Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
1.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS
Google Scholar
2.Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).ADS
Google Scholar
3.Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86–92 (2015).ADS
CAS
Google Scholar
4.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).ADS
Google Scholar
5.Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).
Google Scholar
6.Kablick III, G. P., Allen, D. R., Fromm, M. D. & Nedoluha, G. E. Australian PyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 47, e2020GL088101 (2020).ADS
Google Scholar
7.Hirsch, E. & Koren, I. Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science 371, 1269–1274 (2021).ADS
CAS
Google Scholar
8.Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
9.Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
10.Guieu, C., Bonnet, S., Wagener, T. & Loÿe-Pilot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608 (2005).ADS
Google Scholar
11.Ito, A. Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean. Biogeosciences 8, 1679–1697 (2011).ADS
CAS
Google Scholar
12.Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).ADS
CAS
PubMed
PubMed Central
Google Scholar
13.Ito, A. et al. Pyrogenic iron: the missing link to high iron solubility in aerosols. Sci. Adv. 5, eaau7671 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
14.Jia, G. et al. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems Ch. 2 (IPCC, in the press).15.Jiang, Y. et al. Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks. J. Clim. 33, 3351–3366 (2020).ADS
Google Scholar
16.Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
17.New WWF report: 3 billion animals impacted by Australia’s bushfire crisis. WWF https://www.wwf.org.au/news/news/2020/3-billion-animals-impacted-by-australia-bushfire-crisis#gs.ebzve2 (2020).18.van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature https://doi.org/10.1038/s41586-021-03712-y (2021).19.National Greenhouse Gas Inventory Report: 2018 (Australian Government, 2020); https://www.industry.gov.au/data-and-publications/national-greenhouse-gas-inventory-report-2018.20.Mahowald, N. M. et al. Aerosol impacts on climate and biogeochemistry. Annu. Rev. Environ. Res. 36, 45–74 (2011).
Google Scholar
21.Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).ADS
CAS
Google Scholar
22.Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).ADS
CAS
PubMed
PubMed Central
Google Scholar
23.Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).ADS
Google Scholar
24.Tagliabue, A. et al. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7, 314–320 (2014).ADS
CAS
Google Scholar
25.Cassar, N. et al. The Southern Ocean biological response to aeolian iron deposition. Science 317, 1067–1070 (2007).ADS
CAS
PubMed
PubMed Central
Google Scholar
26.Gabric, A. J., Cropp, R., Ayers, G. P., McTainsh, G. & Braddock, R. Coupling between cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time series in the Subantarctic Southern Ocean. Geophys. Res. Lett. 29, 16-11–16-14 (2002).
Google Scholar
27.Ardyna, M. et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10, 2451 (2019).ADS
PubMed
PubMed Central
Google Scholar
28.Duprat, L. P. A. M., Bigg, G. R. & Wilton, D. J. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nat. Geosci. 9, 219–221 (2016).ADS
CAS
Google Scholar
29.Bixby, R. J. et al. Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshwater Sci. 34, 1340–1350 (2015).
Google Scholar
30.Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).ADS
CAS
Google Scholar
31.Shafeeque, M., Sathyendranath, S., George, G., Balchand, A. N. & Platt, T. Comparison of seasonal cycles of phytoplankton chlorophyll, aerosols, winds and sea-surface temperature off Somalia. Front. Marine Sci. 4, 384 (2017).
Google Scholar
32.Cassar, N. et al. The influence of iron and light on net community production in the Subantarctic and Polar Frontal zones. Biogeosciences 8, 227–237 (2011).ADS
CAS
Google Scholar
33.Mitchell, B. G. & Holm-Hansen, O. Observations of modeling of the Antartic phytoplankton crop in relation to mixing depth. Deep Sea Res. Part A 38, 981–1007 (1991).ADS
CAS
Google Scholar
34.Longo, A. F. et al. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust. Environ. Sci. Technol. 50, 6912–6920 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
35.Meskhidze, N., Nenes, A., Chameides, W. L., Luo, C. & Mahowald, N. Atlantic Southern Ocean productivity: fertilization from above or below? Global Biogeochem. Cycles 21, GB2006 (2007).ADS
Google Scholar
36.Sarmiento, J. L., Slater, R. D., Dunne, J., Gnanadesikan, A. & Hiscock, M. R. Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences 7, 3593–3624 (2010).ADS
CAS
Google Scholar
37.Brzezinski, M. A., Jones, J. L. & Demarest, M. S. Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50, 810–824 (2005).ADS
CAS
Google Scholar
38.Lovenduski, N. S. & Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, L11603 (2005).ADS
Google Scholar
39.Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, L19710 (2009).ADS
Google Scholar
40.Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Climate Change 7, 906–911 (2017).ADS
CAS
Google Scholar
41.Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).ADS
CAS
Google Scholar
42.Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
43.Cropp, R. A. et al. The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent. J. Mar. Syst. 117–118, 43–52 (2013).
Google Scholar
44.Hamilton, D. S. et al. Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the anthropocene. Global Biogeochem. Cycles 34, e2019GB006448 (2020).ADS
CAS
Google Scholar
45.Duce, R. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
46.Han, Y. et al. Asian inland wildfires driven by glacial-interglacial climate change. Proc. Natl Acad. Sci. USA 117, 5184–5189 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
47.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Sys. Sci. Data 9, 697–720 (2017).ADS
Google Scholar
48.Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I 42, 641–673 (1995).
Google Scholar
49.Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).ADS
CAS
Google Scholar
50.Morcrette, J.-J. et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: forward modeling. J. Geophys. Res. Atmospheres 114, D06206 (2009).ADS
Google Scholar
51.Levy, R. C. et al. Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmos. Meas. Tech. 11, 4073–4092 (2018).CAS
PubMed
PubMed Central
Google Scholar
52.Benedetti, A. et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res. 114, D13 (2009).
Google Scholar
53.Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).ADS
CAS
Google Scholar
54.Y. Bennouna et al. Validation Report of the CAMS Global Reanalysis of Aerosols and Reactive Gases, Years 2003–2019 (Copernicus Atmosphere Monitoring Service, 2020).55.Ito, A. et al. Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling: implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere. Prog. Earth Planet. Sci. 7, 42 (2020).ADS
Google Scholar
56.Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).57.Haëntjens, N., Boss, E. & Talley, L. D. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans 122, 6583–6593 (2017).ADS
Google Scholar
58.Boss, E. et al. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; contribution of the Tara Oceans expedition. Methods Oceanogr. 7, 52–62 (2013).
Google Scholar
59.de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J. Geophys. Res. Oceans 109, C12003 (2004).ADS
Google Scholar
60.Dong, S., Sprintall, J., Gille, S. T. & Talley, L. Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res. Oceans 113, C06013 (2008).ADS
Google Scholar
61.Cutter, G. A. et al. Sampling and Sample-handling Protocols for GEOTRACES Cruises, version 3.0 (2017).
Google Scholar
62.Morton, P. L. et al. Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnol. Oceanogr. Methods 11, 62–78 (2013).CAS
Google Scholar
63.Perron, M. M. G. et al. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta 208, 120377 (2020).CAS
Google Scholar
64.Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H. & Sarthou, G. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences 15, 2271–2288 (2018).ADS
CAS
Google Scholar
65.Sanz Rodriguez, E. et al. Analysis of levoglucosan and its isomers in atmospheric samples by ion chromatography with electrospray lithium cationisation—triple quadrupole tandem mass spectrometry. J. Chromatogr. A 1610, 460557 (2020).CAS
Google Scholar
66.McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2, 1201 (2001).
Google Scholar
67.Shelley, R. U. et al. Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean ( >40°N; GEOVIDE, GEOTRACES GA01) during spring 2014. Deep Sea Res. Part I 119, 34–49 (2017).CAS
Google Scholar
68.Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R. & Powell, C. F. Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta 89, 173–189 (2012).ADS
CAS
Google Scholar
69.Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2016).ADS
Google Scholar
70.Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).ADS
Google Scholar
71.Tatlhego, M., Bhattachan, A., Okin, G. S. & D’Odorico, P. Mapping areas of the Southern Ocean where productivity likely depends on dust‐delivered Iron. J. Geophys. Res. Atmospheres 125, e2019JD030926 (2020).ADS
CAS
Google Scholar
72.Stein, A. F., Rolph, G. D., Draxler, R. R., Stunder, B. & Ruminski, M. Verification of the NOAA smoke forecasting system: model sensitivity to the injection height. Weather Forecast. 24, 379–394 (2009).ADS
Google Scholar
73.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite‐based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS
CAS
Google Scholar
74.Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, GB1006 (2005).ADS
Google Scholar
75.Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles 22, GB2024 (2008).ADS
Google Scholar
76.Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Global Biogeochem. Cycles 30, 1756–1777 (2016).ADS
CAS
Google Scholar
77.Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite‐derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 9, 593–601 (2011).
Google Scholar
78.Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles 19, GB4026 (2005).ADS
Google Scholar
79.Li, Z. & Cassar, N. Satellite estimates of net community production based on O2/Ar observations and comparison to other estimates. Global Biogeochem. Cycles 30, 735–752 (2016).ADS
CAS
Google Scholar
80.Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food‐web models. Global Biogeochem. Cycles 28, 181–196 (2014).ADS
CAS
Google Scholar
81.Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Climate 16, 4134–4143 (2003).ADS
Google Scholar
82.Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res. 25, 151–169 (2003).ADS
Google Scholar More