Bibi, S. et al. Exogenous Ca/Mg quotient reduces the inhibitory effects of PEG induced osmotic stress on Avena sativa L. Braz. J. Biol. 84, 264642 (2022).Article
Google Scholar
Yasmeen, S. et al. Melatonin as a foliar application and adaptation in lentil (Lens culinaris Medik.) crops under drought stress. Sustainability 14, 16345 (2022).Article
CAS
Google Scholar
Ali, S. et al. The effects of osmosis and thermo-priming on salinity stress tolerance in Vigna radiata L. Sustain. 14, 12924 (2022).Article
CAS
Google Scholar
Umar, U. D. et al. Micronutrients foliar and drench application mitigate mango sudden decline disorder and impact fruit yield. Agronomy 12, 2449 (2022).Article
CAS
Google Scholar
Raymond, M. J. & Smirnoff, N. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89, 813–823 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Afridi, M. S. et al. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 13, 1–22 (2022).Article
Google Scholar
Salam, A. et al. Nano-priming against abiotic stress: A way forward towards sustainable agriculture. Sustainability 14, 14880 (2022).Article
CAS
Google Scholar
Yuan, F., Guo, J., Shabala, S. & Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 9, 1954 (2019).Article
PubMed
PubMed Central
Google Scholar
Flowers, T. J. & Colmer, T. D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 115, 327–331 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Roy, S. & Chakraborty, U. Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. Indian J. Plant Physiol. 20, 14–22 (2015).Article
Google Scholar
Ali, B. et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Front. Plant Sci. 13, 921668 (2022).Article
PubMed
PubMed Central
Google Scholar
Ali, B. et al. Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. S. Afr. J. Bot. 151, 33–46 (2022).Article
CAS
Google Scholar
Ali, B. et al. Bacillus mycoides PM35 reinforces photosynthetic efficiency, antioxidant defense, expression of stress-responsive genes, and ameliorates the effects of salinity stress in maize. Life 12, 219 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Ali, B. et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11, 345 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).Article
CAS
PubMed
Google Scholar
Yildiz, M. & Terzi, H. Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. Biologia (Bratisl). 63, 521–525 (2008).Article
CAS
Google Scholar
Shao, T., Zhang, L., Shimojo, M. & Masuda, Y. Fermentation quality of Italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian Australas. J. Anim. Sci. 20, 1699–1704 (2007).Article
CAS
Google Scholar
Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190 (2013).Article
CAS
Google Scholar
Ma, J. et al. Short-term responses of Spinach (Spinacia oleracea L.) to the individual and combinatorial effects of Nitrogen, Phosphorus and Potassium and silicon in the soil contaminated by boron. Front. Plant Sci. 13, 983156 (2022).Article
PubMed
PubMed Central
Google Scholar
Ma, J. et al. Impact of foliar application of syringic acid on tomato (Solanum lycopersicum L.) under heavy metal stress-insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense. Front. Plant Sci. 13, 950120 (2022).Article
PubMed
PubMed Central
Google Scholar
Ma, J. et al. Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Front. Plant Sci. 13, 973740 (2022).Article
PubMed
PubMed Central
Google Scholar
Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A. & Harmon, J. Soil salinity: A threat to global food security. Agron. J. 108, 2189–2200 (2016).Article
CAS
Google Scholar
Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373 (2004).Article
CAS
PubMed
Google Scholar
Triantaphylides, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Amna et al. Bio-fabricated silver nanoparticles: A sustainable approach for augmentation of plant growth and pathogen control. In Sustainable Agriculture Reviews, Vol. 53 345–371 (Springer, 2021).Faryal, S. et al. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, Osmolytes Biosynthesis and Antioxidant Biosystems. Molecules 27, 5744 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Tuteja, N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2, 135–138 (2007).Article
PubMed
PubMed Central
Google Scholar
Saleem, K. et al. Chrysotile-asbestos-induced damage in Panicum virgatum and Phleum pretense species and its alleviation by organic-soil amendment. Sustainability 14, 10824 (2022).Article
Google Scholar
Wahab, A. et al. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11, 1620 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
McCord, J. M. The evolution of free radicals and oxidative stress. Am. J. Med. 108, 652–659 (2000).Article
CAS
PubMed
Google Scholar
Farooq, T. H. et al. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species towards Cr and Pb stress. Front. Plant Sci. 13, 997120 (2022).Article
PubMed
PubMed Central
Google Scholar
Dola, D. B. et al. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front. Plant Sci. 13, 992535 (2022).Article
PubMed
PubMed Central
Google Scholar
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).Article
CAS
PubMed
Google Scholar
Jaleel, C. A., Gopi, R., Alagu Lakshmanan, G. M. & Panneerselvam, R. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci. 171, 271–276 (2006).Article
CAS
Google Scholar
Zainab, N. et al. Pgpr-mediated plant growth attributes and metal extraction ability of sesbania sesban l. In industrially contaminated soils. Agronomy 11, 11 (2021).Article
Google Scholar
Nawaz, H. et al. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). Braz. J. Biol. 82, 261785 (2022).Article
Google Scholar
Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon, D. P., Cummins, I., Cole, D. J. & Edwards, R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1, 258–266 (1998).Article
CAS
PubMed
Google Scholar
Kangasjärvi, S. et al. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 412, 275–285 (2008).Article
PubMed
Google Scholar
Cai, Y., Luo, Q., Sun, M. & Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Gengmao, Z., Quanmei, S., Yu, H., Shihui, L. & Changhai, W. The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9, e89624 (2014).Article
ADS
PubMed
PubMed Central
Google Scholar
Schroeter, H. et al. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol. Aging 23, 861–880 (2002).Article
CAS
PubMed
Google Scholar
Horemans, N., Foyer, C. H. & Asard, H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5, 263–267 (2000).Article
CAS
PubMed
Google Scholar
Miller, N. J., Diplock, A. T. & Rice-Evans, C. A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. J. Agric. Food Chem. 43, 1794–1801 (1995).Article
CAS
Google Scholar
Elkhlifi, Z. et al. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability 15, 2527. https://doi.org/10.3390/su15032527 (2023).Article
Google Scholar
Mahmood, K. T., Mugal, T. & Haq, I. U. Moringa oleifera: A natural gift-a review. J. Pharm. Sci. Res. 2, 775 (2010).
Google Scholar
Anwar, F., Hussein, A. I., Ashraf, M., Jamail, A. & Iqbal, S. Effect of salinity on yield and quality of Moringa oleifera seed oil. Grasas y Aceites 57, 394–401 (2006).Article
CAS
Google Scholar
Barrs, H. D. & Weatherley, P. E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).Article
Google Scholar
Kirk, J. T. O. & Allen, R. L. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 21, 523–530 (1965).Article
CAS
PubMed
Google Scholar
Callister, A. N., Arndt, S. K. & Adams, M. A. Comparison of four methods for measuring osmotic potential of tree leaves. Physiol. Plant. 127, 383–392 (2006).Article
CAS
Google Scholar
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).Article
CAS
Google Scholar
Yemm, E. W. & Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508 (1954).Article
CAS
PubMed
PubMed Central
Google Scholar
Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).Article
CAS
Google Scholar
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).Article
CAS
PubMed
Google Scholar
Dionisio-Sese, M. L. & Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9 (1998).Article
CAS
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Article
CAS
PubMed
Google Scholar
Fridovich, I. Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975).Article
CAS
PubMed
Google Scholar
Aebi, H. Catalase in vitro. In Methods in enzymology 105, 121–126 (Elsevier, 1984).Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific. Anal. Antioxid. Enzym. Act. lipid peroxidation proline content Agropyron desertorum under drought Stress (1981).Polle, A., Otter, T. & Seifert, F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106, 53–60 (1994).Article
CAS
PubMed
PubMed Central
Google Scholar
Guri, A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 63, 733–737 (1983).Article
CAS
Google Scholar
Brand-Williams, W., Cuvelier, M.-E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995).Article
CAS
Google Scholar
Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).Article
CAS
PubMed
Google Scholar
Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239, 70–76 (1996).Article
CAS
PubMed
Google Scholar
Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999).Article
CAS
PubMed
Google Scholar
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS
Google Scholar
Chang, C.-C., Yang, M.-H., Wen, H.-M. & Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. food drug Anal. 10, 3 (2002).
Google Scholar
Saeed, S. et al. Validating the impact of water potential and temperature on seed germination of wheat (Triticum aestivum L.) via hydrothermal time model. Life 12, 983 (2022).Article
PubMed
PubMed Central
Google Scholar
Fatima, N. et al. Germination, growth and ions uptake of moringa (Moringa oleifera L.) grown under saline condition. J. Plant Nutr. 41, 1555–1565 (2018).Article
CAS
Google Scholar
Bashir, S. et al. Structural and functional stability of photosystem-II in Moringa oleifera under salt stress. Aust. J. Crop Sci. 15, 676–682 (2021).Article
CAS
Google Scholar
Farooq, F. et al. Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS ONE 17, e0263978 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Bekka, S., Tayeb-Hammani, K., Boucekkine, I., Aissiou, M.Y.E.-A. & Djazouli, Z. E. Adaptation strategies of Moringa oleifera under drought and salinity stresses. Ukr. J. Ecol. 12, 8–16 (2022).
Google Scholar
Uematsu, K., Suzuki, N., Iwamae, T., Inui, M. & Yukawa, H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63, 3001–3009 (2012).Article
CAS
PubMed
Google Scholar
Khan, M. A. An ecological overview of halophytes from Pakistan. In Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science Vol. 38 (eds Lieth, H., Mochtchenko, M.) 167–187 (Springer, Dordrecht, 2003). https://doi.org/10.1007/978-94-017-0211-9_20.Chapter
Google Scholar
Chapin, F. S., Bloom, A. J., Field, C. B. & Waring, R. H. Plant responses to multiple environmental factors. Bioscience 37, 49–57 (1987).Article
Google Scholar
Ma, T. et al. Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agron. J. 109, 2545–2555 (2017).Article
CAS
Google Scholar
Moud, A. & Maghsoudi, K. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. 4, 351–358 (2008).
Google Scholar
Meloni, D. A., Oliva, M. A., Ruiz, H. A. & Martinez, C. A. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24, 599–612 (2001).Article
CAS
Google Scholar
Geissler, N., Hussin, S. & Koyro, H. W. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ. Exp. Bot. 65, 220–231 (2009).Article
CAS
Google Scholar
Sun, Y. L. et al. The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48, 400–408 (2010).Article
CAS
Google Scholar
Takamiya, K. I., Tsuchiya, T. & Ohta, H. Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci. 5, 426–431 (2000).Article
CAS
PubMed
Google Scholar
Adnan, M. Y. et al. Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora Morphol. Distrib. Funct. Ecol. Plants 225, 1–9 (2016).Article
Google Scholar
Pinheiro, H. A. et al. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind. Crops Prod. 27, 385–392 (2008).Article
CAS
Google Scholar
Zhou, Y. et al. Production of betacyanins in transgenic Nicotiana tabacum increases tolerance to salinity. Front. Plant Sci. 12, 653147 (2021).Article
PubMed
PubMed Central
Google Scholar
Ribeiro, V. P. et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz. J. Microbiol. 49, 40–46 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Elhag, A. Z. & Abdalla, M. H. Investigation of sodium chloride tolerance of moringa (Moringa Oleifera Lam.) Transplants. Univers. J. Agric. Res. 2, 45–49 (2014).Article
Google Scholar
Nouman, W. et al. Drought affects size, nutritional quality, antioxidant activities and phenolic acids pattern of Moringa oleifera Lam. J. Appl. Bot. Food Qual. 91, 79–87 (2018).CAS
Google Scholar
Carballo-Méndez, F. D. J. et al. Silicon improves seedling production of Moringa oleifera Lam. Under saline stress. Pak. J. Bot. 54, 751–757 (2022).Article
Google Scholar
Gorai, M., Ennajeh, M., Khemira, H. & Neffati, M. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiol. Plant. 33, 963–971 (2011).Article
CAS
Google Scholar
Pagter, M., Bragato, C., Malagoli, M. & Brix, H. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat. Bot. 90, 43–51 (2009).Article
Google Scholar
Abideen, Z. et al. Antioxidant activity and polyphenolic content of phragmites karka under saline conditions. Pakistan J. Bot. 47, 813–818 (2015).CAS
Google Scholar
Teakle, N. L. et al. Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: The importance of K+ retention in roots. Environ. Exp. Bot. 87, 69–78 (2013).Article
CAS
Google Scholar
Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. & Muscolo, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6, plu047. https://doi.org/10.1093/aobpla/plu047 (2014).Article
PubMed
PubMed Central
Google Scholar
Wege, S., Gilliham, M. & Henderson, S. W. Chloride: Not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J. Exp. Bot. 68, 3057–3069 (2017).Article
CAS
PubMed
Google Scholar
Aziz, I., Gulzar, S., Noor, M. & Khan, M. A. Seasonal variation in water relations of Halopyrum mucronatum (L.) Stapf. growing near Sandspit, Karachi. Pak. J. Bot. 37, 141–148 (2005).
Google Scholar
Teixeira Lins, C. M. et al. Pressure–volume (P–V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions. Plant Physiol. Biochem. 124, 155–159 (2018).Article
PubMed
Google Scholar
Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. & Zhu, J. K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539 (2006).Article
CAS
PubMed
Google Scholar
Shoukat, E., Aziz, I., Ahmed, M. Z., Abideen, Z. & Khan, M. A. Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop Pasture Sci. 69, 535–545 (2018).Article
CAS
Google Scholar
Rozema, J. & Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 92, 83–95 (2013).Article
CAS
Google Scholar
Hameed, A. & Khan, M. A. Halophytes: Biology and economic potentials. Karachi Univ. J. Sci. 39, 40–44 (2011).
Google Scholar
Katschnig, D., Broekman, R. & Rozema, J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 92, 32–42 (2013).Article
CAS
Google Scholar
Salehi, M., Majnun Hoseini, N., Naghdi Badi, H. & Mazaheri, D. Biochemical and growth responses of Moringa peregrina (Forssk.) fiori to different sources and levels of salinity. J. Med. Plants 11, 54–61 (2012).CAS
Google Scholar
Soliman, A. S., El-Feky, S. A. & Darwish, E. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J. Hortic. For. 7, 36–47 (2015).Article
CAS
Google Scholar
Azeem, M. et al. Salicylic acid seed priming modulates some biochemical parametrs to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pakistan J. Bot. 51, 385–391 (2019).MathSciNet
CAS
Google Scholar
Sultana, R. et al. Coumarin-Mediated growth regulations, antioxidant enzyme activities, and photosynthetic efficiency of sorghum bicolor under saline conditions. Front. Plant Sci. 13, 799404 (2022).Article
PubMed
PubMed Central
Google Scholar
Coêlho, M. R. V. et al. Salt tolerance of Calotropis procera begins with immediate regulation of aquaporin activity in the root system. Physiol. Mol. Biol. Plants 27, 457–468 (2021).Article
PubMed
PubMed Central
Google Scholar
Bouassaba, K. & Chougui, S. Effet Du Stress Salin Sur Le Comportement Biochimique Et Anatomique Chez Deux Variétés De Piment (Capsicum Annuum L.) À Mila /Algérie. Eur. Sci. J. ESJ 14, 159 (2018).
Google Scholar
El Moukhtari, A., Cabassa-Hourton, C., Farissi, M. & Savouré, A. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 11, 1127 (2020).Article
PubMed
PubMed Central
Google Scholar
Afridi, M. S. et al. Plant microbiome engineering: Hopes or hypes. Biology 11, 1782. https://doi.org/10.3390/biology11121782 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).Article
CAS
PubMed
Google Scholar
Saleem, A. et al. Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability 14, 16845. https://doi.org/10.3390/su142416845 (2022).Article
CAS
Google Scholar
Mehmood, S. et al. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1971654 (2021).Article
Google Scholar
Benzarti, M., Rejeb, K. B., Debez, A., Messedi, D. & Abdelly, C. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol. Plant. 34, 1679–1688 (2012).Article
CAS
Google Scholar
Duarte, B., Santos, D., Marques, J. C. & Caçador, I. Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback—implications for resilience in climate change. Plant Physiol. Biochem. 67, 178–188 (2013).Article
CAS
PubMed
Google Scholar
Foyer, C. H. & Noctor, G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861–905 (2009).Article
CAS
PubMed
Google Scholar
Abogadallah, G. M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 5, 369–374 (2010).Article
CAS
PubMed
PubMed Central
Google Scholar
Subudhi, P. K. & Baisakh, N. Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell. Dev. Biol. Plant 47, 441–457 (2011).Article
CAS
Google Scholar
De Abreu, I. N. & Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43, 241–248 (2005).Article
Google Scholar
Askarzadeh, A. & Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012).Article
ADS
Google Scholar
Parida, A. K. & Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees Struct. Funct. 24, 199–217 (2010).Article
Google Scholar
Niknam, V. & Ebrahimzadeh, H. Phenolics content in Astragalus species. Pak. J. Bot. 34, 283–289 (2002).
Google Scholar
Agati, G., Matteini, P., Goti, A. & Tattini, M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174, 77–89 (2007).Article
CAS
PubMed
Google Scholar
Rai, S. N. & Proctor, J. Ecological studies on four rainforests in Karnataka, India: II. Litterfall. J. Ecol. 74, 439–454 (1986).Article
Google Scholar
Thakur, A. et al. Nutritional evaluation, phytochemical makeup, and antibacterial and antioxidant properties of wild plants utilized as food by the Gaddis, a tribe in the Western Himalayas. Front. Agron. 4, 1010309. https://doi.org/10.3389/fagro.2022.1010309 (2022).Article
Google Scholar
Boumenjel, A., Pantera, A., Papadopoulos, A. & Ammari, Y. Tolerance and adaptation mechanisms developed by Moringa oleifera (L.) seeds under oxidative stress induced by salt stress during in vitro germination. Glob. Nest J. 23, 1–10 (2021).
Google Scholar
Wong, S. P., Leong, L. P. & William Koh, J. H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99, 775–783 (2006).Article
CAS
Google Scholar
Djeridane, A. et al. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97, 654–660 (2006).Article
CAS
Google Scholar
Meireles, D., Gomes, J., Lopes, L., Hinzmann, M. & Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 20, 495–515 (2020).Article
Google Scholar
Ichoku, C. et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 29, 1616 (2002).Article
Google Scholar
Shahidi, F. & Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—a review. J. Funct. Foods 18, 820–897 (2015).Article
CAS
Google Scholar
Qasim, M. et al. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 110, 240–250 (2017).Article
CAS
Google Scholar
Benabderrahim, M. A., Yahia, Y., Bettaieb, I., Elfalleh, W. & Nagaz, K. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Ind. Crops Prod. 138, 111427 (2019).Article
CAS
Google Scholar
Singh, B. N. et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 47, 1109–1116 (2009).Article
CAS
PubMed
Google Scholar
Jaiswal, D. et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med. 6, 426–432 (2013).Article
CAS
PubMed
Google Scholar
Sreelatha, S., Jeyachitra, A. & Padma, P. R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 49, 1270–1275 (2011).Article
CAS
PubMed
Google Scholar
Sreelatha, S. & Padma, P. R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 64, 303–311 (2009).Article
CAS
PubMed
Google Scholar
Rani, N. Z. A., Husain, K. & Kumolosasi, E. Moringa genus: A review of phytochemistry and pharmacology. Front. Pharmacol. 9, 108 (2018).Article
Google Scholar More