zhiltcova, Y. Arctic ecosystems and their services under changing climate: predictive-modeling assessment. Geogr. Rev. 107, 108–124 (2017).
    Google Scholar 
    26.Pelletier, M., Allard, M. & Levesque, E. Ecosystem changes across a gradient of permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). Arct. Sci. 5, 1–26 (2019).
    Google Scholar 
    27.Perryman, C. R. et al. Heavy metals in the Arctic: distribution and enrichment of five metals in Alaskan soils. PLoS ONE 15, e0233297 (2020).CAS 

    Google Scholar 
    28.Gilichinsky, D. A. & Rivkina, E. M. Permafrost microbiology. Encycl. Earth Sci. Ser. 6, 726–732 (1995). Details the (at the time) emergent field of permafrost microbiology, extremophilic species and future prospects for emergent microbes.
    Google Scholar 
    29.Steven, B., Léveillé, R., Pollard, W. H. & Whyte, L. G. Microbial ecology and biodiversity in permafrost. Extremophiles 10, 259–267 (2006).
    Google Scholar 
    30.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
    Google Scholar 
    31.Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K. & Taş, N. Permafrost meta-omics and climate change. Annu. Rev. Earth Planet. Sci. 44, 439–462 (2016).CAS 

    Google Scholar 
    32.Graham, D. E. et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6, 709–712 (2012).CAS 

    Google Scholar 
    33.Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).
    Google Scholar 
    34.Ren, J. et al. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.10.019 (2016).35.Dean, J. F. et al. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environ. Res. Lett. 13, 34024 (2018).
    Google Scholar 
    36.Jeffries, M. O., Overland, J. E. & Perovich, D. K. The Arctic shifts to a new normal. Phys. Today 66, 35–40 (2013).
    Google Scholar 
    37.El-Sayed, A. & Kamel, M. Future threat from the past. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-11234-9 (2020).38.Houwenhuyse, S., Macke, E., Reyserhove, L., Bulteel, L. & Decaestecker, E. Back to the future in a petri dish: origin and impact of resurrected microbes in natural populations. Evol. Appl. 11, 29–41 (2018).
    Google Scholar 
    39.Miner, K. R. et al. Organochlorine pollutants within a polythermal glacier in the Interior Eastern Alaska Range. Water 10, 1157 (2018).
    Google Scholar 
    40.Li, F. et al. Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nat. Clim. Change 10, 1037–1044 (2020).CAS 

    Google Scholar 
    41.Eriksson, M., Lindahl, P., Roos, P., Dahlgaard, H. & Holm, E. U, Pu, and Am nuclear signatures of the thule hydrogen bomb debris. Environ. Sci. Technol. 42, 4717–4722 (2008).CAS 

    Google Scholar 
    42.Lind, O. C. et al. Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci. Total Environ. 376, 294–305 (2007).CAS 

    Google Scholar 
    43.Slemmons, K. E. H., Saros, J. E. & Simon, K. The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ. Sci. Process. Impacts 15, 1794 (2013).CAS 

    Google Scholar 
    44.Bidleman, T. F., Jantunen, L. M., Kurt-Karakus, P. B. & Wong, F. Chiral persistent organic pollutants as tracers of atmospheric sources and fate: review and prospects for investigating climate change influences. Atmos. Pollut. Res. 3, 371–382 (2012).CAS 

    Google Scholar 
    45.Chen, M. et al. Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: insights into the impact of global warming on the cycling of emerging pollutants. J. Geophys. Res. Atmos. 124, 7442–7456 (2019).
    Google Scholar 
    46.Goodman, S. & Kertysova, K. The Nuclearisation of the Russian Arctic: New Reactors, New Risks (European Leadership Network, 2020); https://www.europeanleadershipnetwork.org/wp-content/uploads/2020/06/The-nuclearisation-of-the-Russian-Arctic-2.pdf47.Byrne, S. et al. Persistent organochlorine pesticide exposure related to a formerly used defense site on St. Lawrence Island, Alaska: data from sentinel fish and human sera. Toxicol. Environ. Health 78, 37–54 (2015).
    Google Scholar 
    48.The National Academies of Sciences Understanding and Responding to Global Health Security Risks from Microbial Threats in the Arctic (National Academies Press, 2020); https://doi.org/10.17226/2588749.Edwards, A. et al. Microbial genomics amidst the Arctic crisis. Microb. Genom. 6, e000375 (2020). Catalogues known genomic diversity, evolution dynamics and environment of Arctic microbes.
    Google Scholar 
    50.Botnen, S. S., Mundra, S., Kauserud, H. & Eidesen, P. B. Glacier retreat in the high Arctic: opportunity or threat for ectomycorrhizal diversity? FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaa171 (2020).51.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 

    Google Scholar 
    52.Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W. & Cory, R. M. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8, 772 (2017).
    Google Scholar 
    53.Taş, N. et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat. Commun. 9, 777 (2018).
    Google Scholar 
    54.Price, P. B. Microbial genesis, life and death in glacial ice. Can. J. Microbiol. 55, 1–11 (2009).CAS 

    Google Scholar 
    55.Niederberger, T. D. et al. Microbial characterization of a subzero, hypersaline methane seep in the Canadian high Arctic. ISME J. 4, 1326–1339 (2010).CAS 

    Google Scholar 
    56.Malavin, S., Shmakova, L., Claverie, J. M. & Rivkina, E. Frozen Zoo: a collection of permafrost samples containing viable protists and their viruses. Biodivers. Data J. 8, e51586 (2020).
    Google Scholar 
    57.Gilichinsky, D., Rivkina, E., Shcherbakova, V., Laurinavichuis, K. & Tiedje, J. Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3, 331–341 (2003).CAS 

    Google Scholar 
    58.Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279 (2014).CAS 

    Google Scholar 
    59.Legendre, M. et al. In-depth study of Mollivirus sibericum, a new 30,000-yold giant virus infecting Acanthamoeba. Proc. Natl Acad. Sci. USA 112, E5327–E5335 (2015).CAS 

    Google Scholar 
    60.MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011). Uses deep metagenomic sequencing to map the impacts of thaw on the Arctic microbial community structure and genomics.CAS 

    Google Scholar 
    61.Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking age. Science 369, eaaw8977 (2020).
    Google Scholar 
    62.Ng, T. F. F. et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl Acad. Sci. USA 111, 16842–16847 (2014).
    Google Scholar 
    63.Shmakova, L. et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 31, PR712–R713 (2021).
    Google Scholar 
    64.Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).CAS 

    Google Scholar 
    65.Edwards, A. Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front. Earth Sci. 3, 12 (2015).
    Google Scholar 
    66.Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).CAS 

    Google Scholar 
    67.Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph Methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).
    Google Scholar 
    68.Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).CAS 

    Google Scholar 
    69.Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).CAS 

    Google Scholar 
    70.Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646–18 (2019).CAS 

    Google Scholar 
    71.Colangelo-Lillis, J., Eicken, H., Carpenter, S. D. & Deming, J. W. Evidence for marine origin and microbial-viral habitability of subzero hypersaline aqueous inclusions within permafrost near Barrow, Alaska. FEMS Microbiol. Ecol. 92, fiw053 (2016).CAS 

    Google Scholar 
    72.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS 

    Google Scholar 
    73.Zhong, Z.-P. et al. Viral ecogenomics of Arctic cryopeg brine and sea ice. mSystems https://doi.org/10.1128/mSystems.00246-20 (2020).74.Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).CAS 

    Google Scholar 
    75.Aslam, S. N., Huber, C., Asimakopoulos, A. G., Steinnes, E. & Mikkelsen, Ø. Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic. Sci. Total Environ. 685, 1127–1138 (2019).CAS 

    Google Scholar 
    76.Winiger, P. et al. Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Sci. Adv. 5, eaau8052 (2019).CAS 

    Google Scholar 
    77.Villa, S., Migliorati, S., Monti, G. S., Holoubek, I. & Vighi, M. Risk of POP mixtures on the Arctic food chain. Environ. Toxicol. Chem. 36, 1181–1192 (2017).CAS 

    Google Scholar 
    78.Ma, J., Hung, H., Tian, C. & Kallenborn, R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat. Clim. Change 1, 255–260 (2011).CAS 

    Google Scholar 
    79.Ji, X., Abakumov, E. & Polyakov, V. Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: a case-study in Yamal Peninsula, Russia Arctic. Hum. Ecol. Risk Assess. 25, 2142–2159 (2019).CAS 

    Google Scholar 
    80.Mu, C. et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 161, 54–60 (2019).CAS 

    Google Scholar 
    81.Brown, T. M., Macdonald, R. W., Muir, D. C. G. & Letcher, R. J. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s eastern Arctic. Sci. Total Environ. 618, 500–517 (2018).CAS 

    Google Scholar 
    82.Ferrario, C., Finizio, A. & Villa, S. Legacy and emerging contaminants in meltwater of three alpine glaciers. Sci. Total Environ. 574, 350–357 (2017).CAS 

    Google Scholar 
    83.Miner, K. R., Bogdal, C., Pavlova, P. A., Steinlin, C. & Kreutz, K. J. Quantitative screening level assessment of human risk from PCB in glacial meltwater: Silvretta Glacier, Swiss Alps. Ecotoxicol. Environ. Saf. 166, 251–258 (2018).CAS 

    Google Scholar 
    84.Octaviani, M., Stemmler, I., Lammel, G. & Graf, H. F. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environ. Sci. Technol. 49, 3593–3602 (2015).CAS 

    Google Scholar 
    85.Nielsen, S. P., Iosjpe, M. & Strand, P. Collective doses to man from dumping of radioactive waste in the Arctic seas. Sci. Total Environ. 202, 135–146 (1997).CAS 

    Google Scholar 
    86.Eickmeyer, D. C. et al. Interactions of polychlorinated biphenyls and organochlorine pesticides with sedimentary organic matter of retrogressive thaw slump-affected lakes in the tundra uplands adjacent to the Mackenzie Delta, NT, Canada. J. Geophys. Res. G Biogeosci. 121, 411–421 (2016).CAS 

    Google Scholar 
    87.St Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).
    Google Scholar 
    88.Birnbaum, L. S. When environmental chemicals act like uncontrolled medicine. Trends Endocrinol. Metab. 24, 321–323 (2013).CAS 

    Google Scholar 
    89.Potapowicz, J., Szumińska, D., Szopińska, M. & Polkowska, Ż. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: part I. Case study of Antarctica. Sci. Total Environ. 651, 1534–1548 (2019).CAS 

    Google Scholar 
    90.Kim, K.-S. et al. Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere 94, 151–157 (2014).CAS 

    Google Scholar 
    91.Knutsen, H. K. et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 16, e05194 (2018).
    Google Scholar 
    92.Iszatt, N. et al. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ. Health Perspect. 123, 730–736 (2015).CAS 

    Google Scholar 
    93.Nadal, M., Marquès, M., Mari, M. & Domingo, J. L. Climate change and environmental concentrations of POPs: a review. Environ. Res. 143, 177–185 (2015).CAS 

    Google Scholar 
    94.Toxicological Profile for Lead (Agency for Toxic Substances and Disease Registry, 2020); https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf95.Toxicological Profile for Mercury (Agency for Toxic Substances and Disease Registry, 1999); https://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf96.Toxicological Profile for Cadmium (Agency for Toxic Substances and Disease Registry, 2012); https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf97.Halbach, K., Mikkelsen, Ø., Berg, T. & Steinnes, E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574 (2017).CAS 

    Google Scholar 
    98.Miner, K. R. et al. Legacy organochlorine pollutants in glacial watersheds: a review. Environ. Sci. Process. Impacts 19, 1474–1483 (2017).CAS 

    Google Scholar 
    99.Jamieson, H. E. The legacy of arsenic contamination from mining and processing refractory gold ore at Giant Mine, Yellowknife, Northwest Territories, Canada. Rev. Mineral. Geochem. 79, 533–551 (2014).
    Google Scholar 
    100.Tolvanen, A. et al. Mining in the Arctic environment—a review from ecological, socioeconomic and legal perspectives. J. Environ. Manag. 233, 832–844 (2019).
    Google Scholar 
    101.Liu, X., Jiang, S., Zhang, P. & Xu, L. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments. Environ. Pollut. 160, 161–168 (2012).CAS 

    Google Scholar 
    102.Antcibor, I. et al. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia. Biogeosciences 11, 1–15 (2014).
    Google Scholar 
    103.Lim, A. G. et al. A revised pan-Arctic permafrost soil Hg pool based on western Siberian peat Hg and carbon observations. Biogeosciences 17, 3083–3097 (2020).CAS 

    Google Scholar 
    104.Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).CAS 

    Google Scholar 
    105.Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020). Estimates future releases of mercury from the permafrost from present to 2300, under RCP scenarios.CAS 

    Google Scholar 
    106.Jiskra, M. E., Sonke, J., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 4051–4064 (2019).CAS 

    Google Scholar 
    107.Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science 309, 445 (2005).CAS 

    Google Scholar 
    108.Brimble, S. K. et al. High Arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc. Environ. Toxicol. Chem. 28, 2426–2433 (2009).CAS 

    Google Scholar 
    109.Michelutti, N. et al. Trophic position influences the efficacy of seabirds as metal biovectors. Proc. Natl Acad. Sci. USA 107, 10543–10548 (2010).CAS 

    Google Scholar 
    110.Mallory, M. L. & Braune, B. M. Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights. Mar. Pollut. Bull. 64, 1475–1484 (2012).CAS 

    Google Scholar 
    111.Lehnherr, I. Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environ. Rev. 22, 229–243 (2014).CAS 

    Google Scholar 
    112.Steinlin, C. et al. A temperate alpine glacier as a reservoir of polychlorinated biphenyls: model results of incorporation, transport, and release. Environ. Sci. Technol. 50, 5572–5579 (2016).CAS 

    Google Scholar 
    113.Pavlova, P. A., Schmid, P., Zennegg, M., Bogdal, C. & Schwikowski, M. Trace analysis of hydrophobic micropollutants in aqueous samples using capillary traps. Chemosphere 106, 51–56 (2014).CAS 

    Google Scholar 
    114.Blais, J. M. et al. Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio 30, 410–415 (2001).CAS 

    Google Scholar 
    115.Lafrenière, M. J., Blais, J. M., Sharp, M. J. & Schindler, D. W. Organochlorine pesticide and polychlorinated biphenyl concentrations in snow, snowmelt, and runoff at Bow Lake, Alberta. Environ. Sci. Technol. 40, 4909–4915 (2006).
    Google Scholar 
    116.Elliott, J. E. et al. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers? Environ. Sci. Technol. 46, 9681–9689 (2012).CAS 

    Google Scholar 
    117.Walters, D. M. et al. Trophic magnification of organic chemicals: a global synthesis. Environ. Sci. Technol. 50, 4650–4658 (2016).CAS 

    Google Scholar 
    118.Miner, K. R., Wayant, N. & Ward, H. Preventing chemical release in hurricanes. Science 362, 166 (2018).CAS 

    Google Scholar 
    119.Quadroni, S. & Bettinetti, R. Health risk assessment for the consumption of fresh and preserved fish (Alosa agone) from Lago di Como (northern Italy). Environ. Res. 156, 571–578 (2017).CAS 

    Google Scholar 
    120.Mangano, M. C., Sarà, G. & Corsolini, S. Monitoring of persistent organic pollutants in the polar regions: knowledge gaps & gluts through evidence mapping. Chemosphere 172, 37–45 (2017).CAS 

    Google Scholar 
    121.Villa, S., Vighi, M., Maggi, V., Finizio, A. & Bolzacchini, E. Historical trends of organochlorine pesticides in an alpine glacier. J. Atmos. Chem. 46, 295–311 (2003).CAS 

    Google Scholar 
    122.Garmash, O. et al. Deposition history of polychlorinated biphenyls to the Lomonosovfonna glacier, Svalbard: a 209 congener analysis. Environ. Sci. Technol. 47, 12064–12072 (2013).CAS 

    Google Scholar 
    123.Bizzotto, E. C., Villa, S., Vaj, C. & Vighi, M. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt. Chemosphere 74, 924–930 (2009).CAS 

    Google Scholar 
    124.Villa, S., Negrelli, C., Finizio, A., Flora, O. & Vighi, M. Organochlorine compounds in ice melt water from Italian alpine rivers. Ecotoxicol. Environ. Saf. 63, 84–90 (2006).CAS 

    Google Scholar 
    125.Miner, K. R. et al. A screening-level approach to quantifying risk from glacial release of organochlorine pollutants in the Alaskan Arctic. J. Expo. Sci. Environ. Epidemiol. 29, 293–301 (2018). Develops the first human risk assessment of glacially stored pollutants in the Arctic.
    Google Scholar 
    126.Czub, G. & McLachlan, M. S. A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ. Toxicol. Chem. 23, 2356–2366 (2004).CAS 

    Google Scholar 
    127.Wang, X., Gong, P., Wang, C., Ren, J. & Yao, T. A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau. Sci. Total Environ. 573, 139–154 (2016).CAS 

    Google Scholar 
    128.Desforges, J. P. et al. Predicting global killer whale population collapse from PCB pollution. Science 361, 1373–1376 (2018).CAS 

    Google Scholar 
    129.Macdonald, R. W. et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93–234 (2000).CAS 

    Google Scholar 
    130.Pavlova, P. A. et al. Polychlorinated biphenyls in a temperate alpine glacier: 1. Effect of percolating meltwater on their distribution in glacier ice. Environ. Sci. Technol. 49, 14085–14091 (2015).CAS 

    Google Scholar 
    131.Wania, F., Westgate, J. N., Technol, E. S. & Asap, A. On the mechanism of mountain cold-trapping of organic chemicals. Environ. Sci. Technol. 42, 9092–9098 (2008).CAS 

    Google Scholar 
    132.Strand, P. & Cooke, A. Environmental Radioactivity in the Arctic (Scientific Committee of the Environmental Radioactivity in the Arctic, 1995).133.Wright, S. M. et al. Spatial variation in the vulnerability of Norwegian Arctic counties to radiocaesium deposition. Sci. Total Environ. 202, 173–184 (1997).CAS 

    Google Scholar 
    134.Mitchell, P. I., León Vintró, L., Dahlgaard, H., Gascó, C. & Sánchez-Cabeza, J. A. Perturbation in the 240Pu/239Pu global fallout ratio in local sediments following the nuclear accidents at Thule (Greenland) and Palomares (Spain). Sci. Total Environ. 202, 147–153 (1997).CAS 

    Google Scholar 
    135.Khalturin, V. I., Rautian, T. G., Richards, P. G. & Leith, W. S. A review of nuclear testing by the Soviet Union at Novaya Zemlya, 1955–1990. Sci. Glob. Secur. 13, 1–42 (2005). Reviews the Novaya Zemlya nuclear testing site history, nuclear releases and posits environmental distribution.
    Google Scholar 
    136.Travkina, A. V. et al. Monitoring the environmental contamination of Kara Sea and shallow bays of Novaya Zemlya. J. Radioanal. Nucl. Chem. 311, 1673–1680 (2017).CAS 

    Google Scholar 
    137.Skorve, J. The environment of the nuclear test sites on Novaya Zemlya. Sci. Total Environ. 202, 167–172 (1997).CAS 

    Google Scholar 
    138.Sarkisov, A. A. The question of clean-up of radioactive contamination in the Arctic region. Her. Russ. Acad. Sci. 89, 7–22 (2019).
    Google Scholar 
    139.Pogrebov, V. B., Fokin, S. I., Galtsova, V. V. & Ivanov, G. I. Benthic communities as influenced by nuclear testing and radioactive waste disposal off Novaya Zemlya in the Russian Arctic. Mar. Pollut. Bull. 35, 333–339 (1997).CAS 

    Google Scholar 
    140.Miroshnikov, A. Y. et al. Radioecological investigations on the northern Novaya Zemlya Archipelago. Oceanology 57, 204–214 (2017).
    Google Scholar 
    141.Salbu, B. et al. Radioactive contamination from dumped nuclear waste in the Kara Sea—results from the joint Russian-Norwegian expeditions in 1992-1994. Sci. Total Environ. 202, 185–198 (1997).CAS 

    Google Scholar 
    142.Oughton, D. H., Børretzen, P., Salbu, B. & Tronstad, E. Mobilisation of 137Cs and 90Sr from sediments: potential sources to Arctic waters. Sci. Total Environ. 202, 155–165 (1997).CAS 

    Google Scholar 
    143.Faria, S. H., Weikusat, I. & Azuma, N. The microstructure of polar ice. Part I: highlights from ice core research. J. Struct. Geol. 61, 2–20 (2014).
    Google Scholar 
    144.Karlsson, N. B. et al. Ice-penetrating radar survey of the subsurface debris field at Camp Century, Greenland. Cold Reg. Sci. Technol. 165, 102788 (2019). The most recent ice-penetrating radar survey of Camp Century, Greenland, characterizing the location and concentration of wastes.
    Google Scholar 
    145.Vandecrux, B., Colgan, W. T., Solgaard, A., Steffensen, J. P. & Karlsson, N. B. Firn evolution at Camp Century, Greenland: 1966-2100. Front. Earth Sci. 9, 578978 (2021).
    Google Scholar 
    146.Vila, E., Hornero-Méndez, D., Azziz, G., Lareo, C. & Saravia, V. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol. Rep. 21, e00306 (2019).
    Google Scholar 
    147.Chaudhary, D. K., Kim, D. U., Kim, D. & Kim, J. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9, 4134 (2019).
    Google Scholar 
    148.de Gouw, J. A. et al. Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 10, 1379 (2020).
    Google Scholar 
    149.Girardot, F. et al. Bacterial diversity on an abandoned, industrial wasteland contaminated by polychlorinated biphenyls, dioxins, furans and trace metals. Sci. Total Environ. 748, 141242 (2020).CAS 

    Google Scholar 
    150.Price, P. B. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol. Ecol. 59, 217–231 (2007).CAS 

    Google Scholar 
    151.Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).
    Google Scholar 
    152.Jensen, P. E., Hennessy, T. W. & Kallenborn, R. Water, sanitation, pollution, and health in the Arctic. Environ. Sci. Pollut. Res. 25, 32827–32830 (2018).
    Google Scholar 
    153.Ewing, S. A. et al. Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophys. Res. Lett. 42, 10730–10738 (2015).CAS 

    Google Scholar 
    154.Elder, C. D. et al. Seasonal sources of whole-lake CH4 and CO2 emissions from interior Alaskan thermokarst lakes. J. Geophys. Res. Biogeosci. 124, 1209–1229 (2019).CAS 

    Google Scholar 
    155.Jansen, E. et al. Past perspectives on the present era of abrupt Arctic climate change. Nat. Clim. Change 10, 714–721 (2020).
    Google Scholar 
    156.Nellier, Y.-M. et al. Mass budget in two high altitude lakes reveals their role as atmospheric PCB sinks. Sci. Total Environ. 511, 203–213 (2015).CAS 

    Google Scholar 
    157.Garnett, J. et al. Mechanistic insight into the uptake and fate of persistent organic pollutants in sea ice. Environ. Sci. Technol. 53, 6757–6764 (2019).CAS 

    Google Scholar 
    158.Kortenkamp, A. & Faust, M. Regulate to reduce chemical mixture risk. Science 361, 224–226 (2018).CAS 

    Google Scholar 
    159.Kirchgeorg, T. et al. Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the eastern Alps. Environ. Pollut. 218, 804–812 (2016).CAS 

    Google Scholar 
    160.Weil, T. et al. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 5, 32 (2017).
    Google Scholar 
    161.Li, J. et al. Evidence for persistent organic pollutants released from melting glacier in the central Tibetan Plateau, China. Environ. Pollut. 220, 178–185 (2017).CAS 

    Google Scholar 
    162.Walvoord, M. A., Voss, C. I., Ebel, B. A. & Minsley, B. J. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environ. Res. Lett. 14, 015003 (2019).CAS 

    Google Scholar 
    163.Mogrovejo, D. C. et al. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable Arctic bacteria. Front. Microbiol. 11, 570 (2020).
    Google Scholar 
    164.Friedman, C. L. & Selin, N. E. Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources. Environ. Sci. Technol. 46, 9501–9510 (2012).CAS 

    Google Scholar 
    165.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
    Google Scholar 
    166.Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).CAS 

    Google Scholar 
    167.MacInnis, J. J. et al. Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high Arctic of Canada. Environ. Sci. Technol. 53, 10753–10762 (2019).CAS 

    Google Scholar 
    168.Yeung, L. W. Y. et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean. Environ. Sci. Technol. 51, 6735–6744 (2017).CAS 

    Google Scholar 
    169.Colatriano, D. et al. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 1, 90 (2018).
    Google Scholar 
    170.Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).CAS 

    Google Scholar 
    171.Hartmann, M. et al. Variation of ice nucleating particles in the European Arctic over the last centuries. Geophys. Res. Lett. https://doi.org/10.1029/2019GL082311 (2019).172.Murray, B. J., Carslaw, K. S. & Field, P. R. Opinion: cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021).CAS 

    Google Scholar 
    173.Joyce, R. E. et al. Biological ice-nucleating particles deposited year-round in subtropical precipitation. Appl. Environ. Microbiol. 85, e01567-19 (2019).
    Google Scholar 
    174.Yumashev, D., van Hussen, K., Gille, J. & Whiteman, G. Towards a balanced view of Arctic shipping: estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Clim. Change 143, 143–155 (2017).CAS 

    Google Scholar 
    175.Ramage, J. et al. Population living on permafrost in the Arctic. Popul. Environ. https://doi.org/10.1007/s11111-020-00370-6 (2021).176.Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).
    Google Scholar 
    177.Dewailly, E. Canadian Inuit and the Arctic dilemma. Oceanography 19, 88–89 (2006).
    Google Scholar 
    178.Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).CAS 

    Google Scholar 
    179.Kashuba, E. et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb. Ecol. Health Dis. https://doi.org/10.1080/16512235.2017.1345574 (2017).180.Dcosta, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).CAS 

    Google Scholar 
    181.Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).
    Google Scholar 
    182.Gilichinsky, D. et al. in Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R. et al.) 83–102 (Springer-Verlag, 2008).183.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).CAS 

    Google Scholar 
    184.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS 

    Google Scholar 
    185.Taubenberger, J. K. et al. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. mBio 3, e00201–12 (2012).
    Google Scholar 
    186.Jordan, D., Tumpey, T. & Jester, B. The Deadliest Flu: The Complete Story of the Discovery and Reconstruction of the 1918 Pandemic Virus (US Center for Disease Control, 2019).187.Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).CAS 

    Google Scholar 
    188.Revich, B., Tokarevich, N. & Parkinson, A. J. Climate change and zoonotic infections in the Russian Arctic. Int. J. Circumpolar Health 71, 18792 (2012).
    Google Scholar 
    189.Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).
    Google Scholar 
    190.Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).
    Google Scholar 
    191.Springer, Y. P. et al. Novel Orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 64, 1737–1741 (2017).
    Google Scholar 
    192.Mackay, D. Multimedia Environmental Models (CRC Press, 2001).193.Mackay, D., Celsie, A. K. D., Powell, D. E. & Parnis, J. M. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environ. Sci. Process. Impacts 20, 72–85 (2018).CAS 

    Google Scholar 
    194.Vizcaino, E., Grimalt, J. O., Fernandez-Somoano, A. & Tardon, A. Transport of persistent organic pollutants across the human placenta. Environ. Int. 65, 107–115 (2014).CAS 

    Google Scholar 
    195.Costa, O. et al. First-trimester maternal concentrations of polyfluoroalkyl substances and fetal growth throughout pregnancy. Environ. Int. https://doi.org/10.1016/j.envint.2019.05.024 (2019).196.Adetona, O. et al. Concentrations of select persistent organic pollutants across pregnancy trimesters in maternal and in cord serum in Trujillo, Peru. Chemosphere 91, 1426–1433 (2013).CAS 

    Google Scholar 
    197.Toxicological Profile for Plutonium (Agency for Toxic Substances and Disease Registry, 2010); https://www.atsdr.cdc.gov/toxprofiles/tp143.pdf198.Toxicological Profile for Cesium (Agency for Toxic Substances and Disease Registry, 2004); https://www.atsdr.cdc.gov/toxprofiles/tp157.pdf199.Serikova, S. et al. High carbon emissions from thermokarst lakes of western Siberia. Nat. Commun. 10, 1552 (2019).CAS 

    Google Scholar 
    200.Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. https://doi.org/10.1007/s10712-020-09604-6 (2020).201.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    202.Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. https://doi.org/10.1002/ppp.2057 (2020).203.Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).
    Google Scholar 
    204.Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).
    Google Scholar 
    205.Donald, D. B. et al. Delayed deposition of organochlorine pesticides at a temperate glacier. Environ. Sci. Technol. 33, 1794–1798 (1999).CAS 

    Google Scholar 
    206.Hermanson, M. H. et al. Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway. Environ. Sci. Technol. 39, 8163–8169 (2005).CAS 

    Google Scholar 
    207.Salvadó, J. A., Sobek, A., Carrizo, D. & Gustafsson, Ö. Observation-based assessment of PBDE loads in Arctic ocean waters. Environ. Sci. Technol. 50, 2236–2245 (2016).
    Google Scholar 
    208.Vecchiato, M. et al. The great acceleration of fragrances and PAHs archived in an ice core from Elbrus, Caucasus. Sci. Rep. 10, 10661 (2020).CAS 

    Google Scholar 
    209.Miteva, V., Teacher, C., Sowers, T. & Brenchley, J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).CAS 

    Google Scholar  More

  • in

    Invasive potential of tropical fruit flies in temperate regions under climate change

    1.Aluja, M. Fruit fly (Diptera: Tephritidae) research in Latin America: myths, realities and dreams. Soc. Entomol. Bras. 28, 565–594 (1999).Article 

    Google Scholar 
    2.Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Weldon, C. W., Boardman, L., Marlin, D. & Terblanche, J. S. Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Front. Zool. 13, 15 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Weldon, C. W., Díaz-Fleischer, F. & Pérez-Staples, D. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D. et al.) 27–43 (CRC Press, 2020).5.Malacrida, A. R. et al. Globalization and fruit fly invasion and expansion: the medfly paradigm. Genetica 131, 1–9 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Diamantidis, A. D., Carey, J. R., Nakas, C. T. & Papadopoulos, N. T. Ancestral populations perform better in a novel environment: domestication of Mediterranean fruit fly populations from five global regions. Biol. J. Linn. Soc. 102, 334–345 (2011).Article 

    Google Scholar 
    7.Diamantidis, A. D. et al. Life history evolution in a globally invading tephritid: patterns of survival and reproduction in medflies from six world regions. Biol. J. Linn. Soc. 97, 106–117 (2009).Article 

    Google Scholar 
    8.Papadopoulos, N. T., Plant, R. E. & Carey, J. R. From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies. Proc. R. Soc. Biol. Sci. Ser. B 280, 20131466 (2013).Article 

    Google Scholar 
    9.EUPHRESCO, project FLY_DETECT. Development and implementation of early detection tools and effective management strategies for invasive non-European and other selected fruit fly species of economic importance (FLY DETECT). Final report. https://doi.org/10.5281/zenodo.3732297. (2020)10.FSA PLH Panel, (EFSA Panel on Plant Health). Pest categorisation of non-EU Tephritidae. EFSA J. 18, e05931 (2020).
    Google Scholar 
    11.Carey, J. R. The Mediterranean fruit fly (Ceratitis capitata). Am. Entomol. 56, 158–163 (2010).Article 

    Google Scholar 
    12.Gutierrez, A. P. Applied Population Ecology: A Supply-Demand Approach. (Wiley, 1996).13.Sinclair, T. R. & Seligman, N. G. Crop modeling: from infancy to maturity. Agron. J. 88, 698–704 (1996).Article 

    Google Scholar 
    14.Gutierrez, A. P. & Ponti, L. Eradication of invasive species: why the biology matters. Environ. Entomol. 42, 395–411 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Asplen, M. K. et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).Article 

    Google Scholar 
    16.Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: a multi-purpose Open Source GIS. Environ. Model. Softw. 31, 124–130 (2012).Article 

    Google Scholar 
    17.Ekesi, S., Mohamed, S. & Meyer, M. D. Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture. (Springer, 2016).18.Vera, M. T., Rodriguez, R., Segura, D. F., Cladera, J. L. & Sutherst, R. W. Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Environ. Entomol. 31, 1009–1022 (2002).Article 

    Google Scholar 
    19.De Meyer, M., Robertson, M. P., Peterson, A. T. & Mansell, M. W. Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J. Biogeogr. 35, 270–281 (2008).Article 

    Google Scholar 
    20.Tuel, A. & Eltahir, E. A. B. Why is the Mediterranean a climate change hot spot? J. Clim. 33, 5829–5843 (2020).Article 

    Google Scholar 
    21.Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. Biol. Sci. Ser. B 276, 1395–1406 (2009).Article 

    Google Scholar 
    22.IPCC, Intergovernmental Panel on Climate Change. Climate change 2014: Impacts, Adaptation, and Vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2014).23.Godefroid, M., Cruaud, A., Rossi, J. P. & Rasplus, J. Y. Assessing the risk of invasion by Tephritid fruit flies: intraspecific divergence matters. PLoS ONE 10, e0135209 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Ponti, L. et al. Biological invasion risk assessment of Tuta absoluta: mechanistic versus correlative methods. Biol. Invasions (in press).25.Carey, J. R., Papadopoulos, N. & Plant, R. The 30‐year debate on a multi‐billion‐dollar threat: tephritid fruit fly establishment in California. Am. Entomol. 63, 100–113 (2017).Article 

    Google Scholar 
    26.Gutierrez, A. P., Ponti, L. & Gilioli, G. Comments on the concept of ultra-low, cryptic tropical fruit fly populations. Proc. R. Soc. B Biol. Sci. 281, 20132825 (2014).Article 

    Google Scholar 
    27.McInnis, D. O. et al. Can polyphagous invasive tephritid pest populations escape detection for years under favorable climatic and host conditions? Am. Entomol. 63, 89–99 (2017).Article 

    Google Scholar 
    28.Barr, N. B. et al. Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian islands: implications for an introduction pathway into California. J. Econ. Entomol. 107, 1946–1958 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Davies, N., Villablanca, F. X. & Roderick, G. K. Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequences at multiple intron loci. Genetics 153, 351–360 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Meixner, M. D., McPheron, B. A., Silva, J. G., Gasparich, G. E. & Sheppard, W. S. The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability. Mol. Ecol. Notes 11, 891–899 (2002).CAS 
    Article 

    Google Scholar 
    31.Gutierrez, A. P., Ponti, L. & Cossu, Q. A. Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim. Change 95, 195–217 (2009).Article 

    Google Scholar 
    32.Johnson, M. W. et al. High temperature affects olive fruit fly populations in California’s Central Valley. Calif. Agric. 65, 29–33 (2011).Article 

    Google Scholar 
    33.Gutierrez, A. P., Ponti, L. & Dalton, D. T. Analysis of the invasiveness of spotted wing Drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean Basin. Biol. Invasions 18, 3647–3663 (2016).Article 

    Google Scholar 
    34.Ponti, L., Gutierrez, A. P., Ruti, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Natl Acad. Sci. USA 111, 5598–5603 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Andrewartha, H. G. & Birch, L. C. The Distribution and Abundance of Animals. (The University of Chicago Press, 1954).36.Huffaker, C. B. & Messenger, P. S. Theory and Practice of Biological Control. (Academic Press, 1976).37.Palladino, P. Defining ecology: ecological theories, mathematical models, and applied biology in the 1960s and 1970s. J. Hist. Biol. 24, 223–243 (1991).Article 

    Google Scholar 
    38.Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).Article 

    Google Scholar 
    39.Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 367, 181–190 (2012).Article 

    Google Scholar 
    40.Jørgensen, S. E., Nielsen, S. N. & Fath, B. D. Recent progress in systems ecology. Ecol. Model. 319, 112–118 (2016).Article 

    Google Scholar 
    41.FSA PLH Panel, (EFSA Panel on Plant Health). Pest categorisation of non-EU Tephritidae. EFSA J. 18, e05931 (2020).
    Google Scholar 
    42.Messenger, P. S. & van den Bosch, R. in Biological Control (ed. Huffaker, C. B.) 511 (Plenum/Rosetta Press, 1969).43.Grout, T. G. & Stoltz, K. C. Developmental rates at constant temperatures of three economically important Ceratitis spp. (Diptera: Tephritidae) from southern Africa. Environ. Entomol. 36, 1310–1317 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Papanastasiou, S. A., Nestel, D., Diamantidis, A. D., Nakas, C. T. & Papadopoulos, N. T. Physiological and biological patterns of a highland and a coastal population of the European cherry fruit fly during diapause. J. Insect Physiol. 57, 83–93 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Müller, H. G., Wu, S., Diamantidis, A. D., Papadopoulos, N. T. & Carey, J. R. Reproduction is adapted to survival characteristics across geographically isolated medfly populations. Proc. R. Soc. Biol. Sci. Ser. B 276, 4409–4416 (2009).Article 

    Google Scholar 
    46.Wang, J., Zeng, L. & Han, Z. An assessment of cold hardiness and biochemical adaptations for cold tolerance among different geographic populations of the Bactrocera dorsalis (Diptera: Tephritidae) in China. J. Insect Sci. Ludhiana 14, 292 (2014).47.Aluja, M. et al. Nonhost status of Citrus sinensis cultivar Valencia and C. paradisi cultivar Ruby Red to Mexican Anastrepha fraterculus (Diptera: Tephritidae). J. Econ. Entomol. 96, 1693–1703 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Dupuis, J. R., Ruiz‐Arce, R., Barr, N. B., Thomas, D. B. & Geib, S. M. Range‐wide population genomics of the Mexican fruit fly: toward development of pathway analysis tools. Evol. Appl. 12, 1641–1660 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ricalde, M. P., Nava, D. E., Loeck, A. E. & Donatti, M. G. Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. J. Insect Sci. 12, 33 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Duyck, P. F. & Quilici, S. Survival and development of different life stages of three Ceratitis spp. (Diptera: Tephritidae) reared at five constant temperatures. Bull. Entomol. Res. 92, 461–469 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gutierrez, A. P. & Regev, U. The bioeconomics of tritrophic systems: applications to invasive species. Ecol. Econ. 52, 383–396 (2005).Article 

    Google Scholar 
    53.Gutierrez, A. P. & Ponti, L. The new world screwworm: prospective distribution and role of weather in eradication. Agric. Entomol. 16, 158–173 (2014).Article 

    Google Scholar 
    54.Gutierrez, A. P., Ponti, L. & Arias, P. A. Deconstructing the eradication of new world screwworm in North America: retrospective analysis and climate warming effects. Med. Vet. Entomol. 33, 282–295 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Egartner, A. & Lethmayer, C. Invasive fruit flies of economic importance in Austria – monitoring activities 2016. IOBCWPRS Bull. 123, 45–49 (2017).
    Google Scholar 
    56.Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182 (2018).PubMed Central 
    Article 

    Google Scholar 
    57.Liebhold, A. M. et al. Eradication of invading insect populations: from concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).58.Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions 16, 401–414 (2014).Article 

    Google Scholar 
    59.Gilbert, N., Gutierrez, A. P., Frazer, B. D. & Jones, R. E. Ecological Relationships. (W.H. Freeman and Co., 1976).60.Gutierrez, A. P. Applied Population Ecology: A Supply-Demand Approach (Wiley, 1996).61.Gutierrez, A. P. The physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm. Ecology 73, 1552–1563 (1992).Article 

    Google Scholar 
    62.Gutierrez, A. P., Mills, N. J., Schreiber, S. J. & Ellis, C. K. A physiologically based tritrophic perspective on bottom-up-top-down regulation of populations. Ecology 75, 2227–2242 (1994).Article 

    Google Scholar 
    63.Mills, N. J. & Gutierrez, A. P. in Theoretical Approaches to Biological Control (eds. Hawkins, B. A. & Cornell, V. H.) (Cambridge University Press, 1999).64.Barlow, N. D. in Theoretical Approaches to Biological Control (eds. Hawkins, B. A. & Cornell, H. V.) 43–70 (Cambridge University Press, 1999).65.Manetsch, T. J. Time-varying distributed delays and their use in aggregative models of large systems. IEEE Trans. Syst. Man Cybern. 6, 547–553 (1976).Article 

    Google Scholar 
    66.Buffoni, G. & Pasquali, S. Structured population dynamics: continuous size and discontinuous stage structures. J. Math. Biol. 54, 555–595 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Di Cola, G., Gilioli, G. & Baumgärtner, J. in Ecological Entomology (eds. Huffaker, C. B. & Gutierrez, A. P.) (Wiley, 1999).68.Severini, M., Alilla, R., Pesolillo, S. & Baumgärtner, J. Fenologia della vite e della Lobesia botrana (Lep. Tortricidae) nella zona dei Castelli Romani. Riv. Ital. Agrometeorol. 3, 34–39 (2005).
    Google Scholar 
    69.Vansickle, J. Attrition in distributed delay models. IEEE Trans. Syst. Man Cybern. 7, 635–638 (1977).Article 

    Google Scholar 
    70.Wang, Y. H. & Gutierrez, A. P. An assessment of the use of stability analyses in population ecology. J. Anim. Ecol. 49, 435–452 (1980).Article 

    Google Scholar 
    71.Briére, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).Article 

    Google Scholar 
    72.Frazer, B. D. & Gilbert, N. Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. Entomol. Soc. Br. Columbia 73, 33–56 (1976).
    Google Scholar 
    73.Gutierrez, A. P. & Baumgärtner, J. U. Multitrophic level models of predator-prey energetics: I. Age-specific energetics models—pea aphid Acyrthosiphon pisum (Homoptera: Aphididae) as an example. Can. Entomol. 116, 924–932 (1984).
    Google Scholar 
    74.Bieri, M., Baumgärtner, J., Bianchi, G., Delucchi, V. & von Arx, R. Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitteilungen Schweiz. Entomol. Ges. 56, 163–171 (1983).
    Google Scholar 
    75.Messenger, P. S. & Flitters, N. E. Effect of constant temperature environments on the egg stage of three species of Hawaiian fruit flies. Ann. Entomol. Soc. Am. 51, 109–119 (1958).Article 

    Google Scholar 
    76.Carey, J. R. Demography and population dynamics of the Mediterranean fruit fly. Ecol. Model. 16, 125–150 (1982).Article 

    Google Scholar 
    77.Muñiz, M. & Gil, A. Laboratory studies on isolated pairs of Ceratitis capitata—results obtained during the last three years in Spain. In: Cavalloro R (ed), Fruit flies of economic importance; Joint Ad-Hoc Meeting of the Commission of the European Communities and the International Organization for Biological and Integrated Control, Hamburg, West Germany, A.A. Balkema, Rotterdam, Netherlands; Boston, MA, USA, 125–128 (1984).78.Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. & Kanehisa, D. T. Survival and development of immature stages of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Ann. Entomol. Soc. Am. 89, 64–69 (1996).Article 

    Google Scholar 
    79.Vargas, R. I., Walsh, W. A., Kanehisa, D., Jang, E. B. & Armstrong, J. W. Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Ann. Entomol. Soc. Am. 90, 162–168 (1997).Article 

    Google Scholar 
    80.Vargas, R. I., Walsh, W. A., Kanehisa, D., Stark, J. D. & Nishida, T. Comparative demography of three Hawaiian fruit flies (Diptera:Tephritidae) at alternating temperatures. Ann. Entomol. Soc. Am. 93, 75–81 (2000).Article 

    Google Scholar 
    81.Delrio, G., Conti, B. & Corvetti, A. Effects of abiotic factors on Ceratitis capitata (Wied.) (Diptera: Tephritidae)—I. Egg development under constant temperatures. In Fruit Flies of Economic Importance 84. Proceedings of the CEC/IOBC “Ad-hoc Meeting” (ed. Cavalloro, R.) 133–139 (A.A. Balkema, 1984).82.Duyck, P. F., Sterlin, J. F. & Quilici, S. Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bull. Entomol. Res. 94, 89–93 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Powell, M. R. Modeling the response of the Mediterranean fruit fly (Diptera:Tephritidae) to cold treatment. J. Econ. Entomol. 96, 300–310 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Shoukry, A. & Hafez, M. The biology of the Mediterranean fruit fly Ceratitis capitata. Entomol. Exp. Appl. 26, 33–39 (1979).Article 

    Google Scholar 
    85.Duyck, P. F., David, P. & Quilici, S. Climatic niche partitioning following successive invasions by fruit flies in La Réunion. J. Anim. Ecol. 75, 518–526 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Dhillon, M. K., Singh, R., Naresh, J. S. & Sharma, H. C. The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J. Insect Sci. Ludhiana 5, 40 (2005).CAS 

    Google Scholar 
    87.Messenger, P. S. & Flitters, N. E. Bioclimatic studies of three species of fruit flies in Hawaii. J. Econ. Entomol. 47, 756–765 (1954).Article 

    Google Scholar 
    88.Keck, C. B. Effect of temperature on development and activity of the melon fly. J. Econ. Entomol. 44, 1001–1002 (1951).Article 

    Google Scholar 
    89.Yang, P., Carey, J. R. & Dowell, R. V. Comparative demography of two cucurbit-attacking fruit flies, Bactrocera tau and B. cucurbitae (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 87, 538–545 (1994).Article 

    Google Scholar 
    90.Vayssières, J. F., Carel, Y., Coubes, M. & Duyck, P. F. Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera Tephritidae). Environ. Entomol. 37, 307–314 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    92.Kandakoor, S. B., Chakravarthy, A. K., Rashmi, M. A. & Verghese, A. Effect of elevated carbon dioxide and temperature on biology of melon fruit fly, Bactrocera cucurbitae Coquillett (Tephritidae: Diptera). Afr. Entomol. 27, 36–42 (2019).Article 

    Google Scholar 
    93.Teruya, T. Effects of relative humidity during pupal development on subsequent eclosion and flight capability of the melon fly, Dacus cucurbitae Coquillett (Diptera:Tephiritidae). Appl. Entomol. Zool. 25, 521–523 (1990).Article 

    Google Scholar 
    94.Laskar, N. & Chatterjee, H. The effect of meteorological factors on the population dynamics of melon fly, Bactrocera cucurbitae (Coq.) (Diptera: Tephritidae) in the foot hills of Himalaya. J. Appl. Sci. Environ. Manag. 14, 53–58 (2010).95.Myers, S. W., Cancio-Martinez, E., Hallman, G. J., Fontenot, E. A. & Vreysen, M. J. B. Relative tolerance of six Bactrocera (Diptera: Tephritidae) species to phytosanitary cold treatment. J. Econ. Entomol. 109, 2341–2347 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Zhou, S. H., Li, L., Zeng, B. & Fu, Y. G. Effects of short-term high-temperature conditions on oviposition and differential gene expression of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae. Int. J. Pest Manag. 66, 332–340 (2020).Article 
    CAS 

    Google Scholar 
    97.Vargas, R. I. et al. Area-wide suppression of the Mediterranean fruit fly, Ceratitis capitata, and the Oriental fruit fly, Bactrocera dorsalis, in Kamuela, Hawaii. J. Insect Sci. 10, 135 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Vargas, R. I. & Carey, J. R. Comparative survival and demographic statistics for wild Oriental fruit fly, Mediterranean fruit fly, and melon fly (Diptera: Tephritidae) on papaya. J. Econ. Entomol. 83, 1344–1349 (1990).Article 

    Google Scholar 
    99.Jang, E. B., Nagata, J. T., Chan, H. T. & Laidlaw, W. G. Thermal death kinetics in eggs and larvae of Bactrocera latifrons (Diptera: Tephritidae) and comparative thermotolerance to three other tephritid fruit fly species in Hawaii. J. Econ. Entomol. 92, 684–690 (1999).Article 

    Google Scholar 
    100.Xie, Q., Hou, B. & Zhang, R. Thermal responses of oriental fruit fly (diptera: tephritidae) late third instars: mortality, puparial morphology, and adult emerge. J. Econ. Entomol. 101, 736–741 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Armstrong, J. W., Tang, J. & Wang, S. Thermal death kinetics of Mediterranean, Malaysian, melon, and oriental fruit fly (Diptera: Tephritidae) eggs and third instars. J. Econ. Entomol. 102, 522–532 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Choi, K. S., Samayoa, A. C., Hwang, S.-Y., Huang, Y.-B. & Ahn, J. J. Thermal effect on the fecundity and longevity of Bactrocera dorsalis adults and their improved oviposition model. PLOS ONE 15, e0235910 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Shukla, R. P. & Prasad, V. G. Population fluctuations of the oriental fruit fly, Dacus dorsalis Hendel in relation to hosts and abiotic factors. Trop. Pest Manag. 31, 273–275 (1985).Article 

    Google Scholar 
    104.Hurtado, H. et al. Demography of three Mexican tephritids: Anastrepha ludens, A. obliqua and A. serpentina. Fla. Entomol. 71, 110–120 (1988).
    Google Scholar 
    105.Liedo, P., Carey, J. R., Celedonio, H. & Guillen, J. Size specific demography of three species of Anastrepha fruit flies. Entomol. Exp. Appl. 63, 135–142 (1992).Article 

    Google Scholar 
    106.Carey, J. R. et al. Biodemography of a long-lived tephritid: Reproduction and longevity in a large cohort of female Mexican fruit flies, Anastrepha ludens. Exp. Gerontol. 40, 793–800 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Berrigan, D. A., Carey, J. R., Guillen, J. & Celedonio, H. Age and host effects on clutch size in the Mexican fruit fly, Anastrepha ludens. Entomol. Exp. Appl. 47, 73–80 (1988).Article 

    Google Scholar 
    108.Quintero‐Fong, L. et al. Demography of a genetic sexing strain of Anastrepha ludens (Diptera: Tephritidae): effects of selection based on mating performance. Agric. Entomol. 20, 1–8 (2018).Article 

    Google Scholar 
    109.Tejeda, M. T. et al. Reasons for success: rapid evolution for desiccation resistance and life-history changes in the polyphagous fly Anastrepha ludens. Evolution 70, 2583–2594 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Darby, H. H. & Kapp, E. M. Observations on the thermal death points of Anatrepha ludens (Loew). US Dep. Agric. Tech. Bull. 400, 12445 (1933).111.Flitters, N. E. & Messenger, P. S. Effect of temperature and humidity on development and potential distribution of the Mexican fruit fly in the United States. U. S. Dep. Agric. Tech. Bull. 1330, 1–36 (1965).112.Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric. Meteorol. 200, 233–248 (2015).Article 

    Google Scholar 
    113.Rienecker, M. M. et al. MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).Article 

    Google Scholar 
    114.Dell’Aquila, A. et al. Effects of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean region. Clim. Res. 52, 135–157 (2012).Article 

    Google Scholar 
    115.Artale, V. et al. An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim. Dyn. 35, 721–740 (2010).Article 

    Google Scholar 
    116.Giorgi, F. & Bi, X. Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys. Res. Lett. 32, L21715 (2005).Article 

    Google Scholar 
    117.Gualdi, S. et al. The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean sea. Bull. Am. Meteorol. Soc. 94, 65–81 (2013).Article 

    Google Scholar 
    118.Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).Article 

    Google Scholar 
    119.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    120.Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).CAS 
    Article 

    Google Scholar 
    121.Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).Article 

    Google Scholar 
    122.GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software, Version 7.9.dev. (Open Source Geospatial Foundation. http://grass.osgeo.org, (2021).123.Gutierrez, A. P. & Ponti, L. in Invasive Species and Global Climate Change (eds. Ziska, L. H. & Dukes, J. S.) 271–288 (CABI Publishing, 2014).124.Ponti, L. et al. Bioeconomic analogies as a unifying paradigm for modeling agricultural systems under global change in the context of geographic information systems. Geophys. Res. Abstr. 21, 13677 (2019). EGU2019.
    Google Scholar  More

  • in

    Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey

    Study site, field survey, and in situ filtration
    The field survey was performed in Tateyama Bay (34° 60′ N, 139° 48′ E), central Japan, in the proximity of the Kuroshio warm current facing the Pacific Ocean (Fig. 1). This area has many artificial reefs (ARs) created to improve fishing efficiency for fishers. Among the ARs, we focused on one high-rise steel AR (AR1), with a height of 30 m, where fish tended to aggregate (Fig. 1 and S1). Sampling stations were set up at the AR1 and at six linear distant points extending northeast and southwest. These stations were named E150, E500, E750, W150, W500, and W750, where “W” or “E” and the number of each station name represented northeast or southwest and distance in meters from the AR1, respectively (Table S1 and Fig. 1). Another station was set up at a second AR (AR2: 25 m height) 220 m from AR1 because we found AR2 by chance during the survey (Table S1 and Fig. 1), and it might affect the eDNA concentration at other stations.Figure 1(a) Location of sampling stations, cruise track, and a set net in Tateyama Bay. Gray areas indicate landmasses, a gray bold line indicates cruise track, and gray thin lines indicate depth contours with an interval of 20 m. The maps were created using ArcGIS Software 10.6.0.8321 by ESRI (https://www.esri.com/) based on the municipal boundary data of Japan (Esri Japan) and Global Map Japan (Geospatial information Authority of Japan) as well as the M7000-series isobath data set (Japan Hydrographic Association). A picture of the artificial reef (AR1) (b) taken one year after this survey (June 2019) and pictures of the dominant species, (c) splendid alfonsino (Beryx splendens), (d) chicken grunt (Parapristipoma trilineatum), (e) chub mackerel (Scomber japonicus), (f) red seabream (Pagrus major), and (g) jack mackerel (Trachurus japonicus). Photograph credits: (b) Nariaki Inoue, (c) Fumie Yamaguchi, (d, e, g) Yutaro Kawano, and (f) Masaaki Sato.Full size imageWe conducted water sampling at eight stations for eDNA analysis and performed an acoustic survey for estimating relative fish density using research vessel Takamaru (Japan Fisheries Research and Education Agency: FRA) on May 23, 2018. We started the echo sounder survey at the eastern part of the bay and continued it during the water sampling (Fig. 1). Although the echo sounder survey could not differentiate between fish species, we collected this data to assess the association between the estimated concentration of fish eDNA and the echo intensity measured by the echo sounder. Water sampling began at E750, then continued along the transect line to E150, AR1, W150, W500, W750, before going back to AR2. At each sampling station, we collected 10 L of seawater from both the middle and bottom layers by one cast of two Niskin water samplers (5L × 2 samples) and measured vertical profiles of water temperature and salinity with a conductivity-temperature-depth sensor (RINKO profiler, JFE Advantech Co., Ltd.). We subsampled 2L seawater from the 5 L seawater of Niskin sampler using measuring bottle and remaining 3 L seawater was used for pre-wash of measuring bottle and filtration devices. Two 2L samples were collected from two Niskin water samples, and then immediately filtered using a combination of Sterivex filter cartridges (nominal pore size = 0.45 μm; Merck Millipore) through an aspirator (i.e., the two filters were subsets of a single water collection) in a laboratory on the research vessel. After filtration (average time of 15 min), an outlet port of the filter cartridge was sealed with an outlet luer cap, 1.5 ml RNAlater (Thermo Fisher Scientific Inc., Waltham, MA) was injected into the cartridge using a filtered pipette tip to prevent eDNA degradation, and an inlet port was also sealed with an inlet luer cap14. The Niskin water samplers were bleached before each water collection using a commercial bleach solution while filtering devices (i.e., filter funnels and measuring cups used for filtration) were bleached after every filtration. We filtered 2L MilliQ water with a filter funnel and measuring cup as a field negative control to test for possible contamination. The filter cartridges were placed in a freezer immediately after filtration until eDNA extraction. In total we collected and filtered 32 eDNA samples (eight stations × two depth layers × two replicates). Disposable latex or nitrile gloves were worn during sampling and replaced between each sampling station.DNA extraction and purificationWorkspaces were sterilized prior to DNA extraction using 10% commercial bleach, and filter tip pipettes were used to safeguard against cross-contamination. Following the method developed by Miya et al.15, the eDNA was extracted and purified. Briefly, after removing RNAlater inside the cartridge using a centrifuge, proteinase-K solution was injected into the cartridge from the inlet port, and the port was re-capped with the inlet lure cap. The eDNA captured on the filter membrane was extracted by constant stirring of the cartridge at a speed of 20 rpm using a roller shaker placed in an incubator heated at 56 °C for 20 min. The eDNA extracts were transferred to a 2-ml tube from the inlet of the filter cartridges by centrifugation. The collected DNA was purified using a DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s protocol. After the purification, DNA was eluted using 100 μl of the elution buffer (buffer AE). All DNA extracts were frozen at − 20 °C until paired-end library preparation.Preparation of internal standard DNAsFive artificially designed and synthetic internal standard DNAs, which were similar but not identical to the region of any existing fish mitochondrial 12S rRNA, were included in the library preparation process to estimate the number of fish DNA copies [i.e., quantitative MiSeq sequencing (qMiseq)]7,16. They were designed to have the MiFish primer‐binding regions as those of known existing fishes and to have the conserved regions in the insert region. Variable regions in the insert region were replaced with random bases so that no known existing fish sequences had the same sequences as the standard sequences. The standard DNA size distribution of the library was estimated using an Agilent 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA), and the concentration of double-stranded DNA of the library was quantified using a Qubit dsDNA HS assay kit and a Qubit fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Based on the quantification values obtained using the Qubit fluorometer, the copy number of the standard DNAs was adjusted as follows: Std. A (100 copies/µl), Std. B (50 copies/µl), Std. C (25 copies/µl), Std. D (12.5 copies/µl) and Std. E (2.5 copies/µl). Then, these standard DNAs were mixed.Paired-end library preparationTwo PCR‐level negative controls (i.e., each with and without internal standard DNAs) were employed for MiSeq run to monitor contamination during the experiments. The first-round PCR (1st PCR) was carried out with a 12-µl reaction volume containing 6.0 µl of 2 × KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland), 0.7 µl of each primer (5 µM), 2.6 µl of sterilized distilled H2O, 1.0 µl of standard DNA mix and 1.0 µl of template. Note that the standard DNA mix was included for each sample. The final concentration of each primer was 0.3 µM. We used a mixture of the following four PCR primers modified from original MiFish primers16: MiFish-U-forward (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNG TCG GTA AAA CTC GTG CCA GC-3′) and MiFish-U-reverse (5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN CAT AGT GGG GTA TCT AAT CCC AGT TTG-3′), MiFish-E-forward (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNG TTG GTA AAT CTC GTG CCA GC-3′), and MiFish-E-reverse (5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN CAT AGT GGG GTA TCT AAT CCT AGT TTG-3′). These primer pairs co-amplify a hypervariable region of the fish mitochondrial 12S rRNA gene (around 172 bp) and append primer-binding sites (5′ ends of the sequences before five Ns) for sequencing at both ends of the amplicon. The five random bases were used to enhance cluster separation on the flow cells during initial base call calibrations on the MiSeq platform. The thermal cycle profile after an initial 3 min denaturation at 95 (^circ)C was as follows (35 cycles): denaturation at 98 (^circ)C for 20 s; annealing at 65 (^circ)C for 15 s; and extension at 72 (^circ)C for 15 s, with a final extension at the same temperature for 5 min. Eight replications were performed for the 1st PCR, and the replicates were pooled to minimize the PCR dropouts. The 1st PCR products from the eight tubes were pooled in a single 1.5-ml tube. Then, we sent the 1st PCR products to IDEA consultants, Inc. to outsource the following MiSeq sequencing processes. The pooled products were purified and size-selected for 200–400 bp using a SPRIselect (Beckman Coulter, Inc.) to remove dimers and monomers following the manufacturer’s protocol.The second-round PCR (2nd PCR) was carried out with a 24 µl reaction volume containing 12 µl of 2 × KAPA HiFi HotStart ReadyMix, 2.8 µl of each primer (5 µM), 4.4 µl of sterilized distilled H2O, and 2.0 µl of template. We used the following two primers to append the dual-index sequences (8 nucleotides indicated by Xs) and flowcell-binding sites for the MiSeq platform (5′ ends of the sequences before eight Xs): 2nd-PCR-forward (5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACX XXX XXX XAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T-3′); and 2nd- PCR-reverse (5′-CAA GCA GAA GAC GGC ATA CGA GAT XXX XXX XXG TGA CTG GAG TTC AGA CGT GTG CTC TTC CGA TCT-3′). The thermal cycle profile after an initial 3 min denaturation at 95 (^circ)C was as follows (12 cycles): denaturation at 98 (^circ)C for 20 s; combined annealing and extension at 72 (^circ)C for 15 s, with a final extension at 72 (^circ)C for 5 min. The concentration of each second PCR product was measured by quantitative PCR using TB Green Fast qPCR Mix (Takara inc.). Each sample was diluted to a fixed concentration and combined (i.e., one pooled 2nd PCR product that included all samples). The pooled 2nd PCR product was size-selected to approximately 370 bp using BluePippin (Sage Science). The size-selected library was purified using the Agencourt AMPure XP beads, adjusted to 4 nM by quantitative PCR using TB Green Fast qPCR Mix (Takara Bio Inc.), and sequenced on the MiSeq platform using a MiSeq v2 Reagent Kit (2 × 150 bp) (Illumina, Inc.).Data preprocessing and taxonomic assignmentThe raw MiSeq data were converted into FASTQ files using the bcl2fastq program provided by Illumina (bcl2fastq v2.18). The FASTQ files were then demultiplexed using the command implemented in Claident17. We adopted this process rather than using FASTQ files demultiplexed by the Illumina MiSeq default program in order to remove sequences with low-quality scores and PCR artifacts (chimeras).The processed reads were subjected to a BLASTN search against the full NCBI database. We excluded unique sequences of the following settings: the sequence belonged to organisms other than bony fishes, sharks, and rays; the sequence similarity between queries and the top BLASTN hit was  More

  • in

    Degree of anisogamy is unrelated to the intensity of sexual selection

    1.Andersson, M. B. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    2.Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).Book 

    Google Scholar 
    3.Herridge, E. J., Murray, R. L., Gwynne, D. T. & Bussière, L. F. Mating and parental sex roles, diversity in. Encycl. Evol. Biol. 2, 453–458 (2016).Article 

    Google Scholar 
    4.Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Schärer, L., Rowe, L. & Arnqvist, G. Anisogamy, chance and the evolution of sex roles. Trends Ecol. Evol. 27, 260–264 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    7.Jennions, M. D. & Fromhage, L. Not all sex ratios are equal: The Fisher condition, parental care and sexual selection. Philos. Trans. R. Soc. B Biol. Sci 372, 20160312 (2017).Article 

    Google Scholar 
    8.Darwin, C. The Descent Man, and Selection in Relation to Sex. John Murray, vol. ah-king (1871).9.Ah-King, M. & Ahnesjö, I. The ‘sex role’ concept: An overview and evaluation. Evol. Biol. 40, 461–470 (2013).Article 

    Google Scholar 
    10.Pizzari, T. & Bonduriansky, R. Sexual behaviour: Conflict, cooperation and co-evolution. In Social Behaviour: Genes, Ecology and Evolution (eds Szekely, T. et al.) (Cambridge University Press, 2010).
    Google Scholar 
    11.Trumbo, S. T. Patterns of parental care in invertebrates. Evol. Parent. Care 12, 62–81 (2012).
    Google Scholar 
    12.Balshine, S. Patterns of parental care in vertebrates. In The Evolution of Parental Care (eds Royle, N. et al.) 62–81 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    13.Székely, T., Remeš, V., Freckleton, R. P. & Liker, A. Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Snyder, B. F. & Gowaty, P. A. A reappraisal of Bateman’s classic study of intrasexual selection. Evolution 61, 2457–2468 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gowaty, P. A., Kim, Y.-K. & Anderson, W. W. No evidence of sexual selection in a repetition of Bateman’s classic study of Drosophila melanogaster. Proc. Natl. Acad. Sci. 109, 11740–11745 (2012).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    17.Wade, M. J. Don’t Throw Bateman Out with the Bathwater!. Integr. Comp. Biol. 45, 945–951 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Dewsbury, D. A. The Darwin–Bateman paradigm in historical context. Integr. Comp. Biol. 45, 831–837 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Lab. Press 6, a017509 (2014).Article 

    Google Scholar 
    20.Jones, A. G., Arguello, J. R. & Arnold, S. J. Validation of Bateman’s principles: A genetic study of sexual selection and mating patterns in the rough-skinned newt. Proc. R. Soc. B Biol. Sci. 269, 2533–2539 (2002).Article 

    Google Scholar 
    21.Collet, J. M., Dean, R. F., Worley, K., Richardson, D. S. & Pizzari, T. The measure and significance of Bateman’s principles. Proc. R. Soc. B Biol. Sci. 281, 20132973–20132973 (2014).Article 

    Google Scholar 
    22.Hoquet, T. Bateman (1948): Rise and fall of a paradigm?. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.12.008 (2019).Article 

    Google Scholar 
    23.Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983–e1500983 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    24.Tang-Martinez, Z. & Ryder, B. T. The problem with paradigms: Bateman’s worldview as a case study. Integr. Comp. Biol. 54, 821–830 (2005).Article 

    Google Scholar 
    25.Levitan, D. Does Bateman’s principle apply to broadcast-spawning organisms ? Egg traits Iifluence in situ fertilization rates among congeneric sea urchins. Evolution 52, 1043–1056 (1998).PubMed 

    Google Scholar 
    26.Drea, C. M. Bateman revisited: The reproductive tactics of female primates. Integr. Comp. Biol. 45, 915–923 (2005).PubMed 
    Article 

    Google Scholar 
    27.Kokko, H. Should advertising parental care be honest?. Proc. R. Soc. B Biol. Sci. 265, 1871–1878 (1998).Article 

    Google Scholar 
    28.Remeš, V. & Matysioková, B. More ornamented females produce higher-quality offspring in a socially monogamous bird: An experimental study in the great tit (Parus major). Front. Zool. 10, 1–10 (2013).Article 

    Google Scholar 
    29.Hanschen, E. R., Herron, M. D., Wiens, J. J., Nozaki, H. & Michod, R. E. Multicellularity drives the evolution of sexual traits. Am. Nat. 192, E93–E105 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Queller, D. C. Why do females care more than males?. Proc. R. Soc. B Biol. Sci. 264, 1555–1557 (1997).Article 
    ADS 

    Google Scholar 
    31.Alcock, J. Sexual selection and the mating behavior of solitary bees. in (eds. Brockmann, H. J. et al.) vol. 45 1–48 (Academic Press, 2013).32.Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy–isogamy continuum. Nature 441, 742–745 (2006).PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    33.Kodric-Brown, A. & Brown, J. H. Anisogamy, sexual selection, and the evolution and maintenance of sex. Evol. Ecol. 1, 95–105 (1987).Article 

    Google Scholar 
    34.Schulte-Hostedde, A. I., Millar, J. S. & Gibbs, H. L. Sexual selection and mating patterns in a mammal with female-biased sexual size dimorphism. Behav. Ecol. 15, 351–356 (2004).Article 

    Google Scholar 
    35.Liker, A., Freckleton, R. P., Remeš, V. & Székely, T. Sex differences in parental care: Gametic investment, sexual selection, and social environment. Evolution 69, 2862–2875 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy-isogamy continuum. Nature 441, 742–745 (2006).PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Thomas, G. H. & Székely, T. Evolutionary pathways in shorebird breeding systems: Sexual conflict, parental care, and chick development. Evolution 59, 2222 (2006).Article 

    Google Scholar 
    38.Gonzalez-Voyer, A., Fitzpatrick, J. L. & Kolm, N. Sexual selection determines parental care patterns in cichlid fishes. Evolution 62, 2015–2026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Garamszegi, L. Z. & Møller, A. P. Untested assumptions about within-species sample size and missing data in interspecific studies. Behav. Ecol. Sociobiol. 66, 1363–1373 (2012).Article 

    Google Scholar 
    40.Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).Article 

    Google Scholar 
    41.Nakagawa, S. & Freckleton, R. P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 23, 592–596 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Wiens, J. J. & Morrill, M. C. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Syst. Biol. 60, 719–731 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Apakupakul, K. & Rubenstein, D. R. Bateman’s principle is reversed in a cooperatively breeding bird. Biol. Lett. 11, 20150034 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).Article 

    Google Scholar 
    45.Lajeunesse, M. Recovering missing data or partial data from studies: A survey of conversions and imputation for meta-analysis. Handb. Meta-Anal. Ecol. Evol. 195–206 (2013).46.Smith, R. J. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–458 (1999).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Dunn, P. O., Whittingham, L. A. & Pitcher, T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Pérez-Barbería, F. J., Gordon, I. J. & Pagel, M. The origins of sexual dimorphism in body size in ungulates. Evolution 56, 1276–1285 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Weckerly, F. W. Sexual-size dimorphism: Influence of mass and mating systems in the most dimorphic mammals. J. Mammal. 79, 33–52 (1998).Article 

    Google Scholar 
    50.Székely, T., Reynolds, J. D. & Figuerola, J. Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution 54, 1404–1413 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).Book 

    Google Scholar 
    52.Janicke, T. & Fromonteil, S. Sexual Selection and Sexual Size Dimorphism in Animals. (2021) https://doi.org/10.1101/2021.05.10.443408.53.De Lisle, S. P. Understanding the evolution of ecological sex differences: Integrating character displacement and the Darwin–Bateman paradigm. Evol. Lett. 3, 434–447 (2019).Article 

    Google Scholar 
    54.Harvey, P. H. & Clutton-Brock, T. H. Life history variation in primates. Evolution 39, 559–581 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).Article 

    Google Scholar 
    57.Pagel, M. Inferring evolutionary processes from molecular phylogenies. Zool. Scr. 98, 313–333 (1997).
    Google Scholar 
    58.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).Article 

    Google Scholar 
    60.Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R Package Version 05(2), 1–36 (2013).
    Google Scholar 
    61.Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 1–10 (2014).Article 

    Google Scholar 
    62.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: Fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    63.Goolsby, A. E. W., Bruggeman, J., Ane, C. & Goolsby, M. E. W. Package ‘ Rphylopars ’. (2016).64.Parker, G. A. Sexual selection and sexual conflict. In Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) (Academic Press, 1979).
    Google Scholar 
    65.Trivers, R. L. Social Evolution (Benjamin-Cummings Pub Co, 1985).
    Google Scholar 
    66.AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).Article 

    Google Scholar 
    67.Gwynne, D. T. & Simmons, L. W. Experimental reversal of courtship roles in an insect. Nature 346, 172–174 (1990).Article 
    ADS 

    Google Scholar 
    68.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    69.Griskevicius, V. et al. The financial consequences of too many men: Sex ratio effects on saving, borrowing, and spending. J. Pers. Soc. Psychol. 102, 69–80 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Jirotkul, M. Operational sex ratio influences female preference and male-male competition in guppies. Anim. Behav. 58, 287–294 (1999).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Schacht, R., Kramer, K. L., Székely, T. & Kappeler, P. M. Adult sex ratios and reproductive strategies: A critical re-examination of sex differences in human and animal societies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160309 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Székely, Á. & Székely, T. Human behaviour: Sex ratio and the city. Curr. Biol. 22, 684–685 (2012).Article 
    CAS 

    Google Scholar 
    74.Székely, T., Liker, A., Freckleton, R. P., Fichtel, C. & Kappeler, P. M. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B Biol. Sci. 281, 20140342–20140342 (2014).Article 

    Google Scholar 
    75.Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl. Acad. Sci. U. S. A. 116, 12373–12382 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Procter, D. S., Moore, A. J. & Miller, C. W. The form of sexual selection arising from male-male competition depends on the presence of females in the social environment. J. Evol. Biol. 25, 803–812 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    77.Janicke, T. & Morrow, E. H. Operational sex ratio predicts the opportunity and direction of sexual selection across animals. Ecol. Lett. https://doi.org/10.1111/ele.12907 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Wolf, K. N. et al. Age-dependent changes in sperm production, semen quality, and testicular volume in the black-footed ferret (Mustela nigripes). Biol. Reprod. 63, 179–187 (2000).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    79.Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Chargé, R., Jalme, M. S., Lacroix, F., Cadet, A. & Sorci, G. Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J. Anim. Ecol. 79, 843–850 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    81.Ramirez, M. E. V., Le Pennec, M., Dorange, G., Devauchelle, N. & Nonnotte, G. Assessment of female gamete quality in the pacific oyster crassostrea gigas. Invertebr. Reprod. Dev. 36, 73–78 (1999).Article 

    Google Scholar 
    82.Berger, T. & Horner, C. M. In vivo exposure of female rats to toxicants may affect oocyte quality. Reprod. Toxicol. 17, 273–281 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Dufour, J. J., Fahmy, M. H. & Minvielle, F. Seasonal changes in breeding activity, testicular size, testosterone concentration and seminal characteristics in rams with long or short breeding season. J. Anim. Sci. 58, 416–422 (1984).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    84.Gorman, M. R. & Zucker, I. Seasonal adaptations of siberian hamsters: II: Pattern of change in day length controls annual testicular and body weight rhythms. Biol. Reprod. 53, 116–125 (1995).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    85.Parker, G. A. & Begon, M. Optimal egg size and clutch size: Effects of environment and maternal Phenotype. Am. Nat. 128, 573–592 (1986).Article 

    Google Scholar 
    86.Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).Article 

    Google Scholar 
    87.Tallamy, D. W. Sexual selection and the evolution of exclusive paternal care in arthropods. Anim. Behav. 60, 559–567 (2000).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    88.Olson, V. A., Webb, T. J., Freckleton, R. P. & Székely, T. Are parental care trade-offs in shorebirds driven by parental investment or sexual selection?. J. Evol. Biol. 22, 672–682 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Reynolds, J. D. & Székely, T. The evolution of parental care in shorebirds: Life histories, ecology, and sexual selection. Behav. Ecol. 8, 126–134 (1995).Article 

    Google Scholar 
    90.Balshine-Earn, S. & Earn, D. J. D. On the evolutionary pathway of parental care in mouth-brooding cichlid fish. Proc. R. Soc. B Biol. Sci. 265, 2217–2222 (1998).Article 

    Google Scholar 
    91.Ah-King, M., Kvarnemo, C. & Tullberg, B. S. The influence of territoriality and mating system on the evolution of male care: A phylogenetic study on fish. J. Evol. Biol. 18, 371–382 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    92.Székely, T., Webb, J. N. & Cutchill, I. C. Mating patterns, sexual selection and parental care: An integrative approach. Vertebrate Mat. Syst. https://doi.org/10.1142/9789812793584_0008 (2000).Article 

    Google Scholar 
    93.Trivers, R. L. Parental investment and sexual selection. (1972).94.Keenleyside, M. H. A. Mate desertion in relation to adult sex ratio in the biparental cichlid fish Herotilapia multispinosa. Anim. Behav. 31, 683–688 (1983).Article 

    Google Scholar 
    95.Alonzo, S. H. Social and coevolutionary feedbacks between mating and parental investment. Trends Ecol. Evol. 25, 99–108 (2010).PubMed 
    Article 

    Google Scholar 
    96.Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).PubMed 
    Article 

    Google Scholar 
    97.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    98.Liker, A. & Szekely, T. Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59, 890–897 (2005).PubMed 
    Article 

    Google Scholar 
    99.Emlen, S. T. Lek organization and mating strategies in the bullfrog. Behav. Ecol. Sociobiol. 1, 283–313 (1976).Article 

    Google Scholar 
    100.Weir, L. K., Grant, J. W. A. & Hutchings, J. A. The influence of operational sex ratio on the intensity of competition for mates. Am. Nat. 177, 167–176 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Orians, G. H. On the evolution of mating systems in birds and mammals. Am. Nat. 103, 589–603 (1969).Article 

    Google Scholar 
    102.Carmona-Isunza, M. C. et al. Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav. Ecol. 28, 523–532 (2017).
    Google Scholar 
    103.Wikelski, M., Trillmich, F. & Jun, N. Body size and sexual size dimorphism in marine iguanas fluctuate as a result of opposing natural and sexual selection: An island comparison. Evolution 51, 922–936 (1997).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. 101, 12224–12227 (2004).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    105.Kelly, C. D., Bussière, L. F. & Gwynne, D. T. Sexual selection for male mobility in a giant insect with female-biased size dimorphism. Am. Nat. 172, 417–423 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Kotiaho, J., Alatalo, R. V., Mappes, J. & Parri, S. Sexual selection in a wolf spider: Male drumming activity, body size, and viability. Evolution 50, 1977 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 1–8 (2019).Article 
    CAS 

    Google Scholar 
    108.Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).Article 

    Google Scholar 
    109.Bakewell, A. T., Davis, K. E., Freckleton, R. P., Isaac, N. J. B. & Mayhew, P. J. Comparing life histories across taxonomic groups in multiple dimensions: How mammal-like are insects?. Am. Nat. 195, 70–81 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.del Villalobos-Segura, M. C., García-Prieto, L. & Rico-Chávez, O. Effects of latitude, host body size, and host trophic guild on patterns of diversity of helminths associated with humans, wild and domestic mammals of Mexico. Int. J. Parasitol. Parasites Wildl. 13, 221–230 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Pandit, P. S. et al. Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat. Commun. 9, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    112.Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).Article 

    Google Scholar 
    113.Capdevila, P. et al. Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life-history strategies. Funct. Ecol. 34, 1613–1625 (2020).Article 

    Google Scholar 
    114.Ellington, E. H. et al. Using multiple imputation to estimate missing data in meta-regression. Methods Ecol. Evol. 6, 153–163 (2015).Article 

    Google Scholar 
    115.Pollock, L. J. et al. Protecting biodiversity (in all its complexity): New models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    117.Onkelinx, T., Devos, K. & Quataert, P. Working with population totals in the presence of missing data comparing imputation methods in terms of bias and precision. J. Ornithol. 158, 603–615 (2017).Article 

    Google Scholar  More