More stories

  • in

    First microsatellite markers for the European Robin (Erithacus rubecula) and their application in analysis of parentage and genetic diversity

    1.Cramp, S. & Perrins, C. M. in The Birds of the Western Palearctic, Vol. 7 (eds. Cramp, S. & Perrins, C. M.) (Oxford University Press, 1993).2.Lack, D. Clutch and brood size in the Robin. Br. Birds 39(98–109), 130–135 (1946).
    Google Scholar 
    3.Lack, D. Further notes on clutch and brood size in the Robin. Br. Birds 41(98–104), 130–137 (1948).
    Google Scholar 
    4.Lack, D. The Life of Robin (Witherby, 1965).
    Google Scholar 
    5.Harper, D. G. C. Pairing strategies and mate choice in female Robins (Erithacus rubecula). Anim. Behav. 33, 862–875 (1985).Article 

    Google Scholar 
    6.Lebedeva, N. V. & Lomadze, N. H. in The Robin Erithacus Rubecula in the North-Western Caucasus (eds. Matishov, G. G. & Lebedeva, N. V.) 252–277 (SSC RAS Publishing, 2007).7.Knysh, N. P. Materials on the biology of Robin in forest-steppe deciduous forests of Sumy region. Berkut 17, 41–60 (2008).
    Google Scholar 
    8.Zimin V. B. in The Robin in the North of the Area, Vol. 1. Distribution. Number. Reproduction (ed. Zimin, V. B.) 401–422 (Karel’skiy nauchnyy centr RAN, 2009).9.Baranovskiy, A. V. & Ivanov, E. S. Features of reproductive biology of robins (Erithacus rubecula) in anthropogenic habitats (for example, the city of Ryazan). Principy èkologii 6, 17–25 (2017).
    Google Scholar 
    10.Wesołowski, T. Primeval conditions—What can we learn from them?. Ibis 149, 64–77 (2007).Article 

    Google Scholar 
    11.Tobias, J. & Seddon, N. Territoriality as a paternity guard in the European robin Erithacus rubecula. Anim. Behav. 60, 165–173 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Tobias, J. & Seddon, N. Female begging in European robins: Do neighbors eavesdrop for extrapair copulations?. Behav. Ecol. 13, 637–642 (2002).Article 

    Google Scholar 
    13.Lubjuhn, T., Strohbach, S., Brün, J., Gerken, T. & Epplen, J. T. Extra-pair paternity in great tits (Parus major)—A long term study. Behaviour 136, 1157–1172 (1999).Article 

    Google Scholar 
    14.Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: A review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Cockburn, A. Prevalence of different modes of parental care in birds. Proc. Biol. Sci. 273, 1375–1383 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    16.Zagalska-Neubauer, M. & Dubiec, A. Techniki i markery molekularne w badaniach zmienności genetycznej ptaków. Not. Ornit. 48, 193–206 (2007).
    Google Scholar 
    17.Brouwer, L. & Griffith, S. C. Extra-pair paternity in birds. Mol. Ecol. 28, 4864–4882 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Petter, S. C., Miles, D. B. & White, M. M. Genetic evidence of mixed reproductive strategy in a monogamous bird. Condor 92, 702–708 (1990).Article 

    Google Scholar 
    19.Jennions, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75, 21–64 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Akçay, E. & Roughgarden, J. Extra-pair paternity in birds: Review of the genetic benefits. Evol. Ecol. Res. 9, 855–868 (2007).
    Google Scholar 
    21.Dietzen, C., Witt, H.-H. & Wink, M. The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: Evidence for a new robin on Gran Canaria?. Avian Sci. 3, 115–131 (2003).
    Google Scholar 
    22.Rodrigues, P. et al. Phylogeography and genetic diversity of the Robin (Erithacus rubecula) in the Azores Islands: Evidence of a recent colonisation. J. Ornithol. 154, 889–900 (2013).Article 

    Google Scholar 
    23.Fulgione, D., Rippa, D., Manganiello, E., Caliendo, M. F. & Rastogi, R. K. Seasonal genetic structure analysis of a resident population of European Robin. Open Zool. J. 1, 11–17 (2008).CAS 
    Article 

    Google Scholar 
    24.Morin, P. A., Messier, J. & Woodruff, D. S. DNA extraction, amplification, and direct sequencing from hornbill feathers. J. Sci. Soc. Thail. 20, 31–41 (1994).CAS 
    Article 

    Google Scholar 
    25.Wright, T. F. et al. Microsatellite variation among divergent populations of stalk-eyed flies, genus Cyrtodiopsis. Genet. Res. 84, 27–40 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yue, G.-H., Kovacs, B. & Orban, L. A new problem with cross-species amplification of microsatellites: Generation of non-homologous products. Dongwuxue Yanjiu 2, 131–140 (2010).
    Google Scholar 
    27.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dąbrowski, M. J., Bornelöv, S., Kruczyk, M., Baltzer, N. & Komorowski, J. ‘True’ null allele detection in microsatellite loci: A comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Primmer, C. R., Møller, A. P. & Ellegren, H. A wide-range survey of cross-species microsatellite amplification in birds. Mol. Ecol. 5, 365–378 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Jaroszewicz, B. et al. Białowieża forest—A relic of the high naturalness of European forests. Forests 10, 849 (2019).Article 

    Google Scholar 
    31.Campos, A. R. et al. How do Robins Erithacus rubecula resident in Iberia respond to seasonal flooding by conspecific migrants?. Bird Study 58, 435–442 (2011).Article 

    Google Scholar 
    32.Owen, J. C. Collecting, processing, and storing avian blood: A review. J. Field Ornithol. 82, 339–354 (2011).Article 

    Google Scholar 
    33.Horváth, M. B., Martínez-Cruz, B., Negro, J. J., Kalmár, L. & Godoy, J. A. An overlooked DNA source for non-invasive genetic analysis in birds. J. Avian Biol. 36, 84–88 (2005).Article 

    Google Scholar 
    34.Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Austin, J. D. et al. Permanent genetic resources added to Molecular Ecology Resources Database 1 February 2011–31 March 2011. Mol. Ecol. Resour. 11, 757–758 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    39.Rousset, F. GENEPOP’007: A complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    40.Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www.unil.ch/izea/softwares/fstat.htlm (2001).41.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grohme, M. A., Soler, R. F., Wink, M. & Frohme, M. Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55, 253–256 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Liljegren, M. M., de Muinck, E. J. & Trosvik, P. Microsatellite length scoring by single molecule real time sequencing-effects of sequence structure and PCR regime. PLoS ONE 11, e0159232 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Dutta, N. et al. Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology. Mol. Biol. Rep. 46, 41–49 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Corner, S., Yuzbasiyan-Gurkan, V., Agnew, D. & Venta, P. J. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. Conserv. Genet. Resour. 11, 487–497 (2019).Article 

    Google Scholar 
    47.Graham, B. A., Carpenter, A. M., Friesen, V. L. & Burg, T. M. A comparison of neutral genetic differentiation and genetic diversity among migratory and resident populations of Golden-crowned-Kinglets (Regulus satrapa). J. Ornithol. 161, 509–519 (2020).Article 

    Google Scholar 
    48.Bensch, S., Grahn, M., Müller, N., Gay, L. & Akesson, S. A. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18, 3087–3096 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Kralj, J., Procházka, P., Fainová, D., Patzenhauerová, H. & Tutiš, V. Intraspecific variation in the wing shape and genetic differentiation of reed warblers Acrocephalus scirpaceus in Croatia. Acta Ornithol. 45, 51–58 (2010).Article 

    Google Scholar 
    50.Mettler, R. et al. Contrasting patterns of genetic differentiation among blackcaps (Sylvia atricapilla) with divergent migratory orientations in Europe. PLoS ONE 8, e81365 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Gyllensten, U., Jakonsson, S. & Temrin, H. No evidence for illegitimate young in monogamous and polygynous warblers. Nature 343, 168–170 (1990).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gil, D., Slater, P. J. B. & Graves, J. A. Extrapair paternity and song characteristics in the willow warbler Phylloscopus trochilus. J. Avian Biol. 38, 291–297 (2007).Article 

    Google Scholar 
    53.Moskalenko, V. N., Belokon, M. M., Belokon, Y. S. & Goretskaia, M. I. Extrapair young in nests of the Wood Warbler (Phylloscopus sibilatrix) in the Middle Russia (poster). In 26th International Ornithological Congress (2014).54.Grendelmeier, A., Arlettaz, R., Olano-Marin, J. & Pasinelli, G. Experimentally provided conspecific cues boost bird territory density but not breeding performance. Behav. Ecol. 28, 174–185 (2017).Article 

    Google Scholar 
    55.Petrie, M. & Kempenaers, B. Extrapair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13, 52–58 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Wagner, R. H. Hidden leks: sexual selection and the clustering of avian territories. Ornithol. Monogr. 49, 123–145 (1998).Article 

    Google Scholar 
    57.Fletcher, R. J. & Miller, C. W. On the evolution of hidden leks and the implications for reproductive and habitat selection behaviours. Anim. Behav. 71, 1247–1251 (2006).Article 

    Google Scholar 
    58.Broughton, R. K., Bubnicki, J. W. & Maziarz, M. Multi-scale settlement patterns of a migratory songbird in a European primeval forest. Behav. Ecol. Sociobiol. 74, 1–12 (2020).Article 

    Google Scholar  More

  • in

    The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability

    1.Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Huang, J. & Douglas, A. E. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol. Lett. 11, 12–15 (2015).Article 
    CAS 

    Google Scholar 
    4.Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet. 7, e1002272 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Wong, A. C. N., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Chandler, J. A., James, P. M., Jospin, G. & Lang, J. M. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2, e474 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Kapun, M. et al. Genomic analysis of European Drosophila malanogaster populations revels longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37, 2661 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Morais, P. B., Martins, M. B., Klaczko, L. B., Mendonca-Hagler, L. C. & Hagler, A. N. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 61, 4251–4257 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wolda, H. Season fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 47, 369–381 (1978).Article 

    Google Scholar 
    12.Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).Article 

    Google Scholar 
    13.Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498–2503 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lee, K. P., Kim, J. S. & Min, K. J. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987–992 (2013).Article 

    Google Scholar 
    15.Wong, A. C. N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    16.Rodrigues, M. A. et al. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69–80 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Davies, L. R., Schou, M. F., Kristensen, T. N. & Loeschcke, V. Linking developmental diet to adult foraging choice in Drosophila melanogaster. J. Exp. Biol. 221, 175554 (2018).Article 

    Google Scholar 
    18Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & Ja, W. W. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19Morimoto, J., Simpson, S. J. & Ponton, F. Direct and transgenerational effects of male and female gut microbiota in Drosophila melanogaster. Biol. Lett. 13, 20160966 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).Book 

    Google Scholar 
    21.Wong, A. C. N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S. & Mayntz, D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56, 336–340 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Kutz, T. C., Sgrò, C. M. & Mirth, C. K. Interacting with change: Diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940–1951 (2019).Article 

    Google Scholar 
    24.Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Writing 5, 1–34 (1948).
    Google Scholar 
    25.Broderick, N. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3, 307–321 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.De Ley, J. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol. 24, 31–50 (1961).Article 

    Google Scholar 
    27Ameyama, M. Gluconobacter oxydans subsp. sphaericus, new subspecies isolated from grapes. Int. J. Syst. Bacteriol. 25, 365–370 (1948).Article 

    Google Scholar 
    28.Deppenmeier, U., Hoffmeister, M. & Prust, C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 60, 233–242 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ryngajłło, M., Kubiak, K., Jędrzejczak-Krzepkowska, M., Jacek, P. & Bielecki, S. Comparative genomics of the Komagataeibacter strains—Efficient bionanocellulose producers. Microbiologyopen 8, 1–25 (2019).Article 
    CAS 

    Google Scholar 
    30.Gilbert, D. G. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46, 135–137 (1980).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Blum, J. E., Fischer, C. N., Miles, J. & Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 4, 1–8 (2013).CAS 
    Article 

    Google Scholar 
    32.Staubach, F., Baines, J. F., Künzel, S., Bik, E. M. & Petrov, D. A. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8, e70749 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Wong, A. C. N. et al. The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl. Environ. Microbiol. 81, 6232–6240 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Pais, I. S., Valente, R. S., Sporniak, M. & Teixeira, L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 16(7), e2005710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wong, A. C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Manteca, A. & Sanchez, J. Streptomyces development in colonies and soils. Appl. Environ. Microbiol. 75, 2920–2924 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Lee, K. P., Raubenheimer, D., Behmer, S. T. & Simpson, S. J. A correlation between macronutrient balancing and insect host-plant range: Evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161–1171 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 18, 2788–2794 (2003).Article 

    Google Scholar 
    40.Lee, K. P. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. J. Exp. Biol. 210, 3236–3244 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Fanson, B. G., Weldon, C. W., Pérez-Staples, D., Simpson, S. J. & Taylor, P. W. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514–523 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    44.Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101–104 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Ridley, E. V., Wong, A. C. N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nguyen, B. et al. Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol. Evol. 9, 6342–6352 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Drew, R. A. I., Courtice, A. C. & Teakle, D. S. Bacteria as a natural source of food for adult fruit flies (Diptera, Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48Lesperance, D. N. A. & Broderick, N. Gut bacteria mediate nutrient availability in Drosophila diets. Appl. Environ. Microbiol. 59, 211 (2020).
    Google Scholar 
    49.Kristensen, T. N. et al. Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source. Insect Sci. 23, 771–779 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Harrison, A. P. & Pelczar, M. J. Damage and survival of bacteria during freeze-drying and during storage over a ten-year period. J. Gen. Microbiol. 30, 395–400 (1963).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, 1–9 (2013).
    Google Scholar 
    52.Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 107, 20051–20056 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Xu, X., Feng, G., Liu, H. & Li, X. Control of spoilage microorganisms in Soybean milk by nipagin complex esters, nisin, sodium dehydroaceate and heat treatment. IPCBEE 67, 35 (2014).ADS 
    CAS 

    Google Scholar 
    54.Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 114, 12767–12772 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Reply to Obadia et al.: Effect of methyl paraben on host–microbiota interactions in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 20, E4549–E4550 (2018).Article 

    Google Scholar 
    56.Ward, D. V. et al. Evaluation of 16s rDNA-based community profiling for human microbiome research. PLoS ONE 7, e39315 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Caporaso, J. et al. Ultra-high-throughput microbial community analysis on Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    60.Overgaard, J., Kristensen, T. N. & Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE 7, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). Accessed February 2021. https://www.R-project.org/.62RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    63McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Oksanen, J. et al. vegan: Community Ecology Package. R package 2.5-7 (2019). Accessed October 2019. https://CRAN.R-project.org/package=vegan.65.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics

    1.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U. S. A. 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    3.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).Article 

    Google Scholar 
    4.Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).Article 
    ADS 

    Google Scholar 
    5.Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    6.Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci Adv 7, eabe9829 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl. Acad. Sci. U. S. A. 115, 2776–2781 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).PubMed 
    Article 

    Google Scholar 
    10.McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. Biol. Sci. 286, 20192221 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Woodall, C. W., Miles, P. D. & Vissage, J. S. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For. Ecol. Manag. 216, 367–377 (2005).Article 

    Google Scholar 
    12.Reineke, L. H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46, 627–638 (1933).
    Google Scholar 
    13.Long, J. N. A practical approach to density management. For. Chron. 61, 23–27 (1985).Article 

    Google Scholar 
    14.Domke, G. et al. Forests. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-Lankao, P. & Zhu, Z.) 365–398 (US Global Change Research Program, 2018).15.Yoda, K., Kira, T., Ogawa, H. & Hozumi, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 106–129 (1963).
    Google Scholar 
    16.Drew, T. J. & Flewelling, J. W. Stand density management: An alternative approach and its application to Douglas-fir plantations. For. Sci. 25, 518–532 (1979).
    Google Scholar 
    17.Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program: National Sampling Design and Estimation Procedures. SRS GTR-80. USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA. (2005). https://doi.org/10.2737/SRS-GTR-80.18.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    19.Andrews, C., Weiskittel, A., D’Amato, A. W. & Simons-Legaard, E. Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. For. Ecol. Manag. 417, 90–102 (2018).Article 

    Google Scholar 
    20.Nagel, L. M. et al. Adaptive silviculture for climate change: A national experiment in manager–scientist partnerships to apply an adaptation framework. J. For. 115, 167–178 (2017).
    Google Scholar 
    21.Pretzsch, H. & Biber, P. A re-evaluation of the Reineke’s rule and stand density index. For. Sci. 51, 304–320 (2005).
    Google Scholar 
    22.Condés, S. et al. Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. For. Ecol. Manag. 385, 295–307 (2017).Article 

    Google Scholar 
    23.Ducey, M. J., Woodall, C. W. & Bravo-Oviedo, A. Climate and species functional traits influence maximum live tree stocking in the Lake States, USA. For. Ecol. Manag. 386, 51–61 (2017).Article 

    Google Scholar 
    24.Zhao, D., Bullock, B. P., Montes, C. R. & Wang, M. Rethinking maximum stand basal area and maximum SDI from the aspect of stand dynamics. For. Ecol. Manag. 475, 118462 (2020).Article 

    Google Scholar 
    25.Weiskittel, A. R. & Kuehne, C. Evaluating and modeling variation in site-level maximum carrying capacity of mixed-species forest stands in the Acadian Region of northeastern North America. For. Chron. 95, 171–182 (2019).Article 

    Google Scholar 
    26.Pretzsch, H. & del Río, M. Density regulation of mixed and mono-specific forest stands as a continuum: A new concept based on species-specific coefficients for density equivalence and density modification. For. Int. J. For. Res. 93, 1–15 (2020).
    Google Scholar 
    27.Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    28.Woodall, C. W., Perry, C. H. & Miles, P. D. The relative density of forests in the United States. For. Ecol. Manag. 226, 368–372 (2006).Article 

    Google Scholar 
    29.Venturas, M. D., Todd, H. N., Trugman, A. T. & Anderegg, W. R. L. Understanding and predicting forest mortality in the western United States using long-term forest inventory data and modeled hydraulic damage. New Phytol. 230, 1896–1910 (2020).PubMed 
    Article 

    Google Scholar 
    30.Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).Article 
    ADS 

    Google Scholar 
    31.Peters, M. P. & Iverson, L. R. Projected drought for the conterminous United States in the 21st century. In Effects of Drought on Forests and Rangelands in the United States (eds Vose, J. M., Peterson, D. L., Luce, C. H. & Patel-Weynand, T.) vol. Gen. Tech. Rep. WO-98 19–39 (USDA Forest Service, 2019).32.Coulston, J. W., Woodall, C. W., Domke, G. M. & Walters, B. F. Refined forest land use classification with implications for United States national carbon accounting. Land Use Policy 59, 536–542 (2016).Article 

    Google Scholar 
    33.Wear, D. N. & Coulston, J. W. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 16518 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).Article 

    Google Scholar 
    35.Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219 (2011).PubMed 
    Article 

    Google Scholar 
    36.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    37.Gunn, J. S., Ducey, M. J. & Belair, E. Evaluating degradation in a North American temperate forest. For. Ecol. Manag. 432, 415–426 (2019).Article 

    Google Scholar 
    38.Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010840117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.King, D. I. & Schlossberg, S. Synthesis of the conservation value of the early-successional stage in forests of eastern North America. For. Ecol. Manag. 324, 186–195 (2014).Article 

    Google Scholar 
    40.Stephens, S. L. et al. Forest restoration and fuels reduction: Convergent or divergent?. Bioscience 71, 85–101 (2020).
    Google Scholar 
    41.Berner, L. T., Law, B. E., Meddens, A. J. H. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).Article 
    ADS 

    Google Scholar 
    42.Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Weiskittel, A. R., Gould, P. J. & Temesgen, H. Sources of variation in the self-thinning boundary line for three species with varying levels of shade tolerance. For. Sci. 55, 84–93 (2009).
    Google Scholar 
    44.Ducey, M. J. & Knapp, R. A. A stand density index for complex mixed species forests in the northeastern United States. For. Ecol. Manag. 260, 1613–1622 (2010).Article 

    Google Scholar 
    45.Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. U. S. A. 105, 1551–1555 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    46.Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 17, 2842–2852 (2011).Article 
    ADS 

    Google Scholar 
    47.Nelson, M. D. et al. Defining the United States land base: A technical document supporting the USDA Forest Service 2020 RPA assessment. In Gen. Tech. Rep. NRS-191, Vol. 191, 1–70 (2020).48.Patterson, P. L. & Reams, G. A. Combining panels for forest inventory and analysis estimation. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, 79–84 (2005).49.Bailey, R. G. Delineation of ecosystem regions. Environ. Manag. 7, 365–373 (1983).Article 
    ADS 

    Google Scholar 
    50.Salas-Eljatib, C. & Weiskittel, A. R. Evaluation of modeling strategies for assessing self-thinning behavior and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57(13), 1–29. http://www.jstatsoft.org/v57/i13/ (2013).
    Google Scholar 
    52.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    53.Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article 
    ADS 

    Google Scholar 
    55.De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).PubMed 
    Article 

    Google Scholar 
    56.Long, J. N. & Daniel, T. W. Assessment of growing stock in uneven-age stands. West. J. Appl. For. 11, 59–61 (1990).Article 

    Google Scholar 
    57.Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).ADS 
    Article 

    Google Scholar 
    4.McWilliam, M., Chase, T. J. & Hoogenboom, M. O. Neighbor diversity regulates the productivity of coral assemblages. Curr. Biol. 28, 3634–3639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Gardner, T. A. Long-term region-wide declines in caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27—year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1208909109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).ADS 
    Article 

    Google Scholar 
    11.Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef: Demographic change in Australia’s corals. Proc. R. Soc. B Biol. Sci. 287, 20201432 (2020).Article 

    Google Scholar 
    12.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 1–10 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).ADS 
    Article 

    Google Scholar 
    14.Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 
    Article 

    Google Scholar 
    15.Hall, T. E. et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecol. Appl. 31, 1–11 (2021).Article 

    Google Scholar 
    16.Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).ADS 
    Article 

    Google Scholar 
    18.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    19.Pratchett, M. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).
    Google Scholar 
    20.Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: Porites growth anomalies on the great barrier reef. PLoS ONE 9, e88720 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Linares, C., Pratchett, M. S. & Coker, D. J. Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 438, 97–104 (2011).ADS 
    Article 

    Google Scholar 
    22.Victor, S., Golbuu, Y., Yukihira, H. & Van Woesik, R. Acropora size-frequency distributions reflect spatially variable conditions on coral reefs of Palau. Bull. Mar. Sci. 85, 149–157 (2009).
    Google Scholar 
    23.Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).ADS 
    Article 

    Google Scholar 
    24.Pratchett, M. S., McWilliam, M. J. & Riegl, B. Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 39, 783–793 (2020).Article 

    Google Scholar 
    25.Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    26.Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    27.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    28.Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).Article 

    Google Scholar 
    29.Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Team, R. C. R: A Language and Environment for Statistical Computing. (2020).35.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    36.Evans, R. D. et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 268, 110666 (2020).Article 

    Google Scholar 
    37.Carlot, J. et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob. Chang. Biol. 27, 2623–2632 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    39.Baird, A., Emslie, M. & Lewis, A. Extended periods of coral recruitment on the Great Barrier Reef. In Proc. 12th Int. Coral Reef Symp. (2012).40.Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Edmunds, P. J. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202, 113–124 (2000).ADS 
    Article 

    Google Scholar 
    42.Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7 (2019).Article 

    Google Scholar 
    46.Abràmoff, M. D., Hospitals, I., Magalhães, P. J. & Abràmoff, M. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar  More

  • in

    Humpback whale song recordings suggest common feeding ground occupation by multiple populations

    1.Clapham, P. J. Humpback whale: Megaptera novaeangliae. In Encyclopedia of Marine Mammals 489–492 (Elsevier, 2018).Chapter 

    Google Scholar 
    2.Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    3.Geijer, C. K. A., Notarbartolo di Sciara, G. & Panigada, S. Mysticete migration revisited: Are Mediterranean fin whales an anomaly?. Mamm. Rev. 46, 284–296 (2016).Article 

    Google Scholar 
    4.Baker, C. S. & Herman, L. M. Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Can. J. Zool. 62, 1922–1937 (1984).Article 

    Google Scholar 
    5.Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).PubMed 
    Article 

    Google Scholar 
    6.Palsbøll, P. J., Clapham, P. J., Mattila, D. K. & Vasquez, O. Composition and dynamics of humpback whale competitive groups in the West Indies. Behaviour 122, 182–194 (1992).Article 

    Google Scholar 
    7.Payne, R. S. & Mcvay, S. Songs of Humpback Whales. Science 173, 585–597 (1971).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Kroodsma, D. E. & Byers, B. E. The function (s) of bird song. Am. Zool. 31, 318–328 (1991).Article 

    Google Scholar 
    9.Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the Ocean Basin Scale. Curr. Biol. 21, 687–691 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495 (2007).Article 

    Google Scholar 
    11.Smith, J. N., Goldizen, A. W., Dunlop, R. A. & Noad, M. J. Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Anim. Behav. 76, 467–477 (2008).Article 

    Google Scholar 
    12.Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 30, 163–179 (2020).Article 

    Google Scholar 
    13.Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Vu, E. T. et al. Humpback whale song occurs extensively on feeding grounds in the western North Atlantic Ocean. Aquat. Biol. 14, 175–183 (2012).Article 

    Google Scholar 
    15.McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).Article 

    Google Scholar 
    16.Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).Article 

    Google Scholar 
    17.Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. B 271, 1051–1057 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetac. Res. Manag. 3, 1–50 (2011).
    Google Scholar 
    19.International Whaling Commission. Annex H: Report of the Sub-Committee on Other Southern Hemisphere Whale Stocks. (2016).20.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Gabriele, C. & Frankel, A. The occurrence and significance of humpback whale songs in Glacier Bay, Southeastern Alaska. Arctic Res. USA 16, 42–47 (2002).
    Google Scholar 
    22.Payne, R. & Guinee, L. Humpback whales (Megaptera novaeangliae) songs as an indicator of stocks. In Communication and Behavior of Whales (ed. Payne, R.) 333–358 (Westview Press, 1983).
    Google Scholar 
    23.Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Z. Tierpsychol. 68, 89–114 (1985).Article 

    Google Scholar 
    24.Winn, H. et al. Song of the humpback whale—population comparisons. Behav. Ecol. Sociobiol. 8, 41–46 (1981).Article 

    Google Scholar 
    25.Winn, H. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    26.Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mamm. Sci. 29, E312–E332 (2013).Article 

    Google Scholar 
    27.Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    28.Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Magnúsdóttir, E. E. et al. Humpback whale (Megaptera novaeangliae) song unit and phrase repertoire progression on a subarctic feeding ground. J. Acoust. Soc. Am. 138, 3362–3374 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    30.Mattila, D. K., Guinee, L. N. & Mayo, C. A. Humpback whale songs on a North Atlantic feeding ground. J. Mammal. 68, 880–883 (1987).Article 

    Google Scholar 
    31.Teschke, K., Pehlke, H., Deininger, M., Jerosch, K. & Brey, T. Scientific Background Document in Support of the Development of a CCAMLR MPA in the Weddell Sea (Antarctica)–Version 2016. (2016).32.Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoust. Soc. Am. 143, 298–304 (2018).Article 
    ADS 

    Google Scholar 
    33.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res.-Oceans 113, C02S03 (2008).Article 
    ADS 

    Google Scholar 
    34.Tynan, C. T. & Thiele, D. Report on Antarctic ice edge definition by the ad hoc working group on ice data collection in the Antarctic. Paper: SC/55/19, submitted to the Scientific Committee of the International Whaling Commission (2003).35.Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).Article 

    Google Scholar 
    36.Kohonen, T. Median strings. Pattern Recogn. Lett. 3, 309–313 (1985).Article 
    ADS 

    Google Scholar 
    37.Schall, E. et al. Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    38.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    39.Darling, J. D., Acebes, J. M. V., Frey, O., Urbán, R. J. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    40.Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    41.Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E. & Boebel, O. Calling in the cold: Pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters. PLoS ONE 8, 1–7 (2013).
    Google Scholar 
    42.Craig, A. S., Herman, L. M., Gabriele, C. M. & Pack, A. A. Migratory timing of humpback whales (Megaptera novaeangliae) in the central north Pacific varies with age, sex and reproductive status. Behaviour 140, 981–1001 (2003).Article 

    Google Scholar 
    43.Dawbin, W. Temporal segregation of humpback whales during migration in southern hemisphere waters. Mem. Qld. Mus. 42, 105–138 (1997).
    Google Scholar 
    44.Magnúsdóttir, E., Rasmussen, M., Lammers, M. & Svavarsson, J. Humpback whale songs during winter in subarctic waters. Polar Biol. 37, 427–433 (2014).Article 

    Google Scholar 
    45.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. Part 1 91, 101–114 (2014).Article 

    Google Scholar 
    46.Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Research (Part II, Topical Studies in Oceanography) 51, 2311–2325 (2004).Article 
    ADS 

    Google Scholar 
    47.Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    48.McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: Using song to identify populations. J. Cetac. Res. Manage. 8, 55–65 (2006).
    Google Scholar 
    49.Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).Article 

    Google Scholar 
    50.Oleson, E. M., Širović, A., Bayless, A. R. & Hildebr, J. A. Synchronous seasonal change in fin whale song in the North Pacific. PLoS ONE 9, e115678 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    52.Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Species Res. 18, 95–103 (2012).Article 

    Google Scholar 
    53.Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).Article 
    ADS 

    Google Scholar 
    54.Brenowitz, E. A., Margoliash, D. & Nordeen, K. W. An introduction to birdsong and the avian song system. J. Neurobiol. 33, 495–500 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Tobias, J., Gamarra-Toledo, V., García-Olaechea, D., Pulgarin, P. & Seddon, N. Year-round resource defence and the evolution of male and female song in suboscine birds: Social armaments are mutual ornaments. J. Evol. Biol. 24, 2118–2138 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Vu, E. T., Clark, C., Catelani, K., Kellar, N. M. & Calambokidis, J. Seasonal blubber testosterone concentrations of male humpback whales (Megaptera novaeangliae). Mar. Mam. Sci. 31, 1258–1264 (2015).Article 

    Google Scholar 
    57.Yamada, K. & Soma, M. Diet and birdsong: Short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    58.Casagrande, S., Pinxten, R., Zaid, E. & Eens, M. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder. PeerJ 4, e2512 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Weinrich, M. Humpback whale competitive groups observed on a high-latitude feeding ground. Mar. Mamm. Sci. 11, 251–254 (1995).Article 

    Google Scholar 
    60.Chittleborough, R. The breeding cycle of the female humpback whale, Megaptera nodosa (Bonnaterre). Mar. Freshw. Res. 9, 1–18 (1958).Article 

    Google Scholar 
    61.Chittleborough, R. Studies on the ovaries of the humback whale, Megaptera nodosa (bonnaterre), on the western Australian coast. Mar. Freshw. Res. 5, 35–63 (1954).Article 

    Google Scholar 
    62.Cerchio, S., Jacobsen, J. K. & Norris, T. F. Temporal and geographical variation in songs of humpback whales, Megaptera novaeangliae: Synchronous change in Hawaiian and Mexican breeding assemblages. Anim. Behav. 62, 313–329 (2001).Article 

    Google Scholar 
    63.Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    64.Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B 285, 20182088 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Stevick, P. T. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetac. Res. Manag. 6, 109–113 (2004).
    Google Scholar 
    66.Engel, M. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253–1262 (2008).CAS 
    Article 

    Google Scholar 
    67.Amaral, A. R. et al. Population genetic structure among feeding aggregations of humpback whales in the Southern Ocean. Mar. Biol. 163, 1–13 (2016).Article 

    Google Scholar 
    68.Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. R. Soc. Open Sci. 5, 172305 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    69.Darling, J. D. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in the western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566 (2005).Article 

    Google Scholar 
    70.Razafindrakoto, Y., Cerchio, S., Collins, T., Rosenbaum, H. & Ngouessono, S. Similarity of humpback whale song from Madagascar and Gabon indicates significant contact between South Atlantic and southwest Indian Ocean populations. PLoS ONE 8, e79422 (2009).
    Google Scholar 
    71.Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetac. Res. Manag. 3, 113–118 (2011).
    Google Scholar 
    72.Rosenbaum, H. C., Maxwell, S. M., Kershaw, F. & Mate, B. Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv. Biol. 28, 604–615 (2014).PubMed 
    Article 

    Google Scholar 
    73.Filun, D. et al. Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter. R. Soc. Open Sci. 7, 192112 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    74.Rettig, S. et al. In International Confence and Exhibition on Underwater Acoustics. (eds Papadakis, J. & Bjorno, L.) 1669–1674.75.Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    76.Klinck, H. et al. Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga). J. Acoust. Soc. Am. 128, 474–479 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    77.Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Schall, E. & Van Opzeeland, I. Calls produced by Ecotype C killer whales (Orcinus orca) off the Eckstrom iceshelf, Antarctica. Aquat. Mamm. 43, 117–126 (2017).Article 

    Google Scholar 
    79.Van Opzeeland, I. et al. Acoustic ecology of Antarctic pinnipeds. Mar. Ecol. Prog. Ser. 414, 267–291 (2010).Article 
    ADS 

    Google Scholar 
    80.Dunlop, R. A., Cato, D. H. & Noad, M. J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mamm. Sci. 24, 613–629 (2008).Article 

    Google Scholar 
    81.Stimpert, A. K., Au, W. W., Parks, S. E., Hurst, T. & Wiley, D. N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoust. Soc. Am. 129, 476–482 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    82.Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).
    Google Scholar 
    83.Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).Article 
    ADS 

    Google Scholar 
    84.Greene, C. A. Daily Antarctic Sea Ice Concentration (2020).85.Schall, E., Roca, I. & Van Opzeeland, I. Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean. J. Acoust. Soc. Am. 149, 4649–4658 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    86.Dalla Rosa, L., Secchi, E., Maia, Y. G., Zerbini, A. & Heide-Jørgensen, M. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).Article 

    Google Scholar 
    87.Zann, R. & Cash, E. Developmental stress impairs song complexity but not learning accuracy in non-domesticated zebra finches (Taeniopygia guttata). Behav. Ecol. Sociobiol. 62, 391–400 (2008).Article 

    Google Scholar 
    88.Woodgate, J. L., Mariette, M. M., Bennett, A. T., Griffith, S. C. & Buchanan, K. L. Male song structure predicts reproductive success in a wild zebra finch population. Anim. Behav. 83, 773–781 (2012).Article 

    Google Scholar 
    89.Boogert, N. J., Giraldeau, L.-A. & Lefebvre, L. Song complexity correlates with learning ability in zebra finch males. Anim. Behav. 76, 1735–1741 (2008).Article 

    Google Scholar 
    90.Templeton, C. N., Laland, K. N. & Boogert, N. J. Does song complexity correlate with problem-solving performance in flocks of zebra finches?. Anim. Behav. 92, 63–71 (2014).Article 

    Google Scholar 
    91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.92.Suzuki, R., Terada, Y. & Shimodaira, H. pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. R Package Version 2.2–0 (2019).93.Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour 149, 1413–1441 (2012).Article 

    Google Scholar 
    94.Van der Loo, M. P. The stringdist package for approximate string matching. R J. 6, 111–122 (2014).Article 

    Google Scholar 
    95.Pawlowicz, R. M_Map: A Mapping Package for MATLAB v. Version 1.4m. www.eoas.ubc.ca/~rich/map.html (2020). More

  • in

    Multiyear trend in reproduction underpins interannual variation in gametogenic development of an Antarctic urchin

    1.Takemura, A., Rahman, M. S. & Park, Y. J. External and internal controls of lunar-related reproductive rhythms in fishes. J. Fish Biol. 76, 7–26 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Brockington, S. & Clarke, A. The relative influence of temperature and food on the metabolism of a marine invertebrate. J. Exp. Mar. Bio. Ecol. 258, 87–99 (2001).CAS 
    Article 

    Google Scholar 
    3.Kelly, M. S. Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. J. Exp. Mar. Bio. Ecol. 266, 67–80 (2001).Article 

    Google Scholar 
    4.Muthiga, N. A. The reproductive biology of a new species of sea cucumber, Holothuria (Mertensiothuria) arenacava in a Kenyan marine protected area: The possible role of light and temperature on gametogenesis and spawning. Mar. Biol. 149, 585–593 (2006).Article 

    Google Scholar 
    5.Emilio, L. et al. Is the Orton’s rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues. Hydrobiologia 815, 187–205 (2018).Article 

    Google Scholar 
    6.St.Gelais, A. T., Chaves-Fonnegra, A., Moulding, A. L., Kosmynin, V. N. & Gilliam, D. S. Siderastrea siderea spawning and oocyte resorption at high latitude. Invertebr. Reprod. Dev. 60, 212–222 (2016).Article 

    Google Scholar 
    7.Zhadan, P. M., Vaschenko, M. A. & Ryazanov, S. D. Assessing the effect of environmental factors on the spawning activity of the sea urchin Strongylocentrotus intermedius through video recording observations. Mar. Ecol. Prog. Ser. 588, 101–119 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Grange, L. J., Tyler, P. A., Peck, L. S. & Cornelius, N. Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar. Ecol. Prog. Ser. 278, 141–155 (2004).Article 
    ADS 

    Google Scholar 
    9.Balogh, R., Wolfe, K. & Byrne, M. Gonad development and spawning of the vulnerable commercial sea cucumber, Stichopus herrmanni, in the southern Great Barrier Reef. J. Mar. Biol. Assoc. United Kingdom 99, 487–495 (2019).Article 

    Google Scholar 
    10.Stenseth, N. C. et al. Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc. R. Soc. B Biol. Sci. 270, 2087–2096 (2003).Article 

    Google Scholar 
    11.Wood, S. et al. El Nino and coral larval dispersal across the eastern Pacific marine barrier. Nat. Commun. 7, 1 (2016).
    Google Scholar 
    12.Turner, J. The El Niño-Southern Oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).Article 

    Google Scholar 
    13.La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica.. Sci. Rep. 9, 1–7 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    14.Xuebin, Z. & Mcphaden, M. J. Eastern equatorial Pacific forcing of ENSO sea surface temperature anomalies. J. Clim. 21, 6070–6079 (2008).Article 
    ADS 

    Google Scholar 
    15.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    16.Ryan, J. P. et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. 44, 5571–5579 (2017).Article 
    ADS 

    Google Scholar 
    17.Conde, A. & Prado, M. Changes in phytoplankton vertical distribution during an El Niño event. Ecol. Indic. 90, 201–205 (2018).Article 

    Google Scholar 
    18.Santidrián Tomillo, P. et al. The impacts of extreme El Niño events on sea turtle nesting populations. Clim. Change https://doi.org/10.1007/s10584-020-02658-w (2020).Article 

    Google Scholar 
    19.Wilson, S. K. et al. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef. Ecol. Evol. 8, 1918–1928 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Welhouse, L., Lazzara, M., Keller, L., Tripoli, G. & Hitchman, M. Composite analysis of the effects of ENSO events on Antarctica. J. Clim. 29, 1797–1808 (2016).Article 
    ADS 

    Google Scholar 
    21.Testa, J. W. et al. Temporal variability in Antarctic marine ecosystems: periodic fluctuations in the phocid seals. Can. J. Fish. Aquat. Sci. 48, 631–639 (1991).Article 

    Google Scholar 
    22.Román-González, A. et al. Analysis of ontogenetic growth trends in two marine Antarctic bivalves Yoldia eightsi and Laternula elliptica: Implications for sclerochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 300–306 (2017).Article 

    Google Scholar 
    23.Brown, M. et al. Long-term effect of photoperiod, temperature and feeding regimes on the respiration rates of Antarctic Krill (Euphausia superba). Open J. Mar. Sci. 3, 40–51 (2013).Article 

    Google Scholar 
    24.Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fish. 14, 343–363 (2013).Article 

    Google Scholar 
    25.Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).PubMed 
    Article 

    Google Scholar 
    26.Peck, L. S. Antarctic Marine Biodiversity: Adaptations, Environments and Responses to Change. Oceanogr. Mar. Biol. An Annu. Rev. 56, 105–236 (2018).Article 

    Google Scholar 
    27.Peck, L. S. A Cold Limit to Adaptation in the Sea. Trends Ecol. Evol. 31, 13–26 (2016).PubMed 
    Article 

    Google Scholar 
    28.Brockington, S., Peck, L. S. & Tyler, P. A. Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Mar. Ecol. Prog. Ser. 330, 139–147 (2007).Article 
    ADS 

    Google Scholar 
    29.Grange, L. J., Tyler, P. A. & Peck, L. S. Multi-year observations on the gametogenic ecology of the Antarctic seastar Odontaster validus. Mar. Biol. 153, 15–23 (2007).Article 

    Google Scholar 
    30.Brockington, S. The seasonal ecology and physiology of Sterechinus neumayeri (Echinodermata; Echinoidea) at Adelaide Island, Antarctica. PhD thesis The Open University. (2001).31.Bosch, I., Beauchamp, K. A., Steele, M. E. & Pearse, J. S. Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus Neumayeri. Biol. Bull. 173, 126–135 (1987).PubMed 
    Article 

    Google Scholar 
    32.Stanwell-Smith, D. & Peck, L. S. Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol. Bull. 194, 44–52 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).Article 

    Google Scholar 
    34.Kwok, R. & Comiso, J. C. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 29, 2–5 (2002).
    Google Scholar 
    35.Santamaría-Del-ángel, E. et al. Interannual climate variability in the west antarctic peninsula under austral summer conditions. Remote Sens. 13, 1 (2021).Article 

    Google Scholar 
    36.Montgomery, D. & Peck, E. Introduction to linear regression analysis. (Wiley, 1992).37.Halberg, F., Shankaraiah, K. & Giese, A. The chronobiology of marine invertebrates: methods of analysis. in Reproduction of marine invertebrates, Vol IX. General aspects: seeking unity in diversity 331–384 (The Boxwood Press, 1987).38.Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the antarctic peninsula pelagic marine ecosystem. Antarct. Sci. 21, 135–148 (2009).Article 
    ADS 

    Google Scholar 
    39.White, W. B., Chen, S. C., Allan, R. J. & Stone, R. C. Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation wave. J. Geophys. Res. C Ocean. 107, 29–31 (2002).
    Google Scholar 
    40.Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 1–8 (2014).CAS 

    Google Scholar 
    41.Cavanagh, R. D. et al. A synergistic approach for evaluating climate model output for ecological applications. Front. Mar. Sci. 4, 1 (2017).Article 

    Google Scholar 
    42.Vergani, D. F., Labraga, J. C., Stanganelli, Z. B. & Dunn, M. The effects of El Niño-La Niña on reproductive parameters of elephant seals feeding in the Bellingshausen Sea. J. Biogeogr. 35, 248–256 (2008).Article 

    Google Scholar 
    43.Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Chang. Biol. 19, 3749–3761 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    44.Schneider, D. P., Okumura, Y. & Deser, C. Observed Antarctic interannual climate variability and tropical linkages. J. Clim. 25, 4048–4066 (2012).Article 
    ADS 

    Google Scholar 
    45.Yuan, X. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci. 16, 415–425 (2004).Article 
    ADS 

    Google Scholar 
    46.Loeb, V. J. & Santora, J. A. Population dynamics of Salpa thompsoni near the Antarctic Peninsula: Growth rates and interannual variations in reproductive activity (1993–2009). Prog. Oceanogr. 96, 93–107 (2012).Article 
    ADS 

    Google Scholar 
    47.Moran, A. L., McAlister, J. S. & Whitehill, E. A. G. Eggs as energy: Revisiting the scaling of egg size and energetic content among echinoderms. Biol. Bull. 224, 184–191 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Gómez-Robles, E. & Saucedo, P. E. Evaluation of quality indices of the gonad and somatic tissues involved in reproduction of the pearl oyster Pinctada mazatlanica with histochemistry and digital image analysis. J. Shellfish Res. 28, 329–335 (2009).Article 

    Google Scholar 
    49.Gómez-Valdez, M., Ocampo, L., Carvalho-Saucedo, L. & Gutiérrez-González, J. Reproductive activity and seasonal variability in the biochemical composition of a pen shell, Atrina maura.. Mar. Ecol. Prog. Ser. 663, 99–113 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    50.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep. Res. Part I Oceanogr. Res. Pap. 101, 54–70 (2015).Article 
    ADS 

    Google Scholar 
    51.Rozema, P. D. et al. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol. Oceanogr. 62, 235–252 (2017).Article 
    ADS 

    Google Scholar 
    52.Starr, M., Himmelman, J. H. & Therriault, J. Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science 247, 1071–1074 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    53.Harrington, L. H., Walker, C. W. & Lesser, M. P. Stereological analysis of nutritive phagocytes and gametogenic cells during the annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis.. Invertebr. Biol. 126, 202–209 (2007).Article 

    Google Scholar 
    54.Magniez, P. Reproductive cycle of the brooding echinoid Abatus cordatus (Echinodermata) in Kerguelen (Antarctic Ocean): changes in the organ indices, biochemical composition and caloric content of the gonads. Mar. Biol. 74, 55–64 (1983).CAS 
    Article 

    Google Scholar 
    55.Pérez, A. F., Morriconi, E., Boy, C. & Calvo, J. Seasonal changes in energy allocation to somatic and reproductive body components of the common cold temperature sea urchin Loxechinus albus in a Sub-Antarctic environment. Polar Biol. 31, 443–449 (2008).Article 

    Google Scholar 
    56.Hernandez, E., Vázquez, O. A., Torruco, A. & Rahman, M. S. Reproductive cycle and gonadal development of the Atlantic sea urchin Arbacia punctulata in the Gulf of Mexico: changes in nutritive phagocytes in relation to gametogenesis. Mar. Biol. Res. 16, 177–194 (2020).Article 

    Google Scholar 
    57.Bronstein, O., Kroh, A. & Loya, Y. Reproduction of the long-spined sea urchin Diadema setosum in the Gulf of Aqaba – Implications for the use of gonad-indexes. Sci. Rep. 6, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    58.Alturkistani, H. A., Tashkandi, F. M. & Mohammedsaleh, Z. M. Histological Stains: A Literature Review and Case Study. Glob. J. Health Sci. 8, 72–79 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 1–26 (2017).Article 
    ADS 

    Google Scholar 
    61.Lau, S. C. Y., Grange, L. J., Peck, L. S. & Reed, A. J. The reproductive ecology of the Antarctic bivalve Aequiyoldia eightsii (Protobranchia: Sareptidae) follows neither Antarctic nor taxonomic patterns. Polar Biol. 41, 1693–1706 (2018).Article 

    Google Scholar 
    62.Reed, A. J., Morris, J. P., Linse, K. & Thatje, S. Reproductive morphology of the deep-sea protobranch bivalves Yoldiella ecaudata, Yoldiella sabrina, and Yoldiella valettei (Yoldiidae) from the Southern Ocean. Polar Biol. 37, 1383–1392 (2014).Article 

    Google Scholar 
    63.Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    64.Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).Article 
    ADS 

    Google Scholar 
    65.Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica.. Deep Res. Part II Top. Stud. Oceanogr. 55, 198–206 (2008).
    Google Scholar 
    66.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data. in Analyzing Ecological Data (ed. M. Gail, K. Krickeberg, J. Samet, A. Tsiatis, W. W.) 23–47 (Springer-Verlag New York, 2007).67.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretical approach. Model Selection and Multimodel Inference (Springer, 2002). https://doi.org/10.1007/978-0-387-22456-5_768.Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C. & Langlois, T. J. A simple function for full-subsets multiple regression in ecology with R. Ecol. Evol. 8, 6104–6113 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    70.De Leij, R., Peck, L. S. & Grange, L. J. R code and csv. files. https://doi.org/10.5061/dryad.6q573n5z1 (2021).71.Grange, L. J., Peck, L. S. & Tyler, P. A. Reproductive ecology of the circumpolar Antarctic nemertean Parborlasia corrugatus: No evidence for inter-annual variation. J. Exp. Mar. Bio. Ecol. 404, 98–107 (2011).Article 

    Google Scholar  More

  • in

    Food resources affect territoriality of invasive wild pig sounders with implications for control

    1.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: A selection from the global invasive species database. In Encyclopedia of Biological Invasions 12 (The Invasive Species Specialist Group (ISSG), Species Survival Commission (SSC), World Conservation Union (IUCN), 2000). https://doi.org/10.1525/9780520948433-159.2.North American Invasive Species Network. The ten most important invasive species or invasive species assemblages in North America in 2015. https://www.bugwoodcloud.org/mura/naisn/assets/File/NAISNPRJan2015.pdf (2015).3.Keuling, O. et al. Eurasian wild boar Sus scrofa (Linnaeus, 1758). in Ecology, Conservation and Management of Wild Pigs and Peccaries (eds. Melleti, M. & Meijaard, E.) 202–233 (Cambridge University Press, 2017).4.Strickland, B. K., Smith, M. D. & Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds VerCauteren, K. C. et al.) 143–174 (RC Press, London, 2020).
    Google Scholar 
    5.Pimental, D. Environmental and economic costs of vertebrate species invasions into the United States. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium (eds. Witmer, G. W., Pitt, W. C. & Fagerstone, K. A.) 2–8 (USDA National Wildlife Research Center, Fort Collins, CO, USA, 2007).6.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds VerCauteren, K. C. et al.) 175–198 (CRC Press, London, 2020).
    Google Scholar 
    7.Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).Article 

    Google Scholar 
    8.Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77, 85–95 (2021).CAS 
    Article 

    Google Scholar 
    9.Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).Article 

    Google Scholar 
    10.Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).Article 

    Google Scholar 
    11.Gabor, T. M., Hellgren, E. C., Bussche, R. A. V. D. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247, 311–322 (1999).Article 

    Google Scholar 
    12.Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).Article 

    Google Scholar 
    13.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & VerCauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    14.Gray, S. M., Roloff, G. J., Montgomery, R. A., Beasley, J. C. & Pepin, K. M. Wild pig spatial ecology and behavior. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds VerCauteren, K. C. et al.) 33–56 (CRC Press, London, 2020).
    Google Scholar 
    15.Emlen, J. T. Defended area? A critique of the territory concept and of conventional thinking. Ibis 99, 352 (1957).
    Google Scholar 
    16.Kamath, A. & Wesner, A. B. Animal territoriality, property and access: A collaborative exchange between animal behaviour and the social sciences. Anim. Behav. 164, 233–239 (2020).Article 

    Google Scholar 
    17.ESRI. ArcGIS Pro. Environmental Systems Research Institute (2021).18.Mayer, J. J. Wild hog. In Ecology and Management of a Forested Landscape: Fifty Years on the Savannah River Site (eds Kilgo, J. C. & Blake, J. I.) 374–379 (Island Press, Washington, 2005).
    Google Scholar 
    19.Mayer, J. J., Edwards, T. B., Garabedian, J. E. & Kilgo, J. C. Sanitary waste landfill effects on an invasive wild pig population. J. Wildl. Manag. 85, 868–879 (2021).Article 

    Google Scholar 
    20.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, Cambridge, 2014).
    Google Scholar 
    21.Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    22.Byrne, M. E., Guthrie, J. D., Hardin, J., Collier, B. A. & Chamberlain, M. J. Evaluating wild Turkey movement ecology: An example using first-passage time analysis. Wildl. Soc. Bull. 38, 407–413 (2014).Article 

    Google Scholar 
    23.Clontz, L. M., Pepin, K. M., VerCauteren, K. C. & Beasley, J. C. Behavioral state resource selection in invasive wild pigs in the Southeastern United States. Sci. Rep. 11, 6924 (2021).CAS 
    Article 
    ADS 

    Google Scholar 
    24.White, G. C. & Garrott, R. A. Analysis of Wildlife Radio-Tracking Data (Academic Press, Cambridge, 1990).
    Google Scholar 
    25.Potts, J. R., Harris, Stephen & Giuggioli, L. Quantifying behavioral changes in territorial animals caused by sudden population declines. Am. Nat. 182, E73–E82 (2013).Article 

    Google Scholar 
    26.Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).Article 

    Google Scholar 
    27.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2021).28.Schielzeth, H. & Forstmeier, W. Conclusions beyond support: Overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).Article 

    Google Scholar 
    29.Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).Article 

    Google Scholar 
    30.Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    Article 

    Google Scholar 
    31.Long, J. A., Nelson, T. A., Webb, S. L. & Gee, K. L. A critical examination of indices of dynamic interaction for wildlife telemetry studies. J. Anim. Ecol. 83, 1216–1233 (2014).Article 

    Google Scholar 
    32.Benhamou, S., Valeix, M., Chamaillé-Jammes, S., Macdonald, D. W. & Loveridge, A. J. Movement-based analysis of interactions in African lions. Anim. Behav. 90, 171–180 (2014).Article 

    Google Scholar 
    33.Brotherton, P. N. M., Pemberton, J. M., Komers, P. E. & Malarky, G. Genetic and behavioural evidence of monogamy in a mammal, Kirk’s dik–dik (Madoqua kirkii). Proc. R. Soc. Lond. B Biol. Sci. 264, 675–681 (1997).CAS 
    Article 
    ADS 

    Google Scholar 
    34.Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352 (1943).Article 

    Google Scholar 
    35.Cooper, N. W., Sherry, T. W. & Marra, P. P. Modeling three-dimensional space use and overlap in birds. Auk 131, 681–693 (2014).Article 

    Google Scholar 
    36.Millspaugh, J. J., Gitzen, R. A., Kernohan, B. J., Larson, M. A. & Clay, C. L. Comparability of three analytical techniques to assess joint space use. Wildl. Soc. Bull. 32, 148–157 (2004).Article 

    Google Scholar 
    37.Pepin, K. M. et al. Contact heterogeneities in feral swine: Implications for disease management and future research. Ecosphere 7, e01230 (2016).Article 

    Google Scholar 
    38.Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90, 820–833 (2021).Article 

    Google Scholar 
    39.Carpenter, F. L. Food abundance and territoriality: To defend or not to defend?. Am. Zool. 27, 387–399 (1987).Article 

    Google Scholar 
    40.Both, C. & Visser, M. E. Density dependence, territoriality, and divisibility of resources: From optimality models to population processes. Am. Nat. 161, 326–336 (2003).Article 

    Google Scholar 
    41.Doncaster, C. P. & Macdonald, D. W. Optimum group size for defending heterogenous distributions of resources: A model applied to red foxes, Vulpes vulpes, Oxford city. J. Theor. Biol. 159, 189–198 (1992).Article 
    ADS 

    Google Scholar 
    42.Krause, J. & Ruxton, G. D. Living in Groups (University Press, Oxford, 2002).
    Google Scholar 
    43.Garabedian, J. E., Moorman, C. E., Peterson, M. N. & Kilgo, J. C. Effects of group size and group density on trade-offs in resource selection by a group-territorial central-place foraging woodpecker. Ibis 162, 477–491 (2020).Article 

    Google Scholar  More

  • in

    Evaluation of fish feeder manufactured from local raw materials

    Automatic feeder productivityTable 1 and Figs. 4, 5 and 6 show the automatic feeder productivity as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that the automatic feeder productivity increases with increasing feed pellets size, air flow rate and rotational speed of screw. It indicates that when the feed pellets size increased from 1 to 3 mm, the automatic feeder productivity significantly increased from 11.16 to 13.87 (by 19.54%) kg min−1. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the automatic feeder productivity significantly increased from 11.02 to 14.03 (by 21.45%) kg min−1, while the automatic feeder productivity significantly increased from 3.33 to 21.46 (by 84.48%) kg min−1 when the rotational speed of screw increased from 180 to 900 rpm.Table 1 Automatic feeder productivity at different feed pellets sizes, air flow rates and rotational speeds of screw.Full size tableFigure 4Automatic feeder productivity at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 5Automatic feeder productivity at different feed pellet sizes and air flow rates.Full size imageFigure 6Automatic feeder productivity at different rotational speeds of screw and flow rates.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to increase the automatic feeder productivity from 3.04 to 3.79, 6.23 to 8.92, 11.86 to 14.10, 15.27 to 18.94 and 19.42 to 23.62 kg min−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the automatic feeder productivity increased from 3.04 to 19.42, 3.16 to 21.36 and 3.79 to 23.62 kg min−1 at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 4.From statistical analysis, there were no significant different between feed pellets sizes 1 and 2 on the automatic feeder productivity, meanwhile, there were significant differences between feed pellets size 3 and sizes 1 and 2 on the productivity. Regarding the effect of air flow rate, there were significant differences between air flow rates on the automatic feeder productivity, the same trend was happened with the effect of rotational speed of screw on productivity. The analysis showed also that the interaction between both ABC was non-significant. On the other hand, the interaction between the effect of both AB, AC and BC on the data was significant as shown in Table 1.Regarding the effect of feed pellet size and air flow rate on the automatic feeder productivity, the results indicate that the automatic feeder productivity increases with increasing the feed pellets size and flow rate. It increased from 9.53 to 12.37, 11.23 to 13.82 and 12.73 to 15.43 kg min−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the automatic feeder productivity increased from 9.53 to 12.73, 11.16 to 13.92 and 12.37 to 15.43 kg min−1 at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 5.The results also indicate that the automatic feeder productivity increased from 2.26 to 4.54, 6.39 to 8.90, 11.76 to 14.56, 15.25 to 18.68 and 19.44 to 23.45 kg min−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the automatic feeder productivity increased from 2.26 to 19.44, 3.19 to 21.50 and 4.54 to 23.45 kg min−1 at 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 6.Multiple regression analysis was carried out to obtain a relationship between the automatic feeder productivity as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:-$$ Pr_{actual} = – 8.457 + 1.354PS + 0.301FR + 0.025RS{text{ R}}^{{2}} = 0.98{ ,} $$
    (13)
    where PS is the feed pellets size, mm; FR is the air flow rate, m3 min−1; RS is the rotational speed of screw, rpm.This equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw.Automatic feeder efficiencyTable 2, Figs. 7, 8 and 9 show the automatic feeder efficiency as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that, when the feed pellets size increased from 1 to 3 mm, the automatic feeder efficiency significantly increased from 65.30 to 82.14 (by 20.50%) %. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the automatic feeder efficiency significantly increased from 62.58 to 85.07 (by 26.44%) %, while the automatic feeder efficiency significantly increased from 61.58 to 78.69 (by 21.74%) % when the rotational speed of screw increased from 180 to 900 rpm.Table 2 Automatic feeder efficiency at different feed pellets sizes, air flow rates and rotational speeds of screw.Full size tableFigure 7Automatic feeder efficiency at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 8Automatic feeder efficiency at different feed pellet sizes and air flow rates.Full size imageFigure 9Automatic feeder efficiency at different rotational speeds of screw and air flow rates.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to increase the automatic feeder efficiency from 55.79 to 69.41, 57.10 to 81.78, 72.48 to 86.13, 69.96 to 86.81 and 71.19 to 86.58% at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the automatic feeder efficiency increased from 55.79 to 71.19, 57.98 to 78.29 and 69.41 to 86.58% at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 7.The statistical analysis showed that the differences between the obtained data of automatic feeder efficiency due to the effect of feed pellets size (A) and air flow rate (B) were significant. Regarding the effect of rotational speed of screw, there were significant differences between rotational speeds of screw 1, 2 and 3, meanwhile, there were no significant differences between rotational speeds of screw 3, 4 and 5. The analysis showed also that the interaction between both ABC was non-significant. On the other hand, the interaction between the effect of both AB, AC and BC on the data was significant as shown in Table 2.Regarding the effect of feed pellet size and air flow rate on the automatic feeder productivity, the results indicate that the automatic feeder efficiency increases with increasing the feed pellets size and flow rate. It increased from 53.91 to 70.69, 65.23 to 81.19 and 76.78 to 94.54% for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the automatic feeder efficiency increased from 53.91 to 76.78, 63.14 to 83.89 and 70.69 to 94.54% at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 8.The results also indicate that the automatic feeder efficiency increased from 41.37 to 83.28, 58.53 to 81.54, 71.85 to 84.96, 69.88 to 85.59 and 71.27 to 85.98% at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the automatic feeder efficiency increased from 41.37 to 71.27, 58.53 to 80.82 and 83.28 to 85.98% at 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 9.Increasing the parameters seams to increase the productivity but regarding the efficiency, results show that the efficiency increases with increasing this parameter at (540 rpm) started to be constant and 720–900 rpm decreased in all treatments under study (Figs. 7, 9). It is concluded that efficiency with the parameters increased, became constant and decreased.Multiple regression analysis was carried out to obtain a relationship between the automatic feeder efficiency as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:-$$ eta = 9.566 + 8.417PS + 2.249FR + 0.025RS{text{ R}}^{{2}} = 0.89{ ,} $$
    (14)
    where this equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw.Specific energy consumptionTable 3, Figs. 10, 11 and 12 show the specific energy consumption of automatic feeder as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that the specific energy consumption of automatic feeder decreases with increasing feed pellets size, air flow rate and rotational speed of screw. It indicates that when the feed pellets size increased from 1 to 3 mm, the specific energy consumption of automatic feeder significantly decreased from 8.93 to 6.74 (by 24.52%) W h kg−1. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the specific energy consumption of automatic feeder significantly decreased from 10.83 to 5.42 (by 49.95%) W h kg−1, while the specific energy consumption significantly decreased from 9.08 to 6.55 (by 27.86%) W h kg−1 when the rotational speed of screw increased from 180 to 900 rpm.Table 3 Specific energy consumption at different feed pellets sizes, air flow rates and rotational speeds of screw.Full size tableFigure 10Specific energy consumption at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 11Specific energy consumption at different feed pellet sizes and air flow rates.Full size imageFigure 12Specific energy consumption at different rotational speeds of screw and air flow rates.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to decrease the specific energy consumption from 9.87 to 7.94, 9.18 to 7.63, 9.14 to 7.30, 8.65 to 6.63 and 7.79 to 4.20 W h kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the specific energy consumption decreased from 9.87 to 7.79, 9.42 to 7.65 and 7.94 to 4.20 W h kg−1 at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 10.From statistical analysis, there were no significant differences between feed pellets sizes 1 and 2 on the specific energy consumption, meanwhile, there were significant differences between feed pellets size 3 and 1 and 2 on the specific energy consumption. Regarding the effect of air flow rate, there were significant differences between air flow rates and specific energy consumption. Regarding the effect of rotational speed of screw, there were significant differences between rotational speeds of screw 1, 2, 4 and 5 on the specific energy consumption, meanwhile, there were no significant differences between rotational speeds of screw 2 and 3 on the specific energy consumption. The analysis showed also that the interaction between both ABC was non-significant. On the other hand, the interaction between the effect of both AB, AC and BC on the data was significant as shown in Table 3.Regarding the effect of feed pellet size and air flow rate on the specific energy consumption, the results indicate that the specific energy consumption decreases with increasing the feed pellets size and flow rate. It decreased from 12.05 to 9.07, 8.81 to 6.56 and 5.92 to 4.59 W h kg−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the specific energy consumption decreased 12.05 to 5.92, 11.37 to 5.75 and 9.07 to 4.59 W h kg−1 at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 11.The results also indicate that the specific energy consumption decreased from 12.31 to 6.18, 11.43 to 5.63, 11.21 to 5.63, 10.38 to 5.21 and 8.81 to 4.46 W h kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the specific energy consumption decreased from 12.31 to 8.81, 8.75 to 6.37 and 6.18 to 4.46 W h kg−1 at 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown Fig. 12.
    Multiple regression analysis was carried out to obtain a relationship between the specific energy consumption of automatic feeder as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:-$$ SEC = 20.045 – 1.095PS – 0.541FR – 0.003RS{text{ R}}^{{2}} = 0.92 , {.} $$
    (15)
    This equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw.Total costs of automatic feederTable 4, Figs. 13, 14 and 15 show the total cost of automatic feeder as affected by the different feed pellets sizes (1, 2 and 3 mm), air flow rates (10, 15 and 20 m3 min−1) and rotational speeds of screw (180, 360, 540, 720 and 900 rpm). The results indicate that the total cost of automatic feeder decreases with increasing feed pellets size, flow rate and rotational speed of screw. It indicates that when the feed pellets size increased from 1 to 3 mm, the total cost of automatic feeder significantly decreased from 0.15 to 0.11 (by 26.27%) EGP kg−1. It also indicates that when the air flow rate increased from 10 to 20 m3 min−1, the total cost of automatic feeder significantly decreased from 0.16 to 0.09 (by 43.75%) EGP kg−1, while the total cost of automatic feeder significantly decreased from 0.16 to 0.10 (by 37.50%) EGP kg−1 when the rotational speed of screw increased from 180 to 900 rpm.Table 4 Total cost of automatic feeder at different feed pellets sizes, air flow rate and rotational speeds of screw.Full size tableFigure 13Total cost of automatic feeder at different feed pellet sizes and rotational speeds of screw.Full size imageFigure 14Total cost of automatic feeder at different feed pellet sizes and air flow rates.Full size imageFigure 15Total cost of automatic feeder at different rotational speeds of screw and air flow rate.Full size imageIt could be noticed that increasing the feed pellets size from 1 to 3 mm, tends to decrease the total cost of automatic feeder from 0.18 to 0.14, 0.16 to 0.12, 0.15 to 0.11, 0.13 to 0.09 and 0.12 to 0.08 EGP kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively. The results also indicate that the total cost of automatic feeder decreased from 0.18 to 0.12, 0.17 to 0.10 and 0.14 to 0.08 EGP kg−1 at 1, 2 and 3 mm feed pellets sizes, respectively when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 13.From statistical analysis, there were no significant differences between feed pellets sizes 1 and 2 on the total cost of automatic feeder, meanwhile, there were significant differences between feed pellets size 3 and 1 and 2 on the total cost of automatic feeder. Regarding the effect of air flow rate, there were significant differences between air flow rates and specific energy consumption. Regarding the effect of rotational speed of screw, there were no significant differences between rotational speeds of screw 1 and 2, also 3 and 4 on the total cost of automatic feeder, meanwhile, there were significant differences between rotational speeds of screw 2 and 3 on the total cost of automatic feeder.Regarding the effect of feed pellet size and flow rate on the total cost of automatic feeder, the results indicate that the total cost of automatic feeder decreases with increasing the feed pellets size and air flow rate. It decreased from 0.18 to 0.13, 0.16 to 0.11 and 0.10 to 0.08 EGP kg−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the feed pellets size increased from 1 to 3 mm. The results also indicate that the total cost of automatic feeder decreased from 0.18 to 0.10, 0.16 to 0.10 and 0.13 to 0.08 EGP kg−1 at 1, 2 and 3 mm feed pellets size, respectively, when the air flow rate increased from 10 to 20 m3 min−1 as shown in Fig. 14.The results also indicate that the total cost of automatic feeder decreased from 0.22 to 0.11, 0.18 to 0.10, 0.16 to 0.10, 0.13 to 0.09 and 0.12 to 0.07 EGP kg−1 at 180, 360, 540, 720 and 900 rpm rotational speed of screw, respectively, when the air flow rate increased from 10 to 20 m3 min−1. The results also indicate that the total cost of automatic feeder decreased from 0.22 to 0.12, 0.16 to 0.11 and 0.11 to 0.07 EGP kg−1 for 10, 15 and 20 m3 min−1 air flow rate, respectively, when the rotational speed of screw increased from 180 to 900 rpm as shown in Fig. 15.
    Multiple regression analysis was carried out to obtain a relationship between the total costs of automatic feeder as dependent variable and different of feed pellets size, air flow rate and rotational speed of screw as independent variables. The best fit for this relationship is presented in the following equation:$$ TC = 0.315 – 0.020PS – 0.006FR – 8.8 times 10^{ – 5} RS{text{ R}}^{{2}} = 0.87{,} $$
    (16)
    where: TC is the total cost of automatic feeder, EGP kg−1.This equation could be applied in the range of 1 to 3 mm feed pellets size, 10 to 20 m3 min−1 air flow rate and from 180 to 900 rpm of rotational speed of screw. More