Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L.
1.Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B 285, 20182047 (2018).PubMed
PubMed Central
Article
Google Scholar
2.Moritz, C. & Agudo, R. The future of species under climate change: Resilience or decline?. Science 341, 504–508 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
3.Parmesan, C. & Hanley, M. E. Plants and climate change: Complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed
PubMed Central
Article
Google Scholar
4.Soltis, P. S. & Soltis, D. E. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051–7057 (2000).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
5.Barker, M. S., Husband, B. C. & Chris Pires, J. Spreading winge and flying high: The evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103, 1139–1145 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Van De Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
7.Madlung, A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity (Edinb) 110, 99–104 (2013).CAS
Article
Google Scholar
8.Soltis, D. E., Visger, C. J., Marchant, B. D. & Soltis, P. S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 103, 1146–1166 (2016).PubMed
Article
PubMed Central
Google Scholar
9.Ramsey, J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Oswald, B. P. & Nuismer, S. L. Neopolyploidy and diversification in Heuchera grossulariifolia. Evolution 65, 1667–1679 (2011).PubMed
PubMed Central
Article
Google Scholar
11.Kolář, F., Čertner, M., Suda, J., Schönswetter, P. & Husband, B. C. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2017.09.011 (2017).Article
PubMed
PubMed Central
Google Scholar
12.Fowler, N. L. & Levin, D. A. Critical factors in the establishment of allopolyploids. Am. J. Bot. 103, 1236–1251 (2016).PubMed
Article
PubMed Central
Google Scholar
13.Husband, B. C., Baldwin, S. J. & Suda, J. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes (eds Leitch, I. et al.) 255–276 (Springer, 2013).Chapter
Google Scholar
14.Te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45 (2012).Article
Google Scholar
15.Watanabe, K. The cytogeography of the genus Eupatorium (Compositae)—A review. Plant Species Biol. 1, 99–116 (1986).CAS
Article
Google Scholar
16.Novak, S. J., Soltis, D. E. & Soltis, P. S. Ownbey’s Tragopogons: 40 years later. Am. J. Bot. 78, 1586–1600 (1991).Article
Google Scholar
17.Van Dijk, P. & Bakx-Schotman, T. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol. Ecol. 6, 345–352 (1997).Article
Google Scholar
18.Martin, S. L. & Husband, B. C. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922 (2009).Article
Google Scholar
19.Suda, J., Kron, P., Husband, B. C. & Trávníček, P. Flow cytometry and ploidy: Applications in plant systematics, ecology and evolutionary biology. in Flow Cytometry with Plant Cells 103–130 (Wiley, 2007). https://doi.org/10.1002/9783527610921.ch5.20.Ramsey, J. & Ramsey, T. S. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 1–76 (2014).Article
Google Scholar
21.Goldblatt, P. Polyploidy in angiosperms: Monocotyledons. In Polyploidy. Basic Life Sciences Vol. 13 (ed. Lewis, W. H.) 219–239 (Springer, 1980).
Google Scholar
22.Levy, A. A. & Feldman, M. The impact of polyploidy on grass genome evolution. Plant Physiol. 130, 1587–1593 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Kellogg, A. Flowering Plants Monocots Poaceae Vol. 13 (Springer, 2015).
Google Scholar
24.Estep, M. C. et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl. Acad. Sci. 111, 15149–15154 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
25.Minaya, M. et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: Range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 44, 1980–1993 (2017).Article
Google Scholar
26.Torrecilla, P. & Catalán, P. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst. Bot. 27, 241–251 (2002).
Google Scholar
27.Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433 (2008).28.Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie der Zentral-europäischen Flora (G. Fischer, 1965).
Google Scholar
29.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Jakubowska-Gabara, J. Regional climate and geology affecting habitat availability for a relict plant in a plain landscape: The case of Festuca amethystina L. in Poland. Plant Ecol. Divers. 8, 331–341 (2015).Article
Google Scholar
30.Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122, 1359–1370 (2017).Article
Google Scholar
31.Petrova, A. & Kozuharov, S. Citotaxonomicno proucvane na balgarski vidove ot roda Festuca L. in IV Nacionalna Konferencija Po Botanika 1 (ed. Trudova) 16–23 (1987).32.Stählin, A. Morphologische und zytologische Untersuchungen an Gramineen. Wiss. Arch. Landwirtschaft., Abt. A, Pflanzenbau 1, 330–398 (1929).33.Wittmann, H. & Strobl, W. Beitrag zur Kenntnis von Festuca amethystina L. im Bundesland Salzburg. Florist. Mitt. Salzburg 9, 3–8 (1984).34.La Sorte, F. A. & Jetz, W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B Biol. Sci. 277, 3401–3410 (2010).Article
Google Scholar
35.Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).ADS
Article
Google Scholar
36.Šmarda, P., Müller, J., Vraná, J. & Kočí, K. Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae). Biologia 60, 1–6 (2005).
Google Scholar
37.Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 2018, e5576 (2018).Article
Google Scholar
38.Roleček, J., Dřevojan, P. & Šmarda, P. First record of Festuca amethystina L. from the Transylvanian Basin (Romania). Contrib. Bot. 54, 91–97 (2019).Article
Google Scholar
39.Phillips, S. J. & Dudík, M. Modeling of species distribution with Maxent: New extensions and a comprehensive evaluation. Ecograpy 31, 161–175 (2008).Article
Google Scholar
40.Segraves, K. A., Thompson, J. N., Soltis, P. S. & Soltis, D. E. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol. Ecol. 8, 253–262 (1999).Article
Google Scholar
41.Levin, D. A. Minority cytotype exclusion in local plant populations. TAXON vol. 24. https://eurekamag.com/pdf/000/000139096.pdf (1975).42.Pils, G. Systematics, distribution, and karyology of the Festuca violacea Group (Poaceae) in the Eastern Alps. Plant Syst. Evol. 136, 73–124 (1980).Article
Google Scholar
43.Stebbins, G. L. Chromosomal Evolution in Higher Plants (Addison-Wesley, 1971).
Google Scholar
44.Stutz, H. C. & Sanderson, S. C. Evolutionary studies in Atriplex: Chromosome races of A. confertifolia (shadscale). Am. J. Bot. 70, 1536–1547 (1983).Article
Google Scholar
45.Husband, B. C. & Schemske, D. W. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am. J. Bot. 85, 1688–1694 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Hardy, O. J., Vanderhoeven, S., De Loose, M. & Meerts, P. Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytol. 146, 281–290 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Gauthier, P., Lumaret, R. & Bédécarrats, A. Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (DC) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity (Edinb) 80, 683–693 (1998).CAS
Article
Google Scholar
48.Schönswetter, P. et al. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J. Plant Res. 120, 721–725 (2007).PubMed
Article
PubMed Central
Google Scholar
49.Petit, C., Bretagnolle, F. & Felber, F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 14, 306–311 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Chumová, Z., Krejčíková, J., Mandáková, T., Suda, J. & Trávníček, P. Evolutionary and taxonomic implications of variation in nuclear genome size: Lesson from the grass genus Anthoxanthum (Poaceae). PLoS One 10, e0133748 (2015).Article
CAS
Google Scholar
51.Marchant, D. B., Soltis, D. E. & Soltis, P. S. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708–718 (2016).Article
CAS
Google Scholar
52.Arrigo, N. et al. Is hybridization driving the evolution of climatic niche in Alyssum montanum. Am. J. Bot. 103, 1348–1357 (2016).PubMed
Article
PubMed Central
Google Scholar
53.Laport, R. G., Minckley, R. L. & Ramsey, J. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. Am. J. Bot. 103, 1358–1374 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Mosquin, T. Evidence for autopolyploidy in Epilobium angustifolium (Onagraceae). Evolution (N. Y.) 21, 713–719 (1967).
Google Scholar
55.Szafer, W. The mountain element in the flora of Polish Plain. Rozpr. Wydz. Mat. PAU Ser. 3 Dział B 69, 83–196 (1930).
Google Scholar
56.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827 (2017).Article
Google Scholar
57.Babić, V. P. et al. Temperature and other microclimate conditions in the oak forests on Fruška Gora (Serbia). Therm. Sci. 19, S415–S425 (2015).Article
Google Scholar
58.Jakubowska-Gabara, J. Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio 124, 45–59 (1996).Article
Google Scholar
59.Roleček, J. Formalized classification of thermophilous oak forests in the Czech Republic: What brings the Cocktail method?. Preslia 79, 1–21 (2007).
Google Scholar
60.Indreica, A. Festuca amethystina in the sessile oak forests from upper basin of Olt River. Contrib. Bot. 42, 11–18 (2007).
Google Scholar
61.Jakubowska-Gabara, J. Festuca amethystina L. In The Polish Red Book of Plants. Pteridophytes and Vascular Plants (eds Kaźmierczakowa, R. et al.) 616–618 (Institute of Nature Conservation PAS, 2014).
Google Scholar
62.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
63.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
64.Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2017).65.Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.Book
MATH
Google Scholar
66.Wilke, C. O. Ridgeline Plots in ‘ggplot2’. https://wilkelab.org/ggridges/index.html (2021).67.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
68.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).Article
Google Scholar
69.Warren, D. L. & Seifert, S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 21, 335–342 (2011).
Google Scholar
70.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article
Google Scholar
71.Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography (Cop.) 33, 607–611 (2010).
Google Scholar
72.Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 28, 385–393 (2005).Article
Google Scholar More