More stories

  • in

    Better incentives are needed to reward academic software development

    Department of Ecology and Evolutionary Biology and Eversource Energy Center, University of Connecticut, Storrs, CT, USACory MerowDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrad Boyle & Brian J. EnquistDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengBiodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, JapanJamie M. KassDepartment of Geography, University at Buffalo, Buffalo, NY, USABrian S. Maitner & Adam M. WilsonSchool of Biology and Ecology, University of Maine, Orono, ME, USABrian McGillMitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCenter for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, DenmarkHannah OwensFlorida Museum of Natural History, University of Florida, Gainesville, FL, USAHannah OwensDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkPurdue Center for Plant Biology, Purdue University, West Lafayette, IN, USADaniel S. ParkDepartment of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, SwitzerlandAndrea PazDepartment of Biology, City College of the City University of New York, New York, NY, USAGonzalo E. Pinilla-BuitragoPhD Program in Biology, Graduate Center of the City University of New York, New York, NY, USAGonzalo E. Pinilla-BuitragoDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USAMark C. UrbanCenter of Biological Risk, University of Connecticut, Storrs, CT, USAMark C. UrbanDepartamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, SpainSara Varela More

  • in

    Landscapes of pesticide risk

    A large-scale field study finds that different bee species experience different levels of risk from pesticides, depending on how much land is farmed within their foraging range. For bumblebees and solitary bees, more seminatural habitat means less risk from pesticides, but this is not true for honeybees.In the discussion of how to protect bees from pesticides, bees are often treated as a monolith. It is assumed that what is good for one species is good for all, and that pesticides or changes to agricultural landscapes would affect all bee species equally. This is often taken one step further, with the western honeybee (Apis mellifera) being used as a surrogate species for all bees. Yet despite this simplification there are around 2,000 species of bee in Europe1 and 20,000 worldwide2 with a dazzling diversity of niches and life histories. With this in mind, the question arises of how valid the assumption is that honeybees represent a good surrogate species. In this issue of Nature Ecology & Evolution, Knapp et al.3 investigate this question by measuring how three species of bee with differing life histories respond to different agricultural land-use intensities, and find that a species’ foraging range plays a big part in pesticide exposure risk. More

  • in

    Ecological traits interact with landscape context to determine bees’ pesticide risk

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    IPBES: Summary for Policymakers. In The Assessment Report on Pollinators, Pollination and Food Production (eds Potts, S. G. et al.) (IPBES, 2016).Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag Sci. 73, 1236–1243 (2016).Article 
    PubMed 

    Google Scholar 
    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).Article 
    PubMed 

    Google Scholar 
    Woodcock, B. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).Stuligross, C. & Williams, N. Past insecticide exposure reduces bee reproduction and population growth rate. Proc. Natl Acad. Sci. USA 118, e2109909118 (2021).Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamburini, G. et al. Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. Environ. Int. 157, 106813 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sponsler, D. B. et al. Pesticides and pollinators: a socioecological synthesis. Sci. Total Environ. 662, 1012–1027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nicholson, C. C. & Williams, N. M. Cropland heterogeneity drives frequency and intensity of pesticide use. Environ. Res. 16, 074008 (2021).CAS 

    Google Scholar 
    Böhme, F., Bischoff, G., Zebitz, C. P. W., Rosenkranz, P. & Wallner, K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 13, e0199995 (2018).Larsen, A. E. & Noack, F. Impact of local and landscape complexity on the stability of field-level pest control. Nat. Sustain. 4, 120–128 (2021).Article 

    Google Scholar 
    Botías, C. et al. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49, 12731–12740 (2015).Article 
    PubMed 

    Google Scholar 
    Krupke, C. H., Holland, J. D., Long, E. Y. & Eitzer, B. D. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J. Appl. Ecol. 54, 1449–1458 (2017).Article 
    CAS 

    Google Scholar 
    Wintermantel, D. et al. Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Sci. Total Environ. 704, 135400 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Long, E. Y. & Krupke, C. H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 7, 11629 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    David, A. et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88, 169–178 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heinrich, B. The foraging specializations of individual bumblebees. Ecol. Monogr. 46, 105–128 (1976).Article 

    Google Scholar 
    Bolin, A., Smith, H. G., Lonsdorf, E. V. & Olsson, O. Scale-dependent foraging tradeoff allows competitive coexistence. Oikos 127, 1575–1585 (2018).Article 

    Google Scholar 
    Cresswell, J. E., Osborne, J. L. & Goulson, D. An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecol. Entomol. 25, 249–255 (2000).Article 

    Google Scholar 
    Rundlöf, M. et al. Flower plantings support wild bee reproduction and may also mitigate pesticide exposure effects. J. Appl. Ecol. 59, 2117–2127 (2022).Article 

    Google Scholar 
    Graham, K. K. et al. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Sci. Rep. 11, 16857 (2021).Centrella, M. et al. Diet diversity and pesticide risk mediate the negative effects of land use change on solitary bee offspring production. J. Appl. Ecol. 57, 1031–1042 (2020).Article 
    CAS 

    Google Scholar 
    De Palma, A. et al. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52, 1567–1577 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sponsler, D. B. & Johnson, R. M. Mechanistic modeling of pesticide exposure: the missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 36, 871–881 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Holzschuh, A., Dormann, C. F., Tscharntke, T. & Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia 172, 477–484 (2013).Article 
    PubMed 

    Google Scholar 
    McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 46554 (2017).Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS ONE 9, e94482 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zioga, E., Kelly, R., White, B. & Stout, J. C. Plant protection product residues in plant pollen and nectar: a review of current knowledge. Environ. Res. 189, 109873 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    The European Green Deal (European Commission, 2019).More, S. J., Auteri, D., Rortais, A. & Pagani, S. EFSA is working to protect bees and shape the future of environmental risk assessment. EFSA J. 19, e190101 (2021).Schmolke, A. et al. Assessment of the vulnerability to pesticide exposures across bee species. Environ. Toxicol. Chem. 40, 2640–2651 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rollin, O. et al. Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agric. Ecosyst. Environ. 179, 78–86 (2013).Article 

    Google Scholar 
    Persson, A. S. & Smith, H. G. Seasonal persistence of bumblebee populations is affected by landscape context. Agric. Ecosyst. Environ. 165, 201–209 (2013).Article 

    Google Scholar 
    Samuelson, A. E., Schürch, R. & Leadbeater, E. Dancing bees evaluate central urban forage resources as superior to agricultural land. J. Appl. Ecol. 59, 79–88 (2022).Article 

    Google Scholar 
    Milner, A. M. & Boyd, I. L. Toward pesticidovigilance. Science 357, 1232–1234 https://doi.org/10.1126/science.aan2683 (2017).Nowell, L. H., Norman, J. E., Moran, P. W., Martin, J. D. & Stone, W. W. Pesticide toxicity index—a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci. Total Environ. 476–477, 144–157 (2014).Article 
    PubMed 

    Google Scholar 
    Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S. & Simonds, R. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5, 9754 (2010).Article 

    Google Scholar 
    Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Végh, R., Sörös, C., Majercsik, N. & Sipos, L. Determination of pesticides in bee pollen: validation of a multiresidue high-performance liquid chromatography-mass spectrometry/mass spectrometry method and testing pollen samples of selected botanical origin. J. Agric. Food Chem. 70, 1507–1515 (2022).Article 
    PubMed 

    Google Scholar 
    Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B 282, 20150299 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graham, K. K. et al. Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Sci. Rep. 12, 7189 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yourstone, J., Karlsson, M., Klatt, B. K., Olsson, O. & Smith, H. G. Effects of crop and non-crop resources and competition: high importance of trees and oilseed rape for solitary bee reproduction. Biol. Conserv. 261, 109249 (2021).Persson, A. S., Mazier, F. & Smith, H. G. When beggars are choosers—how nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape. Ecol. Evol. 8, 5777–5791 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, T. J., Holland, J. M. & Goulson, D. Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. J. Appl. Ecol. 54, 323–333 (2016).Garthwaite, D. et al. Collection of Pesticide Application Data in View of Performing Environmental Risk Assessments for Pesticides (EFSA, 2017).de Oliveira, R. C., Nascimento Queiroz, S. C., Pinto da Luz, C. F., Silveira Porto, R. & Rath, S. Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 163, 525–534 (2016).Article 
    PubMed 

    Google Scholar 
    Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23, 324–334 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).Commission Implementing Regulation (EU) 2021/2081 of 26 November 2021 concerning the non-renewal of approval of the active substance indoxacarb, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011 (EUR-Lex, 2021); http://data.europa.eu/eli/reg_impl/2021/2081/ojCommission Implementing Regulation (EU) 2020/23 of 13 January 2020 concerning the non-renewal of the approval of the active substance thiacloprid, in accordance with Regulation (EC) No. 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (EUR-Lex, 2020); http://data.europa.eu/eli/reg_impl/2020/23/ojCommission Implementing Regulation (EU) 2018/783 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance imidacloprid (EUR-Lex, 2018); http://data.europa.eu/eli/reg_impl/2018/783/ojHerbertsson, L., Jonsson, O., Kreuger, J., Smith, H. G. & Rundlöf, M. Scientific note: imidacloprid found in wild plants downstream permanent greenhouses in Sweden. Apidologie 52, 946–949 (2021).Article 

    Google Scholar 
    Tosi, S. et al. Long-term field-realistic exposure to a next-generation pesticide, flupyradifurone, impairs honey bee behaviour and survival. Commun. Biol. 4, 805 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siviter, H. & Muth, F. Do novel insecticides pose a threat to beneficial insects?: novel insecticides harm insects. Proc. R. Soc. B 287, 20201265 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    EFSA. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2013).Guidance for Assessing Pesticide Risks to Bees (US EPA, 2014).Boyle, N. K. et al. Workshop on pesticide exposure assessment paradigm for non-apis bees: foundation and summaries. Environ. Entomol. 48, 4–11 (2019).Article 
    PubMed 

    Google Scholar 
    EFSA. Analysis of the evidence to support the definition of specific protection goals for bumble bees and solitary bees. EFSA J. 19, EN-7125 (2022).Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tscharntke, T., Grass, I., Wanger, T. C. & Westphal, C. Restoring biodiversity needs more than reducing pesticides. Trends Ecol. Evol. 37, 115–116 (2022).Article 
    PubMed 

    Google Scholar 
    Topping, C. J. et al. Holistic environmental risk assessment for bees. Science 37, 897 (2021).Article 

    Google Scholar 
    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jonsson, O., Fries, I. & Kreuger, J. Utveckling av Analysmetoder och Screening av Växtskyddsmedel i bin och Pollen (CKB, 2013).Sawyer, R. Pollen Identification for Beekeepers (Univ. Cardiff Press, 1981).IUPAC Pesticide Properties Data Base (Univ. of Hertfordshire, 2022).EFSA Scientific Committee & More, S.J. et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 17, e05634 (2019).Martin, O. et al. Ten years of research on synergisms and antagonisms in chemical mixtures: a systematic review and quantitative reappraisal of mixture studies. Environ. Int. 146, 106206 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R. & Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 14, e0220029 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Test No. 213: Honeybees, Acute Oral Toxicity Test (OECD, 1998); https://doi.org/10.1787/9789264070165-enPrice, P. S. & Han, X. Maximum cumulative ratio (MCR) as a tool for assessing the value of performing a cumulative risk assessment. Int. J. Environ. Res. Public Health 8, 2212–2225 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Oksanen, J. et al. vegan community ecology package version 2.6-2 (2022).Lenth, R. emmeans: Estimated marginal means, aka least-squares means (2022).Lüdecke, D., Ben-shachar, M. S., Patil, I. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models statement of need. J. Open Source Softw. 6, 3139 (2021).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Kendall, L. K. et al. The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology 103, e3809 (2022).Parreño, M. A. et al. Critical links between biodiversity and health in wild bee conservation. Trends Ecol. Evol. 37, 309–321 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products

    Finkelman, S., Navarro, S., Rindner, M. & Dias, R. Effect of low pressure on the survival of Trogoderma granarium Everts, Lasioderma serricorne (F.) and Oryzaephilus surinamensis (L.) at 30°C. J. Stored. Prod. Res. 42, 23–30 (2006).Article 

    Google Scholar 
    Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. & Kazzazi, M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored. Prod. Res. 43, 515–522 (2007).Article 
    CAS 

    Google Scholar 
    Burges, H. D. Development of the khapra beetle, Trogoderma granarium, in the lower part of its temperature range. J. Stored. Prod. Res. 44, 32–35 (2008).Article 

    Google Scholar 
    Hagstrum, D. W. & Subramanyam, B. Stored-Product Insect Resource 1–518 (AACC International Inc, 2009).Book 

    Google Scholar 
    Beal, R. S. Synopsis of the economic species of Trogoderma occurring in the United States with description of a new species (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 49, 559–566 (1956).Article 

    Google Scholar 
    Day, C. & White, B. Khapra beetle, Trogoderma granarium interceptions and eradications in Australia and around the world. Crawley, School of Agricultural and Resource Economics, University of Western Australia, SARE Working paper 1609, (2016).Kerr, J. A. Khapra beetle returns. Pest Control 49, 24–25 (1981).
    Google Scholar 
    Stibick, J.N. New pest response guidelines: khapra beetle. US Department of Agriculture, Marketing and Regulatory Programs, Animal and Plant Health Inspection Service, Riverdale, pp. 114 (2009).Myers, S. W. & Hagstrum, D. W. Quarantine. In Stored Product Protection (eds Hagstrum, D. W. et al.) 297–304 (Kansas State University Agricultural Experiment Station and Cooperative Extension Service, 2012).
    Google Scholar 
    Athanassiou, C. G., Phillips, T. W. & Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 64, 131–148 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barak, A. V. Development of a new trap to detect and monitor khapra beetle (Coleoptera: Dermestidae). J. Econ. Entom. 82, 1470–1477 (1989).Article 

    Google Scholar 
    Gerken, A. R. & Campbell, J. F. Life history changes in Trogoderma variabile and T. inclusum due to mating delay with implications for mating disruption as a management tactic. Ecol. Evol. 8, 2428–2439 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Partida, G. J. & Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T variabile. Ann. Entomol. Soc. Am. 68, 115–125 (1975).Article 

    Google Scholar 
    Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T inclusum. Ann. Entomol. Soc. Am. 68, 91–104 (1975).Article 

    Google Scholar 
    Phillips, T. W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. Julius Kühn Archiv. 463, 233–238 (2008).
    Google Scholar 
    Hadaway, A. The biology of the beetles, Trogoderma granarium Everts and Trogoderma versicolor (Creutz). Bull. Entomol. Res. 46, 781–796 (1956).Article 
    CAS 

    Google Scholar 
    Phillips, T.W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. In: Adler CS, Opit G, Fürstenau B, Müller-Blenkle C, Kern P, Arthur FH et al., editors. Proceedings of the 12th International Working Conference on Stored Product Protection; Vol. 1, Quedlinburg, Julius-Kühn-Archiv, pp. 233–238 (2018).Gorham, J.R. Insect and Mite Pests in Food: An Illustrated Key. Vol. 1 and 2. US Department of Agriculture, Agricultural Research Service (1991).Olson, R. L. O., Farris, R. E., Barr, N. B. & Cognato, A. I. Molecular identification of Trogoderma granarium (Coleoptera: Dermestidae) using the 16S gene. J. Pest Sci. 87, 701–710 (2014).Article 

    Google Scholar 
    Furui, S., Miyanoshita, A., Imamura, T., Minegishi, Y. & Kokutani, R. Qualitative real-time PCR identification of the khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae). Appl. Entomol. Zool. 54, 101–107 (2019).Article 
    CAS 

    Google Scholar 
    Rako, L. et al. A LAMP (loop-mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 77, 5509–5521 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castañé, C., Agustí, N., del Estal, P. & Riudavets, J. Survey of Trogoderma spp. in Spanish mills and warehouses. J. Stored. Prod. Res. 88, 101661 (2020).Article 

    Google Scholar 
    Trujillo-González, et al. Detection of khapra beetle environmental DNA using portable technologies in Australian biosecurity. Front. Insect Sci. 2, e795379 (2022).Article 

    Google Scholar 
    Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W. & Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 3, 9–16 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, S. C. et al. The Ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 37, 761–774 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Van Holm, W. et al. A viability quantitative PCR dilemma: Are longer amplicons better?. Appl. Environ. Microbiol. 87, e0265320 (2021).Article 
    PubMed 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (wwwbarcodinglifeorg). Mol. Ecol. Notes 7, 355–364 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittwer, C. T. & Kusakawa, N. Real-time PCR. In Molecular microbiology: Diagnostic principles and practice (eds Persing, D. H. et al.) 71–84 (ASM Press, 2004).
    Google Scholar 
    Stewart, D. et al. A needle in a haystack: A multigene TaqMan assay for the detection of Asian gypsy moths in bulk pheromone trap samples. Biol. Invasions 21, 1843–1856 (2019).Article 

    Google Scholar 
    Butterwort, V. et al. A DNA extraction method for insects from sticky traps: Targeting a low abundance pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae), in mixed species communities. J. Econ. Entom. 115, 844–851 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Domingue, M.J. et al. Outcome of direct competition between Trogoderma granarium and Trogoderma inclusum over varying commodities, temperatures, and experimental duration. In Submission to Scientific Reports.Zieritz, A. et al. Development and evaluation of hotshot protocols for cost- and time-effective extraction of PCR-ready DNA from single freshwater mussel larvae (Bivalvia: Unionida). J. Molluscan Stud. 84, 198–201 (2018).Article 

    Google Scholar 
    Djoumad, A. et al. Development of a qPCR-based method for counting overwintering spruce budworm (Choristoneura fumiferana) larvae collected during fall surveys and for assessing their natural enemy load: A proof-of-concept study. Pest Manag. Sci. 78, 336–343 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Rangasamy, M., Tan, S. Y., Wang, H. & Siegfried, B. D. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE 5, e11963 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beckmann, J. S. & Soller, M. Restriction fragment length polymorphisms in genetic improvement: Methodologies, mapping and costs. Theor. Appl. Genet. 67, 35–43 (1983).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arimoto, M., Satoh, M., Uesugi, R. & Osakabe, M. PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entom. 106, 661–668 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vezenegho, S. B. et al. Discrimination of 15 Amazonian anopheline mosquito species by polymerase chain reaction—Restriction fragment length polymorphism. J. Med. Entomol. 59, 1060–1064 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beal, R. S. Annotated checklist of Nearctic Dermestidae with revised key to the genera. Coleopt. Bull. 57, 391–404 (2003).Article 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, C. et al. Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).Article 
    CAS 

    Google Scholar 
    Dowton, M. & Austin, A. D. Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. J. Mol. Evol. 44, 398–405 (1997).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Untergasser, A. et al. Primer3—New capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).Article 
    CAS 

    Google Scholar 
    Süss, B., Flekna, G., Wagner, M. & Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 76, 316–319 (2009).Article 
    PubMed 

    Google Scholar 
    Stadhouders, R. et al. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5’ nuclease assay. J. Mol. Diagn. 12, 109–117 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, D. et al. A multi-species TaqMan PCR assay for the identification of Asian gypsy moths (Lymantria spp.) and other invasive Lymantriines of biosecurity concern to North America. PLoS ONE 11, e0160878 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 1–12 (2009).Article 

    Google Scholar  More

  • in

    Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies

    Different picocyanobacterial communities exhibit distinct gene repertoiresTo analyze the distribution of Prochlorococcus and Synechococcus reads along the Tara Oceans transect, metagenomic reads corresponding to the bacterial size fraction were recruited against 256 picocyanobacterial reference genomes, including SAGs and MAGs representative of uncultured lineages (e.g., Prochlorococcus HLIII-IV, Synechococcus EnvA or EnvB). This yielded a total of 1.07 billion recruited reads, of which 87.7% mapped onto Prochlorococcus genomes and 12.3% onto Synechococcus genomes, which were then functionally assigned by mapping them onto the manually curated Cyanorak v2.1 CLOG database [19]. In order to identify picocyanobacterial genes potentially involved in niche adaptation, we analyzed the distribution across the oceans of flexible (i.e. non-core) genes. Clustering of Tara Oceans stations according to the relative abundance of flexible genes resulted in three well-defined clusters for Prochlorococcus (Fig. 1A), which matched those obtained when stations were clustered according to the relative abundance of Prochlorococcus ESTUs, as assessed using the high-resolution marker gene petB, encoding cytochrome b6 (Fig. 1A; [24]). Only a few discrepancies can be observed between the two trees, including stations TARA-070 that displayed one of the most disparate ESTU compositions and TARA-094, dominated by the rare HLID ESTU (Fig. 1A). Similarly, for Synechococcus, most of the eight assemblages of stations discriminated based on the relative abundance of ESTUs (Fig. 1B) were also retrieved in the clustering based on flexible gene abundance, except for a few intra-assemblage switches between stations, notably those dominated by ESTU IIA (Fig. 1B). Despite these few variations, four major clusters can be clearly delineated in both Synechococcus trees, corresponding to four broadly defined ecological niches, namely (i) cold, nutrient-rich, pelagic or coastal environments (blue and light red in Fig. 1B), (ii) Fe-limited environments (purple and grey), (iii) temperate, P-depleted, Fe-replete areas (yellow) and (iv) warm, N-depleted, Fe-replete regions (dark red). This correspondence between taxonomic and functional information was also confirmed by the high congruence between distance matrices based on ESTU relative abundance and on CLOG relative abundance (p-value  0.01) are marked by a cross. Φsat: index of iron limitation derived from satellite data. PAR30: satellite-derived photosynthetically available radiation at the surface, averaged on 30 days. DCM: depth of the deep chlorophyll maximum.Full size imageIdentification of individual genes potentially involved in niche partitioningTo identify genes relevant for adaptation to a specific set of environmental conditions and enriched in specific ESTU assemblages, we selected the most representative genes from each module (Dataset 5; Figs. 3, S2). Most genes retrieved this way encode proteins of unknown or hypothetical function (85.7% of 7,485 genes). However, among the genes with a functional annotation (Dataset 6), a large fraction seems to have a function related to their realized environmental niche (Figs. 3, S2). For instance, many genes involved in the transport and assimilation of nitrite and nitrate (nirA, nirX, moaA-C, moaE, mobA, moeA, narB, M, nrtP; [6]) as well as cyanate, an organic form of nitrogen (cynA, B, D, S), are enriched in the Prochlorococcus blue module, which is correlated with the HLIIA-D ESTU and to low inorganic N, P, and silica levels and anti-correlated with Fe availability (Fig. 2A–C). This is consistent with previous studies showing that while only a few Prochlorococcus strains in culture possess the nirA gene and even less the narB gene, natural Prochlorococcus populations inhabiting N-poor areas do possess one or both of these genes [40,41,42]. Similarly, numerous genes amongst the most representative of Prochlorococcus brown, red and turquoise modules are related to adaptation of HLIIIA/IVA, HLIA and LLIA ESTUs to Fe-limited, cold P-limited, and cold, mixed waters, respectively (Fig. 3). Comparable results were obtained for Synechococcus, although the niche delineation was less clear than for Prochlorococcus since genes within each module exhibited lower correlations with the module eigenvalue (Fig. S2). These results therefore constitute a proof of concept that this network analysis was able to retrieve niche-related genes from metagenomics data.Fig. 3: Violin plots highlighting the most representative genes of each Prochlorococcus module.For each module, each gene is represented as a dot positioned according to its correlation with the eigengene for each module, the most representative genes being localized on top of each violin plot. Genes mentioned in the text and/or in Dataset 6 have been colored according to the color of the corresponding module, indicated by a colored bar above each module. The text above violin plots indicates the most significant environmental parameter(s) and/or ESTU(s) for each module, as derived from Fig. 2.Full size imageIdentification of eCAGs potentially involved in niche partitioningIn order to better understand the function of niche-related genes, notably of the numerous unknowns, we then integrated global distribution data with gene synteny in reference genomes using a network approach (Datasets 7, 8). This led us to identify clusters of adjacent genes in reference genomes, and thus potentially involved in the same metabolic pathway (Figs. 4, S3, S4; Dataset 6). These clusters were defined within each module and thus encompass genes with similar distribution and abundance in situ. Hereafter, these environmental clusters of adjacent genes will be called “eCAGs”.Fig. 4: Delineation of Prochlorococcus eCAGs, defined as a set of genes that are both adjacent in reference genomes and share a similar in situ distribution.Nodes correspond to individual genes with their gene name (or significant numbers of the CK number, e.g. 1234 for CK_00001234) and are colored according to their WGCNA module. A link between two nodes indicates that these two genes are less than five genes apart in at least one genome. The bottom insert shows the most significant environmental parameter(s) and/or ESTU(s) for each module, as derived from Fig. 2.Full size imageeCAGs related to nitrogen metabolismThe well-known nitrate/nitrite gene cluster involved in uptake and assimilation of inorganic forms of N (see above), which is present in most Synechococcus genomes (Dataset 6), was expectedly not restricted to a particular niche in natural Synechococcus populations, as shown by its quasi-absence from WGCNA modules. In Prochlorococcus, this cluster is separated into two eCAGs enriched in low-N areas (Fig. S5A, B), most genes being included in Pro-eCAG_002, present in only 13 out of 118 Prochlorococcus genomes, while nirA and nirX form an independent eCAG (Pro-eCAG_001) due to their presence in many more genomes. The quasi-core ureA-G/urtB-E genomic region was also found to form a Prochlorococcus eCAG (Pro-eCAG_003) that was impoverished in low-Fe compared to other regions (Fig. S5C, D), in agreement with its presence in only two out of six HLIII/IV genomes. We also uncovered several other Prochlorococcus and Synechococcus eCAGs that seem to be involved in the transport and/or assimilation of more unusual and/or complex forms of nitrogen, which might either be degraded into elementary N molecules or possibly directly used by cells for e.g. the biosynthesis of proteins or DNA. Indeed, we detected in both genera an eCAG (Pro-eCAG_004 and Syn-eCAG_001; Fig. S6A, B; Dataset 6) that encompasses speB2, an ortholog of Synechocystis PCC 6803 sll1077, previously annotated as encoding an agmatinase [29, 43] and which was recently characterized as a guanidinase that degrades guanidine rather than agmatine to urea and ammonium [44]. E. coli produces guanidine under nutrient-poor conditions, suggesting that guanidine metabolism is biologically significant and potentially prevalent in natural environments [44, 45]. Furthermore, the ykkC riboswitch candidate, which was shown to specifically sense guanidine and to control the expression of a variety of genes involved in either guanidine metabolism or nitrate, sulfate, or bicarbonate transport, is located immediately upstream of this eCAG in Synechococcus reference genomes, all genes of this cluster being predicted by RegPrecise 3.0 to be regulated by this riboswitch (Fig. S6C; [45, 46]). The presence of hypA and B homologs within this eCAG furthermore suggests that, in the presence of guanidine, these homologs could be involved in the insertion of Ni2+, or another metal cofactor, in the active site of guanidinase. The next three genes of this eCAG, which encode an ABC transporter similar to the TauABC taurine transporter in E. coli (Fig. S6C), could be involved in guanidine transport in low-N areas. Of note, the presence in most Synechococcus/Cyanobium genomes possessing this eCAG of a gene encoding a putative Rieske Fe-sulfur protein (CK_00002251) downstream of this gene cluster, seems to constitute a specificity compared to the homologous gene cluster in Synechocystis sp. PCC 6803. The presence of this Fe-S protein suggests that Fe is used as a cofactor in this system and might explain why this gene cluster is absent from picocyanobacteria thriving in low-Fe areas, while it is present in a large proportion of the population in most other oceanic areas (Fig. S6A, B).Another example of the use of organic N forms concerns compounds containing a cyano radical (C ≡ N). The cyanate transporter genes (cynABD) were indeed found in a Prochlorococcus eCAG (Pro-eCAG_005, also including the conserved hypothetical gene CK_00055128; Fig. S7A, B). While only a small proportion of the Prochlorococcus community possesses this eCAG in warm, Fe-replete waters, it is absent from other oceanic areas in accordance with its low frequency in Prochlorococcus genomes (present in only two HLI and five HLII genomes). In Synechococcus these genes were not included in a module, and thus are not in an eCAG (Dataset 6; Fig. S7C), but seem widely distributed despite their presence in only a few Synechococcus genomes (mostly in clade III strains; [6, 47, 48]). Interestingly, we also uncovered a 7-gene eCAG (Pro-eCAG_006 and Syn-eCAG_002), encompassing a putative nitrilase gene (nitC), which also suggests that most Synechococcus cells and a more variable fraction of the Prochlorococcus population could use nitriles or cyanides in warm, Fe-replete waters and more particularly in low-N areas such as the Indian Ocean (Fig. 5A, B). The whole operon (nitHBCDEFG; Fig. 5C), called Nit1C, was shown to be upregulated in the presence of cyanide and to trigger an increase in the rate of ammonia accumulation in the heterotrophic bacterium Pseudomonas fluorescens [49], suggesting that like cyanate, cyanide could constitute an alternative nitrogen source in marine picocyanobacteria as well. However, given the potential toxicity of these C ≡ N-containing compounds [50], we cannot exclude that these eCAGs could also be devoted to cell detoxification [45, 47]. Such an example of detoxification has been described for arsenate and chromate that, as analogs of phosphate and sulfate respectively, are toxic to marine phytoplankton and must be actively exported out of the cells [51, 52].Fig. 5: Global distribution map of the eCAG involved in nitrile or cyanide transport and assimilation.A Prochlorococcus Pro-eCAG_006. B Synechococcus Syn-eCAG_002. C The genomic region in Prochlorococcus marinus MIT9301. The size of the circle is proportional to relative abundance of each genus as estimated based on the single-copy core gene petB and this gene was also used to estimate the relative abundance of other genes in the population. Black dots represent Tara Oceans stations for which Prochlorococcus or Synechococcus read abundance was too low to reach the threshold limit.Full size imageWe detected the presence of an eCAG encompassing asnB, pyrB2, and pydC (Pro-eCAG_007, Syn-eCAG_003, Fig. S8), which could contribute to an alternative pyrimidine biosynthesis pathway and thus provide another way for cells to recycle complex nitrogen forms. While this eCAG is found in only one fifth of HLII genomes and in quite specific locations for Prochlorococcus, notably in the Red Sea, it is found in most Synechococcus cells in warm, Fe-replete, N and P-depleted niches, consistent with its phyletic pattern showing its absence only from most clade I, IV, CRD1, and EnvB genomes (Fig. S8; Dataset 6). More generally, most N-uptake and assimilation genes in both genera were specifically absent from Fe-depleted areas, including the nirA/narB eCAG for Prochlorococcus, as mentioned by Kent et al. [36] as well as guanidinase and nitrilase eCAGs. In contrast, picocyanobacterial populations present in low-Fe areas possess, in addition to the core ammonium transporter amt1, a second transporter amt2, also present in cold areas for Synechococcus (Fig. S9). Additionally, Prochlorococcus populations thriving in HNLC areas also possess two amino acid-related eCAGs that are present in most Synechococcus genomes, the first one involved in polar amino acid N-II transport (Pro-eCAG_008; natF-G-H-bgtA; [53]; Fig. S10A, B) and the second one (leuDH-soxA-CK_00001744, Pro-eCAG_009, Fig. S10C, D) that notably encompasses a leucine dehydrogenase, able to produce ammonium from branched-chain amino acids. This highlights the profound difference in N acquisition mechanisms between HNLC regions and Fe-replete, N-deprived areas: the primary nitrogen sources for picocyanobacterial populations dwelling in HNLC areas seem to be ammonium and amino acids, while N acquisition mechanisms are more diverse in N-limited, Fe-replete regions.eCAGs related to phosphorus metabolismAdaptation to P depletion has been well documented in marine picocyanobacteria showing that while in P-replete waters Prochlorococcus and Synechococcus essentially rely on inorganic phosphate acquired by core transporters (PstSABC), strains isolated from low-P regions and natural populations thriving in these areas additionally contain a number of accessory genes related to P metabolism, located in specific genomic islands [6, 14, 30,31,32, 54]. Here, we indeed found in Prochlorococcus an eCAG containing the phoBR operon (Pro-eCAG_010) that encodes a two-component system response regulator, as well as an eCAG including the alkaline phosphatase phoA (Pro-eCAG_011), both present in virtually the whole Prochlorococcus population from the Mediterranean Sea, the Gulf of Mexico and the Western North Atlantic Ocean, which are known to be P-limited [30, 55] (Fig. S11A, B). By comparison, in Synechococcus, we only identified the phoBR eCAG (Syn-eCAG_005, Fig. S11C) that is systematically present in warm waters whatever the limiting nutrient, in agreement with its phyletic pattern in reference genomes showing its specific absence from cold thermotypes (clades I and IV, Dataset 6). Furthermore, although our analysis did not retrieve them within eCAGs due to the variability of gene content and synteny in this genomic region, even within each genus, several other P-related genes were enriched in low-P areas but partially differed between Prochlorococcus and Synechococcus (Figs. 3, S2, S11; Dataset 6). While the genes putatively encoding a chromate transporter (ChrA) and an arsenate efflux pump ArsB were present in both genera in different proportions, a putative transcriptional phosphate regulator related to PtrA (CK_00056804; [56]) was specific to Prochlorococcus. Synechococcus in contrast harbors a large variety of alkaline phosphatases (PhoX, CK_00005263 and CK_00040198) as well as the phosphate transporter SphX (Fig. S11).Phosphonates, i.e. reduced organophosphorus compounds containing C–P bonds that represent up to 25% of the high-molecular-weight dissolved organic P pool in the open ocean, constitute an alternative P form for marine picocyanobacteria [57]. We indeed identified, in addition to the core phosphonate ABC transporter (phnD1-C1-E1), a second previously unreported putative phosphonate transporter phnC2-D2-E2-E3 (Pro-eCAG_012; Fig. 6A). Most of the Prochlorococcus population in strongly P-limited areas of the ocean harbored these genes, while they were absent from other areas, consistent with their presence in only a few Prochlorococcus and no Synechococcus genomes. Furthermore, as previously described [58,59,60], we found a Prochlorococcus eCAG encompassing the phnYZ operon involved in C-P bond cleavage, the putative phosphite dehydrogenase ptxD, and the phosphite and methylphosphonate transporter ptxABC (Pro-eCAG_0013, Dataset 6; Fig. 6B, [60,61,62]). Compared to these previous studies that mainly reported the presence of these genes in Prochlorococcus cells from the North Atlantic Ocean, here we show that they actually occur in a much larger geographic area, including the Mediterranean Sea, the Gulf of Mexico, and the ALOHA station (TARA_132) in the North Pacific, even though they were present in a fairly low fraction of Prochlorococcus cells. These genes occurred in an even larger proportion of the Synechococcus population, although not found in an eCAG for this genus (Fig. S12; Dataset 6). Synechococcus cells from the Mediterranean Sea, a P-limited area dominated by clade III [24], seem to lack phnYZ, in agreement with the phyletic pattern of these genes in reference genomes, showing the absence of this two-gene operon in the sole clade III strain that possesses the ptxABDC gene cluster. In contrast, the presence of the complete gene set (ptxABDC-phnYZ) in the North Atlantic, at the entrance of the Mediterranean Sea, and in several clade II reference genomes rather suggests that it is primarily attributable to this clade. Altogether, our data indicate that part of the natural populations of both Prochlorococcus and Synechococcus would be able to assimilate phosphonate and phosphite as alternative P-sources in low-P areas using the ptxABDC-phnYZ operon. Yet, the fact that no picocyanobacterial genome except P. marinus RS01 (Fig. 6C) possesses both phnC2-D2-E2-E3 and phnYZ, suggests that the phosphonate taken up by the phnC2-D2-E2-E3 transporter could be incorporated into cell surface phosphonoglycoproteins that may act to mitigate cell mortality by grazing and viral lysis, as recently suggested [63].Fig. 6: Global distribution map of eCAGs putatively involved in phosphonate and phosphite transport and assimilation.A Prochlorococcus Pro-eCAG_012 putatively involved in phosphonate transport. B Prochlorococcus Pro-eCAG_013, involved in phosphonate/phosphite uptake and assimilation and phosphonate C-P bond cleavage. C The genomic region encompassing both phnC2-D2-E2-E3 and ptxABDC-phnYZ specific to P. marinus RS01. The size of the circle is proportional to relative abundance of Prochlorococcus as estimated based on the single-copy core gene petB and this gene was also used to estimate the relative abundance of other genes in the population. Black dots represent Tara Oceans stations for which Prochlorococcus read abundance was too low to reach the threshold limit.Full size imageeCAGs related to iron metabolismAs for macronutrients, it has been hypothesized that the survival of marine picocyanobacteria in low-Fe regions was made possible through several strategies, including the loss of genes encoding proteins that contain Fe as a cofactor, the replacement of Fe by another metal cofactor, and the acquisition of genes involved in Fe uptake and storage [14, 15, 36, 39, 64]. Accordingly, several eCAGs encompassing genes encoding proteins interacting with Fe were found in modules anti-correlated to HNLC regions in both genera. These include three subunits of the (photo)respiratory complex succinate dehydrogenase (SdhABC, Pro-eCAG_014, Syn-eCAG_006, Fig. S13; [65]) and Fe-containing proteins encoded in most abovementioned eCAGs involved in N or P metabolism, such as the guanidinase (Fig. S6), the NitC1 (Fig. 5), the pyrB2 (Fig. S8), the phosphonate (Fig. 6, S12), and the urea and inorganic nitrogen eCAGs (Fig. S5). Most Synechococcus cells thriving in Fe-replete areas also possess the sodT/sodX eCAG (Syn-eCAG_007, Fig. S14A, B) involved in nickel transport and maturation of the Ni-superoxide dismutase (SodN), these three genes being in contrast core in Prochlorococcus. Additionally, Synechococcus from Fe-replete areas, notably from the Mediterranean Sea and the Indian Ocean, specifically possess two eCAGs (Syn-eCAG_008 and 009; Fig. S14C, D), involved in the biosynthesis of a polysaccharide capsule that appear to be most similar to the E. coli groups 2 and 3 kps loci [66]. These extracellular structures, known to provide protection against biotic or abiotic stress, were recently shown in Klebsiella to provide a clear fitness advantage in nutrient-poor conditions since they were associated with increased growth rates and population yields [67]. However, while these authors suggested that capsules may play a role in Fe uptake, the significant reduction in the relative abundance of kps genes in low-Fe compared to Fe-replete areas (t-test p-value  More

  • in

    Adaptations of Pseudoxylaria towards a comb-associated lifestyle in fungus-farming termite colonies

    Genome reduction is associated with a termite comb-associated lifestyleFor our studies, we collected fungus comb samples originating from mounds of Macrotermes natalensis, Odontotermes spp., and Microtermes spp. termites and were able to obtain seven viable Pseudoxylaria cultures (X802 [Microtermes sp.], Mn132, Mn153, X187, X3-2 [Macrotermes natalensis], and X167, X170LB [Odontotermes spp.], Table S1-S3).To test if a fungus comb-associated lifestyle of Pseudoxylaria was reflected in differences at the genome level, we sequenced the genomes of all seven isolates using a combination of paired-end shotgun sequencing (BGISEQ-500, BGI) and long-read sequencing (PacBio sequel, BGI or Oxford Nanopore Technologies, Oxford, UK). In addition, we sequenced the transcriptomes (BGISEQ, BGI) of two isolates (X802, X170LB). Eleven publicly available genomes of free-living Xylaria (Fig. 2A, B) were used as reference genomes (Table S4). Hybrid draft genomes were comprised on average of 33–742 scaffolds with total haploid assembly lengths of 33.2–40.4 Mb, and a high BUSCO completeness of genomes ( > 95 %) with a total number of predicted proteins ranging from 8.8 to 12.1 × 103. The GC content was comparable to reference genomes with 49.7–51.6%. To verify the phylogenetic placement of the isolates, different genetic loci encoding conserved protein sequences (α-actin (ACT), second largest subunit of RNA polymerase (RPB2), β-tubulin (TUB) and the internal transcribed spacer (ITS) were used as genetic markers [7, 13].Fig. 2: Geographic and comparative phylogenomic analysis of termite-associated Pseudoxylaria isolates (strains 1-7) and free-living Xylaria (strains 8–18).A Geographic origins of genome-sequenced free-living Xylaria and termite-associated Pseudoxylaria isolates, B phylogenomic placement based on single-copy ortholog protein sequences, and C comparison of genome assembly length, and numbers of predicted proteins per genome.Full size imagePhylogenies were reconstructed from ITS sequences and three aligned sequence datasets (RPB2, TUB, ACT) using reference sequences of twelve different taxa (Table S4–S7). Consistent with previous findings, all isolates grouped within the monophyletic termite-associated Pseudoxylaria group [9,10,11,12,13], which diverged from the free-living members of the genus Xylaria (Fig. 2B, Figure S1–S4).As our seven isolates covered a larger portion of the previously reported phylogenetic diversity of the termite-associated subgenus, we elaborated on genomic characteristics of our isolates to uncover features of the termite-associated ecology of Pseudoxylaria. Indeed, comparative genome analysis of the South African Pseudoxylaria isolates with publicly available genomes of free-living Xylaria species of similar genome quality revealed significantly reduced genome assembly lengths in Pseudoxylaria with reduced numbers of predicted genes per genome (Table S4). Comparison of the annotated mitochondrial (mt) genomes (Figure S5, Table S8) also indicated that all seven mt genomes were shorter in length (assembly lengths: 18.5–63.8 kbp) compared to the, albeit few, publicly available mitochondrial genomes of free-living species (48.9–258.9 kbp). The reduction in mitochondrial genome size also corresponded to a significantly reduced mean number of annotated genes (7.6) and tRNAs (14.3) in Pseudoxylaria spp. compared to on average 30.0 (annotated genes) and 25.8 (tRNAs) found in free-living species.Analysis of the abundance and composition of transposable elements (TEs), which account for up to 30–35% of the genomes of (endo)parasitic fungi due to the expansion of certain gene families [20, 21], showed that the mean total numbers of TEs across Pseudoxylaria spp. genomes were comparable (1530), but the numbers were reduced compared to free-living Xylaria species (3690) (Table S9). We also identified high variation in the TE composition across genomes (1.5–9.9 %), comparable to what was observed in free-living Xylaria spp. (1.3–8.1 %), with reductions in long terminal repeat retrotransposons (LTRs: Copia and unknown LTRs) in two inverted tandem repeat DNA transposons (TIRs; CACTA, Mutator and hAT). As Pseudoxylaria spp. contained increased numbers of non-ITR transposons of the helitron class and LTRs of the Gypsy class compared to Xylaria strains, we concluded that Pseudoxylaria exhibits no typical features of an (endo)parasitic lifestyle, but that the overall composition and the reduced numbers of TEs could serve as a fingerprint to distinguish the genetically divergent Pseudoxylaria taxa.Repertoire of carbohydrate-active enzymes indicates specialized substrate useAs the fungus comb is mostly composed of partially-digested plant material interspersed with fungal mycelium of the termite mutualist [3], we anticipated that Pseudoxylaria should exhibit features of a substrate specialist similar to the fungal mutualist Termitomyces, which should be reflected in a Carbohydrate-Active enzyme (CAZyme) repertoire distinguishable from  free-living saprophytic Xylaria species [22,23,24]. In particular, numbers and composition of redox-active enzymes (e.g., benzoquinone reductase (EC 1.6.5.6/EC 1.6.5.7), catalase (EC 1.11.1.6), glutathione reductase (EC 1.11.1.9), hydroxy acid oxidase (EC 1.1.3.15), laccase (EC 1.10.3.2), manganese peroxidase (EC 1.11.1.13), peroxiredoxin (EC 1.11.1.15), superoxide dismutase (EC 1.15.1.1), dye-decolorization or unspecific peroxygenase (EC 1.11.2.1), Table S10), which catalyze the degradation of lignin-rich biomass, were expected to differ between free-living strains and substrate specialists [22].Identification of CAZymes using Peptide Pattern Recognition (PPR) revealed that Pseudoxylaria genomes encoded on average a reduced number of CAZymes (mean 264) compared to the free-living taxa in the family Xylaria (mean 367 CAZymes, pANOVA; F = 41.4, p = 3.5 × 10–8, pairwise p = 1.69 × 10–7) (Fig. 3A, B, Figure S6), but similar numbers to those identified in Termitomyces (mean 265, pairwise p = 0.949).Fig. 3: Comparison of carbohydrate-active enzymes (CAZymes) in Xylaria, Pseudoxylaria and the fungal mutualist Termitomyces.A Predicted CAZymes, B Principal Coordinates Analysis (PCoA) of predicted CAZyme families, and C heatmap of representatives CAZyme families in the predicted proteomes of free-living Xylaria, Termitomyces and Pseudoxylaria species.Full size imageOverall, significant differences in the composition of CAZymes were observed [8], most notably in the reduction of auxiliary activity enzymes (AA), carbohydrate esterases (CE), glycosyl hydrolases (GH), and polysaccharide lyases (PL). The most significant reduction was observed in the AA3 family (Fig. 3C), which typically displays a high multigenicity in wood-degrading fungi as many  enzymes of this family catalyze the oxidation of alcohols or carbohydrates with the concomitant formation of hydrogen peroxide or hydroquinones thereby supporting lignocellulose degradation by other AA-enzymes, such as peroxidases (AA2). Similarly, although to a lesser extent, reduced numbers within the related AA1 family were detected, which included oxidizing enzymes like laccases, ferroxidases, and laccase-like multicopper oxidases. Along these lines, glycosyl hydrolases of the GH3 and GH5 family, including enzymes responsible for degradation of cellulose-containing biomass and xylose, were less abundant. We also noted that all Pseudoxylaria lacked homologs of the unspecific peroxygenases (UPO; EC 1.11.2.1), while almost all free-living Xylaria spp. and the fungal symbiont Termitomyces harbored at least one or two copies of similar gene sequences.
    Pseudoxylaria shows reduced biosynthetic capacity for secondary metabolite productionA healthy termite colony is engulfed in several layers of social immunity [5, 6], which pose a constant selection pressure on associated and potentially antagonistic microbes. As Pseudoxylaria evolved measures to remain inconspicuously present within the comb environment, we hypothesized that one of the possible adaptations to evade hygiene measures of termites could be reflected in a reduced biosynthetic capability to produce antibiotic or volatile natural products, which often serve as infochemicals triggering defense mechanisms [25,26,27], or as alarm pheromones [4, 28].The biosynthesis of secondary metabolites is encoded in so called Biosynthetic Gene Cluster (BGC) regions. We explored the abundance and diversity of encoded BGCs using FungiSMASH 6.0.0 and manually cross-checked the obtained data set by BLAST to account for possible biases due to varying genome qualities across strains of both groups [29]. Overall, the herein investigated Xylaria genomes harbored on average 90 BGCs per genome, while Pseudoxylaria encoded on average 45 BGCs (Fig. 4, Figure S7). Fig. 4: Similarity network analysis of biosynthetic gene clusters.Comparative analysis of termite associated-associated Pseudoxylaria isolates (strains 1–7, red circles) and free-living Xylaria (strains 8–18, green circles) with BiG-SCAPE 1.0 annotations (blue hexagon) ACR ACR toxin, Alt alternariol, Bio biotin, Chr chromene, Cyt cytochalasins, Cur curvupalide, Dep depiudecin, Fus fusarin, Gri griseofulvin, Mon monascorubin, MSA 6-methylsalicylic acid, Pho phomasetin, Sol solanapyrone, Swa swasionine, Xen xenolozoyenone, Xsp xylasporins, Xyl xylacremolide. Singletons are not shown.Full size imageThe nature and relatedness of the BGCs were analyzed by creating a curated similarity network analysis using BiG-SCAPE 1.0 [30]. Overall, 28 orthologous BGCs were shared across all genomes, including the biosynthesis of polyketides like 6-methylsalicylic acid (MSA), chromenes (Chr) and polyketide-non-ribosomal peptide (PKS-NRPS) hybrids like the cytochalasins (Cyt) [31]. Furthermore, five BGC networks, which were shared by Pseudoxylaria and Xylaria, contained genes encoding natural product modifying dimethylallyltryptophan synthases (DMATS). In contrast, and despite the significant reduction in the biosynthetic capacity within Pseudoxylaria genomes [29], about 29 BGC networks were unique to Pseudoxylaria and thus could possibly relate to the comb-associated lifestyle (Figure S8 and S9). Notably, Pseudoxylaria genomes lacked genes encoding ribosomally synthesized and posttranslationally modified peptides (RiPPs) or halogenases. In comparision, free-living Xylaria spp. harbored at least one sequence encoding a RiPP, and up to two orthologous sequences encoding putative halogenases. In contrast, a reduced average number of terpene synthases (TPS) in Pseudoxylaria (9 TPS) compared to free-living Xylaria (18 TPS) was detected, which included three BGCs encoding TPSs that were unique to Pseudoxylaria.  In comparison, genomes of the fungal mutualist Termitomyces were reported to encode for about 20-25 terpene cyclases, but haboured only about two loci containing genes for a PKS and NRPS each [24].Manual BLAST searches were conducted to identify BGCs that could be putatively assigned to previously isolated metabolites from Pseudoxylaria (vide infra Fig. 7, Figure S8) [32, 33]. Using e.g., the known NRPS-PKS-hybrid cluster sequence ccs (Aspergillus clavatus) of cytochalasins as query, an orthologous BGC, here named cytA, was identified in the cytochalasin-producing strain X802 [34]. Although the putative PKS-NRPS hybrid and CcsA shared 60 % identical amino acids (aa), the sequences of the accessory enzymes were less related to CcsC-G (45–47% identical aa) and the BGC in X802 lacked a gene of a homologue to ccsB. Similarly, five free-living Xylaria species carried orthologous gene loci (Xylaria sp. BCC 1067, Xylaria sp. MSU_SB201401, X. flabelliformis G536, X. grammica EL000614, and X. multiplex DSM 110363) supporting previous isolation reports of cytochalasins with varying structural features. Furthermore, three Pseudoxylaria strains (X187, and closely related Mn153, and Mn132) were found to share a highly similar PKS-NRPS hybrid BGC (99–100 % identical aa, named xya), which likely encodes for the enzymatic production of previously identified xylacremolides [32]. Four Pseudoxylaria strains (X802, Mn132, Mn153, and X187) also shared a BGC (50–98 % amino acid identity) resembling the fog BGC (Aspergillus ruber) [35, 36], which putatively encodes the biosynthetic machinery to produce xylasporin/cytosporin-like metabolites. In this homology search, we also uncovered that fog-like BGC arrangements are likely more common than previously anticipated, as clusters with similar arrangements and identity were also found in genomes of Rosellinia necatrix, Pseudomasariella vexata, Stachybotrys chartarum, and Hyaloscypha bicolor (Fig. 4, Figure S8).A detailed analysis of the fog-like cluster arrangements within Pseudoxylaria genomes revealed – similar to homologs of the ccs cluster – variation in the abundance and arrangement of several accessory genes coding for a cupin protein (pxF), a short chain oxidoreductase (pxB; SDR), and an additional SnoaL-like polyketide cyclase (pxP), which could account for the production of strain-specific structural congeners (vide infra, Fig. 7).Change of nutrient sources causes dedicated transcriptomic changes in Pseudoxylaria
    To further solidify our in silico indications of substrate specialization with comb material as preferred substrate and fungus garden as environment, we analyzed Pseudoxylaria growth on different media (PDA, and reduced medium 1/3-PDA) including comb-like agar matrices (wood-rice medium (WRM), agar-agar or 1/3-PDA medium containing lyophilized (dead) Termitomyces sp. T112 biomass (T112, respectively T112-PDA), PDB covering glass-based surface-structuring elements (GB), Table S11–S14).Cultivation of Pseudoxylaria on agar-agar containing lyophilized biomass of Termitomyces (T112) as the sole nutrient source allowed Pseudoxylaria to sustain growth, although to a reduced extent compared to growth on nutrient-rich PDA medium (Table S3). Wood-rice medium (WRM) induced comparable growth rates as observed on PDA and also the appearance of phenotypic stromata.To investigate the influence of these growth conditions on the transcriptomic level, we harvested RNA from vegetative mycelium after growth on comb-like media (WRM, T112, T112-PDA, and GB), PDA, and reduced medium 1/3-PDA (Fig. 5A). The most significant transcript changes (normalized to data obtained from growth on PDA) were observed for genes coding for specific CAZymes including several redox active enzymes (Fig. 5B). The 30 most variable transcripts coded for specific glycoside hydrolases (GH), lytic polysaccharide monooxygenases (AA), ligninolytic enzymes, and a glycoside transferase (GT). Similarly, chitinases (CHT2; CHT4; CHI2; CHI4) were upregulated (up to 243-fold on T112) under almost all conditions compared to PDA, but some of these specific transcript changes were exclusive to growth on Termitomyces biomass or artificial comb material (WRM) suggesting the ability to regulate and increase chitin metabolism if necessary [37].Fig. 5: Transcriptomic analysis of Pseudoxylaria sp. X802 in dependence of growth conditions.A Representative pictures of Pseudoxylaria sp. X802 growing on PDA, PDB on glass beads (GB), wood-rice medium (WRM), and agar-agar medium containing lyophilized Termitomyces sp. T112 biomass (T112). B Heatmap of the most variable transcripts coding for CAZymes (red), redox enzymes (orange), secondary metabolite-related core genes (green), and more specifically on key genes within the boundaries of cytochalasin (turquoise) and xylasporin/cytosporin BGCs (blue). RNA was obtained from vegetative mycelium after growth on PDA, reduced medium (1/3-PDA), PDB on glass beads (GB), wood-rice medium (WRM), 1/3-PDA-medium enriched with Termitomyces sp. T112 biomass (T112-PDA) and agar-agar medium containing lyophilized Termitomyces biomass (T112). Transcript counts are shown as log10 transformed transcripts per million (top; TPM). Significance of the changes in transcript counts are compared to control (X802 grown on PDA) and depicted in log-10 transformed p values.Full size imageWhen X802 was grown on T112 (agar matrix containing lyophilized Termitomyces sp. T112 biomass), we observed a >400-fold increase in the expression of transcripts encoding glycoside hydrolases in the GH43 family, GH7 (~140-fold), GH3, and GH64 (5–12-fold). Similarly, transcripts for a putative mannosyl-oligosaccharide-α-1,2-mannosidase (MNS1B; 8.2-fold), chitinase CHT4 (2.9-fold), β-glucosidase BGL4 (5.7-fold), and copper-dependent lytic polysaccharide monooxygenase AA11 (1.6-fold) were significantly upregulated. Growth on WRM (wood-rice medium) or T112 (Termitomyces sp. T112 biomass) also caused a significant upregulation of genes coding for glycoside transferase GT2, glycoside hydrolases GH15, GH3, and aldehyde oxidase AOX1, which indicated the ability to expand the degradation portfolio if necessary. Along these lines, specific transcript levels were reduced when X802 was grown on T112, in particular class II lignin-modifying peroxidases (AA2), carbohydrate-binding module family 21 (CBM21), multicopper oxidases (AA1), secreted β-glucosidases (SUN4), and glycoside hydrolases GH16, and GH128.When the fungus was challenged with lignocellulose-rich WRM medium, higher transcript levels putatively assigned to glutathione peroxidase (GXP2), superoxide dismutase (SOD2), and laccases (LCC5) were observed, which indicated that despite the reduced wood-degrading capacity, Pseudoxylaria activates available enzymatic mechanisms to degrade the provided material and respond to the resulting oxidative stress. Cultivation on GB (glass-based surfaces covered in liquid PD broth) influenced the expression of certain genes coding for glycoside hydrolases (GH64, GH76, GH72, GH128, BGL4) and lytic polysaccharide monooxygenases (AA1, AA2, AA11), presumably enabling the fungus to utilize soluble carbohydrates.To test the hypothesis that the presence of Termitomyces biomass stimulates secondary metabolite production in Pseudoxylaria to eventually displace the mutualist, we also analyzed changes in the transcript levels of core BGC genes that encode the production of bioactive secondary metabolites. Overall, only slight transcript variations were detectable within the  most variable expressed genes. (Fig. 5B). Cultivation on GB, WRM, and T112 media caused lower transcript levels of genes coding for terpene synthase TC1, polyketide synthases (PKS7, PKS8), and the NRPS-like1, while an upregulation of NRPS-like2 on WRM (2.5-fold), and of PKS7 (1.7-fold) on reduced 1/3-PDA medium was observed.Transcript levels of core genes within BGCs assigned to cytochalasines (cyt) or xylasporins/cytosporins (px), e.g., remained nearly constant, while minor transcript level variations of neighboring genes and reduced transcript levels for pxI (flavin-dependent monooxygenase), pxH (ABBA-type prenyltransferase), pxF (cupin fold oxidoreductase), and pxJ (short-chain dehydrogenase) were detectable. Hence, it was concluded that the presence of Termitomyces biomass only weakly triggers secondary metabolite production in general, but varying transcript levels coding for decorating enzymes could cause substantial structural alterations within the produced natural product composition. It was also notable that transcript levels of the terpene synthase TC1 were downregulated, which could cause a reduced production level of specific volatiles.
    Pseudoxylaria antagonizes Termitomyces growth and metabolizes fungal biomassThe growth behavior of Pseudoxylaria isolates was also analyzed in co-culture assays with Termitomyces. As expected from prior studies, both fungi showed reduced growth when co-cultured on agar plates, often causing the formation of zones of inhibition (ZOI) between the fungal colonies (Fig. 6A–D, Table S11–S14) [7]. When fungus-fungus co-cultures were maintained for longer than two weeks on agar plates, Pseudoxylaria started to overcome the ZOI and overgrew Termitomyces via the extension of aerial mycelium. The observation was even more pronounced when co-cultures were performed on wood-rice medium (WRM), where Pseudoxylaria remained the only visible fungus after two weeks.Fig. 6: Co-cultivation of Pseudoxylaria sp. X170LB and Termitomyces sp. T112 and results of isotope fractionation experiments.Representative pictures of fungal growth and co-cultivation of A Termitomyces sp. T112, B Pseudoxylaria sp. X170LB, C co-culture of Pseudoxylaria sp. X802 and Termitomyces sp. T153 exhibiting a ZOI, in which X802 overgrowths T153 in proximity to the interaction zone (red arrow), and D Pseudoxylaria sp. X802 growing on the surface of a living Termitomyces sp. T153 culture. E, F Shown is the relative change in the carbon isotope pattern (δ13C values, ± standard deviation, with n = 3) of lipid and carbohydrate fractions isolated from fungal biomass of Termitomyces sp. T112, Pseudoxylaria sp. X170LB, and Pseudoxylaria sp. X170LB cultivated on vegetative Termitomyces sp. T112 biomass (T112ǂ), or on lyophilized Termitomyces sp. T112 biomass (T112). Fungal strains were grown on E medium with natural 13C abundance and F medium artificially enriched in 13C content.Full size imageTo verify whether Pseudoxylaria consumes Termitomyces or even partially degrades specific metabolites present within the fungal biomass, we pursued stable isotope fingerprinting commonly used to analyse trophic relations [38, 39]. This diagnostic method relies on measurable changes in the bulk stable isotope composition, because biosynthetic enzymes preferentially convert lighter metabolites enriched in 12C compared to their heavier 13C-enriched congeners. This intrinsic kinetic isotope effect results in an overall change in the 13C/12C ratio of the respective educts and products, in particular in biomarkers such as phospholipid fatty acids, carbohydrates, and amino acids. Using this isotope enrichment effect, we determined the natural trophic isotope fractionation of 13C in lipids and carbohydrates produced by Termitomyces sp. T112 and Pseudoxylaria sp. X170LB. For clearer differentiation, both fungi were cultivated on PDA medium containing naturally abundant 13C/12C, Fig. 6E) and on PDA medium enriched with 13C-glucose (Fig. 6F). Lipids and carbohydrates were isolated from mycelium harvested after 21 days (Fig. 6E, Table S15).Analysis of fungal carbohydrate and lipid-rich metabolite fractions by Elemental Analysis-Isotope Ratio Mass Spectrometry (EA-IRMS) [40, 41] uncovered that under normal growth conditions (full medium), Termitomyces sp. T112 and Pseudoxylaria sp. X170LB showed only a slight negative trophic fractionation of stable carbon isotopes (δ13C/12C ratio (expressed as δ13C values [‰]), Fig. 6F) within the carbohydrate fractions (T112: −1.2 ‰; for X170LB: −1.3 ‰), and expectedly a stronger depletion in the lipid fraction (T112: −6.7 ‰, and less pronounced for X170LB: −3.1 ‰). To determine if Pseudoxylaria metabolizes Termitomyces biomass, the isotope pattern of metabolites derived from Pseudoxylaria thriving on living biomass of Termitomyces (T112ǂ) was analysed next. Here, an overall positive carbon isotope (13C/12C) fractionation by approximately +0.6 ‰ relative to the control medium was detectable, while the δ13C values of lipids remained largely unchanged (Fig. 6F, Table S15). These results suggested that Pseudoxylaria might pursue a preferential uptake of Termitomyces-derived carbohydrates.In a last experiment, Pseudoxylaria was grown on lyophilized (dead) Termitomyces biomass (T112) as sole food source. In this experiment, the isotope fingerprint showed converging δ13C values of −1.9 ‰ (relative to the media) for both carbohydrate and lipid fractions, which indicated that Pseudoxylaria is able to simultaneously metabolize and cycle carbohydrates as well as lipids resulting in the equilibration of isotopic levels between carbohydrates and lipids. Thus, it was concluded that in nature, Pseudoxylaria likely harvests nutrients firstly from vegetative Termitomyces, and then—if possible—subsequently degrades dying or dead mycelium.
    Pseudoxylaria produces antimicrobial secondary metabolitesBased on the observation that Pseudoxylaria antagonizes growth of Termitomyces, we questioned if the formation of a ZOI might be caused by the secretion of Pseudoxylaria-derived antimicrobial metabolites [26, 42]. Thus, we performed an ESI(+)-HRMS/MS based metabolic survey using the web-based platform “Global Natural Product Social Molecular Networking” (GNPS) [43] to correlate the encoded biosynthetic repertoire of Pseudoxylaria with secreted metabolites.A partial similar metabolic repertoire across the six analyzed strains was detectable and allowed us to match some of the detectable chemical features and previously isolated metabolites to the predicted shared BGCs, such as antifungal and histone deacetylase inhibitory xylacremolides (Xyl; X187/Mn132) [32, 33], pseudoxylaramides (Psa; X187/Mn132) [32], antibacterial pseudoxylallemycins (Psm; X802/OD126) [18], xylasporin/cytosporins (Xsp; X802/OD126/X187/Mn132) [36], and cytotoxic cytochalasins (X802/OD126) (Fig. 7A and B) [18].Fig. 7: Comparative metabolomic analysis of six Pseudoxylaria strains (OD126 (red), Mn132 (orange), X170 (black), X187 (green), X3.2 (yellow) and X802 (blue)).A Overview of the GNPS network. Identified metabolite clusters xylacremolides (Xyl; X187/Mn132) [32, 33], pseudoxylaramides [32] (Psa; X187/Mn132), pseudoxylallemycins (Psm; X802/OD126) [18], xylasporin/cytosporins (Xsp; X802/OD126/X187/Mn132) and cytochalasins (X802/OD126) [18]. B xylasporin/cytosporin-related cluster formed by nodes from X802 (blue), OD126 (red), X187 (green) and Mn132 (orange). C Chemical structures of natural products isolated from Pseudoxylaria species and related compounds. Red box highlights proposed structures of isolated xylasporin G and I in this study.Full size imageA cluster that contained MS2 signals of molecular ions assigned to the cytosporin/xylasporin family, which was shared by at least four strains, caught our attention as a certain degree of structural diversity of xylasporin/cytosporin family was predicted from the comparison of their respective BGCs. The assigned nodes of this GNPS cluster split into two subclusters with only very little overlap between both regions. Analysis of the mass fragment shifts suggested that both subclusters belong to two different families of xylasporin/cytosporin congeners (Figure S9). To verify these deductions, we pursued an MS-guided purification of xylasporin/cytosporins from chemical extracts of Pseudoxylaria sp. X187, which yielded xylasporin G (3.23 mg, pale-yellow solid) and xylasporin I (1.75 mg, pale-yellow solid). The sum formulas of xylasporin G and xylasporin I were determined to be C17H22O5 (calcd. for [M + H]+ C17H23O5+ = 307.1540, found 307.15347, −1.726 ppm) and C17H24O5 (calcd. for [M + H]+ C17H25O5+ = 309.1697, found 309.1691, −1.68 ppm) by ESI-(+)-HRMS and were predicted to have six degrees of unsaturation (Fig. 7B, Figure S10, Table S16-S17). Planar structures were deduced by comparative 1D and 2D NMR analyses, which revealed the presence of an unsaturated polyketide chain that matched the unsaturation degree and the anticipated structural variation from cytosporins (Fig. 7C, Figure S11-S25).To evaluate if Pseudoxylaria-derived culture extracts and produced natural products (e.g., cytochalasins) are responsible for the observed antimicrobial activity, standardized antimicrobial activity assays were performed (Table S17, S18 and Figure S26). As neither culture extracts nor single compounds exhibited significant antimicrobial activity, they could not be held fully accountable for the antagonistic behavior in co-cultures. Thus, we hypothesized that the observed ZOI might be caused by yet unknown effects like nutrient depletion or bioactive enzymes.
    Pseudoxylaria has a negative impact on the fitness of insect larvaeDue to the production of structurally diverse and weakly antimicrobial secondary metabolites, we questioned if mycelium of Pseudoxylaria exhibits intrinsic insecticidal or other insect-detrimental activities, which could discourage or ward off grooming behavior of termite workers. Due to the technical challenges associated with behavioral studies of termites, we evaluated instead the effect of Pseudoxylaria biomass on Spodoptera littoralis, a well-established insect model system and a destructive agricultural lepidopterous pest [44, 45]. When S. littoralis larvae were fed with mycelium-covered agar plugs of Pseudoxylaria sp. X802, a clear decrease of the relative growth rate (RGR) and decline in survival was observed (Fig. 8: treatment D (green), Table S19, S20) compared to feeding with untreated agar plugs (treatment A (black)). In comparison, when larvae were fed with agar plugs covered with the fungal mutualist Termitomyces sp. T153 (treatment B (blue)) an increased growth rate of larvae was observed.Fig. 8: Effect of Termitomyces sp. T153 and Pseudoxylaria sp. X802 mycelia on the relative growth rate and survival of S. littoralis larvae.Insects were fed with either A PDA, B PDA agar plug covered with vegetative Termitomyces sp. T153, C PDA agar plug from which vegetative Termitomyces sp. T153 was removed prior to feeding, D PDA agar plug covered with vegetative Pseudoxylaria sp. X802 mycelium, and E PDA agar plug from which vegetative Pseudoxylaria sp. X802 mycelium was removed prior to feeding. All experiments were performed with 25 replicates per treatment, a duration of 10 days, and larval weights and survival rates were recorded every day. Statistical significances were determined using ANOVA on ranks (p  More

  • in

    Microbial keystone taxa drive succession of plant residue chemistry

    Lal R, Bruce JP. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ Sci Policy. 1999;2:177–85.Article 
    CAS 

    Google Scholar 
    Wang J, Feng L, Palmer PI, Liu Y, Fang S, Bosch H, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature. 2020;586:720–3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lal R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience. 2010;60:708–21.Article 

    Google Scholar 
    Rumpel C, Lehmann J, Chabbi A. ‘4 per 1,000’ initiative will boost soil carbon for climate and food security. Nature. 2018;553:27–27.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhao Y, Wang M, Hu S, Zhang X, Ouyang Z, Zhang G, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc Natl Acad Sci USA. 2018;115:4045–50.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang F, Xu Y, Cui Y, Meng Y, Dong Y, Li R, et al. Variation of soil organic matter content in croplands of china over the last three decades (in Chinese). Acta Pedol Sin. 2017;5:1047–56.
    Google Scholar 
    Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, et al. Persistence of soil organic carbon caused by functional complexity. Nat Geosci. 2020;13:529–34.Article 
    CAS 

    Google Scholar 
    Schmidt M, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60–68.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci. 2015;8:776–9.Article 
    CAS 

    Google Scholar 
    Schnitzer M, Monreal CM. Quo vadis soil organic matter research? A biological link to the chemistry of humification. Adv Agron. 2011;113:139–213.
    Google Scholar 
    Wang X, Sun B, Mao J, Sui Y, Cao X. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environ Sci Technol. 2012;46:7159–65.Article 
    CAS 
    PubMed 

    Google Scholar 
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wickings K, Grandy AS, Reed SC, Cleveland CC. The origin of litter chemical complexity during decomposition. Ecol Lett. 2012;15:1180–8.Article 
    PubMed 

    Google Scholar 
    Grandy AS, Neff JC. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ. 2008;404:297–307.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jenkinson DS, Ayanaba A. Decomposition of 14C labeled plant material under tropical conditions. Soil Sci Soc Am J. 1977;41:912–5.Article 
    CAS 

    Google Scholar 
    Li Y, Chen N, Harmon ME, Li Y, Cao X, Chappell MA, et al. Plant species rather than climate greatly alters the temporal pattern of litter chemical composition during long-term decomposition. Sci Rep. 2015;5:15783.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Preston CM, Nault JR, Trofymow JA, Smyth C, Grp CW. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems. 2009;12:1053–77.Article 
    CAS 

    Google Scholar 
    Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickings K, Stuart Grandy A, Reed S, Cleveland C. Management intensity alters decomposition via biological pathways. Biogeochemistry. 2011;104:365–79.Article 

    Google Scholar 
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun B, Wang X, Wang F, Jiang Y, Zhang X-X. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl Environ Microbiol. 2013;79:3327.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balser TC, Firestone MK. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry. 2005;73:395–415.Article 
    CAS 

    Google Scholar 
    Grandy AS, Neff JC, Weintrau MN. Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol Biochem. 2007;39:2701–11.Article 
    CAS 

    Google Scholar 
    Maynard DS, Crowther TW, Bradford MA. Competitive network determines the direction of the diversity-function relationship. Proc Natl Acad Sci USA. 2017;114:11464–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snajdr J, Cajthaml T, Valaskova V, Merhautova V, Petrankova M, Spetz P, et al. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol. 2011;75:291–303.Article 
    CAS 
    PubMed 

    Google Scholar 
    Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 2016;97:188–98.Article 
    CAS 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.Article 
    CAS 
    PubMed 

    Google Scholar 
    Carrias J-F, Gerphagnon M, Rodríguez-Pérez H, Borrel G, Loiseau C, Corbara B, et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol Ecol. 2020;96:fiaa045.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhan P, Liu Y, Wang H, Wang C, Xia M, Wang N, et al. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Sci Total Environ. 2021;753:142194.Article 
    CAS 
    PubMed 

    Google Scholar 
    Panettieri M, Knicker H, Murillo JM, Madejon E, Hatcher PG. Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS C-13 NMR. Soil Biol Biochem. 2014;78:170–81.Article 
    CAS 

    Google Scholar 
    Skjemstad JO, Clarke P, Taylor JA, Oades JM, Newman RH. The removal of magnetic-materials from surface soils – a solid state 13C CP/MAS NMR study. Aust J Soil Res. 1994;32:1215–29.Article 
    CAS 

    Google Scholar 
    Sokolenko S, Jézéquel T, Hajjar G, Farjon J, Akoka S, Giraudeau P. Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain. J Magn Reson. 2019;298:91–100.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma.2009;150:278–86.Article 
    CAS 

    Google Scholar 
    Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem. 2002;34:1309–15.Article 
    CAS 

    Google Scholar 
    Allison SD, Jastrow JD. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biol Biochem. 2006;38:3245–56.Article 
    CAS 

    Google Scholar 
    Zhang XD, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem. 1996;28:1201–6.Article 
    CAS 

    Google Scholar 
    Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC. The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J. 2012;6:1046–57.Article 
    CAS 
    PubMed 

    Google Scholar 
    Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.Article 
    PubMed 

    Google Scholar 
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comp Biol. 2012;8:e1002606.Article 
    CAS 

    Google Scholar 
    Chong IG, Jun CH. Performance of some variable selection methods when multicollinearity is present. Chemometrics Intell Lab Syst. 2005;78:103–12.Article 
    CAS 

    Google Scholar 
    Strukelj M, Brais S, Mazerolle MJ, Pare D, Drapeau P. Decomposition patterns of foliar litter and deadwood in managed and unmanaged stands: A 13-year experiment in boreal mixedwoods. Ecosystems. 2018;21:68–84.Article 
    CAS 

    Google Scholar 
    Manzoni S, Piñeiro G, Jackson RB, Jobbágy EG, Kim JH, Porporato A. Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates. Soil Biol Biochem. 2012;50:66–76.Article 
    CAS 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    Grace JB (ed). Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge, 2006.Shen Y, Cheng R, Xiao W, Yang S, Guo Y, Wang N, et al. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci Rep. 2018;8:573.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR. Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Glob Change Biol. 2005;11:1514–21.Article 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech. 2017;7:118.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, et al. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Micro Cell Factories. 2012;11:125.Article 
    CAS 

    Google Scholar 
    Wang X, Bian Q, Jiang Y, Zhu L, Chen Y, Liang Y, et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol Biochem. 2021;153:108062.Article 
    CAS 

    Google Scholar 
    Joergensen RG. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fert Soils. 2018;54:559–68.Article 
    CAS 

    Google Scholar 
    Chen Y, Sun R, Sun T, Chen P, Yu Z, Ding L, et al. Evidence for involvement of keystone fungal taxa in organic phosphorus mineralization in subtropical soil and the impact of labile carbon. Soil Biol Biochem. 2020;148:107900.Article 
    CAS 

    Google Scholar 
    Puentes-Tellez PE, Salles JF. Construction of effective minimal active microbial consortia for lignocellulose degradation. Micro Ecol. 2018;76:419–29.Article 
    CAS 

    Google Scholar 
    Zark M, Dittmar T. Universal molecular structures in natural dissolved organic matter. Nat Commun. 2018;9:3178.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lynch LM, Sutfin NA, Fegel TS, Boot CM, Covino TP, Wallenstein MD. River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nat Commun. 2019;10:459.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res Biogeosci. 2008;113:G03009.Article 

    Google Scholar 
    Stewart CE, Neff JC, Amatangelo KL, Vitousek PM. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest. Ecosystems. 2011;14:382–97.Article 
    CAS 

    Google Scholar  More

  • in

    Horses discriminate human body odors between fear and joy contexts in a habituation-discrimination protocol

    Semin, G. R., Scandurra, A., Baragli, P., Lanatà, A. & D’Aniello, B. Inter- and intra-species communication of emotion: Chemosignals as the neglected medium. Animals 9, 887 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Désiré, L., Boissy, A. & Veissier, I. Emotions in farm animals: A new approach to animal welfare in applied ethology. Behav. Processes 60, 165–180 (2002).Article 
    PubMed 

    Google Scholar 
    Briefer, E. F. & Le Comber, S. Vocal expression of emotions in mammals: mechanisms of production and evidence. J. Zool. 288, 1–20 (2012).Article 

    Google Scholar 
    Jardat, P. & Lansade, L. Cognition and the human–animal relationship: a review of the sociocognitive skills of domestic mammals toward humans. Anim. Cogn. 25, 369–384 (2022).Article 
    PubMed 

    Google Scholar 
    Galvan, M. & Vonk, J. Man’s other best friend: domestic cats (F. silvestris catus) and their discrimination of human emotion cues. Anim. Cogn. 19, 193–205 (2016).Nawroth, C., Albuquerque, N., Savalli, C., Single, M. S. & McElligott, A. G. Goats prefer positive human emotional facial expressions. R. Soc. Open Sci. 5, 180491 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Proops, L., Grounds, K., Smith, A. V. & McComb, K. Animals remember previous facial expressions that specific humans have exhibited. Curr. Biol. 28, 1428-1432.e4 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. V., Proops, L., Grounds, K., Wathan, J. & McComb, K. Functionally relevant responses to human facial expressions of emotion in the domestic horse (Equus caballus). Biol. Lett. 12, 20150907 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siniscalchi, M., D’Ingeo, S., Fornelli, S. & Quaranta, A. Lateralized behavior and cardiac activity of dogs in response to human emotional vocalizations. Sci. Rep. 8, 77 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siniscalchi, M., D’Ingeo, S. & Quaranta, A. Orienting asymmetries and physiological reactivity in dogs’ response to human emotional faces. Learn. Behav. 46, 574–585 (2018).Article 
    PubMed 

    Google Scholar 
    Smith, A. V. et al. Domestic horses (Equus caballus) discriminate between negative and positive human nonverbal vocalisations. Sci. Rep. 8, 13052 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trösch, M. et al. Horses categorize human emotions cross-modally based on facial expression and non-verbal vocalizations. Animals 9, 862 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quaranta, A., D’ingeo, S., Amoruso, R. & Siniscalchi, M. Emotion recognition in cats. Animals 10, 1107 (2020).Nakamura, K., Takimoto-Inose, A. & Hasegawa, T. Cross-modal perception of human emotion in domestic horses (Equus caballus). Sci. Rep. 8, 8660 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albuquerque, N. et al. Dogs recognize dog and human emotions. Biol. Lett. 12, 20150883 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briefer, E. F. Vocal contagion of emotions in non-human animals. Proc. R. Soc. B Biol. Sci. 285 (2018).Sabiniewicz, A., Tarnowska, K., Świątek, R., Sorokowski, P. & Laska, M. Olfactory-based interspecific recognition of human emotions: Horses (Equus ferus caballus) can recognize fear and happiness body odour from humans (Homo sapiens). Appl. Anim. Behav. Sci. 230, 105072 (2020).Article 

    Google Scholar 
    Baba, C., Kawai, M. & Takimoto-Inose, A. Are horses (Equus caballus) sensitive to human emotional cues?. Animals 9, 630 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brennan, P. A. & Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Philos. Trans. R. Soc. B Biol. Sci. 361, 2061–2078 (2006).Saslow, C. A. Understanding the perceptual world of horses. Appl. Anim. Behav. Sci. 78, 209–224 (2002).Article 

    Google Scholar 
    Péron, F., Ward, R. & Burman, O. Horses (Equus caballus) discriminate body odour cues from conspecifics. Anim. Cogn. 17, 1007–1011 (2014).Article 
    PubMed 

    Google Scholar 
    Krueger, K. & Flauger, B. Olfactory recognition of individual competitors by means of faeces in horse (Equus caballus). Anim. Cogn. 14, 245–257 (2011).Article 
    PubMed 

    Google Scholar 
    Boissy, A., Terlouw, C. & Le Neindre, P. Presence of cues from stressed conspecifics increases reactivity to aversive events in cattle: evidence for the existence of alarm substances in urine. Physiol. Behav. 63, 489–495 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vieuille-Thomas, C. & Signoret, J. P. Pheromonal transmission of an aversive experience in domestic pig. J. Chem. Ecol. 18, 1551–1557 (1992).Article 
    CAS 
    PubMed 

    Google Scholar 
    Siniscalchi, M., D’Ingeo, S. & Quaranta, A. The dog nose ‘KNOWS’ fear: Asymmetric nostril use during sniffing at canine and human emotional stimuli. Behav. Brain Res. 304, 34–41 (2016).Article 
    PubMed 

    Google Scholar 
    Calvi, E. et al. The scent of emotions: A systematic review of human intra- and interspecific chemical communication of emotions. Brain Behav. 10 (2020).de Groot, J. H. B., Semin, G. R. & Smeets, M. A. M. On the communicative function of body odors: A theoretical integration and review. Perspect. Psychol. Sci. 12, 306–324 (2017).Article 
    PubMed 

    Google Scholar 
    de Groot, J. H. B. et al. A sniff of happiness. Psychol. Sci. 26, 684–700 (2015).Article 
    PubMed 

    Google Scholar 
    Destrez, A. et al. Male mice and cows perceive human emotional chemosignals: A preliminary study. Anim. Cogn. 24, 1205–1214 (2021).Article 
    PubMed 

    Google Scholar 
    Wilson, Id. Dogs can discriminate between human baseline and psychological stress condition odours. PLoS ONE 17, e0274143 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Aniello, B., Semin, G. R., Alterisio, A., Aria, M. & Scandurra, A. Interspecies transmission of emotional information via chemosignals: from humans to dogs (Canis lupus familiaris). Anim. Cogn. 21, 67–78 (2018).Article 
    PubMed 

    Google Scholar 
    D’Aniello, B. et al. Sex differences in the behavioral responses of dogs exposed to human chemosignals of fear and happiness. Anim. Cogn. 24, 299–309 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siniscalchi, M., d’Ingeo, S., Quaranta, A., D’Ingeo, S. & Quaranta, A. Lateralized emotional functioning in domestic animals. Appl. Anim. Behav. Sci. 237, 105282 (2021).Article 

    Google Scholar 
    Rogers, L. & Vallortigara, G. Lateralized Brain Functions: Methods in Human and Non-Human Species. vol. 122 (2017).D’Ingeo, S. et al. Horses associate individual human voices with the valence of past interactions: A behavioural and electrophysiological study. Sci. Rep. 9, 11568 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siniscalchi, M., Padalino, B., Aubé, L. & Quaranta, A. Right-nostril use during sniffing at arousing stimuli produces higher cardiac activity in jumper horses. Laterality 20, (2015).De Boyer Des Roches, A., Richard-Yris, M.-A. A., Henry, S., Ezzaouïa, M. & Hausberger, M. Laterality and emotions: Visual laterality in the domestic horse (Equus caballus) differs with objects’ emotional value. Physiol. Behav. 94, 487–490 (2008).Albrecht, J. et al. Smelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects. Chem. Senses 36, 19–27 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Derrickson, S. Sinister (VF)—YouTube. (Wild Bunch SA, 2001).Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2021).Wickham, H. Ggplot2: Elegant graphics for data analysis. (2016).Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A. & Zeileis, A. coin: Conditional inference procedures in a permutation test framework (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models (2021).Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2022).Hothersall, B., Harris, P., Sörtoft, L. & Nicol, C. J. Discrimination between conspecific odour samples in the horse (Equus caballus). Appl. Anim. Behav. Sci. 126, 37–44 (2010).Article 

    Google Scholar 
    Smeets, M. A. M. et al. Chemical fingerprints of emotional body odor. Metabolites 10, (2020).Sabiniewicz, A. et al. A preliminary investigation of interspecific chemosensory communication of emotions: Can Humans (Homo sapiens) recognise fear- and non-fear body odour from horses (Equus ferus caballus). Animal 11, 3499 (2021).Article 

    Google Scholar 
    Zhou, W. & Chen, D. Entangled chemosensory emotion and identity: Familiarity enhances detection of chemosensorily encoded emotion. Soc. Neurosci. 6, 270–276 (2011).Article 
    PubMed 

    Google Scholar 
    Starling, M., McLean, A. & McGreevy, P. The contribution of equitation science to minimising horse-related risks to humans. Animal 6, 15 (2016).Article 

    Google Scholar 
    Basile, M. et al. Socially dependent auditory laterality in domestic horses (Equus caballus). Anim. Cogn. 12, 611–619 (2009).Article 
    PubMed 

    Google Scholar 
    Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional contagion. Curr. Dir. Psychol. Sci. 2, 96–100 (1993).Article 

    Google Scholar 
    Austin, N. P. & Rogers, L. J. Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses Equus caballus. Anim. Behav. 83, 239–247 (2012).Article 

    Google Scholar 
    Larose, C., Richard-Yris, M.-A., Hausberger, M. & Rogers, L. J. Laterality of horses associated with emotionality in novel situations Laterality Asymmetries Body. Brain Cogn. 11, 355–367 (2006).
    Google Scholar 
    Farmer, K., Krüger, K., Byrne, R. W. & Marr, I. Sensory laterality in affiliative interactions in domestic horses and ponies (Equus caballus). Anim. Cogn. 21, 631–637 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, D. & Haviland-Jones, J. Human olfactory communication of emotion. Percept. Mot. Skills 91, 771–781 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Groot, J. H. B., Semin, G. R. & Smeets, M. A. M. Chemical communication of fear: A case of male-female asymmetry. J. Exp. Psychol. Gen. 143, 1515–1525 (2014).Article 
    PubMed 

    Google Scholar 
    Marinier, S. L., Alexander, A. J. & Waring, G. H. Flehmen behaviour in the domestic horse: Discrimination of conspecific odours. Appl. Anim. Behav. Sci. 19, 227–237 (1988).Article 

    Google Scholar 
    Lansade, L., Pichard, G. & Leconte, M. Sensory sensitivities: Components of a horse’s temperament dimension. Appl. Anim. Behav. Sci. 114, 534–553 (2008).Article 

    Google Scholar 
    Lansade, L., Bouissou, M. F. & Erhard, H. W. Fearfulness in horses: A temperament trait stable across time and situations. Appl. Anim. Behav. Sci. 115, 182–200 (2008).Article 

    Google Scholar 
    Hoenen, M., Wolf, O. T. & Pause, B. M. The impact of stress on odor perception. https://doi.org/10.1177/030100661668870746,366-376 (2017).Article 
    PubMed 

    Google Scholar 
    Rørvang, M. V., Nicova, K. & Yngvesson, J. Horse odor exploration behavior is influenced by pregnancy and age. Front. Behav. Neurosci. 16, 295 (2022).Article 

    Google Scholar 
    Doty, R. L. & Cameron, E. L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 97, 213–228 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More