Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa
1.Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).PubMed
PubMed Central
Article
Google Scholar
2.Foltz, S. J. & Dodson, S. I. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia 621, 49–62 (2009).Article
Google Scholar
3.Goldberg, F. J., Quinzio, S. & Vaira, M. Oviposition-site selection by the toad Melanophryniscus rubriventris in an unpredictable environment in Argentina. Can. J. Zool. 84, 699–705 (2006).Article
Google Scholar
4.Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).5.Resetarits, W. J. & Binckley, C. A. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90, 869–876 (2009).PubMed
Article
Google Scholar
6.Kraus, J. M. & Vonesh, J. R. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 79, 795–802 (2010).PubMed
Google Scholar
7.Resetarits, W. J. Oviposition site choice and life history evolution. Am. Zool. 36, 205–215 (1996).Article
Google Scholar
8.Morris, D. W. Toward an ecological synthesis: A case for habitat selection. Oecologia 136, 1–13 (2003).ADS
PubMed
Article
Google Scholar
9.Resetarits, W. J. & Wilbur, H. M. Choice of oviposition site by Hyla chrysoscelis: Role of predators and competitors. Ecology 70, 220–228 (1989).Article
Google Scholar
10.Resetarits, W. J., Binckley, C. A. & Chalcraft, D. R. Habitat selection, species interactions, and processes of community assembly in complex landscapes: A metacommunity perspective. In Metacommunities: Spatial Dynamics and Ecological Communities (eds. Holyoak, M., Leybold, A. & Holt, R. D.) 374–398 (University of Chicago Press, Chicago, 2005).11.Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article
Google Scholar
12.Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 139, 1–10 (2004).ADS
PubMed
Article
Google Scholar
13.Åbjörnsson, K., Brönmark, C. & Hansson, L.-A. The relative importance of lethal and non-lethal effects of fish on insect colonisation of ponds: Influence of fish on insect colonisation. Freshw. Biol. 47, 1489–1495 (2002).Article
Google Scholar
14.Pintar, M. R. & Resetarits, W. J. Jr. Out with the old, in with the new: Oviposition preference matches larval success in cope’s gray treefrog, Hyla chrysoscelis. J. Herpetol. 51, 186–189 (2017).Article
Google Scholar
15.Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).Article
Google Scholar
16.Caudill, C. C. & Peckarsky, B. L. Lack of appropriate behavioral or developmental responses by mayfly larvae to trout predators. Ecology 84, 2133–2144 (2003).Article
Google Scholar
17.Binckley, C. A. & Resetarits, W. J. Functional equivalence of non-lethal effects: Generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102, 623–629 (2003).Article
Google Scholar
18.Pollard, C. J. et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 81, 720–727 (2017).Article
Google Scholar
19.Petranka, J. W. & Fakhoury, K. Evidence of a chemically-mediated avoidance response of ovipositing insects to bluegills and green frog tadpoles. Copeia 1991, 234–239 (1991).Article
Google Scholar
20.McPeek, M. A. Differential dispersal tendencies among Enallagma damselflies (Odonata) inhabiting different habitats. Oikos 56, 187–195 (1989).Article
Google Scholar
21.Šigutová, H., Šigut, M. & Dolný, A. Intensive fish ponds as ecological traps for dragonflies: An imminent threat to the endangered species Sympetrum depressiusculum (Odonata: Libellulidae). J. Insect Conserv. 19, 961–974 (2015).Article
Google Scholar
22.Potts, K. M. Survival and development of larval odonates (Anisoptera) and female oviposition site choice in response to predatory fish. https://egrove.olemiss.edu/etd/1854 (2020).23.Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M. & Cohen, J. E. Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency across experimental venue. Oecologia 138, 300–305 (2004).ADS
PubMed
Article
Google Scholar
24.Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): An experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22, 27–44 (1993).25.Wildermuth, H. Habitatselektion bei Libellen. Adv. Odonatol. 6, 223–257 (1994).
Google Scholar
26.Laurila, A. Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21, 484–494 (1998).Article
Google Scholar
27.Schwind, R. Spectral regions in which aquatic insects see reflected polarized light. J. Comp. Physiol. A 177, 439–448 (1995).Article
Google Scholar
28.Horváth, G. & Kriska, G. Polarization vision in aquatic insects and ecological traps for polarotactic insects in Aquatic Insects: Challenges to Populations (eds. Lancaster, J. & Briers, R. A.) 204–229 (CAB International Publishing, 2008).29.Schulte, L. M. et al. The smell of success: Choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Anim. Behav. 81, 1147–1154 (2011).Article
Google Scholar
30.Corbet, P. S. Dragonflies: Behavior and ecology of Odonata. (Harley Books, 1999).31.Nicolet, P. et al. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol. Conserv. 120, 261–278 (2004).Article
Google Scholar
32.Henrikson, B.-I. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 16, 143–153 (1993).Article
Google Scholar
33.Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: Ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 537–551 (2001).
Google Scholar
34.Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).PubMed
Article
Google Scholar
35.Abrams, P. A., Cressman, R. & Křivan, V. The role of behavioral dynamics in determining the patch distributions of interacting species. Am. Nat. 169, 505–518 (2007).PubMed
Article
Google Scholar
36.Denton, J. & Beebee, T. J. C. Palatability of anuran eggs and embryos. Amphib. Reptil. 12, 111–112 (1991).Article
Google Scholar
37.Larson, D. J. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 11, 245–498 (1985).
Google Scholar
38.Mikolajewski, D. J. & Rolff, J. Benefits of morphological defence demonstrated by direct manipulation in larval dragonflies. Evol. Ecol. Res. 6, 619–626 (2004).
Google Scholar
39.Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).Article
Google Scholar
40.Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).Article
Google Scholar
41.McCauley, S. J., Davis, C. J. & Werner, E. E. Predator induction of spine length in larval Leucorrhinia intacta (Odonata). Evol. Ecol. Res. 10, 435–447 (2008).
Google Scholar
42.Nöllert, A. & Nöllert, C. Die Amphibien Europas. (Franckh-Kosmos Verlags-GmbH and Company, 1992).43.Maštera, J., Zavadil, V. & Dvořák, J. Vajíčka a larvy obojživelníků České republiky. (Academia, 2015).44.Speybroeck, J., Beukema, W., Bok, B. & Van der Voort, J. Field Guide to the Amphibians and Reptiles of Britain and Europe. (Bloomsbury Natural History, 2016).45.Sternberg, K. & Buchwald, R. Die Libellen Baden-Württembergs. Band 2: Großlibellen (Anisoptera). (Verlag Eugen Ulmer Gmbh & Co., 2000).46.Mikolajewski, D. J. & Johansson, F. Morphological and behavioral defenses in dragonfly larvae: Trait compensation and cospecialization. Behav. Ecol. 15, 614–620 (2004).Article
Google Scholar
47.Kjærstad, G., Dolmen, D., Olsvik, H. A. & Tilseth, E. The backswimmer Notonecta glauca L. (Hemiptera, Notonectidae) in Central Norway. Nor. J. Entomol. 56, 44–49 (2009).
Google Scholar
48.Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects 22, 81–98 (2000).Article
Google Scholar
49.Macan, T. T. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 45, 913–922 (1976).Article
Google Scholar
50.Lock, K., Adriaens, T., Meutter, F. V. D. & Goethals, P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): Results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 49, 121–128 (2013).Article
Google Scholar
51.Cook, W. L. & Streams, F. A. Fish predation on Notonecta (Hemiptera): Relationship between prey risk and habitat utilization. Oecologia 64, 177–183 (1984).ADS
CAS
PubMed
Article
Google Scholar
52.Swevers, L., Lambert, J. G. D. & De Loof, A. Synthesis and metabolism of vertebrate-type steroids by tissues of insects: A critical evaluation. Experientia 47, 687–698 (1991).CAS
PubMed
Article
Google Scholar
53.Bergsten, J. & Miller, K. B. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 31, 145–197 (2005).Article
Google Scholar
54.Åbjörnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R. & Olsén, K. H. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111, 166–171 (1997).ADS
PubMed
Article
Google Scholar
55.Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana 43(Suppl.), 1–289 (2007).
Google Scholar
56.Gioria, M., Schaffers, A., Bacaro, G. & Feehan, J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133 (2010).Article
Google Scholar
57.Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).58.Briers, R. A. & Warren, P. H. Competition between the nymphs of two regionally co-occurring species of Notonecta (Hemiptera: Notonectidae). Freshw. Biol. 42, 11–20 (1999).Article
Google Scholar
59.Wiggins, G. B., Mackay, R. J. & Smith, I. M. Evolutionary and ecological strategies of animals on annual temporary pools. Arch. Für Hydrobiol. Suppl. 58, 197–206 (1980).
Google Scholar
60.Culler, L. E., Ohba, S. & Crumrine, P. Predator-Prey Interactions of Dytiscids. In Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).61.Schuh, R. T. & Slater, J. A. True Bugs of the World (Hemiptera:Heteroptera): Classification and Natural History (Cornell University Press, Cornell, 1995).
Google Scholar
62.Streams, F. A. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 85, 265–273 (1992).Article
Google Scholar
63.Giacoma, C., Zugolaro, C. & Beani, L. The advertisement calls of the green toad (Bufo viridis): Variability and role in mate choice. Herpetologica 53, 454–464 (1997).
Google Scholar
64.Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124, 86–93 (2018).Article
Google Scholar
65.Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).Article
Google Scholar
66.R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation for Statistical Computing, Vienna, Austria). https://www.r-project.org/ (2020).67.Wells, K. D. The Ecology and Behavior of Amphibians. (University of Chicago Press, 2007).68.Purrenhage, J. L. & Boone, M. D. Amphibian community response to variation in habitat structure and competitor density. Herpetologica 65, 14–30 (2009).Article
Google Scholar
69.Formanowicz, D. R. & Bobka, M. S. Predation risk and microhabitat preference: An experimental study of the behavioral responses of prey and predator. Am. Midl. Nat. 121, 379–386 (1989).Article
Google Scholar
70.Egan, R. S. & Paton, P. W. C. Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24, 1–13 (2004).Article
Google Scholar
71.Ward, S. A. Optimal habitat selection in time-limited dispersers. Am. Nat. 129, 568–579 (1987).Article
Google Scholar
72.Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Biotheoretica 19, 16–36 (1970).Article
Google Scholar
73.Austad, S. N. A classification of alternative reproductive behaviors and methods for field-testing ESS models. Am. Zool. 24, 309–319 (1984).Article
Google Scholar
74.Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article
Google Scholar
75.Wildermuth, H. Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: A behavioural field test. Naturwissenschaften 85, 297–302 (1998).ADS
CAS
Article
Google Scholar
76.Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).
Google Scholar
77.Dolný, A., Mižičová, H. & Harabiš, F. Natal philopatry in four European species of dragonflies (Odonata: Sympetrinae) and possible implications for conservation management. J. Insect Conserv. 17, 821–829 (2013).Article
Google Scholar
78.Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).Article
Google Scholar
79.Brodin, T., Mikolajewski, D. J. & Johansson, F. Behavioural and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia 148, 162–169 (2006).ADS
PubMed
Article
Google Scholar
80.Kershenbaum, A., Spencer, M., Blaustein, L. & Cohen, J. E. Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition. Evol. Ecol. 26, 955–974 (2012).Article
Google Scholar
81.Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).CAS
PubMed
Article
Google Scholar
82.Gioria, M. Habitats. In Ecology, Systematics, and the Natural History of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 307–362 (Springer, Netherlands, 2014).
Google Scholar
83.Diehl, S. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology 73, 1646–1661 (1992).Article
Google Scholar
84.Giller, P. S. & McNeill, S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50, 789–808 (1981).Article
Google Scholar
85.Ribera, I. & Nilsson, A. N. Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Can. J. Zool. 73, 2343–2360 (2011).Article
Google Scholar
86.Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).Article
Google Scholar
87.Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).PubMed
Article
Google Scholar
88.Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: How alarm cues and kairomones induce different prey defences. Funct. Ecol. 23, 1114–1121 (2009).Article
Google Scholar
89.McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452 (2010).PubMed
PubMed Central
Article
Google Scholar More