The effect of estuarine system on the meiofauna and nematodes in the East Siberian Sea
1.Stein, R. & Macdonald, R. W. Organic carbon budget: Arctic Ocean vs. global ocean. In The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R. W.) (Springer, 2004).Chapter
Google Scholar
2.Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Oceanogr. Ser. 74, 1–54. https://doi.org/10.1016/S0422-9894(06)74001-6 (2007).Article
Google Scholar
3.Sheremetevskiy, A. M. Role of meiobenthos of the South Sakhalin shelf, Eastern Kamchatka, and Novosibirsk shallow water area. Issledovaniya Fauny Morei 35, 43 (1987).
Google Scholar
4.Golikov, A. N. Ecosystems of the New Siberian shoals and fauna of the Laptev Sea and adjacent waters of the Arctic Ocean (in Russian). Explor. Fauna Seas 37, 4 (1990).
Google Scholar
5.Golikov, A. N. Fauna of the East Siberian Sea. Part III. Explor. Fauna Seas 49, 57 (1994).
Google Scholar
6.Sirenko, B. I. & Denisenko, S. G. Fauna of the East Siberian Sea, distribution patterns and structure of bottom communities. Explor. Fauna Seas 66, 74 (2010).
Google Scholar
7.Sirenko, B. I. List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor. Fauna Seas 51(59), 1–76 (2001).
Google Scholar
8.Schmidt-Rhaesa, A. Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera Vol. 2, 608 (De Gruyter, 2020).
Google Scholar
9.Udalov, A. et al. Integrity of benthic assemblages along the arctic estuarine-coastal system. Ecol. Indic. 121, 107115. https://doi.org/10.1016/j.ecolind.2020.107115 (2021).Article
Google Scholar
10.Portnova, D., Fedyaeva, M., Udalov, A. & Tchesunov, A. Community structure of nematodes in the Laptev Sea shelf with notes on the lives of ice nematodes. Reg. Stud. Mar. Sci. 31, 100757. https://doi.org/10.1016/j.rsma.2019.100757 (2019).Article
Google Scholar
11.Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39(1), 9–25. https://doi.org/10.1007/s12526-009-0003-x (2009).Article
Google Scholar
12.Lei, Y., Stumm, K., Volkenborn, N., Wickham, S. A. & Berninger, U. G. Impact of Arenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in a marine intertidal flat. Mar. Biol. 157(6), 1271–1282. https://doi.org/10.1007/s00227-010-1407-7 (2010).Article
Google Scholar
13.Flint, M. V., Poyarkov, S. G. & Rymsky-Korsakov, N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology 58(2), 315–318. https://doi.org/10.1134/S0001437018020042 (2018).ADS
Article
Google Scholar
14.Garlitska, L. A. & Azovsky, A. I. Benthic harpacticoid copepods of the Yenisei Gulf and the adjacent shallow waters of the Kara Sea. J. Nat. Hist. 50, 2941–2959. https://doi.org/10.1080/00222933.2016.1219410 (2016).Article
Google Scholar
15.Portnova, D., Garlitska, L., Udalov, A. & Kondar, D. Meiobenthos and nematode community in the Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57(1), 1–15. https://doi.org/10.1134/S0001437017010155 (2017).Article
Google Scholar
16.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96(12), 2079–2105. https://doi.org/10.1175/BAMS-D-13-00177.1 (2005).ADS
Article
Google Scholar
17.Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298(5601), 2171–2173. https://doi.org/10.1126/science.1077445 (2002).ADS
CAS
Article
PubMed
Google Scholar
18.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. ERL 14(10), 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS
CAS
Article
Google Scholar
19.Lisitzin, A. P. Marginal filter of the oceans. Oceanology 34(5), 735–743 (1994).CAS
Google Scholar
20.Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, Katja, Ingles, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A, & Vincx, M. Ecology of free-living marine nematodes. In Volume 2 Nematoda, 109–152. De Gruyter (2013)21.Aller, J. Y. & Aller, R. C. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6(1–2), 291–310. https://doi.org/10.1016/0278-4343(86)90065-8 (1986).ADS
Article
Google Scholar
22.Soetaert, K., Vincx, M., Wittoeck, J. & Tulkens, M. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311(1), 185–206. https://doi.org/10.1007/BF00008580 (1995).Article
Google Scholar
23.Tank, S. E. et al. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coast 35, 401–415. https://doi.org/10.1007/s12237-011-9417-3 (2012).CAS
Article
Google Scholar
24.Galtsova, V. V., Lukina, T. G. & Vladimirov, M. V. Meiobenthos of Chaunskaya Bay, East Siberian Sea. Issledovaniya Fauny Morei 48(56), 67–97 (1994).
Google Scholar
25.Coull, B. C. Role of meiofauna in estuarine soft‐bottom habitats. Austral Ecol. 24(4), 327–343 (1999).Article
Google Scholar
26.Vincx, M., Meire, P., & Heip, C. The distribution of nematodes communities in the Southern Bight of the North Sea. Cah Biol Mar. 31(1), 107–129 (1990).27.Vanaverbeke, J., Gheskiere, T., Steyaert, M., & Vincx, M. Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3), 197–207. https://doi.org/10.1016/S1385-1101(02)00165-X (2002)ADS
Article
Google Scholar
28.Steyaert, M., et al. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci. 58(2), 353–366 (2003).ADS
Article
Google Scholar
29.Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U. K. 89(8), 1529–1540 (2009).CAS
Article
Google Scholar
30.Garlitska, L. A., Chertoprud, E. S., Portnova, D. A. & Azovsky, A. I. Benthic harpacticoida of the Kara Sea: Species composition and bathymetrically related distribution. Oceanology 59(4), 541–551. https://doi.org/10.1134/S0001437019040064 (2019).ADS
CAS
Article
Google Scholar
31.Huang, D. et al. Preliminary study on community structures of meiofauna in the middle and eastern Chukchi Sea. Acta Oceanol. Sin. 40(6), 83–91. https://doi.org/10.1007/s13131-021-1777-3 (2021).ADS
Article
Google Scholar
32.Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments 2nd edn. (Springer, 2009).
Google Scholar
33.Semiletov, I. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022490 (2005).Article
Google Scholar
34.Miroshnikov, A. Y. et al. Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea. Oceanology 60(4), 595–610. https://doi.org/10.31857/S0030157420040152 (2020).Article
Google Scholar
35.Frontalini, F. et al. The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments. Environ. Toxicol. Chem. 37(9), 2439–2447. https://doi.org/10.1002/etc.4207 (2018).CAS
Article
PubMed
Google Scholar
36.Fonseca, G. & Soltwedel, T. Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol. 30, 607–618. https://doi.org/10.1007/s00300-006-0220-8 (2007).Article
Google Scholar
37.Portnova, D. & Polukhin, A. Meiobenthos of the eastern shelf of the Kara Sea compared with the meiobenthos of other parts of the sea. Reg. Stud. Mar. Sci. 24, 370–378. https://doi.org/10.1016/j.rsma.2018.10.002 (2018).Article
Google Scholar
38.Alexeev, D. K., & Galtsova, V. V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Sci. 6(2), 183–195 (2012).ADS
Article
Google Scholar
39.Grzelak, K. & Sørensen, M. V. Diversity and community structure of kinorhynchs around Svalbard: First insights into spatial patterns and environmental drivers. Zool. Anz. 282, 31–43. https://doi.org/10.1016/j.jcz.2019.05.009 (2019).Article
Google Scholar
40.Landers, S. C. et al. Kinorhynch communities from Alabama coastal waters. Mar. Biol. Res. 16(6–7), 494–504. https://doi.org/10.1080/17451000.2020.1789660 (2020).Article
Google Scholar
41.Holovachov, O. New and known species of the genus Campylaimus Cobb, 1920 (Nematoda: Araeolaimida: Diplopeltidae) from North European marine habitats. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e46545 (2007).Article
Google Scholar
42.Sharma, J. & Bluhm, B. A. Diversity of larger free-living nematodes from macrobenthos ( > 250 μm) in the Arctic deep-sea Canada Basin. Mar. Biodivers. 41(3), 455–465. https://doi.org/10.1007/s12526-010-0060-1 (2010).Article
Google Scholar
43.Kotwicki, L., Grzelak, K. & Bełdowski, J. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res. II 128, 123–130. https://doi.org/10.1016/j.dsr2.2015.12.012 (2016).CAS
Article
Google Scholar
44.Netto, S. A., Pagliosa, P. R., Colling, A., Fonseca, A. L. & Brauk, K. M. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. Braz. Estuaries. https://doi.org/10.1007/978-3-319-77779-5_6 (2018).Article
Google Scholar
45.Broman, E., et al. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun. Biol. 3(1), 1–12 (2020).46.Zeppilli, D., et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodiver. 48(1), 35–71 (2018).47.Pérez-García, J. A. et al. Nematode diversity of freshwater and anchialine caves of Western Cuba. PBSW 131(1), 144–155. https://doi.org/10.2988/17-00024 (2018).Article
Google Scholar
48.Bezzubova, E. M., Seliverstova, A. M., Zamyatin, I. A. & Romanova, N. D. Heterotrophic bacterioplankton of the Laptev and East Siberian Sea shelf affected by freshwater inflow areas. Oceanology 60, 62–73. https://doi.org/10.1134/S0001437020010026 (2020).ADS
CAS
Article
Google Scholar
49.Vanreusel, A. et al. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. I 47, 1855–1879. https://doi.org/10.1016/S0967-063728002900007-8 (2000).Article
Google Scholar
50.Tahseen, Q. Nematodes in aquatic environments: Adaptations and survival strategies. Biodivers. J. 3(1), 13–40 (2012).
Google Scholar
51.Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Ocean 139, 24–41. https://doi.org/10.1016/j.pocean.2015.07.008 (2015).Article
Google Scholar
52.Magritsky, D. V. et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 87(2), 177–194. https://doi.org/10.2312/polarforschung.87.2.177 (2018).Article
Google Scholar
53.Anderson, L. G. et al. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 4, 6. https://doi.org/10.5194/bg-8-1745-2011 (2011).CAS
Article
Google Scholar
54.Dmitrienko, I. A. et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. https://doi.org/10.1029/2009JC006020 (2010).Article
Google Scholar
55.Stein, R. Arctic Ocean Sediments: Processes, PROXIES, and Paleoenvironment (Elsevier, 2008).
Google Scholar
56.Petrova, V. I., Batova, G. I., Kursheva, A. V. & Litvinenko, I. V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 51(1), 88–97. https://doi.org/10.1016/j.rgg.2009.12.008 (2010).ADS
Article
Google Scholar
57.Millero, F. J. Thermodynamics of the carbon dioxide system in oceans. GCA 59(4), 661–677. https://doi.org/10.12691/wjce-3-6-1 (1995).ADS
CAS
Article
Google Scholar
58.Pavlova, G. Y. et al. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 48, 438. https://doi.org/10.1134/S0001437008030168 (2008).ADS
Article
Google Scholar
59.Dickson, A. G. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. Version 2 (No. ORNL/CDIAC-74) (1994).60.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0 (2003).CAS
Article
Google Scholar
61.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).Book
Google Scholar
62.Shiklomanov, A. I., Holmes, J. W., McClelland, S. E., Tank, R. & Spencer, G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20200801 (2020).63.Niemistö, L. A gravity corer for studies of soft sediments. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 238, 33–38 (1974).
Google Scholar
64.Eleftheriou, A. Methods for the Study of Marine Benthos (Wiley, 2013).Book
Google Scholar
65.Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden, marinen Nematoden. Ark. Zool. 2, 439–484 (1953).
Google Scholar
66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Google Scholar
67.Heip, C. & Herman, P. Indices of diversity and evenness. Oceanis 24(4), 61–88 (2001).
Google Scholar More
