1.Clutton-Brock, T. H. The Evolution of Parental Care Vol. 64 (Princeton University Press, 1991).BookÂ
Google ScholarÂ
2.Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).BookÂ
Google ScholarÂ
3.Hansell, M. Bird Nests and Construction Behaviour (Cambridge University Press, 2000).BookÂ
Google ScholarÂ
4.Doody, J. S., Freedberg, S. & Keogh, J. S. Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Q. Rev. Biol. 84, 229â252 (2009).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
5.Boness, D. J. & Don Bowen, W. The evolution of maternal care in pinnipeds: new findings raise questions about the evolution of maternal feeding strategies. Bioscience 46, 645â654 (1996).ArticleÂ
Google ScholarÂ
6.Salomon, M., Mayntz, D., Toft, S. & Lubin, Y. Maternal nutrition affects offspring performance via maternal care in a subsocial spider. Behav. Ecol. Sociobiol. 65, 1191â1202 (2011).ArticleÂ
Google ScholarÂ
7.Summers, K. Mating and aggressive behaviour in dendrobatid frogs from Corcovado National Park, Costa Rica: a comparative study. Behaviour 137, 7â24 (2000).ArticleÂ
Google ScholarÂ
8.Li, D. & Jackson, R. R. A predatorâs preference for egg-carrying prey: a novel cost of parental care. Behav. Ecol. Sociobiol. 55, 129â136 (2003).ArticleÂ
Google ScholarÂ
9.Stiver, K. A. & Alonzo, S. H. Parental and mating effort: is there necessarily a trade-off?. Ethology 115, 1101â1126 (2009).ArticleÂ
Google ScholarÂ
10.Ercit, K., Martinez-Novoa, A. & Gwynne, D. T. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis). PLoS ONE 9, e110298 (2014).ADSÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
11.Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494â497 (2001).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
12.Thorogood, R., Ewen, J. G. & Kilner, R. M. Sense and sensitivity: responsiveness to offspring signals varies with the parentsâ potential to breed again. Philos. Trans. R. Soc. B. 278, 2638â2645 (2011).
Google ScholarÂ
13.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
Google ScholarÂ
14.Weir, B. J. & Rowlands, I. Reproductive strategies of mammals. Annu. Rev. Ecol. Evol. Syst. 4, 139â163 (1973).ArticleÂ
Google ScholarÂ
15.Kvarnemo, C. In Evolutionary Behavioral Ecology (ed. FoxWestneat, C. W.) (Oxford University Press, 2010).
Google ScholarÂ
16.Alonso-Alvarez, C. & Velando, A. Benefits and costs of parental care. The evolution of parental care, 40â61 (2012).17.Farmer, C. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326â334 (2000).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
18.Ar, A. & Yom-Tov, Y. The evolution of parental care in birds. Evolution 32, 655â669 (1978).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
19.Gubernick, D. J. Parent and infant attachment in mammals. In Parental care in mammals 243â305 (Springer, 1981).20.Case, T. J. Endothermy and parental care in the terrestrial vertebrates. Am. Nat. 112, 861â874 (1978).ArticleÂ
Google ScholarÂ
21.Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775â793 (1981).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
22.Balshine, S. Patterns of parental care in vertebrates. Evol. Parental Care 62, 80 (2012).
Google ScholarÂ
23.Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1â12 (2019).CASÂ
ArticleÂ
Google ScholarÂ
24.Schulte, L. M., Ringler, E., Rojas, B. & Stynoski, J. L. Developments in amphibian parental care research: history, present advances, and future perspectives. Herpetol. Monogr. 34, 71â97 (2020).ArticleÂ
Google ScholarÂ
25.Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).
Google ScholarÂ
26.Weygoldt, P. Evolution of parental care in dart poison frogs (Amphibia: Anura: Dendrobatidae). J. Zoolog. Syst. Evol. 25, 51â67 (1987).ArticleÂ
Google ScholarÂ
27.Summers, K. & Tumulty, J. in Sexual Selection 289â320 (Elsevier, 2014).28.Lehtinen, R., Lannoo, M. J. & Wassersug, R. J. Phytotelm-breeding anurans: past, present and future research. Misc. Publ. Museum Zool. Univ. Michigan 193, 1â9 (2004).
Google ScholarÂ
29.Brust, D. G. Maternal brood care by Dendrobates pumilio: a frog that feeds its young. J. Herpetol. 27, 96â98 (1993).ArticleÂ
Google ScholarÂ
30.Bourne, G. R., Collins, A. C., Holder, A. M. & McCarthy, C. L. Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J. Herpetol. 35, 272â281 (2001).ArticleÂ
Google ScholarÂ
31.Schulte, L. M. Feeding or avoiding? Facultative egg feeding in a Peruvian poison frog (Ranitomeya variabilis). Ethol. Ecol. Evol. 26, 58â68. https://doi.org/10.1080/03949370.2013.850453 (2014).ArticleÂ
Google ScholarÂ
32.Beck, K. B., Loretto, M.-C., Ringler, M., Hödl, W. & PaĆĄukonis, A. Relying on known or exploring for new? Movement patterns and reproductive resource use in a tadpole-transporting frog. PeerJ 5, e3745 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
33.PaĆĄukonis, A., Loretto, M.-C. & Rojas, B. How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. Evol. Ecol. 33, 613â623 (2019).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
34.Summers, K. Metabolism and parental care in ectotherms: a comment on Beekman et al. Behav. Ecol. 30, 593â594 (2019).ArticleÂ
Google ScholarÂ
35.Santos, J. C. & Cannatella, D. C. Phenotypic integration emerges from aposematism and scale in poison frogs. Proc. Natl. Acad. Sci. 108, 6175â6180 (2011).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
36.Stynoski, J. L., Schulte, L. M. & Rojas, B. Poison frogs. Curr. Biol. 25, R1026âR1028 (2015).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
37.Rojas, B., Valkonen, J. & Nokelainen, O. Aposematism. Curr. Biol. 25, R350âR351 (2015).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
38.Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1990).
Google ScholarÂ
39.Santos, J. C., Coloma, L. A. & Cannatella, D. C. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. 100, 12792â12797 (2003).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
40.Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215â226 (2003).ArticleÂ
Google ScholarÂ
41.Daly, J. W. et al. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32, 657â663 (1994).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
42.Saporito, R. A., Spande, T. F., Garraffo, H. M. & Donnelly, M. A. Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79, 277â297 (2009).CASÂ
ArticleÂ
Google ScholarÂ
43.Santos, J. C. et al. Aposematism increases acoustic diversification and speciation in poison frogs. Philos. Trans. R. Soc. B. 281, 20141761 (2014).
Google ScholarÂ
44.Caldwell, J. P. The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). J. Zool. 240, 75â101 (1996).ArticleÂ
Google ScholarÂ
45.Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Philos. Trans. R. Soc. B. 266, 2141â2145 (1999).CASÂ
Google ScholarÂ
46.Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).
Google ScholarÂ
47.Summers, K. & McKeon, C. S. The evolutionary ecology of phytotelmata use in Neotropical poison frogs. Misc. Publ. Mus. Zool. Univ. Mich. 193, 55â73 (2004).
Google ScholarÂ
48.Summers, K., Sea McKeon, C. & Heying, H. The evolution of parental care and egg size: a comparative analysis in frogs. Philos. Trans. R. Soc. B. 273, 687â692 (2006).
Google ScholarÂ
49.Wells, K. D. Courtship and parental behavior in a Panamanian poison-arrow frog (Dendrobates auratus). Herpetologica 34, 148â155 (1978).
Google ScholarÂ
50.Summers, K. Sexual selection and intra-female competition in the green poison-dart frog, Dendrobates auratus. Anim. Behav. 37, 797â805 (1989).ArticleÂ
Google ScholarÂ
51.Summers, K. Paternal care and the cost of polygyny in the green dart-poison frog. Behav. Ecol. Sociobiol. 27, 307â313 (1990).ArticleÂ
Google ScholarÂ
52.Summers, K. & Amos, W. Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav. Ecol. 8, 260â267 (1997).ArticleÂ
Google ScholarÂ
53.Limerick, S. Courtship behavior and oviposition of the poison-arrow frog Dendrobates pumilio. Herpetologica 36, 69â71 (1980).
Google ScholarÂ
54.Pröhl, H. & Hödl, W. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav. Ecol. Sociobiol. 46, 215â220 (1999).ArticleÂ
Google ScholarÂ
55.Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436â446 (2010).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
56.Yang, Y., Blomenkamp, S., Dugas, M. B., Richards-Zawacki, C. L. & Pröhl, H. Mate choice versus mate preference: inferences about color-assortative mating differ between field and lab assays of poison frog behavior. Am. Nat. 193, 598â607 (2019).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
57.Wells, K. D. Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behav. Ecol. Sociobiol. 6, 199â209 (1980).ArticleÂ
Google ScholarÂ
58.Luddecke, H. Behavioral aspects of the reproductive biology of the Andean frog Colostethus palmatus (Amphibia: Dendrobatidae). Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 23, S303âS303 (1999).
Google ScholarÂ
59.Montanarin, A., Kaefer, I. L. & Lima, A. P. Courtship and mating behaviour of the brilliant-thighed frog Allobates femoralis from Central Amazonia: Implications for the study of a species complex. Ethol. Ecol. Evol. 23, 141â150 (2011).ArticleÂ
Google ScholarÂ
60.Ursprung, E., Ringler, M., Jehle, R. & Hoedl, W. Strong male/male competition allows for nonchoosy females: High levels of polygynandry in a territorial frog with paternal care. Mol. Ecol. 20, 1759â1771 (2011).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
61.StĂŒckler, S. et al. Spatio-temporal characteristics of the prolonged courtship in brilliant-thighed poison frogs, Allobates femoralis. Herpetologica 75, 268â279 (2019).ArticleÂ
Google ScholarÂ
62.Symula, R., Schulte, R. & Summers, K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a MĂŒllerian mimicry hypothesis. Philos. Trans. R. Soc. B 268, 2415â2421 (2001).CASÂ
Google ScholarÂ
63.Summers, K. Mating strategies in two species of dart-poison frogs: a comparative study. Anim. Behav. 43, 907â919 (1992).ArticleÂ
Google ScholarÂ
64.Rojas, B. & PaĆĄukonis, A. From habitat use to social behavior: natural history of a voiceless poison frog, Dendrobates tinctorius. PeerJ 7, e7648 (2019).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
65.Maan, M. E. & Cummings, M. E. Poison frog colors are honest signals of toxicity, particularly for bird predators. Am. Nat. 179, E1âE14 (2012).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
66.Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull. Am. Mus. Nat. 2006, 1â262 (2006).
Google ScholarÂ
67.Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). S. Am. J. Herpetol. 12, S1âS90 (2017).ArticleÂ
Google ScholarÂ
68.Duellman, W. E. Frogs of the genus Colostethus (Anura; Dendrobatidae) in the Andes of northern Peru (2004).69.Fairbairn, D. J. Odd Couples: Extraordinary Differences Between the Sexes in the Animal Kingdom (Princeton University Press, 2013).BookÂ
Google ScholarÂ
70.Fairbairn, D. J., Blanckenhorn, W. U. & SzĂ©kely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).BookÂ
Google ScholarÂ
71.Vågi, B., Végvåri, Z., Liker, A., Freckleton, R. P. & Székely, T. Parental care and the evolution of terrestriality in frogs. Philos. Trans. R. Soc. B. 286, 20182737 (2019).
Google ScholarÂ
72.Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183â190 (1960).
Google ScholarÂ
73.Kelber, A., Vorobyev, M. & Osorio, D. Animal colour visionâbehavioural tests and physiological concepts. Biol. Rev. 78, 81â118 (2003).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
74.Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292â315 (2017).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
75.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315â352 (1990).ArticleÂ
Google ScholarÂ
76.Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705â724 (2015).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
77.Troscianko, J. & Stevens, M. Image calibration and analysis toolboxâa free software suite for objectively measuring reflectance, colour and pattern. Methods. Ecol. Evol. 6, 1320â1331 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
78.Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649â659 (2018).ArticleÂ
Google ScholarÂ
79.Bergeron, Z. T. & Fuller, R. C. Using human vision to detect variation in avian coloration: how bad is it?. Am. Nat. 191, 269â276 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
80.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850â858 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
81.Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641â1650 (1995).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
82.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289â290 (2004).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
83.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series. B. Stat. Methodo. 57, 289â300 (1995).MathSciNetÂ
MATHÂ
Google ScholarÂ
84.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1â22 (2010).ArticleÂ
Google ScholarÂ
85.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457â472 (1992).MATHÂ
Google ScholarÂ
86.Barker, D., Meade, A. & Pagel, M. Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23, 14â20 (2007).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
87.Lindstedt, C., Boncoraglio, G., Cotter, S. C., Gilbert, J. D. J. & Kilner, R. M. Parental care shapes evolution of aposematism and provides lifelong protection against predators. bioRxiv 25, 644864 (2019).
Google ScholarÂ
88.Donnelly, M. A. Demographic effects of reproductive resource supplementation in a territorial frog, Dendrobates pumilio. Ecol. Monogr. 59, 207â221 (1989).ArticleÂ
Google ScholarÂ
89.Rojas, B. & Endler, J. A. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 27, 739â753 (2013).ArticleÂ
Google ScholarÂ
90.Pröhl, H. Territorial behavior in dendrobatid frogs. J. Herpetol. 39, 354â365 (2005).ArticleÂ
Google ScholarÂ
91.Speed, M. P., Brockhurst, M. A. & Ruxton, G. D. The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution 64, 1622â1633 (2010).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
92.Fincke, O. M. Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol. Entomol. 24, 13â23 (1999).ArticleÂ
Google ScholarÂ
93.Summers, K. The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools. Oecologia 119, 557â564 (1999).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
94.McKeon, C. S. & Summers, K. Predator driven reproductive behavior in a tropical frog. Evol. Ecol. 27, 725â737 (2013).ArticleÂ
Google ScholarÂ
95.AmĂ©zquita, A., Castro, L., Arias, M., GonzĂĄlez, M. & Esquivel, C. Field but not lab paradigms support generalisation by predators of aposematic polymorphic prey: the Oophaga histrionica complex. Evol. Ecol. 27, 769â782 (2013).ArticleÂ
Google ScholarÂ
96.Lawrence, J. P. et al. Weak warning signals can persist in the absence of gene flow. PNAS 116, 19037â19045 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
97.Lack, D. The natural regulation of animal numbers. The Natural Regulation of Animal Numbers. (1954).98.Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lackâs principle. Am. Nat. 100, 687â690 (1966).ArticleÂ
Google ScholarÂ
99.Brown, J., Morales, V. & Summers, K. Divergence in parental care, habitat selection and larval life history between two species of Peruvian poison frogs: an experimental analysis. J. Evol. Biol. 21, 1534â1543 (2008).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
100.Brown, J. L., Morales, V. & Summers, K. Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs. Biol. Lett. 5, 148â151 (2009).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
101.Brown, J. L., Morales, V. & Summers, K. Home range size and location in relation to reproductive resources in poison frogs (Dendrobatidae): a Monte Carlo approach using GIS data. Anim. Behav. 77, 547â554 (2009).ArticleÂ
Google ScholarÂ
102.Kok, P. J., Willaert, B. & Means, D. B. A new diagnosis and description of Anomaloglossus roraima (La Marca, 1998) (Anura: Aromobatidae: Anomaloglossinae), with description of its tadpole and call. S. Am. J. Herpetol. 8, 29â45 (2013).ArticleÂ
Google ScholarÂ
103.PaĆĄukonis, A. et al. The significance of spatial memory for water finding in a tadpole-transporting frog. Anim. Behav. 116, 89â98 (2016).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
104.PaĆĄukonis, A., Warrington, I., Ringler, M. & Hödl, W. Poison frogs rely on experience to find the way home in the rainforest. Biol. Lett. 10, 20140642 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
105.Poelman, E. H. & Dicke, M. Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evol. Ecol. 21, 215â227 (2007).ArticleÂ
Google ScholarÂ
106.Caldwell, J. P. & de Araujo, M. C. Cannibalistic interactions resulting from indiscriminate predatory behavior in tadpoles of poison frogs (Anura: Dendrobatidae). Biotropica 30, 92â103 (1998).ArticleÂ
Google ScholarÂ
107.Gray, H. M., Summers, K. & Ibåñez, R. Kin discrimination in cannibalistic tadpoles of the Green Poison Frog, Dendrobates auratus (Anura, Dendrobatidae). Phyllomedusa (2009).108.Rojas, B. Strange parental decisions: fathers of the dyeing poison frog deposit their tadpoles in pools occupied by large cannibals. Behav. Ecol. Sociobiol. 68, 551â559 (2014).ArticleÂ
Google ScholarÂ
109.Schulte, L. M. & Mayer, M. Poison frog tadpoles seek parental transportation to escape their cannibalistic siblings. J. Zool. 303, 83â89, 12472 (2017).110.Ringler, E., PaĆĄukonis, A., Hödl, W. & Ringler, M. Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Front. Zool. 10, 67 (2013).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
111.Pröhl, H. Variation in male calling behaviour and relation to male mating success in the strawberry poison frog (Dendrobates pumilio). Ethology 109, 273â290 (2003).ArticleÂ
Google ScholarÂ
112.Summers, K. & Earn, D. J. The cost of polygyny and the evolution of female care in poison frogs. Biol. J. Linn. Soc. 66, 515â538 (1999).ArticleÂ
Google ScholarÂ
113.Ringler, E. et al. Flexible compensation of uniparental care: female poison frogs take over when males disappear. Behav. Ecol. 26, 1219â1225 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
114.Pyron, R. A. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543â583 (2011).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
115.Streicher, J. W. et al. Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. Mol. Phylogenet. Evol. 119, 128â143 (2018).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
116.Gilbert, J. D. Thrips domiciles protect larvae from desiccation in an arid environment. Behav. Ecol. 25, 1338â1346 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
117.Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49â66 (2021).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
118.Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146â160 (2016).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
119.Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687â3700 (2012).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
120.Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. Learning to learn: advanced behavioural flexibility in a poison frog. Anim. Behav. 111, 167â172 (2016).ArticleÂ
Google ScholarÂ
121.Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. A cognitive map in a poison frog. J. Exp. Biol. 222, jeb97467 (2019).ArticleÂ
Google ScholarÂ
122.Liu, Y., Jones, C. D., Day, L. B., Summers, K. & Burmeister, S. S. Cognitive phenotype and differential gene expression in a hippocampal homologue in two species of frog. Integr. Comp Biol. 60, 1007â1023 (2020).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google Scholar More