More stories

  • in

    Phenology of Oithona similis demonstrates that ecological flexibility may be a winning trait in the warming Arctic

    1.Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago–Svalbard, Norway. Glob. Change Biol. 23, 490–502 (2017).ADS 
    Article 

    Google Scholar 
    2.Yletyinen, J. Arctic climate resilience. Nat. Clim. Change 9, 805–806 (2019).ADS 
    Article 

    Google Scholar 
    3.Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: A trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).Article 

    Google Scholar 
    4.Möller, E. F. & Nielsen, T. G. Borealization of Arctic zooplankton—smaller and less fat zooplankton species in Disko Bay, Western Greenland. Limnol. Oceanogr. 65, 1175–1188 (2020).ADS 
    Article 

    Google Scholar 
    5.Dalpadado, P. et al. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 185, 102320. https://doi.org/10.1016/j.pocean.2020.102320 (2020).Article 

    Google Scholar 
    6.Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home – Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total. Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Bauerfeind, E., Nöthig, E. M., Pauls, B., Kraft, A. & Beszczynska-Möller, A. Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009. J. Mar. Syst. 132, 95–10 (2014).Article 

    Google Scholar 
    8.Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: Inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).ADS 
    Article 

    Google Scholar 
    9.Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar. Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    10.Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).ADS 
    Article 

    Google Scholar 
    11.Nielsen, T. G. & Andersen, C. Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar. Biol. 141, 707–724 (2002).Article 

    Google Scholar 
    12.Lischka, S. & Hagen, W. Life histories of the copepods Pseudocalanus minutus, P. acuspes, (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 28, 910–921 (2005).Article 

    Google Scholar 
    13.Arendt, K. E., Nielsen, T. G., Rysgaard, S. & Tönnesson, K. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49–62 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Trudnowska, E., Stemmann, L., Błachowiak-Samołyk, K. & Kwasniewski, S. Taxonomic and size structures of zooplankton communities in the fjords along the Atlantic water passage to the Arctic. J. Mar. Sys. 204, 103306. https://doi.org/10.1016/j.jmarsys.2020.103306 (2020).Article 

    Google Scholar 
    15.Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar. Res. 37, 1427409. https://doi.org/10.1080/17518369.2018.1427409 (2018).Article 

    Google Scholar 
    16.Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    17.Turner, J. T. Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay. Hydrobiologia 292(293), 405–413 (1994).Article 

    Google Scholar 
    18.Castellani, C., Robinson, C., Smith, T. & Lampitt, R. S. Temperature affects respiration rate of Oithona similis. Mar. Ecol. Prog. Ser. 285, 129–135 (2005).ADS 
    Article 

    Google Scholar 
    19.Turner, J. T., Levinsen, H., Nielsen, T. G. & Hansen, B. W. Zooplankton feeding ecology: Grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 221, 209–219 (2001).ADS 
    Article 

    Google Scholar 
    20.Boissonnot, L., Niehoff, B., Hagen, W., Søreide, J. E. & Graeve, M. Lipid turnover reflects life-cycle strategies of small-sized Arctic copepods. J. Plankton Res. 38, 1420–1432 (2016).CAS 

    Google Scholar 
    21.Błachowiak-Samołyk, K. et al. Winter Tales: The dark side of planktonic life. Polar Biol. 38, 23–36 (2015).Article 

    Google Scholar 
    22.Berge, J. et al. Zooplankton in the Polar Night in Polar Night Marine Ecology. In Advances in Polar Ecology Vol. 4 (eds Berge, J. et al.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-030-33208-2_5.Chapter 

    Google Scholar 
    23.Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: Availability of winter prey explains mid-winter and early-spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 744. https://doi.org/10.3389/fmars.2020.541564 (2020).Article 

    Google Scholar 
    24.Svensen, C., Seuthe, L., Vasilyeva, Y., Pasternak, A. & Hansen, E. Zooplankton distribution across Fram Strait in autumn: Are small copepods and protozooplankton important?. Prog. Oceanog. 91, 534–544 (2011).Article 

    Google Scholar 
    25.Węsławski, J. M., Kwasniewski, S. & Wiktor, J. Winter in Svalbard fjord ecosystem. Arctic 44, 115–123 (1991).Article 

    Google Scholar 
    26.Lischka, S., Giménez, L., Hagen, W. & Ueberschär, B. Seasonal changes in digestive enzyme (trypsin) activity of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 30, 1331–1341 (2007).Article 

    Google Scholar 
    27.Lischka, S. & Hagen, W. Seasonal dynamics of mesozooplankton in the Arctic Kongsfjord (Svalbard) during year-round observations from August 1998 to July 1999. Polar Biol. 39, 1859–1878 (2016).Article 

    Google Scholar 
    28.Weydmann-Zwolicka, A. et al. Zooplankton and sediment flux in two contrasting fjords reveal Atlantification of the Arctic. Sci. Total. Environ. 773, 145599. https://doi.org/10.1016/j.scitotenv.2021.145599 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Zamora-Terol, S., Nielsen, T. G. & Saiz, E. Plankton community structure and role of Oithona similis on the western coast of Greenland during the winter-spring transition. Mar. Ecol. Prog. Ser. 483, 85–102 (2013).ADS 
    Article 

    Google Scholar 
    30.Zamora-Terol, S., Kjellerup, S., Swalethorp, R., Saiz, E. & Nielsen, T. G. Population dynamics and production of the small copepod Oithona spp. in a subarctic fjord of West Greenland. Polar. Biol. 37, 953–965 (2014).Article 

    Google Scholar 
    31.Dvoretsky, V. G. & Dvoretsky, A. G. Life cycle of Oithona similis (Copepoda: Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol. 156, 1433–1446 (2009).Article 

    Google Scholar 
    32.Glad, P. Seasonal occurrence of Oithona similis (cyclopoida), Microsetella norvegica (harpacticoida) and Microcalanus spp. (calanoida), and productivity of O. similis, in three high-latitude Norwegian fjords. Master thesis (UiT The Arctic University of Norway, 2018).33.Kosobokova, K. & Hirche, H. J. Biomass of zooplankton in the eastern Arctic Ocean—a baseline study. Progr. Oceanogr. 82, 265–280 (2009).ADS 
    Article 

    Google Scholar 
    34.Bluhm, B., Kosobokova, K. & Carmack, E. A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean. Prog. Oceanog. 139, 89–121 (2015).Article 

    Google Scholar 
    35.Hop, H. et al. Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change in The Ecosystem of Kongsfjorden, Svalbard. In Advances in Polar Ecology Vol. 2 (eds Hop, H. & Wiencke, C.) 10.1007/978-3-319-46425–1_7 (Springer, New York, 2019).
    Google Scholar 
    36.Böttger-Schnack, R., Schnack, D. & Hagen, W. Microcopepod community structure in the Gulf of Aqaba and northern Red Sea, with special reference to Oncaeidae. J. Plankton Res. 30, 529–550 (2008).Article 

    Google Scholar 
    37.Cornwell, L. E. et al. Seasonality of Oithona similis and Calanus helgolandicus reproduction and abundance: Contrasting responses to environmental variation at a shelf site. J. Plankton Res. 40, 295–310 (2018).Article 

    Google Scholar 
    38.Kubiszyn, A. M. et al. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen). J. Mar. Syst. 169, 61–72 (2017).Article 

    Google Scholar 
    39.Kellogg, C. T. E., McClelland, J. W., Dunton, K. H. & Crump, B. C. Strong seasonality in Arctic estuarine microbial food webs. Front. Microbiol. 10, 2628. https://doi.org/10.3389/fmicb.2019.02628 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bhaskar, J. T., Parli, B. V. & Tripathy, S. C. Spatial and seasonal variations of dinoflagellates and ciliates in the Kongsfjorden. Svalbard. Mar. Ecol. 41, 1–12 (2020).Article 

    Google Scholar 
    41.Skogseth, R. et al. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation–An indicator for climate change in the European Arctic. Prog. Oceanog. 187, 102394. https://doi.org/10.1016/j.pocean.2020.102394 (2020).Article 

    Google Scholar 
    42.Ward, P. & Hirst, A. G. Oithona similis in a high latitude ecosystem: Abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. Mar. Biol. 151, 1099–1110 (2007).Article 

    Google Scholar 
    43.Nielsen, T. G. & Sabatini, M. Role of cyclopoid copepods Oithona spp. in North Sea plankton communities. Mar. Ecol. Prog. Ser. 139, 79–93 (1996).ADS 
    Article 

    Google Scholar 
    44.Nilsen, F., Cottier, F., Skogseth, R. & Mattsson, S. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 28, 1838–1853 (2008).ADS 
    Article 

    Google Scholar 
    45.Cohen, J. H., Berge, J., Moline, M. A., Johnsen, G. & Zolich, A. P. Light in the Polar Night. In Polar Night Marine Ecology Advances in Polar Ecology Vol. 4 (eds Berge, J. et al.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-030-33208-2_3.Chapter 

    Google Scholar 
    46.Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A. & Gabrielsen, T. M. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord—different from subarctic fjords?. J. Mar. Syst. 154, 192–205 (2015).Article 

    Google Scholar 
    47.Holm-Hansen, O. & Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 30, 438–447 (1978).CAS 
    Article 

    Google Scholar 
    48.Stübner, E. I., Søreide, J. E., Reigstad, M., Marquardt, M. & Blachowiak-Samolyk, K. Year-round meroplankton dynamics in high-Arctic Svalbard. J. Plankton Res. 38, 522–536 (2016).Article 

    Google Scholar 
    49.Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, West Spitsbergen). Appl. Environ. Microb. 82, 1868–1880 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Trantner, D. J. & Fraser, H. Zooplankton sampling. Monographs on Oceanographic Methodology 2. (UNESCO, 1968).51.Harris, R., Wiebe, L., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, Cambridge, 2000).
    Google Scholar 
    52.Espinasse, M. et al. Interannual phenological variability in two North-East Atlantic populations of Calanus finmarchicus. Mar. Biol. Res. 14, 752–767 (2018).Article 

    Google Scholar 
    53.Mackas, D. L., Batten, S. & Trudel, M. Effects on zooplankton of a warmer ocean: Recent evidence from the Northeast Pacific. Prog. Oceanogr. 75, 223–252 (2007).ADS 
    Article 

    Google Scholar 
    54.Head, E. J. H., Melle, W., Pepin, P., Bagøien, E. & Broms, C. On the ecology of Calanus finmarchicus in the Subarctic North Atlantic: A comparison of population dynamics and environmental conditions in areas of the Labrador Sea-Labrador/Newfoundland Shelf and Norwegian Sea Atlantic and Coastal Waters. Prog. Oceanog. 114, 46–63 (2013).Article 

    Google Scholar 
    55.Kwasniewski, S. et al. Interannual changes in zooplankton on theWest Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. J. Mar. Sci. 69, 890–901 (2012).
    Google Scholar 
    56.Kiorboe, T. Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecol. 148, 40–50 (2006).ADS 
    Article 

    Google Scholar 
    57.Thackeray, et al. Food web de-synchronization in England’s largest lake: An assessment based on multiple phenological metrics. Glob. Change Biol. 19, 3568–3580 (2013).ADS 
    Article 

    Google Scholar 
    58.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. (Primer-E Ltd., 2008).59.Clarke, K. R. & Gorley, R. N. Primer. (Primer-E Ltd., 2001).60.Anderson, M. J. & Braak, C. J. F. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 73, 85–113 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    61.Schlitzer, R. Ocean Data View; https://odv.awi.de, (2021).62.Walczowski, W., Piechura, J., Goszczko, I. & Wieczorek, P. Changes in Atlantic water properties: An important factor in the European Arctic marine climate. ICES J. Mar. Sci 69, 864–869 (2012).Article 

    Google Scholar 
    63.Wassman, P., Duarte, C. M., Agustí, S. & Sejr, M. L. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2010).ADS 
    Article 

    Google Scholar 
    64.Andrews, A. J. et al. Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland. Sci Rep 9, 5799 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Beaugrand, G., Ibanez, F. & Reid, P. C. Spatial seasonal and long term fluctuations of plankton in relation to hydroclimatic features in the English Channel, Celtic Sea and Bay of Biscay. Mar. Ecol. Prog. Ser. 200, 93–102 (2000).ADS 
    Article 

    Google Scholar 
    67.Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, A. & Edwards, M. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science 31, 1692–1694 (2002).ADS 
    Article 

    Google Scholar 
    68.Coyle, K. O. et al. Climate change in the southeastern Bering Sea: Impacts on pollock stocks and implications for the oscillating control hypothesis. Fisher. Oceanogr. 20, 139–156 (2011).Article 

    Google Scholar 
    69.Edwards, M. & Richardson, A. J. The impact of climate change on the phenology of the plankton community and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).Article 

    Google Scholar 
    71.Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B. 282, 20151546 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).Article 

    Google Scholar 
    73.Kwasniewski, S. A note on zooplankton of the Hornsund Fjord and its seasonal changes. Oceanografia 12, 7–27 (1990).
    Google Scholar 
    74.Piwosz, K. et al. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in midsummer 2002. Polar Biol. 32, 549–559 (2009).Article 

    Google Scholar 
    75.Trudnowska, E., Basedow, S. L. & Blachowiak-Samolyk, K. Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard). J. Mar. Syst. 137, 55–66 (2014).Article 

    Google Scholar 
    76.Castellani, C., Licandro, P., Fileman, E., di Capua, I. & Mazzocchi, M. G. Oithona similis likes it cool: Evidence from two long-term time series. J. Plankton Res. 38, 703–717 (2016).CAS 
    Article 

    Google Scholar 
    77.Cornwell, L. E. et al. Resilience of the copepod Oithona similis to climatic variability: Egg production, mortality, and vertical habitat partitioning. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00029 (2020).Article 

    Google Scholar 
    78.Eiane, K. & Ohman, M. D. Stage-specific mortality of Calanus finmarchicus, Pseudocalanus elongatus and Oithona similis on Fladen Ground, North Sea, during a spring bloom. Mar. Ecol. Prog. Ser. 268, 183–193 (2004).ADS 
    Article 

    Google Scholar 
    79.Thor, P. et al. Post-spring bloom community structure of pelagic copepods in the Disko Bay, Western Greenland. J. Plankton Res. 27, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    80.Dvoretsky, V. G. Seasonal mortality rates of Oithona similis (Cyclopoida) in a large Arctic fjord. Polar Sci. 6, 263–269 (2012).ADS 
    Article 

    Google Scholar 
    81.Ussing, H. H. The biology of some important plankton animals in the fjords of east Greenland. Medd Grønland 100–108 (1938).
    82.Lonsdale, D. J., Caron, D. A., Dennett, M. R. & Schaffner, R. Predation by Oithona spp on protozooplankton in the Ross Sea. Antarctica. Deep-Sea Res. II 47, 3273–3283 (2000).
    Google Scholar 
    83.Castellani, C., Irigoien, X., Harris, R. P. & Lampitt, R. S. Feeding and egg production of Oithona similis in the North Atlantic. Mar. Ecol. Prog. Ser. 288, 173–182 (2005).ADS 
    Article 

    Google Scholar 
    84.Barth-Jensen, C. et al. Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus. J. Plankton Res. 42, 564–580 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Falk-Petersen, S., Pedersen, G., Kwasniewski, S., Hegseth, E. N. & Hop, H. Spatial distribution and life-cycle timing of zooplankton in the marginal ice zone of the Barents Sea during the summer melt season in 1995. J. Plankton Res. 21, 1249–1264 (1999).Article 

    Google Scholar 
    86.Gluchowska, M. et al. Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J. Mar. Sci. 74, 1921–1936 (2017).Article 

    Google Scholar 
    87.Balazy, K., Trudnowska, E. & Błachowiak-Samołyk, K. Dynamics of Calanus copepodite structure during Little Auks’ breeding seasons in two different Svalbard locations. Water 11, 1405. https://doi.org/10.3390/w11071405 (2019).CAS 
    Article 

    Google Scholar 
    88.Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).Article 

    Google Scholar 
    89.Poje, A. The relationship between plankton and water mass properties in high Arctic (Svalbard) fjords. Clark Honors College Theses, (University of Oregon, 2016).90.Falk-Petersen, S., Mayzaud, P., Kattner, G. & Sargent, J. R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39 (2009).Article 

    Google Scholar 
    91.Svensen, C. et al. Zooplankton communities associated with new and regenerated primary production in the Atlantic inflow North of Svalbard. Front. Mar. Sci. 6, 293. https://doi.org/10.3389/fmars.2019.00293 (2019).Article 

    Google Scholar 
    92.González, H. E. & Smetacek, V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113, 233–246 (1994).ADS 
    Article 

    Google Scholar 
    93.Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Berge, J. et al. In the dark: A review of ecosystem processes during the Arctic polar night. Progr. Oceanog. 139, 258–271 (2015).ADS 
    Article 

    Google Scholar 
    95.Narcy, F. et al. Seasonal and individual variability of lipid reserves in Oithona similis (Cyclopoida) in an Arctic fjord. Polar Biol. 32, 233–242 (2009).Article 

    Google Scholar 
    96.Kattner, G. & Hagen, W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 257–280 (Springer, New York, 2009).Chapter 

    Google Scholar 
    97.Rokkan Iversen, K. & Seuthe, L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 34, 731–749 (2011).Article 

    Google Scholar 
    98.Auel, H. & Hagen, W. Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar. Biol. 140, 1013–1021 (2002).Article 

    Google Scholar 
    99.Madsen, S., Nielsen, T. & Hansen, B. Annual population development and production by small copepods in Disko Bay, western Greenland. Mar. Biol. 155, 63–77 (2008).Article 

    Google Scholar 
    100.Corkett, C. J. & McLaren, I. A. The biology of Pseudocalanus. In Advances in Marine Biology Vol. 15 (eds Russell, F. S. & Yonge, M.) 1–231 (Academic Press, Cambridge, 1978).
    Google Scholar 
    101.Kwasniewski, S., Hop, H., Falk-Petersen, S. & Pedersen, G. Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J. Plankton Res. 2003(25), 1–20 (2003).Article 

    Google Scholar 
    102.Willis, K., Cottier, F., Kwasniewski, S., Wold, A. & Falk-Petersen, S. The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst. 61, 39–54 (2006).Article 

    Google Scholar  More

  • in

    Species richness is more important for ecosystem functioning than species turnover along an elevational gradient

    1.Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 326–326 (2012).CAS 
    Article 

    Google Scholar 
    4.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).Article 

    Google Scholar 
    8.Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).Article 

    Google Scholar 
    10.Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Bannar-Martin, K. H. et al. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach. Ecol. Lett. 21, 167–180 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    17.Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    18.HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).Article 

    Google Scholar 
    19.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).Article 

    Google Scholar 
    20.Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 

    Google Scholar 
    23.Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).Article 

    Google Scholar 
    24.Craven, D. et al. A cross‐scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    25.Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).Article 

    Google Scholar 
    26.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).Article 

    Google Scholar 
    31.Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    34.Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    35.Stepp, J. R., Castaneda, H. & Cervone, S. Mountains and biocultural diversity. Mt. Res. Dev. 25, 223–227 (2005).Article 

    Google Scholar 
    36.Balehegn, M. Unintended consequences: the ecological repercussions of land grabbing in sub-Saharan Africa. Environment 57, 4–21 (2015).
    Google Scholar 
    37.The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Africa (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://doi.org/10.5281/ZENODO.323617838.Maitima, J. et al. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 3, 310–325 (2009).
    Google Scholar 
    39.Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Muhumuza, M. & Balkwill, K. Factors affecting the success of conserving biodiversity in national parks: a review of case studies from Africa. Int. J. Biodivers. 2013, 798101 (2013).Article 

    Google Scholar 
    41.Mbow, C., van Noordwijk, M., Prabhu, R. & Simons, T. Knowledge gaps and research needs concerning agroforestry’s contribution to Sustainable Development Goals in Africa. Curr. Opin. Environ. Sustain. 6, 162–170 (2014).Article 

    Google Scholar 
    42.Kangalawe, R. Y. M., Noe, C., Tungaraza, F. S. K., Naimani, G. & Mlele, M. Understanding of traditional knowledge and indigenous institutions on sustainable land management in Kilimanjaro Region, Tanzania. Open J. Soil Sci. 04, 469–493 (2014).Article 

    Google Scholar 
    43.Pretty, J., Toulmin, C. & Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 9, 5–24 (2011).Article 

    Google Scholar 
    44.Mbow, C. et al. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 6, 61–67 (2014).Article 

    Google Scholar 
    45.Ofori, D. A. et al. Developing more productive African agroforestry systems and improving food and nutritional security through tree domestication. Curr. Opin. Environ. Sustain. 6, 123–127 (2014).Article 

    Google Scholar 
    46.Munang, R. et al. Ecosystem Based Adaptation (EBA) for Food Security in Africa—Towards a Comprehensive Strategic Framework to Upscale and Out-scale EBA-Driven Agriculture in Africa (United Nations Environment Programme, 2015).47.Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 99, 15–27 (2003).CAS 
    Article 

    Google Scholar 
    48.van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    50.Allen, A. P. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hemp, A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 184, 27–42 (2006).Article 

    Google Scholar 
    53.Hemp, A. Vegetation of Kilimanjaro: hidden endemics and missing bamboo. Afr. J. Ecol. 44, 305–328 (2006).Article 

    Google Scholar 
    54.Appelhans, T. et al. Eco-meteorological characteristics of the southern slopes of Kilimanjaro. Tanzan. Int. J. Climatol. 36, 3245–3258 (2016).Article 

    Google Scholar 
    55.van Genuchten, M. T. H. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).Article 

    Google Scholar 
    56.Gebert, F., Steffan-Dewenter, I., Moretto, P. & Peters, M. K. Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro. J. Biogeogr. 47, 371–381 (2019).Article 

    Google Scholar 
    57.Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 2008).58.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    59.Kingdon, J. et al. Mammals of Africa (Bloomsbury, 2013).60.Kaspari, M. & Weiser, M. D. The size–grain hypothesis and interspecific scaling in ants. Funct. Ecol. 13, 530–538 (1999).Article 

    Google Scholar 
    61.Cane, J. H. Estimation of bee size using intertegular span (Apoidea). J. Kans. Entomol. Soc. 60, 145–147 (1987).
    Google Scholar 
    62.Classen, A., Steffan-Dewenter, I., Kindeketa, W. J. & Peters, M. K. Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Funct. Ecol. 31, 768–777 (2017).Article 

    Google Scholar 
    63.Kendall, L. K. et al. Pollinator size and its consequences: robust estimates of body size in pollinating insects. Ecol. Evol. 9, 1702–1714 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol. 17, 421–433 (1996).
    Google Scholar 
    65.Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, 45 (2015).Article 

    Google Scholar 
    66.Cheng, D.-L. & Niklas, K. J. Above- and below-ground biomass relationships across 1534 forested communities. Ann. Bot. 99, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    67.Pabst, H., Gerschlauer, F., Kiese, R. & Kuzyakov, Y. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degrad. Dev. 27, 592–602 (2016).Article 

    Google Scholar 
    68.Albrecht, J. et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 9, 3177 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Mayr, A. V. et al. Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera. J. Biogeogr. 47, 854–865 (2020).Article 

    Google Scholar 
    71.Peters, M. K., Mayr, A., Röder, J., Sanders, N. J. & Steffan-Dewenter, I. Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. J. Biogeogr. 41, 2245–2255 (2014).Article 

    Google Scholar 
    72.Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Manly, B. F. J. Randomization, Bootstrap, and Monte Carlo Methods in Biology (Chapman & Hall/CRC, 2007).74.Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–533 (2006).
    Google Scholar 
    75.Huang, A. & Wand, M. P. Simple marginally noninformative prior distributions for covariance matrices. Bayesian Anal. 8, 439–452 (2013).Article 

    Google Scholar 
    76.O’Hara, R. B. & Sillanpää, M. J. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 4, 85–117 (2009).
    Google Scholar 
    77.Albrecht, J., Hagge, J., Schabo, D. G., Schaefer, H. M. & Farwig, N. Reward regulation in plant–frugivore networks requires only weak cues. Nat. Commun. 9, 4838 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Grace, J. B., Johnson, D. J., Lefcheck, J. S. & Byrnes, J. E. K. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9, e02283 (2018).Article 

    Google Scholar 
    79.Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).Article 

    Google Scholar 
    80.Levy, R. Bayesian data–model fit assessment for structural equation modeling. Struct. Equ. Modeling 18, 663–685 (2011).Article 

    Google Scholar 
    81.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    82.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.R Development Core Team. R: A Language and Environment for Statistical Computing v. 4.0.3 (R Foundation for Statistical Computing, 2020).84.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 http://cran.r-project.org/package=vegan (2020).85.Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling http://mcmc-jags.sourceforge.net (2003)86.Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4-10 https://CRAN.R-project.org/package=rjags (2016)87.Statisticat, LLC. LaplacesDemon: Complete environment for Bayesian inference. R package version 16.1.4 https://CRAN.R-project.org/package=LaplacesDemon (2021)88.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R N. 6, 7–11 (2006).
    Google Scholar 
    89.Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).Article 

    Google Scholar 
    90.Wood, S. N. Generalized Additive Models: An Introduction with R (CRC/Taylor & Francis, 2017).91.Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).Article 

    Google Scholar 
    92.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    93.Albrecht, J. et al. Data and code from ‘Species richness is more important for ecosystem functioning than species turnover along an elevational gradient’. Figshare https://doi.org/10.6084/m9.figshare.14544207 (2021). More

  • in

    Preserving pieces of history in eggshells and birds’ nests

    Download PDF

    Here at the Natural History Museum at Tring, UK, I’m in our nest collection, which numbers just over 4,000. Behind me are 67 metal cabinets with nests arranged in taxonomic order. Each nest is labelled with the date and place of collection, and the collector’s name. Next to me is a 1928 mud nest from Argentina that was made by the rufous hornero (Furnarius rufus), known for its large, globular nests that shield eggs and young from predators.I’m the senior curator of birds’ eggs and nests. I ensure that specimens are stored appropriately to prevent damage and are well catalogued, so we know exactly what we have and where. Our nest and egg collections are the most comprehensive archive of information on bird breeding in the world. When I came here about 20 years ago, the nest collection was rarely used and we didn’t know how many examples of extinct and endangered species we had. I’ve spent a lot of time and effort cataloguing and understanding these particular 129 nests, 40 of which belong to extinct birds such as the Laysan crake (Zapornia palmeri) and the Aldabra brush warbler (Nesillas aldabrana).We have up to 300,000 sets of eggs. I am holding four dunlin (Calidris alpina) eggshells, collected in 1952 in Ireland. They were donated to the Wildfowl & Wetlands Trust, a UK conservation charity, which gave them to us as part of a larger collection.I have been interested in birds and natural history since childhood, and my mother used to take me to the Royal Museum of Scotland (now the National Museum of Scotland) in Edinburgh. After graduating in biological sciences from Edinburgh Napier University, I volunteered at the museum before getting my first paid museum job.When researchers want to access the collections, I check that we have specimens relevant to their research, discuss exactly what they intend to do and work with them to minimize the risk of damage. Although I want our collections to result in robust science, they must be preserved.

    Nature 597, 586 (2021)
    doi: https://doi.org/10.1038/d41586-021-02529-z

    Related Articles

    The bird librarian

    Sharing space with 34 million dead insects

    To look after these birds is to ‘fall in love’ with them

    Subjects

    Careers

    Animal behaviour

    Ecology

    Latest on:

    Careers

    Cash boost looms for historically Black US colleges and universities
    Career News 20 SEP 21

    Australian funder backflips on controversial preprint ban
    News 20 SEP 21

    Stop undervaluing smaller institutions
    Career Column 17 SEP 21

    Animal behaviour

    No hands, no problem: clever parrots craft and wield tools
    Research Highlight 03 SEP 21

    Australia’s cane toads evolved as cannibals with frightening speed
    News 25 AUG 21

    Clever orangutans invent nutcrackers from scratch
    Research Highlight 18 AUG 21

    Ecology

    A spotlight on seafood for global human nutrition
    News & Views 15 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Preventing spillover as a key strategy against pandemics
    Correspondence 14 SEP 21

    Jobs

    Senior Laboratory Research Scientist

    Francis Crick Institute
    London, United Kingdom

    Bioinformatics Officer

    Francis Crick Institute
    London, United Kingdom

    Laboratory Research Scientist – Human Embryo and Stem Cell Unit

    Francis Crick Institute
    London, United Kingdom

    Postdoc Position on Nitrous Oxide Turnover in the Ocean

    University of Southern Denmark (SDU)
    Odense M, Denmark More

  • in

    Aligning aquatic foods and public health

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Silence and reduced echolocation during flight are associated with social behaviors in male hoary bats (Lasiurus cinereus)

    Bat capture, handling, and tag attachment were carried out in accordance with guidelines of American Society of Mammologists33 under permit from the California Department of Fish and Wildlife (# SC-002911). Experimental methods were approved by the Institutional Animal Care and Use Committee of the USDA Forest Service (IACUC 2017-014). We captured bats using 2.6-m high mist nets in a triple-high configuration. We measured forearm length and mass and determined species, age, sex, and reproductive status for each captured individual.We used Vesper Pipistrelle on-board audio-recording devices with an accelerometer (ASD Tech, Haifa Israel) to quantify bat movement throughout the duration of attachment. We used the smallest possible battery (0.5 g) which was sufficient to allow a 3-h recording period on the first night and up to a 4-h recording period on the second night. Tags were programmed to record for 10 s once every 3 min from 23:00 to 02:00 on the first night and for 10 s once every minute from 19:00 to 23:00 on the second night. We recovered tags from bats tagged between September 28th and October 7th. Sunset was at 19:02 on September 29th and 18:47 on October 8th. Unfortunately, the timing mechanism on the tags malfunctioned some of the time, causing only some of the recordings to have synchronous audio and accelerometer data (See Results).We attached Holohil LB-2X VHF transmitter (0.27 g) to the audio tags so we could locate the device once it detached from the bats. We coated the entire tag package (except the microphone opening) with liquid silicone followed by a latex sleeve covering to provide protection from the environment. The total tag package had a mass of 2.9 g which represented 10.6–12.5% of the mass of the bat. Several studies conducted in flight tents and in the field have shown no adverse consequences of payloads up to 15% for short duration deployments16,34. The diversity of natural behaviors that we observed, including prey pursuit, conspecific interaction, and extended flight over multiple nights indicates that hoary bats are capable fliers with this payload, however we cannot rule out the possibility that tags altered the behaviors that were observed.We attached tags to the posterior dorsum of bats using latex surgical adhesive (Torbot Liquid Bonding Cement, Torbot Group Inc. Cranston, Rhode Island). We used the minimum quantity of adhesive that we estimated would be necessary for tags to remain affixed to bats for 2 nights. We recovered tags by using ground- and aircraft-based VHF telemetry to determine the general location of the shed tag, followed by homing in on the VHF signal using ground-based telemetry. Final recovery of tags was achieved using visual searches of the ground.Microphone calibrationWe calibrated on-board microphones to determine the minimum sound pressure level (SPL) at which we could reliably detect micro calls. We did this by broadcasting a series of micro calls from an Avisoft (Glienicke/Nordbahn, Germany) Scanspeak ultrasonic speaker to the on-board tags. The series of micro calls consisted of a single high-quality micro call that was broadcast 30 times with each successive call being 3 dB lower in SPL. The absolute intensity of the broadcast was calibrated by broadcasting the same signal to a G.R.A.S (Holte, Denmark) 40DP 1/8″ microphone, which itself was calibrated with a G.R.A.S 42AB sound calibrator. For both the calibration of the sound playback and the broadcasts to the on-board microphone, the microphones were placed 10 cm from the speaker. We repeated this procedure three times for each of three microphones that had been recovered from the bats and determined the SPL of the lowest amplitude micro call that could be detected on all nine broadcasts. This SPL was used as the minimum detectable level at which our microphones could detect micro calls.Data processingDetermining whether bats are flyingWe used custom MATLAB (Natick, MA) scripts to analyze ultrasound and accelerometer recordings. We first determined whether bats were in flight for each recording. Unfortunately, we were only able to record simultaneous accelerometer and acoustic data for 364 out of 2241 recordings. For these recordings, we independently classified each file as flight or no flight using only the accelerometer data and only the audio data. Accelerometer recordings showed clear and prominent wingbeat oscillations in the dorsoventral, or Z-axis (Fig. S2A). One observer used a custom program (AccelVis) to visualize and manually classify all accelerometer files. We also quantified the magnitude of wingbeat oscillations by measuring the root-mean-square magnitude of signals after applying a high-pass filter of 4 Hz (Bats used wingbeat frequencies of approximately 8 Hz).A different observer classified all audio recordings as flight or no flight based on the presence or absence of low-frequency wind noise generated by the relative motion of the bats flying through the air (Fig. S2). The Individuals conducting the audio and acceleration analyses were blind to one another’s data. As with the accelerometer data, we analyzed all files both qualitatively and quantitatively. For the qualitative analysis, a user visualized files using a custom program (AudioBrowser; available with all data files as supplementary data) and noted presence or absence of low-frequency wind noise. We also quantified this wind noise by measuring the RMS magnitude of signals after applying a 1-Hz low pass filter. This resulted in a distinct bimodal distribution of low frequency magnitudes that corresponded to no wind and wind conditions with the two peaks being separated by approximately 30 dB. A small number of files ( 5 s). This 5 s threshold is twice the longest pulse interval recorded for echolocation calls (Supplementary Information), and therefore represents a conservative threshold for identifying silent periods.High-intensity calls could be identified by their consistently high signal levels. For recordings where no calls were initially detected, the observer made a second examination of the recording using a custom 55–90 kHz bandpass filter setting that highlights micro calls (Fig. 1D). A second observer also examined all files where either no calls or micro calls were detected by the first observer to confirm classification. Recordings were processed both by visualization of spectrograms and by listening to slowed-down recordings through headphones.Hoary bat feeding buzzes have a characteristic pattern involving a rapid increase in calling rate, and progressively decreasing call intensity (Fig. 1B)35,36. In contrast, social interactions involve prolonged (often several seconds) high-intensity echolocation calls produced at a high rate (e.g., 50–100 Hz) with a second bat also producing echolocation calls at a relatively high calling rate14. Echolocation calls of “other” bats (which could be present in any of the recordings) could be distinguished from the calls of the bat with the tag because they were typically recorded at a much lower intensity levels that increased and decreased, presumably as the other bat approached and then withdrew from the focal bat and were temporally out of phase with calling rate of the tagged bat. Calls classified as “other bat” also had lower calling rates compared to social interactions.Statistical analysisAcoustic recordings were organized by individual bat (Table 1) and by time of night (Fig. 2). To determine if bats exhibited consistent differences in the use of high-intensity echolocation, we measured the proportion of recordings including high-intensity echolocation for each bat night. Initial analysis of the data indicated that bats produced high-intensity echolocation during either most or all of the recordings (96–100%, including feeding buzzes) or at a considerably lower rate ( 96%) or low ( More

  • in

    Confirmation of Oryctes rhinoceros nudivirus infections in G-haplotype coconut rhinoceros beetles (Oryctes rhinoceros) from Palauan PCR-positive populations

    Insects and virusOryctes rhinoceros was collected from Amami, Kagoshima, Japan in 2017 and Ishigaki, Okinawa, Japan in 2018. The insects were brought back to the lab in Tokyo and maintained in a moisture mushroom mat substrate (Mushroom Mat, Tsukiyono Kinokoen, Japan) which was also served as food for larvae. The temperature was held at 25–30 °C with a 16-h light / 8-h dark photoperiod. To collect eggs, 2 or 3 female adults were put in a plastic case containing a moisture mushroom mat substrate with a male adult beetle. The insect jelly (Dorcus Jelly, Fujikon, Japan) was provided ad libitum as food for adults. After 2 weeks, we collected eggs, and about 10 eggs were placed in a plastic cup with a moisture mushroom mat substrate until hatched larvae developed to the second instar. This strain was used in all bioassays in this study. All Japanese O. rhinoceros were confirmed as CRB-G.The OrNV-X2B isolate used in this study was originally isolated from Philippine CRB and obtained from AgResearch in New Zealand.Cell culturesFRI-AnCu-35 (AnCu35) cells were obtained from Genebank of NARO (Tsukuba, Japan)27. This continuous cell line was developed from embryos of the cupreous chafer, Anomala cuprea (Coleptera: Scarabaeidae). The cells were maintained as adherent cultures in 25 cm2 tissue culture flasks (Falcon, Corning, USA) at 25 °C in 5 ml of 10% Fetal Bovine Serum (Gibco, Thermo Fisher Scientific, USA) supplemented Grace’s insect medium (Gibco). Cells were passaged in the above culture medium until the cell monolayer reached 70% confluence.DNA extraction and identification of haplotypes in Palauan populationCRB specimens were collected in Palau using pheromone traps containing ethyl 4-methyloctanoate (ChemTica Internacional, Costa Rica). Adults were dissected to collect midgut and gut tissues to avoid cross contamination between dissection of individuals, which were immediately soaked into 0.1 μg/ml gentamicin solution to prevent bacterial contamination during transportation at room temperature. Specimens were stored at − 30 °C after arrival to Tokyo. The tissues were homogenized in cell lysis solution (10 mM Tris–HCl, 100 mM EDTA, 1% SDS, pH 8.0) using pestles in 1.5 ml microcentrifuge tubes. Homogenates were centrifuged at 12,000× g for 5 min at 4 °C. Proteinase K (200 µg/ml final concentration) (Nippon Gene Co. Ltd., Japan) was added to the supernatant and incubated at 50 °C for 5 h. To remove contaminating RNA, RNase A solution (100 µg/ml final concentration) (Nippon Gene Co. Ltd.) was added. After a 30 min incubation at 37 °C, the mixture was placed on ice and supplemented with 200 μl of Protein Precipitation Solution (Qiagen, Germany), and then centrifuged at 17,000× g for 15 min at 4 °C. The supernatant was isopropanol-precipitated, pelleted by centrifugation, and washed with 70% ethanol. Finally, precipitated DNA was dissolved in distilled MilliQ water. The concentrations of each DNA solution were measured by using NanoVue Plus (GE Healthcare, Buckinghamshire, England, UK). The sample DNA was diluted to 10 ng/μl and used for PCR. The following primer pair was used to amplify a 523 bp fragment of the COI gene: C1-J-1718Oryctes (5′-GGAGGTTTCGGAAATTGACTTGTTCC-3′) and C1-N-2191Oryctes (5′-CCAGGTAGAATTAAAATRTATACCTC-3′)9. Each 10 μl PCR reaction contained: 5 μl Emerald Amp (Takara, Japan), 0.3 μl forward primer (10 μM), 0.3 μl reverse primer (10 μM), 3.4 μl Milli-Q water (Merck Millipore, USA), and 1 µl template DNA. PCR amplifications were performed in a Life ECO thermocycler (Bioer Technology, China) with a cycling profile of 35 cycles of 94 °C denaturation (30 s), 50 °C annealing (45 s), 72 °C extension (1 min) with an initial denaturation of 3 min at 94 °C and a final extension of 5 min at 72 °C. A 5 μl aliquot of each PCR amplicon was checked by agarose gel electrophoresis (1.5%, 1 × TBE), stained with Midori green (Nippon Genetics, Japan) and fluorescence visualized over UV light. Photographs were recorded using an E-BOX-VX2 /20 M (E & M, Japan).For direct sequencing, the PCR products were purified using a QIAquick PCR Purification Kit (Qiagen). The purified DNA was sequenced using BigDye Terminator Kit ver. 3.1 (Applied Biosystems, USA) and performed by the 3700 DNA analyzer (Applied Biosystems). The obtained sequences were analyzed using MEGA X software28 and the G haplotype was identified by the presence of the (A→G) point mutation in the COI region as previously described9.Virus detection in Palauan populationUsing the same samples as above, virus detection was carried out by PCR. The following primer pair was used to amplify a 944 bp fragment of the OrNV-gp054 gene (GrBNV-gp83-like protein): OrNV15a (5′-ATTACGTCGTAGAGGCAATC-3′) and OrNV15b (5′-ATGATCGATTCGTCTATGG-3′)29. PCR amplifications were performed as above.Transmission electron microscopy (TEM) was also used for detection of OrNV within a subset of PCR positive CRB tissue samples. After washing in phosphate-buffered saline (PBS), midgut and fat body samples of Palauan CRB adults from Melekeok and Aimeliik (respectively; two each), were subjected to following resin fixation as described previously30: tissues were fixed in 5% glutaraldehyde for 1 h, rinsed 4 times with Millonig’s phosphate buffer (0.18% NaH2PO4 × H2O, 2.33% Na2HPO4 × 7H2O, 0.5% NaCl, pH 7.4), post-fixed and stained in 1% OsO4 for 2 h and dehydrated in an ethanol series. Following the final dehydration step, the ethanol was replaced by QY-1 (Nisshin EM, Tokyo), and the tissues were embedded in epoxy resin comprising 47% TAAB EPON812, 19% DDSA, 32% MNA and 2% DMP30 (Nisshin EM, Tokyo). Then, they were cut into 70 nm thick sections with a diamond knife on an Ultracut N ultramicrotome (Leica, Vienna, Austria), attached to grids and observed using TEM (JEM-1400Plus, JEOL, Japan).Isolation of OrNV from Palauan samples and infectivity to Japanese CRB larvaeVirus isolation was carried out using a modification of a method previously described23. The frozen tissues of two virus positive CRB-G from Melekeok were washed with PBS twice, and after grounding with 1 ml PBS by pestles, centrifuged at 6,000 g × 5 min at 4 °C. The supernatant was filtered by 0.45 µm pore sized filter (Merck, USA) and transferred to a 1.5 ml ultracentrifuge tube in a clean bench. Virus was pelleted by centrifugation at 4 °C, 98,600 g for 30 min using a TLA55 rotor. After separation, the supernatant was discarded and the pellet was suspended in 500 μl of PBS and designated as “virus solution”. A portion of this solution (30 µl/larva) was intrahemocoelically injected into 82nd instar CRB to evaluate its infectivity. This experiment had no biological replicates due to the very small amount of inoculum available. Intrahemocoelically injected larvae were reared in the insect rearing mat at 25 °C for two weeks. Following death, larval cadavers were immediately dissected to collect midgut for following RNA extraction to detect expression of a viral gene, and electron microscopy observation. Total RNA was extracted from larval tissue samples using ISOGEN (Nippon Gene Co. Ltd., Tokyo, Japan), as described in the manufactural protocol. The total RNA samples were treated with RNAse-free recombinant DNAse I (TaKaRa, Japan) to remove the contaminating DNAs. The DNAse I treated total RNA samples (approximately 100 ng/µl) were used as templates for cDNA synthesis using a TaKaRa RNA PCR Kit (AMV) ver. 3.0 (TaKaRa, Japan). PCR reactions were conducted as above using OrNV15a and b primers (detects gene GrBNV-gp83-like gene). This experiment was conducted in triplicate.Inoculum preparation using FRI-AnCu-35 cellsOrNV isolates were propagated using the FRI-AnCu-35 (AnCu35) cell line for further analyses following methods previously described for the DSIR-Ha-1179 cell line system9,12. AnCu35 was a Coleopteran cell line readily available in Japan, and was inoculated with the Palau OrNV solution prepared above and the OrNV-X2B isolate which was provided by AgResearch, New Zealand. When the cell culture reached 25% confluency, a 100 µl aliquot of virus solution was inoculated and incubated at 25 °C. The virus-treated cells were observed by optical microscope.Quantification of viral copy number using qPCR was conducted as follows. To measure the amount of OrNV virus produced by the AnCu35 cell line, DNA was extracted as described above for tissue samples from 1.5 ml of the virus treated cell’s suspension at 10 dpi (3 suspensions per each virus isolate). The extracted DNA was subjected to quantitative PCR (qPCR) following previously described methods31. The primer pair for qPCR was designed from the genome sequence of the P74 homolog of OrNV, a viral structural protein that is conserved widely among nudiviruses, polydnaviruses and baculoviruses32, to amplify a region of 82 bp of OrNV-X2B-gp120 (OrNV-p74_f2026: 5′-ATCGCCGGTGTGTTTATGG-3′, OrNV-p74_r2107: 5′-AGAGGGCTAACGCTACGAC-3′). The qPCR reaction was performed by using Step One Plus Real-Time PCR System (Life Technologies, USA). The reaction mixture contained 10 ng of template DNA, 5 µl of FastStart Universal SYBR Green Master Mix (ROX) (Roche, Switzerland), 0.3 µl forward primer (10 µM), 0.3 µl reverse primer (10 µM), and 3.4 µl Milli-Q water. The qPCR cycle condition was as follows: 95 °C 10 min; 40 cycle of 95 °C 15 s, 60 °C 1 min. At the end of the cycles, a dissociation curve analysis of the amplified product was performed as follows: 95 °C 15 s, 60 °C 1 min, 95 °C 15 s. The Ct value of each sample DNA was measured twice using two wells as technical replicates. The quantity of the viral genome (ng) in each sample was calculated from a standard curve generated from 29.7 to 29.7 × 10–5 ng of purified PCR amplicon from the OrNV P74 gene. The viral copies in 1 ng of sample DNA was estimated from the molecular weight of qPCR target region (p74). The virus titer was determined from average copy numbers of three virus suspensions as follows. The p74 qPCR amplicon was 83 bp, and the molecular weight of the amplicon was calculated as the length of dsDNA (83 bp) × 330 daltons × 2 nt/bp = 54,780 daltons (g/mol). DNA weight of 1 copy of virus genome was calculated as 54,780 g/mol/Avogadro constant (6.023 × 1023 molecules/mol) = 9.095 × 10–20 g/ molecule. Amplicons of the above region was purified by QIA quick PCR purification kit (Qiagen) and 29.7 ng/ul of DNA was obtained for use as a quantification standard. This is equivalent to 3.266 × 1011 copies of p74 gene (because the amplicon is 9.095 × 10–20 g/copy). Based on qPCR using the serial dilutions (× 10 – 105) of the standard DNA prepared above, Ct values were examined by each concentration of viral DNA. Ct-value = − 3.3112x – 1.4219 (x: diluton factor of 10x). Accordingly, copy number of p74 = 3.266 × 1011+x. Viral copy number (copy number of p74 genes) was calculated from Ct-value from the above formula.Viral replication in CRB larvae by time course and killing speedField collected CRB-G larvae from Japan were inoculated with the OrNV-Palau1 and -X2B isolates to examine establishment of infection over time using qPCR. The inoculum was prepared from supernatant collected from OrNV infected AnCu35 cell cultures at 10 dpi, passed through a 0.45 µm filter, and preserved at 4 °C until use.Second instar CRB was inoculated intrahemocoelically with 30 μl of the virus solution prepared from cell-culture per larva using a microinjector (Kiya Kogyo Seisakusho, Japan) fitted with a micro-syringe (Ito Seisakusho, Japan). The virus doses of OrNV-Palau1 and -X2B strains used for inoculation were confirmed to be comparable by absolute quantification using the above qPCR method (Palau1: 3.1 × 105 copies/ng, X2B: 3.3 × 105copies/ng; the mean titer of 3 DNA templates, respectively). As a mock treatment, CRB was injected with 30 µl PBS. The inoculated larvae were kept individually in plastic containers with a rearing mat in a 25 °C incubator. The samples were collected at 3, 6, and 9 dpi (25–30 larvae per time point) into 15 ml tubes and stored at − 30 °C until the DNA was extracted as above. Total DNA was extracted from whole, individual larvae which were dissected to remove midgut contents to prevent interference to Taq polymerase, and subjected to qPCR as above. Changes in viral copy number within the same virus strain over time were analyzed by one-way, nonparametric Steel–Dwass tests using JMP@ 9.0.0 software (SAS Institute, Cary, NC). Differences in virus copy number between strains were analyzed in the same way, but to correct for errors in the test values due to multiple comparisons, Bonferroni’s correction was used to set the α-value for the test at 0.008333. Ten larvae were inoculated and examined per each treatment-time point with three replications.To estimate killing speed, CRB-G larvae from Japan were inoculated with the OrNV-Palau1 and -X2B isolates as described previously. Intrahemocoelically inoculated larvae were reared individually in plastic containers with a rearing mat in a 25 °C incubator. Mortality of inoculated larvae were observed every day. Forty larvae were examined in a replicate with three replications carried out for virus treatments (total 120 larvae). The mock PBS inoculation treatment was done only once (total 37 larvae).Genome sequencingGenome sequencing of the OrNV-Palau1 isolate and X2B isolate was conducted. For obtaining high quality DNA, virus particles were purified, from 3 mL of AnCu35 culture supernatant collected six days after inoculation with OrNV. Virus containing supernatant was transferred to Ultra-Clear polyallomer tubes (Beckman Coulter, USA) with a 20–50% (w/w) sucrose density gradient and subjected to ultracentrifugation at 72,100 g, 4 °C, for 1 h. After ultracentrifugation, the white virus band was collected in a 1.5 ml tube. The solution was then subjected to ultracentrifugation at 110,000 g, 4 °C for 1 h to precipitate the viral particles33. Then, DNA was extracted from purified OrNV virions as described above. For the sequencing analysis, DNA libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina, USA). Amplified libraries were sequenced on Illumina HiSeq 2500 instrument using paired-end 2 × 150 bp chemistry which was performed by Novogene (Beijing, China). Contigs of each strain from NGS reads were generated by assembly using Unicycler (version 0.4.8)34. The gaps between contigs were further closed with Sanger sequences obtained by PCR direct sequencing using appropriate specific primers, and the sequence was aligned by minimap2 (version 2.17)35. The assembly and sequences of contigs were also confirmed by mapping to the OrNV isolate Solomon Islands genome sequence (GenBank accession no. MN623374.1) with NGS reads and Sanger sequences using minimap2. The mapped reads (SAM files) were converted to BAM format using SAMtools (version 1.10)36. After the sorting and indexing of BAM files, the consensus sequences were generated using bcftools (version 1.10.2)37.ORFs of at least 50 codons in size that possessed significant amino acid sequence similarity with ORFs from OrNV-Ma07 were identified with Lasergene GeneQuest (DNAStar, v. 17) and BLASTp. ORFs with no significant matches to other sequences also were selected for annotation if (a) they did not overlap a larger ORF by  > 75 bp, and (b) they were predicted to be protein-encoding by both the fgenesV0 (http://www.softberry.com/berry.phtml?topic=index&group=programs&subgroup=gfindv) and Vgas38 programs.OrNV genome sequences were compared by pairwise alignment using the Martinez/Needleman-Wunsch method as implemented in Lasergene MegAlign 15. Pairwise sequence identities were determined from these alignments as previously described39. Differences in ORF content and distribution of selected OrNV genomic regions were visualized with Mauve version 2015022640.Phylogenetic inferenceTo infer the relationships among OrNV isolates on the basis of nucleotide sequence alignments, the DNA polymerase ORFs of completely sequenced isolates (Table 2), OrNV-PV50516, and a set of nine isolates from Indonesia17 were aligned by MUSCLE as implemented in Lasergene MegAlign Pro v. 17 (DNAStar). Phylogeny was inferred by maximum likelihood using MEGA X28 with the Tamura-Nei (TN93) model41, with ambiguous data eliminated prior to analysis. Tree reliability was evaluated by bootstrap with 500 replicates. More

  • in

    A Tunguska sized airburst destroyed Tall el-Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea

    Melted quartz grainsCrystalline quartz melts between 1670 °C (tridymite) and 1713 °C (cristobalite), and because quartz is pervasive and easily identified, melted grains serve as an important temperature indicator. At TeH, we observed that unmelted potsherds displayed no melted quartz grains, indicating exposure to low temperatures. On the other hand, most quartz grains on the surfaces of pottery, mudbricks, and roofing clay exhibited some degree of melting, and unmelted quartz grains were rare. Nearly all quartz grains found on broken, unmelted surfaces of potsherds were also unmelted. On melted pottery and mudbricks, melted quartz has an estimated density of 1 grain per 5 mm2.Melted quartz grains at TeH exhibit a wide range of morphologies. Some show evidence of partial melting that only melted grain edges and not the rest of the grain (Figs. 22, 23). Others displayed nearly complete melting with diffusion into the melted Ca–Al–Si matrix of pottery or mudbrick (Fig. 22). Melted quartz grains commonly exhibit vesiculation caused by outgassing (Figs. 22, 23), suggesting that those grains rose above quartz’s melting point of ~ 1713 °C.Figure 22SEM images of melted quartz grains on melted potsherd from the palace. (a) Highly melted quartz grain from the upper surface of melted pottery; shows flow lines of molten quartz in darker ‘neck’ at upper right; (b) manually constructed EDS-based phase map showing 100% quartz grain (green) embedded in Ca–Al–Si matrix of melted pottery (red); blue marks mixing zone between SiO2 and matrix at approximately  > 1713 °C, the melting point of quartz. Yellow arrow points to area depleted in oxygen, indicating high-temperature transformation to elemental Si mixed with melted SiO2. (c) Highly melted quartz grain; (d) manually constructed EDS-based phase map showing diffusion/mixing zone in blue with arrow pointing to bubble, indicating outgassing as grain reached temperatures above its melting point. (e) Quartz grain that has almost completely melted; (f) manually constructed EDS-based phase map showing the small remnant of a melted quartz grain (green) with a wide mixing zone (blue).Full size imageFigure 23SEM images of melted quartz grains on melted mudbrick from the palace. (a) Highly melted quartz grain; (b) manually constructed EDS-based phase map indicates center is pure SiO2 surrounded by melted mudbrick. Arrow points to vesicles indicating outgassing as grain temperature rose above ~ 1713 °C, the melting point of quartz. (c) The surface of a flattened quartz grain showing flow marks toward the upper right. High temperatures are required to lower the viscosity sufficiently for quartz to flow. (d) Manually constructed EDS-based phase map with an arrow pointing to vesicles indicating outgassing at high temperatures. (e) Close up of grain in panel ‘c’ showing flow marks (schlieren) at arrows. (f) Shattered, melted quartz splattered onto mudbrick meltglass; (g) manually constructed EDS-based phase map indicating that the blue area is SiO2; the yellow area is a shattered, thermally altered Fe-oxide grain.Full size imageAn SEM–EDS elemental map of one melted grain showed that the quartz had begun to dissociate into elemental Si (Fig. 22b). Another grain (Fig. 23c–e) displayed flow marks consistent with exposure to temperatures above 1713 °C where the viscosity of quartz falls low enough for it to flow easily. Another SEM–EDS analysis confirmed that one agglutinated mass of material is 100 wt.% SiO2 (Fig. 23f, g), suggesting that this polycrystalline quartz grain shattered, melted, and partially fused again.Discussion of melted quartzMoore et al.17 reported that during heating experiments, many quartz grains  50-µm-wide remained visually unaltered up to ~ 1700 °C. By 1850 °C, all quartz grains fully melted. These experiments establish a particle-size dependency and confirm confirmed the melting point for  > 50-µm-wide TeH quartz grains between ~ 1700–1850 °C. Melted  > 50-µm-wide quartz grains on the surfaces of melted pottery and mudbrick from the TeH destruction layer indicate exposure to these unusually high temperatures  > 1700 °C.Previously, Thy et al.70 proposed that glass at Abu Hureyra did not form during a cosmic impact, but rather, formed in biomass slag that resulted from thatched hut fires. However, Thy et al. did not determine whether or not high-temperature grains existed in the biomass slag. To test that claim, Moore et al.17 analyzed biomass slag from Africa and found only low-temperature melted grains with melting points of ~ 1200 °C, consistent with a temperature range for biomass slag of 1155–1290 °C, as reported by Thy et al.71. Upon testing the purported impact glass from Abu Hureyra, Moore et al.17 discovered high-temperature mineral grains that melt in the range of 1713° to  > 2000 °C, as are also found in TeH glass. These test results suggest that the melted glass from Abu Hureyra must have been exposed to higher temperatures than those associated with fires in thatched huts. Because of the presence of high-temperature minerals at TeH, we conclude that, as at Abu Hureyra, the meltglass could not have formed simply by burning thatched huts or wood-roofed, mudbrick buildings.Melted Fe- and Si-rich spherulesThe presence of melted spherulitic objects (“spherules”) has commonly been used to help identify and investigate high-temperature airburst/impact events in the sedimentary record. Although these objects are referred to here as “spherules,” they display a wide range of other impact-related morphologies that include rounded, sub-rounded, ovate, oblate, elongated, teardrop, dumbbell, and/or broken forms17,72,73,74,75,76,77,78,79,80,81,82. Optical microscopy and SEM–EDS are commonly used to identify and analyze spherules and the processes by which they are formed. Care is needed to conclusively distinguish high-temperature spherules produced by cosmic impacts from other superficially similar forms. Other such objects that frequently occur in sediments include anthropogenic spherules (typically from modern coal-fired power plants), authigenic framboids (Supporting Information, Fig. S7), rounded detrital magnetite, and volcanic spherules.Spherules in TeH sediment were investigated from stratigraphic sequences that include the MB II destruction layer at four locations: palace, temple, ring road, and wadi (Fig. 24). For the palace (Field UA, Square 7GG), the sequence spanned 28 cm with 5 contiguous samples of sediment ranging from 3-cm thick for the MB II destruction layer to 13-cm thick for some outlying samples. In the palace, 310 spherules/kg (Fig. 24d) were observed in the destruction layer with none found in samples above and below this layer. For the temple (Field LS, Square 42J), 5 continuous samples spanned 43 cm and ranged in thickness from 6 to 16 cm; the MB II layer contained ~ 2345 Fe- and Si-rich spherules/kg with 782/kg in the sample immediately below and none at other levels (Fig. 24c). Six contiguous samples from the ring road (Field LA, Square 28 M) spanned 30 cm with all 5 cm thick; the MB II destruction layer at this location contains 2150 spherules/kg with none detected in younger or older samples (Fig. 24b). Five discontinuous samples from the wadi spanned 170 cm, ranging from 10-cm thick for the destruction layer up to 20-cm thick for other samples; the MB II destruction layer at this location contained 2780 spherules/kg with none in samples from other levels (Fig. 24a, Supporting Information, Table S3). Notably, when melted mudbrick from the ring road was being mounted for SEM analysis, numerous loose spherules were observed within vesicles of the sample, confirming a close association between the spherules and meltglass. At all four locations, the peaks in high-temperature spherule abundances occur in the MB II destruction layer dating to ~ 1650 BCE.Figure 24Spherule abundances. (a)–(d). Number per kg for Fe- and S-rich spherules from 4 locations. Depths are in cm above or below the bottom of the destruction layer.Full size imageSEM images of spherules are shown in Figs. 25, 26, 27 and 28, and compositions are listed in Supporting Information, Table S4. The average spherule diameter was 40.5 µm with a range of 7 to 72 µm. The dominant minerals were Fe oxides averaging 40.2 wt.%, with a range of up to 84.1 wt.%; elemental Fe with a range of up to 80.3 wt.%; SiO2 averaging 20.9 wt.%, ranging from 1.0 to 45.2 wt.%; Al2O3 averaging 7.8 wt.% with a range of up to 15.6 wt.%; and TiO2 averaging 7.1 wt.% with a range of up to 53.1 wt.%. Fourteen spherules had compositions  > 48 wt.% of oxidized Fe, elemental Fe, and TiO2; five spherules contained  75 wt.% Fe with no Ti. Eight of 23 spherules analyzed contained detectable levels of Ti at up to 53.1 wt.%.Figure 25SEM images of mostly silica-rich spherules from TeH. (a)–(d) Representative spherules from the ring road on the lower tall. SEM images of iron-rich spherules. (e)–(f) Fe-rich spherules from the temple complex. (g) temple spherule containing ~ 3.7 wt.% Cr. (h) Broken, vesicular spherule from temple containing 1.4 wt.% Ni and 3.7 wt.% Cr. SEM images of titanium-rich spherules. Ti content of these ranges from 18.9 to 1.2 wt.%, averaging 10.7 wt.%. (i)–(k) Spherules from the ring road. (l) Spherule from the wadi site.Full size imageFigure 26SEM image of rare-earth (REE) spherule. (a) REE-rich 72-µm-wide spherule from the palace, dominantly composed of Fe, La, Ce, and O. (b) Close up of REE blebs found on the spherule. (c)–(f) SEM–EDS elemental maps showing composition. La = 15.6 wt.% and Ce = 21.0 wt.%. Ce is enriched over Fe and La in the middle part of the spherule, as seen in panels ‘d’ through ‘f’.Full size imageFigure 27SEM images of a spherule mainly composed of Fe and Si. (a) Fe–Ti-rich 54-µm-wide spherule from the palace. Spherule displays a protrusion to the left, suggesting aerodynamic shaping when molten, after which the tail detached. (b) A focused ion beam (FIB) was used to section the spherule, revealing inclusions of wassonite or titanium sulfide (TiS; yellow arrows) that are lighter-colored than the matrix. (c)–(f) Color-coded SEM–EDS elemental maps, showing the distribution of Ti, S, Si, and Fe and the location of the TiS grains. The spherule is dominantly composed of Fe and Si with minor amounts of Ti and S found in TiS inclusions.Full size imageFigure 28Fe-rich spherules embedded in meltglass. (a) Optical photomicrograph of a 167-µm-wide piece of meltglass with embedded Fe-rich spherules. (b) SEM image of same grain as in panel ‘a’. Melted quartz grain (Qtz) is embedded in Ca–Al–Si-rich matrix, which has the same composition as melted mudbrick. (c) SEM close-up image of the boxed area and panel ‘b’, showing splattered Fe-rich spherule.Full size imageTwo unusual spherules from the palace contain anomalously high percentages of rare-earth elements (REEs) at  > 37 wt.% of combined lanthanum (La), and cerium (Ce) (Fig. 26), as determined by preliminary measurements using SEM–EDS. Minor oxides account for the rest of the spherules’ bulk composition (Table S1).One 54-µm-wide sectioned spherule contains titanium sulfide (TiS) with a melting point of ~ 1780° C. TiS, known as wassonite, was first identified in meteorites (Fig. 27) and has been reported in impact-related material17,81,83. However, TiS sometimes occurs as an exsolution product forming fine networks in magnetite and ilmenite and can be of terrestrial origin.One unusual piece of 167-µm-wide Ca–Al–Si meltglass contains nearly two dozen iron oxide spherules on its surface (Fig. 28). The meltglass contains a completely melted quartz grain as part of the matrix (Fig. 28b). Most of the spherules appear to have been flattened or crushed by collision with the meltglass while they were still partially molten (Fig. 28c).Discussion of spherules and meltglassMelted materials from non-impact-related combustion have been reported in multiple studies. Consequently, we investigated whether Ca-, Fe-, and Si-rich spherules and meltglass (mudbrick, pottery, plaster, and roofing clay) may have formed normally, rather than from a cosmic impact event. For example, (i) glassy spherules and meltglass are known to form when carbon-rich biomass smolders below ground at ~ 1000° to 1300 °C, such as in midden mounds71. They also form in buried peat deposits84, underground coal seams85, burned haystacks86, and in large bonfires, such as at the Native American site at Cahokia, Illinois, in the USA87. (ii) Also, ancient fortifications (hillforts) in Scotland and Sweden, dating from ~ 1000 BCE to 1400 AD, have artificially vitrified walls that melted at temperatures of ~ 850° to 1000 °C88. (iii) Partially vitrified pottery and meltglass derived from the melting of wattle and daub (thatch and clay) with estimated temperatures of ~ 1000 °C have been reported in burned houses of the Trypillia culture in Ukraine89,90. (iv) Vitrified mudbricks and pottery that melted at 17 investigated biomass glass from midden mounds in Africa and found no high-temperature minerals. For this contribution, we used SEM–EDS to examine aluminosilicate meltglass from an underground peat fire in South Carolina, USA; meltglass in coal-fired fly ash from New Jersey, USA; and mining slag from a copper mine in Arizona, USA. All these meltglass examples display unmelted quartz and contain no other high-temperature melted grains, consistent with low-temperature melting at  97% wt.% FeO, as are found at TeH. Nor can these low temperatures produce meltglass and spherules embedded with melted zircon (melting point = 1687 °C), chromite (2190 °C), quartz (1713 °C), platinum (1768 °C), and iridium (2466 °C). Moore et al.17 confirmed that the melting of these high-temperature minerals requires minimum temperatures of ~ 1500° to 2500 °C.This evidence demonstrates that although the matrix of the spherules and meltglass at TeH likely experienced incipient melting at temperatures lower than ~ 1300 °C, this value represents only the minimum temperature of exposure, because the high-temperature minerals embedded in them do not melt at such low temperatures. Instead, the spherules and meltglass at TeH must have reached temperatures greater than ~ 1300 °C, most likely involving brief exposure to ambient temperatures of ~ 2500 °C, the melting point of iridium. These temperatures far exceed those characteristic of city fires and other types of biomass burning. In summary, all of this evidence is consistent with very high temperatures known during cosmic impacts but inconsistent with other known natural causes.Calcium carbonate spherules and plasterIn sediments of the destruction layer, we observed amber-to-off-white-colored spherules (Fig. 29) at high concentrations of ~ 240,000/kg in the palace, ~ 420/kg in the temple, ~ 60/kg on the ring road, and ~ 910/kg in the wadi (Supporting information, Table S2). In all four profiles, the spherules peak in the destruction layer with few to none above or below. Peak abundances of calcium carbonate spherules are closely associated with peak abundances of plaster fragments, which are the same color. By far the most spherules (~ 250× more) occurred in the destruction layer of the palace, where excavations showed that nearly every room and ceiling was surfaced with off-white lime-based plaster. Excavators uncovered high-quality lime plaster fragments still adhering to mudbricks inside the MB II palace complex, and in one palace room, we uncovered fragments of melted plaster (Fig. 29e). In contrast, lime plaster was very rarely used in buildings on the lower tall, including those near the temple.Figure 29Images of calcium carbonate spherules and melted plaster from TeH. (a) Photomicrographs of translucent, amber-colored CaCO3 spherules from the destruction layer in the palace. (b) SEM image of 83-µm carbonate spherule with impact or outgassing crater at arrow. (c) Photomicrograph of ~ 2-mm-wide piece of partially melted palace plaster from oxygen/propylene torch test, showing incipient melting at 1500 °C. Arrows point to hemispheric droplets emerging as spherules. (d) 142-µm cluster of 8 carbonate spherules with apparent impact or outgassing crater at arrow. (e) 64 × 30 mm piece of melted plaster that broke off the palace wall and became melted. It is composed only of calcium, carbon, and oxygen.Full size imageTo explore a potential connection between plaster and spherules, we performed SEM–EDS on samples of the palace plaster. Comparison of SEM–EDS analyses shows that the plaster composition has a  > 96% similarity to the spherule composition: CaCO3 = 71.4 wt.% in plaster versus 68.7 wt.% in the spherules; elemental C = 23.6 versus 26.3 wt.%; SiO2 = 2.4 versus 1.8 wt.%; MgO = 1.7 versus 2.0 wt.%; and SO3 = 0.94 versus 1.2 wt.%. The high carbon percentage and low sulfur content indicate that the plaster was made from calcium carbonate and not gypsum (CaSO4·2H2O). SEM imaging revealed that the plaster contains small plant parts, commonly used in plaster as a binder, and is likely the source of the high abundance of elemental C in the plaster. Inspection showed no evidence of microfossils, such as coccoliths, brachiopods, and foraminifera. The morphology of the spherules indicates that they are not authigenic or biological in origin.Discussion of carbonate plaster and spherulesOne of the earliest known uses of CaCO3-based plaster was in ~ 6750 BCE at Ayn Ghazal, ~ 35 km from TeH in modern-day Amman, Jordan97. At that site, multi-purpose lime plaster was used to make statues and figurines and to coat the interior walls of buildings. Because the production of lime-based plaster occurred at least 3000 years before TeH was destroyed, the inhabitants of TeH undoubtedly were familiar with the process. Typically, lime powder was produced in ancient times by stacking wood/combustibles interspersed with limestone rocks and then setting the stack on fire. Temperatures of ~ 800–1100 °C were required to transform the rocks into crumbly chalk, which was then mixed with water to make hydrated lime and plastered onto mudbrick walls97.At TeH, fragments of CaCO3-based plaster are intermixed in covarying abundances with CaCO3-based spherules with both compositions matching to within 96%. This similarity suggests that the carbonate spherules are derived from the plaster. We infer that the high-temperature blast wave from the impact event stripped some plaster from the interior walls of the palace and melted some into spherules. However, it is difficult to directly melt CaCO3, which gives off CO2 at high temperatures and decomposes into lime powder. We investigated this cycle in a heating experiment with an oxygen/propylene torch and found that we could decompose the plaster at ~ 1500 °C, the upper limit of the heating test, and begin incipient melting of the plaster. The heated plaster produced emergent droplets at that temperature but did not transform into free spherules (Supporting Information, Text S2).Similar spherules have been reported from Meteor Crater, where spherules up to ~ 200 μm in diameter are composed entirely of CaCO3 formed from a cosmic impact into limestone98,99. One of several possible hypotheses for TeH is that during the impact event, the limestone plaster converted to CaO with an equilibrium melting point of 2572 °C. However, it is highly likely that airborne contaminants, such as sodium and water vapor, reacted with the CaO and significantly lowered the melting point, allowing spherule formation at ≥ 1500 °C.The proposed chemical sequence of events of plaster formation and the later impact are as follows:

    1.

    Limestone was heated to ~ 800–1100 °C, decomposing to quicklime:

    $${text{CaCO}}_{{3}} to {text{ CaO }} + {text{ CO}}_{{2}}$$

    2.

    Quicklime was mixed with water to make a wet plaster:$${text{CaO }} + {text{ H}}_{{2}} {text{O }} to {text{ Ca}}left( {{text{OH}}} right)_{{2}}$$

    3.

    The plaster hardened and slowly absorbed CO2 to revert to CaCO3:$${text{Ca}}left( {{text{OH}}} right)_{{2}} + {text{ CO}}_{{2}} to {text{ H}}_{{2}} {text{O }} + {text{ CaCO}}_{{3}}$$

    4.

    The high-temperature impact event melted some plaster into spherules:$${text{CaCO}}_{{3}} to {text{ CaO }}left( {{text{spherules}}} right) , + {text{ CO}}_{{2}} left( { > {15}00^circ {text{C}}} right)$$

    5.

    CaO spherules slowly absorbed CO2 to revert to CaCO3:$${text{Ca }} + {text{ CO}}_{{2}} to {text{ CaCO}}_{{3}} left( {text{as spherules}} right)$$

    General discussion of all spherulesAccording to the previous investigations17,72,81,82, Fe-rich spherules such as those found at TeH typically melt at  > 1538 °C, the melting point of iron (Table 1). Because of the presence of magnetite (Fe3O4) in the REE spherule, its melting point is inferred to be  > 1590 °C (Table 1). The Si-rich spherules are similar in composition to TeH sediment and mudbrick, and thus, we propose that they were derived from the melting of these materials at  > 1250 °C. The carbonate-rich spherules likely formed at  > 1500 °C.Several studies describe a mechanism by which spherules could form during a low-altitude cosmic airburst100,101. When a bolide enters Earth’s atmosphere, it is subjected to immense aerodynamic drag and ablation, causing most of the object to fragment into a high-temperature fireball, after which its remaining mass is converted into a high-temperature vapor jet that continues at hypervelocity down to the Earth’s surface. Depending on the altitude of the bolide’s disruption, this jet is capable of excavating unconsolidated surficial sediments, melting them, and ejecting the molten material into the air as Si- and Fe-rich spherules and meltglass. This melted material typically contains a very low percentage (17.Melted zircons in pottery and mudbricks were observed (Fig. 30) at an estimated density of 1 grain per 20 mm2. On highly melted surfaces, nearly all zircons showed some degree of melting. In contrast, nearly all zircons found on broken interior surfaces were unmelted (Fig. 30d), except those within ~ 1 mm of melted surfaces. This implies that the temperature of the surrounding atmosphere was higher than the internal temperatures of the melting objects. Unmelted potsherds displayed only unmelted minerals.Figure 30SEM images of melted zircon grains. (a) Melted TeH zircon grain with bubbles at yellow arrow due to high-temperature dissociation and/or entrapped porosity. (b) Melted TeH zircon grain decorated with bubbles along the fracture line at upper arrow; arrows labeled “Bd” point to bright granular baddeleyite, ZrO2, formed during the high-temperature dissociation of zircon. (c) Almost fully melted TeH zircon grain mixing into the Ca–Al–Si matrix. (d) A typical unmelted zircon grain from TeH with straight, euhedral edges. Grain shows cracks on the top surface from possible thermal or mechanical damage. (e) For comparison, from cosmic airburst/impact at Dakhleh Oasis in Egypt: melted zircon decorated with lines of bubbles (arrow).Full size imageThe melted zircons in TeH materials exhibit a wide range of morphologies. Most showed evidence of sufficient melting to alter or destroy the original distinctive, euhedral shape of the grains. Also, the grains were often decorated with vesicles that were associated with fractures (Fig. 30a, c).Stoichiometric zircon contains 67.2 wt.% and 32.8 wt.% ZrO2 and SiO2 respectively, but in several TeH samples, we observed a reduction in the SiO2 concentration due to a loss of volatile SiO from the dissociation of SiO2. This alteration has been found to occur at 1676 °C, slightly below zircon’s melting point of 1687 °C103. This zircon dissociation leads to varying ZrO2:SiO2 ratios and to the formation of distinctive granular textures of pure ZrO2, also known as baddeleyite104 (Figs. 30, 31, 32). With increasing time at temperature, zircon will eventually convert partially or completely to ZrO2. Nearly all zircons observed on the surfaces of melted materials were either melted or showed some conversion to baddeleyite. We observed one zircon grain (Fig. 32d–e) displaying granular ZrO2 associated with three phases that span a wide range of SiO2 concentrations, likely formed at temperatures above 1687 °C. This extreme temperature and competing loss of SiO over an inferred duration of only several seconds led to complex microstructures, where grains melted, outgassed, and diffused into the surrounding matrix.Figure 31SEM images of other melted zircon grains in palace potsherd. (a) Two melted zircon grains adjacent to a previously discussed melted quartz grain; (b) close-up of same zircon grains; (c) manually constructed EDS-based phase map showing baddeleyite grains in green. The blue area represents melted zircon, while the red background represents the Ca–Al–Si matrix of the melted pottery. (d) Manually constructed EDS-based phase map of zircon grain showing small baddeleyite grains in green at the top.Full size imageFigure 32SEM images of melted zircon grains in mudbrick meltglass from the palace. (a) Thermally distorted zircon grain with a “hook” that resulted from the flow of molten material at  > 1687 °C; the darker area represents unrelated debris on top of zircon. (b) Manually constructed EDS-based phase map showing baddeleyite grains (Bd = ZrO2) in green, zircon in blue, and melted mudbrick in red. (c) Zircon grain showing limited thermal alteration, yet sufficient to cause dissociation into bright baddeleyite grains at ~ 1676 °C. (d) Zircon grain exhibiting three phases of thermal alteration, as shown in detail in (e), where a manually constructed EDS-based phase map demonstrates that high temperatures caused bubbling in the center band of zircon (purple = Hi) producing sub-micron-sized grains of baddeleyite (e.g., at arrow). Medium temperatures caused zircon to melt and flow (blue = Lo), and lower temperatures at the left end of grain produced thermal cracks (medium blue = Med). The green area marks the high-Si diffusion zone resulting from the dissociation of zircon. (f) Zircon grain from TeH has been fully converted to granular baddeleyite.Full size imageDiscussion of melted zirconZircon grains have a theoretical, equilibrium melting point of ~ 1687 °C. Under laboratory heating17, zircon grains showed no detectable alteration in shape at ~ 1300 °C but displayed incipient melting of grain edges and dissociation to baddeleyite beginning at ~ 1400 °C with increasing dissociation to 1500 °C17. Most zircon grains  120 µm were still recognizable but displayed considerable melting17. These experiments establish a lower melting range for TeH zircon grains of ~ 1400° to 1500 °C.Patterson105 showed that zircon dissociation becomes favorable above 1538 °C and particles between 1 and 100 µm in size melted and dissociated when passing through a plasma, forming spherules with various amounts of SiO2 glass containing ZrO2 crystallites ranging in size from 5 nm to 1 µm. The majority of zircon crystals were monoclinic, but tetragonal ZrO2 was observed for the smaller crystallite sizes. Residence times were in the order of 100 ms, and the specific ZrO2 to SiO2 ratio within each spherule depended on the particle’s time at temperature106.Bohor et al.104 presented images of impact-shocked zircons from the K-Pg impact event at 66 Ma that are morphologically indistinguishable from those at TeH. Decorated zircon grains are uncommon in nature but commonly associated with cosmic impact events, as evidenced by two partially melted zircons from the known airburst/impact at Dakhleh Oasis, Egypt (Fig. 30e). The presence of bubbles indicates that temperatures reached at least 1676 °C, where the zircon began to dissociate and outgas. Similar dissociated zircon grains also have been found in tektite glass and distal fallback ejecta (deposited from hot vapor clouds). Granular baddeleyite-zircon has been found in the ~ 150-km-wide K-Pg impact crater107 and the 28-km-wide Mistatin Lake crater in Canada107. The dissociation of zircon requires high temperatures of ~ 1676 °C104, implying that TeH was exposed to similar extreme conditions.Melted chromite grainsExamples of melted chromite, another mineral that melts at high temperatures, were also observed. Thermally-altered chromite grains were observed in melted pottery, melted mudbricks, and melted roofing clay from the palace. Their estimated density was 1 grain per 100 mm2, making them rarer than melted zircon grains. The morphologies of chromite grains range from thermally altered (Fig. 33a) to fully melted (Fig. 33b, d). One chromite grain from the palace displays unusual octahedral cleavage or shock-induced planar fractures (Fig. 33b). The typical chemical composition for chromite is 25.0 wt.% Fe, 28.6 wt.% O, and 46.5 wt.% Cr, although the Cr content can vary from low values to ~ 68 wt.%. SEM images reveal that, as chromite grains melted, some Cr-rich molten material migrated into and mixed with the host melt, causing an increase in Cr and Fe, and corresponding depletion of Si. The ratio of Cr to Fe in chromite affects its equilibrium melting point, which varies from ~ 1590 °C for a negligible amount of Cr up to ~ 2265 °C for ~ 46.5 wt.% Cr as in chromite or chromian magnetite ((Fe)Cr2O4), placing the melting point of TeH chromite at close to 2265 °C.Figure 33SEM images of melted chromite grains found on a melted potsherd from the palace. (a) Shattered, polycrystalline chromite grain that appears to have become agglutinated while molten. (b) Melted chromite grain, displaying cleavage (lamellae) suggestive of thermal and/or mechanical shock metamorphism at ~ 12 GPa; (c) close-up image showing angles between three sets of crystalline cleavage; (d) manually constructed EDS-based phase map showing chromite (purple) embedded in Ca–Al–Si matrix. The lines mark three sets of cleavage extending across the entire grain. A melt tail merging with the matrix is observed to trail off to the upper right of the grain at arrow.Full size imageDiscussion of melted chromiteChromite grains theoretically melt at ~ 2190 °C. Moore et al.17 reported the results of heating experiments in which chromite grains in bulk sediment showed almost no thermal alteration up to ~ 1500 °C (Supporting Information, Fig. S8). At temperatures of ~ 1600 °C and ~ 1700 °C, the shapes of chromite grains were intact but exhibited limited melting of grain edges. These results establish a range of ~ 1600° to 1700 °C for melting chromite grains.Because chromite typically does not exhibit cleavage, the grain exhibiting this feature is highly unusual. Its origin is unclear but there are several possibilities. The cleavage may have resulted from exsolution while cooling in the source magma. Alternately, the lamellae may have resulted from mechanical shock during a cosmic impact, under the same conditions that produced the shocked quartz, as reported by Chen et al.108 for meteorites shocked at pressures of ~ 12 GPa. Or they may have been formed by thermal shock, i.e., rapid thermal loading followed by rapid quenching. This latter suggestion is supported by the observation that the outside glass coating on the potsherd does not exhibit any quench crystals, implying that the cooling progressed very rapidly from liquid state to solid state (glass). This is rare in terrestrial events except for some varieties of obsidian, but common in melted material produced by atomic detonations (trinitite), lightning strikes (fulgurites), and cosmic airburst/impacts (meltglass)81. More investigations are needed to determine the origin of the potentially shocked chromite.Nuggets of Ir, Pt, Ru, Ni, Ag, Au, Cr, and Cu in meltglassUsing SEM–EDS, we investigated abundances and potential origins (terrestrial versus extraterrestrial) of platinum-group elements (PGEs) embedded in TeH meltglass, in addition to Ni, Au, and Ag. Samples studied include melted pottery (n = 3); melted mudbrick (n = 6); melted roofing clay (n = 1), and melted lime-based building plaster (n = 1). On the surfaces of all four types of meltglass, we observed melted metal-rich nuggets and irregularly shaped metallic splatter, some with high concentrations of PGEs (ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt)) and some nuggets enriched in silver (Ag), gold (Au), chromium (Cr), copper (Cu), and nickel (Ni) with no PGEs (Figs. 34, 35). Importantly, these metal-rich nuggets were observed only on the top surfaces of meltglass and not inside vesicles or on broken interior surfaces.Figure 34SEM images of nuggets of melted metals in mudbrick meltglass from the palace. (a)–(c) Pt-dominant TeH nuggets enriched in ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). (d)–(f) Fe-dominant TeH splatter is also enriched in PGEs. (g)–(i) Nuggets enriched in varying percentages and combinations of nickel (Ni), chromium (Cr), copper (Cu), and silver (Ag).Full size imageFigure 35Average composition of selected metal-rich nuggets from the palace. (a-h) Silver (Ag), gold (Au), chromium (Cr), copper (Cu), iridium (Ir), nickel (Ni), platinum (Pt), and ruthenium (Ru), showing wt.% in selected nuggets from the destruction layer of the palace (7GG).Full size imageUsing SEM–EDS, we identified variable concentrations and assemblages of PGEs. The metallic particles appear to have melted at high temperatures based on the minimum melting points of the elements: iridium at 2466 °C; platinum = 1768 °C; and ruthenium = 2334 °C, indicating a temperature range of between approximately 1768° and 2466 °C. Our investigations also identified two PGE groups, one with nuggets in which Pt dominates Fe and the other with metallic splatter in which Fe dominates Pt.Pt-dominant nuggetsWe conducted 21 measurements on Pt-dominant TeH nuggets on meltglass (Fig. 34a–c). The nuggets average ~ 5 µm in length (range 1–12 µm) with an estimated concentration of 1 nugget per 10 mm2. For these nuggets, Fe concentrations average 1.0 wt.%, Ir = 6.0 wt.%, and Pt = 44.9 wt.% (Supporting Information, Tables S6, S7). The presence of PGEs was confirmed by two SEM–EDS instruments that verified the accurate identification of PGEs through analyses of several blanks that showed no PGE content. Some concentrations are low ( Pt or Pt  > Fe were found to be consistent between the two instruments.To determine the source of TeH nuggets and splatter, we constructed ternary diagrams. Terrestrial PGE nuggets are commonly found in ore bodies that when eroded, can become concentrated in riverine placer deposits, including those of the Jordan River floodplain. To compare Fe–Ir–Pt relationships among the TeH nuggets, we compiled data from nearby placer deposits in Greece109, Turkey110,111, and Iraq112, along with distant placers in Russia113,114,115, Canada116, and Alaska, USA117,118. The compilation of 109 Pt-dominant placer nuggets indicates that the average Fe concentration is 8.2 wt.%, Ir = 2.9 wt.%, and Pt = 80.3 wt.%. For the Ir-dominant placer nuggets (n = 104), Fe = 0.4 wt.%, Ir = 47.8 wt.%, and Pt = 5.3 wt.% (Supporting Information, Tables S6, S7). The ternary diagrams reveal that the values for Pt-dominant TeH nuggets overlap with Pt-dominant terrestrial placer nuggets but the Fe-dominant splatter is dissimilar (Fig. 36a).Figure 36Ternary diagrams for PGE-rich grains. Comparison of Fe–Ir–Pt ratios of PGE-rich nuggets fused into the surfaces of TeH meltglass. There are two populations of TeH nuggets (red diamonds): Pt-dominant at #1 (top) and Fe-dominant at #2 (bottom left). (a) TeH Pt-dominant nugget group #1 (red diamonds) overlaps Pt-dominant but not Ir-dominant nuggets (blue circles) from placers and ophiolite deposits in Greece, Turkey, Iraq, Russia, Canada, and the USA. The Fe-dominant TeH nugget group #2 is geochemically dissimilar to all known placer nuggets, suggesting that these nuggets are not placer-derived. (b) TeH nuggets (red diamonds) compared to nuggets in carbonaceous chondrites (light gray circles) and nuggets in cosmic spherules (dark gray circles). Pt-dominant TeH nuggets in group #1 are a poor match, but Fe-dominant TeH splatter is an excellent match with chondritic meteorites and cosmic spherules, suggesting that they may be extraterrestrial in origin and that the impactor may have been a chondrite. (c) TeH nuggets (red diamonds) are a poor match for most nuggets in iron meteorites (purple circles), but an excellent match for nuggets found in comets (green circles). These data suggest that Fe-dominant PGE nuggets at TeH may have originated from cometary material. (d) Semi-log comparison of PGEs ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt), normalized to CI chondrites. TeH Fe-dominant splatter (red line) is an excellent match for PGE nuggets in carbonaceous chondrites (blue line), cosmic spherules (purple line), micrometeorites (dark blue line), and iron meteorites (gray line). In contrast, TeH PGE nuggets are a poor match for bulk material from CI-normalized CV-type chondrites (e.g., Allende; orange line) and CM-type chondrites (e.g., Murchison; brown line).Full size imageFe-dominant splatterWe made 8 measurements on TeH Fe-dominant PGE splatter (Fig. 34d–f). The metal-rich areas average ~ 318 µm in length (range 20–825 µm) with an estimated concentration of 1 PGE-rich bleb per mm2, 100× more common than the TeH nuggets. Average concentrations are Fe = 17.5 wt.%, Ir = 4.7 wt.%, and Pt = 1.5 wt.%.We explored a potential extraterrestrial origin by constructing ternary diagrams for comparison of TeH Fe-dominant splatter with known meteorites and comets (Fig. 36b, c). We compiled data for 164 nuggets extracted from carbonaceous chondritic meteorites (e.g., Allende, Murchison, Leoville, and Adelaide)119,120,121,122, seafloor cosmic spherules123,124, iron meteorites122,125, Comet Wild 2126, and cometary dust particles126. For average weight percentages, see Supporting Information, Tables S6, S7. The Fe-dominant TeH splatter (Fig. 36b) closely matches nuggets from carbonaceous chondrites and cosmic spherules but is a weak match for most iron meteorites (Fig. 36c). In addition, the TeH nuggets are similar to four cometary particles, two of which were collected during the Stardust flyby mission of Comet Wild 2 in 2004126. For average weight percentages, see Supporting Information, Tables S6, S7.To further explore an extraterrestrial connection for TeH Fe-dominant splatter, we compiled wt.% data for TeH PGEs (Rh, Ru, Pd, Os, Ir, and Pt) and normalized them to CI chondrites using values from Anders and Grevasse127. We compared those values to CI-normalized nuggets in carbonaceous chondrites, including CV-type chondrites (e.g., Allende) and CM types (e.g., Murchison)119,120,122,128,129,130,131, seafloor cosmic spherules124, micrometeorites123, and iron meteorites122,125. These results are shown in Fig. 36d.The TeH Fe-dominant splatter closely matches all types of extraterrestrial material with a similar pattern among all data sets: Pd has the lowest normalized values and Os and/or Ir have the highest, closely followed by Pt. The TeH splatter was also compared to the CI-normalized wt.% of bulk meteoritic material from CV- and CM-type chondrites (Fig. 36d). The composition of TeH splatter shows poor correlation with bulk chondritic materials, although the splatter is an excellent geochemical match with the PGE nuggets inside them. In summary, the CI normalization of PGEs suggests an extraterrestrial origin for the Fe-dominant TeH splatter, just as the ternary diagrams also suggest an extraterrestrial source. The correspondence of these two independent results suggests that the quantification of PGEs is sufficiently accurate in this study.Another unusually abundant element, Mo, is also associated with Fe-dominant splatter but not with Pt-dominant nuggets. Mo averages 0.3 wt.% with up to 1.1 wt.% detected in Fe-dominant splatter but with none detected in TeH Pt-dominant nuggets. Mo also is not reported in any terrestrial placer nuggets and occurs in low concentrations (less than ~ 0.02 wt.%) in iron meteorites. In contrast, Mo is reported at high concentrations in PGE nuggets from carbonaceous chondrites (~ 11.5 wt.%), cosmic spherules (0.6 wt.%), and cometary material (5.8 wt.%). Thus, the Mo content of TeH splatter appears dissimilar to terrestrial material but overlaps values of known cosmic material, suggesting an extraterrestrial origin.Based on the volume and weight of the meltglass, we estimate that the extraterrestrial-like metallic TeH Fe-dominant splatter represents  More

  • in

    “Indirect development” increases reproductive plasticity and contributes to the success of scyphozoan jellyfish in the oceans

    1.Cartwright, P. et al. Exceptionally preserved jellyfishes from the middle Cambrian. PLoS One 2, e1121 (2007).ADS 
    Article 

    Google Scholar 
    2.Walcott, C. D. Cambrian Geology and Paleontology II: No. 3—Middle Cambrian Holothurians and Medusae Vol. 3 (Smithsonian Institution, 1911).
    Google Scholar 
    3.Willoughby, R. H. & Robison, R. A. Medusoids from the Middle Cambrian of Utah. J. Paleontol. 53, 494–500 (1979).
    Google Scholar 
    4.Rigby, S. & Milsom, C. V. Origins, evolution, and diversification of zooplankton. Annu. Rev. Ecol. Syst. 31, 293–313 (2000).Article 

    Google Scholar 
    5.Young, G. A. & Hagadorn, J. W. The fossil record of cnidarian medusae. Palaeoworld 19, 212–221 (2010).Article 

    Google Scholar 
    6.Technau, U. & Steele, R. E. Evolutionary crossroads in developmental biology: Cnidaria. Development 138, 1447 (2012).Article 

    Google Scholar 
    7.Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).Article 

    Google Scholar 
    8.Hagadorn, J. W., Dott, R. H. & Damrow, D. Stranded on a Late Cambrian shoreline: Medusae from central Wisconsin. Geology 30, 147–150 (2002).ADS 
    Article 

    Google Scholar 
    9.Boero, F. Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and Reviews. General Fisheries Commission for the Mediterranean, Vol. 92 (FAO, Rome, 2013).10.Brotz, L., Cheung, W., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish populations: Trends in large marine ecosystems. Hydrobiologia 690, 3–20 (2012).Article 

    Google Scholar 
    11.Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    12.Arai, M. Pelagic coelenterates and eutrophication: A review. Hydrobiologia 451, 69–87. https://doi.org/10.1023/A:1011840123140 (2001).Article 

    Google Scholar 
    13.Purcell, J. E., Malej, A. & Benović, A. in Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Seas Vol. 55 Coastal and Estuarine Studies Ch. 8, 241–263 (American Geophysical Union, 1999).14.Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782. https://doi.org/10.1111/j.1365-2486.2010.02352.x (2011).ADS 
    Article 

    Google Scholar 
    15.Richardson, A. J., Bakun, A., Hays, G. C. & Gibbons, M. J. The jellyfish joyride: Causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24, 312–322 (2009).Article 

    Google Scholar 
    16.Lucas, C. H., Graham, W. M. & Widmer, C. Jellyfish life histories: Role of polyps in forming and maintaining scyphomedusa populations. Adv. Mar. Biol. 63, 133–196 (2012).Article 

    Google Scholar 
    17.Helm, R. R. Evolution and development of scyphozoan jellyfish. Biol. Rev. 93, 1228–1250 (2018).Article 

    Google Scholar 
    18.Jarms, G. & Morandini, A. C. World Atlas of Jellyfish (Dölling und Galitz Verlag, Germany, 2019).
    Google Scholar 
    19.Piraino, S., Boero, F., Aeschbach, B. & Schmid, V. Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol. Bull. 180, 302–312 (1996).Article 

    Google Scholar 
    20.De Vito, D., Piraino, S., Schmich, J., Bouillon, J. & Boero, F. Evidence of reverse development in Leptomedusae (Cnidaria, Hydrozoa): the case of Laodicea undulata (Forbes and Goodsir 1851). Mar. Biol. 149, 339–346 (2006).Article 

    Google Scholar 
    21.He, J., Zheng, L., Zhang, W. & Lin, Y. Life cycle reversal in Aurelia sp.1 (Cnidaria, Scyphozoa). PLoS One 10, e0145314 (2015).Article 

    Google Scholar 
    22.Sandrini, L. R. & Avian, M. Biological cycle of Pelagia noctiluca: Morphological aspects of the development from planula to ephyra. Mar. Biol. 74, 169–174. https://doi.org/10.1007/BF00413920 (1983).Article 

    Google Scholar 
    23.Jarms, G., Båmstedt, U., Tiemann, H., Martinussen, M. B. & Fosså, J. H. The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronatae). Sarsia 84, 55–65 (1999).Article 

    Google Scholar 
    24.Dawson, M. N. & Hamner, W. M. A character-based analysis of the evolution of jellyfish blooms: Adaptation and exaptation. Hydrobiologia 616, 193–215. https://doi.org/10.1007/s10750-008-9591-x (2009).Article 

    Google Scholar 
    25.Ceh, J., Gonzalez, J., Pacheco, A. S. & Riascos, J. M. The elusive life cycle of scyphozoan jellyfish—Metagenesis revisited. Sci. Rep. 5, 12037. https://doi.org/10.1038/srep12037. http://www.nature.com/srep/2015/150708/srep12037/abs/srep12037.html#supplementary-information (2015).26.Campos, L., Gonzállez, K. & Ceh, J. First report of a precocious form of strobilation in a jellyfish, the South American Pacific sea nettle Chrysaora plocamia. Mar. Biodivers. 50, 85 (2020).Article 

    Google Scholar 
    27.Henroth, L. & Grondähl, F. On the biology of Aurelia aurita (L.) 1. Release and growth of Aurelia aurita (L.) ephyrae in the Gullmar Fjiord, western Sweden, 1982–83. Ophelia 22, 189–199 (1983).Article 

    Google Scholar 
    28.Hirai, E. On the developmental cycles of Aurelia aurita and Dactylometra pacifica. Bull. Mar. Biol. Stn Asamushi IX, 81 (1958).
    Google Scholar 
    29.Kakinuma, Y. An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull. Mar. Biol. Stn. Asamushi XV, 101–113 (1975).
    Google Scholar 
    30.Yasuda, T. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-XI. An observation on ephyra formation. Publ. Seto Mar. Biol. Lab. XXII, 75–80 (1975).Article 

    Google Scholar 
    31.Suzuki, K. S. et al. Seasonal alternation of the ontogenetic development of the moon jellyfish Aurelia coerulea in Maizuru Bay, Japan. PLoS One 14, e0225513. https://doi.org/10.1371/journal.pone.0225513 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Avian, M. In Workshop on Jellyfish in the Mediterranean Sea Vol. 2 (eds Rottini Sandrini, L. & Avian, M.) 47–59 (Nova Thalassia, 1986).
    Google Scholar 
    33.Costello, J. et al. Project Meduza in the context of its historical time. Ann. Ser. Hist. Nat. 19, 1–18 (2009).
    Google Scholar 
    34.Margiotta, F. et al. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. Mar. Environ. Res. 160, 104980 (2020).CAS 
    Article 

    Google Scholar 
    35.Schiariti, A. et al. Asexual reproduction strategies and blooming potential in Scyphozoa. Mar. Ecol. Prog. Ser. 510, 241–253 (2014).ADS 
    Article 

    Google Scholar 
    36.Yasuda, T. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-IV. Monthly change in the bell-length composition and breeding season. Bull. Jpn. Soc. Sci. Fish. 37, 364–370 (1971).Article 

    Google Scholar 
    37.Suryan, R. M. et al. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales. Prog. Oceanogr. 81, 214–222 (2009).ADS 
    Article 

    Google Scholar 
    38.Dawson, M. N. Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar. Biol. 143, 369–379 (2003).Article 

    Google Scholar 
    39.Benović, A. et al. Ecological characteristics of the Mljet Island seawater lakes (South Adriatic Sea) with special reference to their resident population of medusae. Sci. Mar. 64, 197–206 (2000).Article 

    Google Scholar 
    40.Prieto, L., Astorga, D., Navarro, G. & Ruiz, J. Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5, e13793. https://doi.org/10.1371/journal.pone.0013793 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Purcell, J. et al. Temperature effects on asexual reproduction rates of scyphozoan polyps from the NW Mediterranean Sea. Hydrobiologia 690, 169–180 (2012).CAS 
    Article 

    Google Scholar 
    42.Kikinger, R. Cotylorhiza tuberculata (Cnidaria: Scyphozoa)—Life history of a stationary population. PSZN Mar. Ecol. 13, 333–362 (1992).Article 

    Google Scholar 
    43.Djeghri, N., Pondaven, P., Stibor, H. & Dawson, M. N. Review of the diversity, traits, and ecology of zooxanthellate jellyfishes. Mar. Biol. 166, 147 (2019).Article 

    Google Scholar 
    44.Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1999).Article 

    Google Scholar  More