Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour
1.Gause, G. F. & Witt, A. A. Behavior of mixed populations and the problem of natural selection. Am. Nat. 69, 596–609 (1935).Article
Google Scholar
2.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article
Google Scholar
3.Ayala, F. J. Experimental invalidation of the principle of competitive exclusion. Nature 224, 1076–1079 (1969).ADS
CAS
PubMed
Article
Google Scholar
4.Bengtsson, J. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713–715 (1989).ADS
Article
Google Scholar
5.Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).ADS
CAS
PubMed
Article
Google Scholar
6.Collins, S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. Biol. Sci. 278, 247–255 (2011).PubMed
Google Scholar
7.Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368, 20120085 (2013).Article
Google Scholar
8.Birch, L. C. Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389–399 (1955).Article
Google Scholar
9.Martin, M. J., Perez-Tome, J. M. & Toro, M. A. Competition and genotypic variability in Drosophila melanogaster. Heredity 60, 119–123 (1988).PubMed
Article
Google Scholar
10.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).CAS
PubMed
Article
Google Scholar
11.Pennacchio, F. & Strand, M. R. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol. 51, 233–258 (2006).CAS
PubMed
Article
Google Scholar
12.Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35, 59–79 (1990).PubMed
Article
Google Scholar
13.Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930–1930 (2003).CAS
PubMed
Article
Google Scholar
14.Dorn, S. & Beckage, N. E. Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectives. Physiol. Entomol. 32, 199–211 (2007).Article
Google Scholar
15.Gandon, S., Rivero, A. & Varaldi, J. Superparasitism evolution: adaptation or manipulation? Am. Nat. 167, E1–E22 (2006).PubMed
Article
Google Scholar
16.Speirs, D. C., Sherratt, T. N. & Hubbard, S. F. Parasitoid diets: does superparasitism pay? Trends Ecol. Evol. 6, 22–25 (1991).CAS
PubMed
Article
Google Scholar
17.Tracy Reynolds, K. & Hardy, I. C. Superparasitism: a non-adaptive strategy? Trends Ecol. Evol. 19, 347–348 (2004).CAS
PubMed
Article
Google Scholar
18.Pan, M., Liu, T. & Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability? Insect Sci. 25, 1035–1044 (2018).PubMed
Article
Google Scholar
19.Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stem borer parasitoid Cotesia flavipes. Entomol. Exp. Appl. 82, 341–348 (1997).Article
Google Scholar
20.Mackauer, B. B. Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6, 302–307 (1992).Article
Google Scholar
21.Keasar, T. et al. Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol. Entomol. 31, 277–283 (2006).Article
Google Scholar
22.Silva-Torres, C. S. A., Ramos, I. T., Torres, J. B. & Barros, R. Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomol. Exp. Appl. 133, 65–73 (2009).Article
Google Scholar
23.Wylie, H. G. Delayed development of Microctonus vittatae (Hymenoptera: Braconidae) in superparasitized adults of Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol. 115, 441–442 (1983).Article
Google Scholar
24.White, J. A. & Andow, D. A. Benefits of self-superparasitism in a polyembryonic parasitoid. Biol. Control 46, 133–139 (2008).PubMed
PubMed Central
Article
Google Scholar
25.Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).Article
Google Scholar
26.Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Anim. Behav. 69, 1227–1234 (2005).Article
Google Scholar
27.Varaldi, J., Patot, S., Nardin, M. & Gandon, S. A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv. Parasitol. 70, 333–363 (2009).PubMed
Article
Google Scholar
28.Carton, Y., Bouletreau, M., van Alphen, J. J. M. & van Lenteren, J. C. The Drosophila parasitic wasps. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 347–394 (Academic Press, 1986).29.Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after seeing parasites. Science 339, 947–950 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
30.Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).ADS
CAS
PubMed
Article
Google Scholar
31.Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280 (1997).ADS
CAS
PubMed
Article
Google Scholar
32.Hwang, R. Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Mortimer, N. T. et al. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl Acad. Sci. USA 110, 9427–9432 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
34.Huang, J. et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 12, 234 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H. & Werren, J. H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 27, 2007–2013 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269 (2005).CAS
PubMed
Article
Google Scholar
37.Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS
PubMed
Article
Google Scholar
38.Xu, J. et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 3, 1526–1538 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
40.Werner, E. GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153 (2004).CAS
PubMed
Article
Google Scholar
41.Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).ADS
CAS
PubMed
Article
Google Scholar
43.Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).ADS
CAS
PubMed
Article
Google Scholar
44.Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B. & Pierre, J. S. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47, 339–348 (2001).CAS
PubMed
Article
Google Scholar
46.Hofsvang, T. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomol. Bohemosl 87, 161–175 (1990).
Google Scholar
47.van Lenteren, J. C. in Semiochemicals: Their Role in Pest Control (eds Nordlund, D. A., Jones, R. L. & Lewis, W. J.) 153–179 (Wiley and Sons, 1981).48.Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (hymenoptera: Ichneumonidae). Entomol. Exp. Appl. 17, 36–44 (2011).Article
Google Scholar
49.Hoffmeister, T. S. & Roitberg, B. D. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11, 145–168 (1997).Article
Google Scholar
50.Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 15, 1–12 (2002).Article
Google Scholar
51.Liang, Q., Jia, Y. & Liu, T. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110, 430–437 (2017).PubMed
Google Scholar
52.Gandon, S., Varaldi, J., Fleury, F. & Rivero, A. Evolution and manipulation of parasitoid egg load. Evolution 63, 2974–2984 (2009).PubMed
Article
Google Scholar
53.Hughes, D. P. & Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 63, 471–487 (2018).CAS
PubMed
Article
Google Scholar
54.Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Zuzarte-Luis, V. & Mota, M. M. Parasite sensing of host nutrients and environmental cues. Cell Host Microbe 23, 749–758 (2018).CAS
PubMed
Article
Google Scholar
56.Cox, F. E. G. Parasites affect behavior of mice. Nature 294, 515–515 (1981).ADS
CAS
PubMed
Article
Google Scholar
57.Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7, e34414 (2018).PubMed
PubMed Central
Article
Google Scholar
58.Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401–140 (2011).ADS
CAS
PubMed
Article
Google Scholar
59.Mcallister, M. K. & Roitberg, B. D. Adaptive suicidal-behavior in pea aphids. Nature 328, 797–799 (1987).ADS
Article
Google Scholar
60.Maure, F., Brodeur, J., Droit, A., Doyon, J. & Thomas, F. Bodyguard manipulation in a multipredator context: different processes, same effect. Behav. Process. 99, 81–86 (2013).Article
Google Scholar
61.Mohan, P. & Sinu, P. A. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLoS ONE 12, e0178108 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
62.Muller, C. B. & Schmidhempel, P. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363, 65–67 (1993).ADS
Article
Google Scholar
63.Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).ADS
CAS
PubMed
Article
Google Scholar
64.Louradour, I. et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 6, e25496 (2017).PubMed
PubMed Central
Article
Google Scholar
65.Sinenko, S. A., Shim, J. & Banerjee, U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in. Drosoph. EMBO Rep. 13, 83–89 (2012).CAS
Article
Google Scholar
66.Wang, Y. et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Colinet, D. et al. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 286, 40110–40121 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Colinet, D. et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 43, 601–611 (2013).CAS
PubMed
Article
Google Scholar
69.Carton, Y., Frey, F. & Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69, 393–399 (1992).PubMed
Article
Google Scholar
70.Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, 2029–2037 (2007).CAS
Article
Google Scholar
71.Colinet, D. et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 6, e1001206 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
72.Schlenke, T. A., Morales, J., Govind, S. & Clark, A. G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3, 1486–1501 (2007).PubMed
Article
CAS
Google Scholar
73.Anderl, I. et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12, e1005746 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
74.Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).PubMed
Article
Google Scholar
75.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed
Article
Google Scholar
77.Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. P. Roy. Soc. B-Biol. Sci. 274, 839–844 (2007).
Google Scholar
78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed
PubMed Central
Article
Google Scholar
79.Huang, J., Reilein, A. & Kalderon, D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development 144, 2584–2594 (2017).CAS
PubMed
PubMed Central
Google Scholar
80.Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed
PubMed Central
Article
CAS
Google Scholar
81.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS
PubMed
Article
Google Scholar
83.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
84.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS
PubMed
Article
Google Scholar
85.Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Phylogenet. Evol. 35, 543–548 (2017).Article
CAS
Google Scholar
86.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS
PubMed
Article
Google Scholar
87.Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
90.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
91.Werren, J. H. et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).CAS
PubMed
Article
Google Scholar
92.Consortium, H. G. S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).ADS
Article
CAS
Google Scholar
93.Geib, S. M., Liang, G. H., Murphy, T. D. & Sim, S. B. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies. G3-Genes Genom. Genet. 7, 2407–2411 (2017).CAS
Google Scholar
94.Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).CAS
PubMed
Article
Google Scholar
95.Lindsey, A. R. et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 16, 54 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
96.Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
97.Korf, I. Gene finding in novel genomes. BMC Biol. 5, 59 (2004).
Google Scholar
98.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS
PubMed
Article
Google Scholar
99.Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
100.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
101.Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).CAS
PubMed
PubMed Central
Article
Google Scholar
102.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
103.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25, 402–408 (2001).CAS
Article
Google Scholar
105.Zhang, X. S., Wang, T., Lin, X. W., Denlinger, D. L. & Xu, W. H. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 114, 7832–7840 (2017).Article
CAS
Google Scholar More