More stories

  • in

    Study on hyperspectral estimation model of soil organic carbon content in the wheat field under different water treatments

    1.Aryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Esparza-Olguin, L. & Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agr. Ecosyst. Environ. 195, 220–230 (2014).Article 

    Google Scholar 
    2.Aryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Mendoza-Vega, J. & Esparza-Olguin, L. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr. Cycl. Agroecosys. 103(1), 45–60 (2015).CAS 
    Article 

    Google Scholar 
    3.Aryal, D. R. et al. Soil organic carbon depletion from forests to grasslands conversion in Mexico: A review. Trop. Agric. 8, 181 (2018).CAS 

    Google Scholar 
    4.Gao, W., Yang, J., Ren, S. R. & Liu, H. L. The trend of soil organic carbon, total nitrogen, and wheat and maize productivity under different long-term fertilizations in the upland fluvo-aquic soil of North China. Nutr. Cycl. Agroecosys. 103, 61–73 (2015).CAS 
    Article 

    Google Scholar 
    5.Qi, H., Paz-Kagan, T., Karnieli, A., Jin, X. & Li, S. Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data. Soil Till Res. 175, 267–275 (2018).Article 

    Google Scholar 
    6.Dong, X., Tian, J., Zhang, R., He, D. & Chen, Q. Study on the relationship between soil emissivity spectra and content of soil element. Spectrosc. Spect. Anal. 37(02), 557–564 (2017).CAS 

    Google Scholar 
    7.Kemper, T. & Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 36(12), 2742–2747 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Panigrahi, N. & Das, B. S. Canopy spectral reflectance as a predictor of soil water potential in rice. Water Resour. Res. 54(4), 2544–2560 (2018).ADS 
    Article 

    Google Scholar 
    9.Peddle, D. R., White, H. P., Soffer, R. J., Miller, J. R. & LeDrew, E. F. Reflectance processing of remote sensing spectroradiometer data. Comput. Geoences. 27(2), 203–213 (2001).ADS 

    Google Scholar 
    10.Ben-Dor, E. et al. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 113, S38–S55 (2009).Article 

    Google Scholar 
    11.Rossel, R. A., Walvoort, D. J., Mcbratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1), 59–75 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Cheng, H. et al. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 336, 59–67 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Ding, J., Yang, A., Wang, J., Sagan, V. & Yu, D. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. PeerJ 6(3), e5714 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Gobrecht, A., Bendoula, R., Roger, J.-M. & Bellon-Maurel, V. A new optical method coupling light polarization and vis–NIR spectroscopy to improve the measurement of soil carbon content. Soil Till Res. 155, 461–470 (2016).Article 

    Google Scholar 
    15.Gu, X., Wang, Y., Song, X. & Xu, X. The Inversion Model of Soil Organic Matter of Cultivated Land Based on Hyperspectral Technology. Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII (International Society for Optics and Photonics, 2015).
    Google Scholar 
    16.Nawar, S., Buddenbaum, H., Hill, J., Kozak, J. & Mouazen, A. M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Till Res. 155, 510–522 (2016).Article 

    Google Scholar 
    17.Yu, X., Liu, Q., Wang, Y., Liu, X. & Liu, X. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. CATENA 137, 340–349 (2016).CAS 
    Article 

    Google Scholar 
    18.Ji, W. J., Li, X., Li, C. X., Zhou, Y. & Shi, Z. Using different data mining algorithes to predict soil organic matter based on visible-near infrared spectroscopy. Spectrosc. Spect. Anal. 32(09), 2393–2397 (2012).CAS 

    Google Scholar 
    19.Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M. & Coulon, F. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Sci. Total Environ. 616, 147–155 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Mouazen, A. M. & Al-Asadi, R. A. Influence of soil moisture content on assessment of bulk density with combined frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions. Soil Till Res. 176, 95–103 (2018).Article 

    Google Scholar 
    21.Rossel, R. A. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158(1), 46–54 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Nawar, S. & Mouazen, A. M. Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensors. 17(10), 2428 (2017).ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Wang, J., Chen, Y., Chen, F., Shi, T. & Wu, G. Wavelet-based coupling of leaf and canopy reflectance spectra to improve the estimation accuracy of foliar nitrogen concentration. Agr. Forest Meteorol. 248, 306–315 (2018).ADS 
    Article 

    Google Scholar 
    24.Hong, Y. et al. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by vis–NIR spectroscopy. Remote Sens. 10(3), 479 (2018).ADS 
    Article 

    Google Scholar 
    25.Sorenson, P. T. et al. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy. Can J Soil Sci. 97(2), 241–248 (2017).CAS 
    Article 

    Google Scholar 
    26.Gomez, C., Rossel, R. A. V. & Mcbratney, A. B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 146(3–4), 403–411 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Shi, T. Z. et al. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant Soil. 366(1–2), 363–375 (2013).CAS 
    Article 

    Google Scholar 
    28.Stenberg, B., Rossel, R. A. V., Mouazen, A. M. & Wetterlind, J. Chapter five-visible and near infrared spectroscopy in soil science. Adv. Agron. 107, 163–215 (2010).CAS 
    Article 

    Google Scholar 
    29.Uddin, M. P., Mamun, M. A. & Hossain, M. A. PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech. Rev. 5, 1–21 (2020).
    Google Scholar 
    30.Cambule, A. H., Rossiter, D. G., Stoorvogel, J. J. & Smaling, E. M. A. Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park Mozambique. Geoderma 183, 41–48 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    31.Kawamura, K. et al. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar. Remote Sens. 9(10), 1081 (2017).ADS 
    Article 

    Google Scholar 
    32.Leone, A. P., Viscarra-Rossel, R. A., Amenta, P. & Buondonno, A. Prediction of soil properties with PLSR and vis-NIR spectroscopy: Application to mediterranean soils from southern Italy. Curr. Anal. Chem. 8(2), 283–299 (2012).CAS 
    Article 

    Google Scholar 
    33.Wang, S., Chen, Y., Wang, M., Zhao, Y. & Li, J. SPA-based methods for the quantitative estimation of the soil salt content in saline-alkali land from field spectroscopy data: A case study from the Yellow River irrigation regions. Remote Sens. 11(8), 967 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Barnes, E. M. et al. Remote- and ground-based sensor techniques to map soil properties. Photogramm. Eng Rem S. 69(6), 619–630 (2003).Article 

    Google Scholar 
    35.Priori, S. et al. Field-scale mapping of soil carbon stock with limited sampling by coupling gamma-ray and vis-NIR spectroscopy. Soil Sci Soc Am J. 80(4), 954–964 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Amin, I., Fikrat, F., Mammadov, E. & Babayev, M. Soil organic carbon prediction by vis-NIR spectroscopy: Case study the Kur-Aras plain Azerbaijan. Commun. Soil Sci. Plan. 51(6), 726–734 (2020).CAS 
    Article 

    Google Scholar 
    37.Yu, L. et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression. Trans. CSAE. 31(14), 103–109 (2015).
    Google Scholar 
    38.Liu, Y. F., Lu, Y. N., Guo, L., Xiao, F. T. & Chen, Y. Y. Construction of calibration set based on the land use types in visible and near-infrared (VIS-NIR)model for soil organic matter estimation. Acta Pedol. Sin. 53, 332–341 (2016).
    Google Scholar 
    39.Zhou, X. M. & Zhang, T. Analysis of the April 2019 atmospheric circulation and weather. Meteor. Mon. 45(7), 1028–1036 (2019).
    Google Scholar 
    40.Guan, L. & Zhang, T. Analysis of the May 2019 atmospheric circulation and weather. Meteor. Mon. 45(8), 1181–1188 (2019).
    Google Scholar 
    41.Li, X., He, Y. & Wu, C. Non-destructive discrimination of paddy seeds of different storage age based on Vis/NIR spectroscopy. J. Stored Prod. Res. 44(3), 264–268 (2008).Article 

    Google Scholar 
    42.Boško, M. & Bensa, A. Prediction of soil organic carbon using VIS-NIR spectroscopy: Application to Red Mediterranean soils from Croatia. Eurasian J. Soil Sci. 6(4), 365–373 (2017).
    Google Scholar 
    43.McCarty, G. W., Reeves, J. B. III., Reeves, V. B., Follett, R. F. & Kimble, J. M. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66(2), 640–646 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Gholizadeh, A. et al. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 10(4), 218–227 (2015).CAS 
    Article 

    Google Scholar 
    45.Wang, X., Xue, L., He, X. W. & Liu, M. H. Vitamin C content estimation of chilies using Vis/NIR spectroscopy. Int. Conf. Electr. Inf. Control Eng. 2011, 1894–1897 (2011).
    Google Scholar 
    46.Lee, K. S. et al. Wavelength identification and diffuse reflectance estimation for surface and profile soil properties. Am. Soc. Agric. Biol. Eng. 52(3), 683–695 (2009).CAS 

    Google Scholar  More

  • in

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander DH, Shringarpure SS, Novembre J, Lange K (2015) Admixture 1.3 software manual. UCLA Hum Genet Softw Distrib, Los Angeles
    Google Scholar 
    Angert AL, Bontrager MG, Ågren J (2020) What do we really know about adaptation at range edges? Annu Rev Ecol Evol Syst 51:341–361Article 

    Google Scholar 
    Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1504–1513Article 

    Google Scholar 
    Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471Article 

    Google Scholar 
    Attard CRM, Beheregaray LB, Möller LM (2018) Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias. Mol Ecol Resour 18:381–390CAS 
    PubMed 
    Article 

    Google Scholar 
    Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:1–7Article 
    CAS 

    Google Scholar 
    Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB (2018) Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors. Mol Ecol 27:3452–3465PubMed 
    Article 

    Google Scholar 
    Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54Article 

    Google Scholar 
    Beever EA, Ray C, Mote PW, Wilkening JL (2010) Testing alternative models of climate-mediated extirpations. Ecol Appl 20:164–178PubMed 
    Article 

    Google Scholar 
    Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Change Biol 17:2054–2070Article 

    Google Scholar 
    Beever EA, Perrine JD, Rickman T, Flores M, Clark JP, Waters C et al. (2016) Pika (Ochotona princeps) losses from two isolated regions reflect temperature and water balance, but reflect habitat area in a mainland region. J Mammal 97:1495–1511Article 

    Google Scholar 
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci USA 110:9374–9379CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not-so-splendid isolation: modeling climate-mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791Article 

    Google Scholar 
    Carlson SM, Cunningham CJ, Westley PAH (2014) Evolutionary rescue in a changing world. Trends Ecol Evol 29:521–530PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D (2016) Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Ecol Appl 26:1660–1676PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci USA 117:13596–13602CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chapman JA, Flux JE (1990) Rabbits, hares and pikas: status survey and conservation action plan. IUCN.Chypre M, Zaidi N, Smans K (2012) ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun 422:1–4CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4Article 

    Google Scholar 
    Eckert CG, Samis EK, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CAS 
    PubMed 
    Article 

    Google Scholar 
    Erb LP, Ray C, Guralnick R (2011) On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology 92:1730–1735PubMed 
    Article 

    Google Scholar 
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Article 

    Google Scholar 
    Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 11:1035–1052PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929Article 

    Google Scholar 
    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an Alpine specialist (American Pika, Ochotona Princeps). Evolution 63:2848–2863CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201:1555–1579CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gradogna A, Gavazzo P, Boccaccio A, Pusch M (2017) Subunit‐dependent oxidative stress sensitivity of LRRC8 volume‐regulated anion channels. J Physiol 595:6719–6733CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hafner DJ, Sullivan RM (1995) Historical and ecological biogeography of Nearctic pikas (Lagomorpha: Ochotonidae). J Mammal 76:302–321Article 

    Google Scholar 
    Hafner DJ, Smith AT (2010) Revision of the subspecies of the American pika, Ochotona princeps (Lagomorpha: Ochotonidae). J Mammal 91:401–417Article 

    Google Scholar 
    Hanson JO, Marques A, Veríssimo A, Camacho-Sanchez M, Velo-Antón G, Martínez-Solano Í et al. (2020) Conservation planning for adaptive and neutral evolutionary processes. J Appl Ecol 57:2159–2169Article 

    Google Scholar 
    Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henry P, Russello MA (2013) Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. Ecol Evol 3:3906–3917CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: the American pika. PLoS One 7:e39077CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Article 

    Google Scholar 
    Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A et al. (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 290:C45–56CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoban S (2018) Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour 18:14–17PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Holbrook JD, DeYoung RW, Janecka JE, Tewes ME, Honeycutt RL, Young JH (2012) Genetic diversity, population structure, and movements of mountain lions (Puma concolor) in Texas. J Mammal 93:989–1000Article 

    Google Scholar 
    IPCC (2014) AR5 Synthesis Report: Climate Change 2014. IPCC.Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, Voss FK (2016) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflüg Arch Eur J Physiol 468:385–393CAS 
    Article 

    Google Scholar 
    Johnston AN, Bruggeman JE, Beers AT, Beever EA, Christophersen RG, Ransom JI (2019) Ecological consequences of anomalies in atmospheric moisture and snowpack. Ecology 100:e02638PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Johnston KM, Freund KA, Schmitz OJ (2012) Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere 3:art97Article 

    Google Scholar 
    Kilham L (1958) Territorial behavior in pikas. J Mammal 39:307–307Article 

    Google Scholar 
    Kimura M (1971) Theoretical foundation of population genetics at the molecular level. Theor Popul Biol 2:174–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klingler KB, Jahner JP, Parchman TL, Ray C, Peacock MM (2021) Genomic variation in the American pika: signatures of geographic isolation and implications for conservation. BMC Ecol Evol 21:2CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambers JHR (2015) Extinction risks from climate change. Science 348:501–502CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302Article 

    Google Scholar 
    Latch EK, Scognamillo DG, Fike JA, Chamberlain MJ, Rhodes Jr OE (2008) Deciphering ecological barriers to North American River Otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265–274CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lee KM, Coop G (2017) Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:1591–1619PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KM, Coop G (2019) Population genomics perspectives on convergent adaptation. Philos Trans R Soc B Biol Sci 374:20180236Article 

    Google Scholar 
    Lemay MA, Russello MA (2015) Genetic evidence for ecological divergence in kokanee salmon. Mol Ecol 24:798–811CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio.MacArthur RA, Wang LCH (1974) Behavioral thermoregulation in the pika Ochotona princeps: a field study using radiotelemetry. Can J Zool 52:353–358CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McCain CM (2019) Assessing the risks to United States and Canadian mammals caused by climate change using a trait-mediated model. J Mammal 100:1808–1817
    Google Scholar 
    Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794Article 

    Google Scholar 
    Morin PA, Luikart G, Wayne RK, the SNP Workshop Group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216Article 

    Google Scholar 
    Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264CAS 
    PubMed 
    Article 

    Google Scholar 
    Morrison SF, Hik DS (2007) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J Anim Ecol 76:899–907PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moyer‐Horner L, Mathewson PD, Jones GM, Kearney MR, Porter WP (2015) Modeling behavioral thermoregulation in a climate change sentinel. Ecol Evol 5:5810–5822PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813Article 

    Google Scholar 
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669Article 

    Google Scholar 
    Paz-Vinas I, Loot G, Hermoso V, Veyssière C, Poulet N, Grenouillet G et al. (2018) Systematic conservation planning for intraspecific genetic diversity. Proc R Soc B Biol Sci 285:20172746Article 

    Google Scholar 
    Peacock MM (1997) Determining natal dispersal patterns in a population of North American pikas (Ochotona princeps) using direct mark-resight and indirect genetic methods. Behav Ecol 8:340–350Article 

    Google Scholar 
    Peacock MM, Smith AT (1997) Nonrandom mating in pikas Ochotona princeps: evidence for inbreeding between individuals of intermediate relatedness. Mol Ecol 6:801–811CAS 
    PubMed 
    Article 

    Google Scholar 
    Pew J, Muir PH, Wang J, Frasier TR (2015) related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561PubMed 
    Article 

    Google Scholar 
    Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer New York, New York, NY, p 110–135Chapter 

    Google Scholar 
    Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/Rankin AM, Galbreath KE, Teeter KC (2017) Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 98:1156–1167Article 

    Google Scholar 
    Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H et al. (2018) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 18:18–31PubMed 
    Article 

    Google Scholar 
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370PubMed 
    Article 

    Google Scholar 
    Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185Article 

    Google Scholar 
    Robson KM, Lamb CT, Russello MA (2016) Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment. J Mammal 97:464–472Article 

    Google Scholar 
    Rochette NC, Rivera‐Colón AG, Catchen JM (2019) Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28:4737–4754CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288Article 

    Google Scholar 
    Russello MA, Waterhouse MD, Etter PD, Johnson EA (2015) From promise to practice: pairing non-invasive sampling with genomics in conservation. PeerJ 3:e1106PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Sjodin BMF, Galbreath KE, Lanier HC, Russello MA (2021) Chromosome-level reference genome assembly for the American pika (Ochotona princeps). J Hered https://doi.org/10.1093/jhered/esab031Smith AT (1974b) The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55:1368–1376Article 

    Google Scholar 
    Smith AT (1974a) The distribution and dispersal of pikas: consequences of insular population structure. Ecology 55:1112–1119Article 

    Google Scholar 
    Smith AT (2020) Conservation status of American pikas (Ochotona princeps). J Mammal 101:1466–1488Article 

    Google Scholar 
    Smith AT, Ivins BL (1983) Colonization in a pika population: dispersal vs philopatry. Behav Ecol Sociobiol 13:37–47Article 

    Google Scholar 
    Smith AT, Weston ML (1990) Ochotona princeps. Mamm Species 352:1–8.Article 

    Google Scholar 
    Smith AT, Millar CI (2018) American pika (Ochotona princeps) population survival in winters with low or no snowpack. West North Am Nat 78:126–132Article 

    Google Scholar 
    La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B Biol Sci 277:3401–3410Article 

    Google Scholar 
    Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stewart JAE, Wright DH, Heckman KA (2017) Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS One 12:e0181834PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart JAE, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE et al. (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42:880–890Article 

    Google Scholar 
    Varner J, Dearing MD (2014) The importance of biologically relevant microclimates in habitat suitability assessments. PLoS One 9:e104648PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waldvogel A-M, Feldmeyer B, Rolshausen G, Exposito‐Alonso M, Rellstab C, Kofler R et al. (2020) Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett 4:4–18PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29Article 

    Google Scholar 
    Waterhouse MD, Erb LP, Beever EA, Russello MA (2018) Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol 27:2512–2528PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 

    Google Scholar 
    Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:e2001104PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkening JL, Ray C (2016) Characterizing predictors of survival in the American pika (Ochotona princeps). J Mammal 97:1366–1375Article 

    Google Scholar 
    Wilkening JL, Ray C, Beever EA, Brussard PF (2011) Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quat Int 235:77–88Article 

    Google Scholar 
    Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wogan GOU, Wang IJ (2018) The value of space-for-time substitution for studying fine-scale microevolutionary processes. Ecography 41:1456–1468Article 

    Google Scholar 
    Yandow LH, Chalfoun AD, Doak DF (2015) Climate tolerances and habitat requirements jointly shape the elevational distribution of the American pika (Ochotona princeps), with implications for climate change effects. PLoS One 10:e0131082PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zgurski JM, Hik DS (2012) Polygynandry and even-sexed dispersal in a population of collared pikas, Ochotona collaris. Anim Behav 83:1075–1082Article 

    Google Scholar 
    Zhang D, Pan J, Cao J, Cao Y, Zhou H (2020) Screening of drought-resistance related genes and analysis of promising regulatory pathway in camel renal medulla. Genomics 112:2633–2639CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction

    1.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Lürling, M., Mendes e Mello, M., van Oosterhout, F., de Senerpont Domis, L. & Marinho, M. M. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front. Microbiol. 9, 1851 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Low-Décarie, E., Fussmann, G. F. & Bell, G. Aquatic primary production in a high-CO2 world. Trends Ecol. Evol. 29, 223–232 (2014).PubMed 
    Article 

    Google Scholar 
    5.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113, E6325–E6334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Sun, Y. D. et al. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–370 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end Permian extinction in southeastern Gondwana. Geology 49, https://doi.org/10.1130/G48795.1 (2021).8.Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).CAS 
    Article 

    Google Scholar 
    11.Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48, 288–292 (2020).ADS 
    Article 

    Google Scholar 
    12.Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. GSA Bull. 108, 195–207 (1996).CAS 
    Article 

    Google Scholar 
    13.Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).CAS 
    Article 

    Google Scholar 
    15.Metcalfe, I., Crowley, J. L., Nicoll, R. S. & Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS 
    Article 

    Google Scholar 
    17.McLoughlin, S. et al. Dwelling in the dead zone—vertebrate burrows immediately succeeding the end-Permian extinction event in Australia. Palaios 35, 342–357 (2020).ADS 
    Article 

    Google Scholar 
    18.Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 75, 29–57 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mays, C., Vajda, V. & McLoughlin, S. Permian–Triassic non-marine algae of Gondwana—distributions, natural affinities and ecological implications. Earth-Sci. Rev. 212, 103382 (2021).CAS 
    Article 

    Google Scholar 
    20.McLoughlin, S. et al. Age and paleoenvironmental significance of the Frazer Beach Member—a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front. Earth Sci. 8, 600976 (2021).Article 

    Google Scholar 
    21.Huber, J. K. A postglacial pollen and nonsiliceous algae record from Gegoka Lake, Lake County, Minnesota. J. Paleolimnol. 16, 23–35 (1996).ADS 
    Article 

    Google Scholar 
    22.Woodward, C. A. & Shulmeister, J. A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand. J. Paleolimnol. 34, 481–501 (2005).ADS 
    Article 

    Google Scholar 
    23.Pacton, M., Gorin, G. & Fiet, N. Occurrence of photosynthetic microbial mats in a Lower Cretaceous black shale (central Italy): a shallow-water deposit. Facies 55, 401–419 (2009).Article 

    Google Scholar 
    24.Pacton, M., Gorin, G. E. & Vasconcelos, C. Amorphous organic matter—Experimental data on formation and the role of microbes. Rev. Palaeobot. Palynol. 166, 253–267 (2011).Article 

    Google Scholar 
    25.Tyson, R. V. Sedimentary Organic Matter: Organic Facies and Palynofacies (Chapman & Hall, 1995).26.Retallack, G. J. Earliest Triassic claystone breccias and soil-erosion crisis. J. Sediment. Res. 75, 679–695 (2005).ADS 
    Article 

    Google Scholar 
    27.Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Retallack, G. J. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin. Aust. GSA Bull. 111, 52–70 (1999).CAS 
    Article 

    Google Scholar 
    29.Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Stevenson, R. J. & Smol, J. P. In Freshwater Algae of North America: Ecology and Classification (eds Wehr, J. D., Sheath, R. G. & Kociolek, P.) Ch. 21, 921–962 (Academic Press, 2015).31.Lindström, S., Bjerager, M., Alsen, P., Sanei, H. & Bojesen-Koefoed, J. The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes. Geol. Mag. 157, 1547–1567 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    32.de Leeuw, J. W., Versteegh, G. J. M. & van Bergen, P. F. in Plants and Climate Change, Plant Ecology (eds Rozema, J., Aerts, R. & Cornelissen, H.) Vol. 182, 209–233 (Springer, 2006).33.Baudelet, P.-H., Ricochon, G., Linder, M. & Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res 25, 333–371 (2017).Article 

    Google Scholar 
    34.Graham, L. E. & Gray, J. In Plants Invade the Land: Evolutionary and Environmental Perspectives (eds Gensel, P. G. & Edwards, D.) 140–158 (Columbia University Press, 2001).35.Demura, M., Ioki, M., Kawachi, M., Nakajima, N. & Watanabe, M. M. Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J. Appl. Phycol. 26, 49–53 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Del Cortona, A. et al. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS 117, 2551–2559 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Wheeler, A., Van de Wetering, N., Esterle, J. S. & Götz, A. E. Palaeoenvironmental changes recorded in the palynology and palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld 29, 439–452 (2020).Article 

    Google Scholar 
    38.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    39.Low-Décarie, E., Fussmann, G. F. & Bell, G. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob. Change Biol. 17, 2525–2535 (2011).ADS 
    Article 

    Google Scholar 
    40.von Alvensleben, N., Magnusson, M. & Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 28, 861–876 (2016).Article 
    CAS 

    Google Scholar 
    41.Chu, D. et al. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeog. Palaeoclimatol. Palaeoecol. 474, 214–231 (2017).ADS 
    Article 

    Google Scholar 
    42.Guo, W. et al. Secular variations of ichnofossils from the terrestrial Late Permian–Middle Triassic succession at the Shichuanhe section in Shaanxi Province, North China. Glob. Planet. Change 181, 102978 (2019).Article 

    Google Scholar 
    43.Lee, J. Y. et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., et al.) 195 pp. (Cambridge University Press, 2021).44.de Jersey, N. J. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geol. Surv. Qld. Publ. 374, 1–39 (1979).
    Google Scholar 
    45.Lindström, S. & McLoughlin, S. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145, 89–122 (2007).Article 

    Google Scholar 
    46.Grebe, H. Permian plant microfossils from the Newcastle Coal Measures/Narrabeen Group Boundary, Lake Munmorah, New South Wales. Rec. Geol. Surv. NSW 12, 125–136 (1970).
    Google Scholar 
    47.Mishra, S. et al. A new acritarch spike of Leiosphaeridia dessicata comb. nov. emend. from the Upper Permian and Lower Triassic sequence of India (Pranhita-Godavari Basin): its origin and palaeoecological significance. Palaeogeog. Palaeoclimatol. Palaeoecol. 567, 110274 (2021).ADS 
    Article 

    Google Scholar 
    48.Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kershaw, S. et al. Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10, 25–47 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Schneebeli-Hermann, E. et al. Palynofacies analysis of the Permian–Triassic transition in the Amb section (Salt Range, Pakistan): implications for the anoxia on the South Tethyan Margin. J. Asian Earth Sci. 60, 225–234 (2012).ADS 
    Article 

    Google Scholar 
    51.van Soelen, E. E. & Kürschner, W. M. Late Permian to Early Triassic changes in acritarch assemblages and morphology in the Boreal Arctic: new data from the Finnmark Platform. Palaeogeog. Palaeoclimatol. Palaeoecol. 505, 120–127 (2018).ADS 
    Article 

    Google Scholar 
    52.Spina, A., Cirilli, S., Utting, J. & Jansonius, J. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Rev. Palaeobot. Palynol. 218, 3–14 (2015).Article 

    Google Scholar 
    53.Thomas, B. M. et al. Unique marine Permian‐Triassic boundary section from Western Australia. Aust. J. Earth Sci. 51, 423–430 (2004).ADS 
    Article 

    Google Scholar 
    54.Schneebeli-Hermann, E. & Bucher, H. Palynostratigraphy at the Permian-Triassic boundary of the Amb section, Salt Range, Pakistan. Palynology 39, 1–18 (2015).Article 

    Google Scholar 
    55.Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).ADS 
    Article 

    Google Scholar 
    56.Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).ADS 
    Article 

    Google Scholar 
    57.van Soelen, E. E., Twitchett, R. J. & Kürschner, W. M. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Climate 14, 441–453 (2018).
    Google Scholar 
    58.Kaiho, K. et al. Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis. Heliyon 2, e00137 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeog. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).ADS 
    Article 

    Google Scholar 
    60.Lindström, S., Erlström, M., Piasecki, S., Nielsen, L. H. & Mathiesen, A. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Rev. Palaeobot. Palynol. 244, 65–95 (2017).Article 

    Google Scholar 
    61.Garel, S. et al. Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France). Palaeogeog. Palaeoclimatol. Palaeoecol. 376, 184–199 (2013).ADS 
    Article 

    Google Scholar 
    62.van de Schootbrugge, B. & Gollner, S. In Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers (eds Bush, A. M., Pruss, S. B. & Payne, J. L.) 19, 87–114 (The Paleontological Society, 2013).63.Mata, S. A. & Bottjer, D. J. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10, 3–24 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Peterffy, O., Calner, M. & Vajda, V. Early Jurassic microbial mats—a potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeog. Palaeoclimatol. Palaeoecol. 464, 76–85 (2016).ADS 
    Article 

    Google Scholar 
    65.Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 3636, 862–866 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    66.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Vajda, V., Ocampo, A., Ferrow, E. & Bender Koch, C. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact—evidence from ejecta deposits in Belize and Mexico. Gondwana Res. 27, 1079–1088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K.-U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Bralower, T. J. et al. Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth Planet. Sci. Lett. 548, 116476 (2020).CAS 
    Article 

    Google Scholar 
    70.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R. & McKee, M. L. No evidence for a large atmospheric CO2 spike across the Cretaceous‐Paleogene boundary. Geophys. Res. Lett. 46, 3462–3472 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    72.Strother, P. K. & Wellman, C. H. The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago. J. Geol. Soc. 178, jgs2020–jgs2133 (2021).Article 

    Google Scholar 
    73.Sepkoski, J. J., Bambach, R. K. & Droser, M. L. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.) 298–312 (Springer-Verlag, 1991).74.Tyson, R. V. Calibration of hydrogen indices with microscopy: a review, reanalysis and new results using the fluorescence scale. Org. Geochem. 37, 45–63 (2006).CAS 
    Article 

    Google Scholar 
    75.Benninghoff, W. S. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et. Spores 4, 332–333 (1962).
    Google Scholar 
    76.Maher, L. J. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32, 153–191 (1981).Article 

    Google Scholar 
    77.Simpson, M. G. Plant Systematics (Academic Press, 2019).78.Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. PNAS 49, 298–302 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).Article 

    Google Scholar 
    80.Combaz, A. Les palynofaciès. Rev. Micropaléontol. 7, 205–218 (1964).
    Google Scholar 
    81.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    82.Wei, W. & Algeo, T. J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 287, 341–366 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Rowe, H., Hughes, N. & Robinson, K. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325, 122–131 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    84.Blakey, R. C. Global paleogeography and tectonics in deep time. https://deeptimemaps.com/global-series-details/. Accessed 16 June 2020 (2016).85.Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Zhang, W., Shi, X., Jiang, G., Tang, D. & Wang, X. Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Res. 28, 432–450 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    87.Vecoli, M. Fossil microphytoplankton dynamics across the Ordovician–Silurian boundary. Rev. Palaeobot. Palynol. 148, 91–107 (2008).Article 

    Google Scholar 
    88.Xie, S. et al. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet. Sci. Lett. 460, 180–191 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    89.Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23, 967–970 (1995).ADS 
    Article 

    Google Scholar 
    90.Richoz, S. et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5, 662–667 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    91.Lindström, S. et al. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology 40, 531–534 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    92.van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled “disaster species”. Palaeogeog. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).ADS 
    Article 

    Google Scholar 
    93.Slater, S. M., Twitchett, R. J., Danise, S. & Vajda, V. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nat. Geosci. 12, 462–467 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Polgári, M. et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeog. Palaeoclimatol. Palaeoecol. 459, 99–120 (2016).ADS 
    Article 

    Google Scholar 
    95.Xu, W. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 10, 129–134 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Kashiyama, Y. et al. Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: nitrogen and carbon isotopic evidence from sedimentary porphyrin. Org. Geochem. 39, 532–549 (2008).CAS 
    Article 

    Google Scholar 
    97.Jarvis, I. et al. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretac. Res 9, 3–103 (1988).Article 

    Google Scholar 
    98.Layeb, M., Ben Fadhel, M., Layeb-Tounsi, Y. & Ben Youssef, M. First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab. J. Geosci. 7, 3349–3363 (2014).CAS 
    Article 

    Google Scholar 
    99.Pearce, M. A., Jarvis, I. & Tocher, B. A. The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeog. Palaeoclimatol. Palaeoecol. 280, 207–234 (2009).ADS 
    Article 

    Google Scholar 
    100.Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A. & Sinninghe Damsté, J. S. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17, 1051 (2002).ADS 
    Article 

    Google Scholar 
    101.Dodsworth, P., Eldrett, J. S. & Hart, M. B. Cretaceous Oceanic Anoxic Event 2 in eastern England: further palynological and geochemical data from Melton Ross. figshare https://doi.org/10.6084/m9.figshare.c.4987205.v3 (2020).102.Schwab, K. W., Bayliss, G. S., Smith, M. A. & Yoder, N. B. Mushroom and broccoli-head shaped algal fragments from the Eagle Ford Shale of south Texas and Coahuila, Mexico. Search and Discovery 70134 (2013).103.Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Scasso, R. A. et al. A high-resolution record of environmental changes from a Cretaceous-Paleogene section of Seymour Island. Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol. 555, 109844 (2020).ADS 
    Article 

    Google Scholar 
    105.Sosa-Montes de Oca, C. et al. Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeog. Palaeoclimatol. Palaeoecol. 569, 110310 (2021).ADS 
    Article 

    Google Scholar 
    106.Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1222 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Junium, C. K., Dickson, A. J. & Uveges, B. T. Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nat. Commun. 9, 3186 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    108.Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Kender, S. et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 353–354, 108–120 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    110.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Tot. Environ. 409, 1739–1745 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew

    1.Darwin, C. On the origin of species. (D. Appleton and Co., 1871). https://doi.org/10.5962/bhl.title.28875.2.Thompson, J. N. Mutualistic webs of species. Science (80–) 312, 372–373 (2006).CAS 
    Article 

    Google Scholar 
    3.Bronstein, J. L. The exploitation of mutualisms. Ecol. Lett. 4, 277–287 (2001).Article 

    Google Scholar 
    4.Bshary, R. & Grutter, A. S. Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecol. Lett. 5, 130–136 (2002).Article 

    Google Scholar 
    5.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Heil, M., Barajas-Barron, A., Orona-Tamayo, D., Wielsch, N. & Svatos, A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol. Lett. 17, 185–192 (2014).Article 

    Google Scholar 
    7.Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).ADS 
    Article 

    Google Scholar 
    8.Thomas, F., Renaud, F., de Meeus, T. & Poulin, R. Manipulation of host behaviour by parasites: Ecosystem engineering in the intertidal zone?. Proc. R. Soc. B Biol. Sci. 265, 1091–1096 (1998).Article 

    Google Scholar 
    9.Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. J. Evol. Biol. 15, 356–361 (2002).Article 

    Google Scholar 
    10.Kadoya, E. Z., Ishii, H. S. & Williams, N. M. Host manipulation of bumble bee queens by Sphaerularia nematodes indirectly affects foraging of non-host workers. Ecology 96, 1361–1370 (2015).Article 

    Google Scholar 
    11.Hojo, M. K., Pierce, N. E. & Tsuji, K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr. Biol. 25, 2260–2264 (2015).CAS 
    Article 

    Google Scholar 
    12.Poulin, R., Brodeur, J. & Moore, J. Parasite manipulation of host behaviour: Should hosts always lose?. Oikos 70, 479 (1994).Article 

    Google Scholar 
    13.Heil, M. et al. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc. Natl. Acad. Sci. USA. 106, 18091–18096 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Watanabe, S., Murakami, T., Yoshimura, J. & Hasegawa, E. Color polymorphism in an aphid is maintained by attending ants. Sci. Adv. 2, (2016).15.Watanabe, S., Yoshimura, J. & Hasegawa, E. Ants improve the reproduction of inferior morphs to maintain a polymorphism in symbiont aphids. Sci. Rep. 8, (2018).16.Sakata, H. Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Res. Popul. Ecol. (Kyoto) 37, 159–164 (1995).Article 

    Google Scholar 
    17.Evans, P. D. Biogenic Amines in the insect nervous system. Adv. In Insect Phys. 15, 317–473 (1980).CAS 
    Article 

    Google Scholar 
    18.Aonuma, H. & Watanabe, T. Octopaminergic system in the brain controls aggressive motivation in the ant Formica japonica. Acta Biol. Hung. 63, 63–68 (2012).Article 

    Google Scholar 
    19.Stevenson, P. A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441 (2005).CAS 
    Article 

    Google Scholar 
    20.Kostowski, W. & Tarchalska, B. The effects of some drugs affecting brain 5-HT on the aggressive behaviour and spontaneous electrical activity of the central nervous system of the ant Formica rufa. Brain Res. 38, 143–149 (1972).CAS 
    Article 

    Google Scholar 
    21.Szczuka, A. et al. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol. Exp. (Wars) 73, 495–520 (2013).
    Google Scholar 
    22.Way, M. J. Mutualism between ants and honeydew-producing homoptera. Annu. Rev. Entomol. 8, 307–344 (1963).Article 

    Google Scholar 
    23.Hafer-Hahmann, N. Behavior out of control: Experimental evolution of resistance to host manipulation. Ecol. Evol. 9, 7237–7245 (2019).Article 

    Google Scholar 
    24.Martinez, J., Fleury, F. & Varaldi, J. Heritable variation in an extended phenotype: The case of a parasitoid manipulated by a virus. J. Evol. Biol. 25, 54–65 (2012).Article 

    Google Scholar 
    25.Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149 (2009).Article 

    Google Scholar 
    26.Rosenthal, G. G. & Servedio, M. R. Chase-away sexual selection: Resistance to ‘resistance’. Evolution (N.Y.) 53, 296 (1999).
    Google Scholar 
    27.Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H. & Völkl, W. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol. Entomol. 29, 311–319 (2004).CAS 
    Article 

    Google Scholar 
    28.Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).Article 

    Google Scholar 
    29.Tsuji, K. & Dobata, S. Social cancer and the biology of the clonal ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecological News 15, 91–99 (2011).
    Google Scholar 
    30.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    31.Agawa, H. & Kawata, M. The effect of color polymorphism on mortality in the aphid Macrosiphoniella yomogicola. Ecol. Res. 10, 301–306 (1995).Article 

    Google Scholar 
    32.Watanabe, S., Murakami, Y. & Hasegawa, E. Effects of attending ant species on the fate of colonies of an aphid, Macrosiphoniella yomogicola (Matsumura) (Homoptera: Aphididae), in an ant-aphid symbiosis. Entomol. News 128, 325 (2019).Article 

    Google Scholar 
    33.Wada-Katsumata, A., Yamaoka, R. & Aonuma, H. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J. Exp. Biol. 214, 1707–1713 (2011).CAS 
    Article 

    Google Scholar 
    34.Aonuma, H. & Watanabe, T. Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, formica japonica. PLoS One 7, (2012).35.Aonuma, H. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J. Exp. Biol. 223, jeb228874 (2020).Article 

    Google Scholar 
    36.R Core Team. R: A Language and Environment for Statistical Computing. (2020).37.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    38.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).39.Hothorn, T. & Hornik, K. exactRankTests: Exact Distributions for Rank and Permutation Tests. (2019). More

  • in

    Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour

    1.Gause, G. F. & Witt, A. A. Behavior of mixed populations and the problem of natural selection. Am. Nat. 69, 596–609 (1935).Article 

    Google Scholar 
    2.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    3.Ayala, F. J. Experimental invalidation of the principle of competitive exclusion. Nature 224, 1076–1079 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bengtsson, J. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713–715 (1989).ADS 
    Article 

    Google Scholar 
    5.Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Collins, S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. Biol. Sci. 278, 247–255 (2011).PubMed 

    Google Scholar 
    7.Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368, 20120085 (2013).Article 

    Google Scholar 
    8.Birch, L. C. Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389–399 (1955).Article 

    Google Scholar 
    9.Martin, M. J., Perez-Tome, J. M. & Toro, M. A. Competition and genotypic variability in Drosophila melanogaster. Heredity 60, 119–123 (1988).PubMed 
    Article 

    Google Scholar 
    10.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Pennacchio, F. & Strand, M. R. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol. 51, 233–258 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35, 59–79 (1990).PubMed 
    Article 

    Google Scholar 
    13.Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930–1930 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dorn, S. & Beckage, N. E. Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectives. Physiol. Entomol. 32, 199–211 (2007).Article 

    Google Scholar 
    15.Gandon, S., Rivero, A. & Varaldi, J. Superparasitism evolution: adaptation or manipulation? Am. Nat. 167, E1–E22 (2006).PubMed 
    Article 

    Google Scholar 
    16.Speirs, D. C., Sherratt, T. N. & Hubbard, S. F. Parasitoid diets: does superparasitism pay? Trends Ecol. Evol. 6, 22–25 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tracy Reynolds, K. & Hardy, I. C. Superparasitism: a non-adaptive strategy? Trends Ecol. Evol. 19, 347–348 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Pan, M., Liu, T. & Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability? Insect Sci. 25, 1035–1044 (2018).PubMed 
    Article 

    Google Scholar 
    19.Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stem borer parasitoid Cotesia flavipes. Entomol. Exp. Appl. 82, 341–348 (1997).Article 

    Google Scholar 
    20.Mackauer, B. B. Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6, 302–307 (1992).Article 

    Google Scholar 
    21.Keasar, T. et al. Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol. Entomol. 31, 277–283 (2006).Article 

    Google Scholar 
    22.Silva-Torres, C. S. A., Ramos, I. T., Torres, J. B. & Barros, R. Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomol. Exp. Appl. 133, 65–73 (2009).Article 

    Google Scholar 
    23.Wylie, H. G. Delayed development of Microctonus vittatae (Hymenoptera: Braconidae) in superparasitized adults of Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol. 115, 441–442 (1983).Article 

    Google Scholar 
    24.White, J. A. & Andow, D. A. Benefits of self-superparasitism in a polyembryonic parasitoid. Biol. Control 46, 133–139 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).Article 

    Google Scholar 
    26.Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Anim. Behav. 69, 1227–1234 (2005).Article 

    Google Scholar 
    27.Varaldi, J., Patot, S., Nardin, M. & Gandon, S. A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv. Parasitol. 70, 333–363 (2009).PubMed 
    Article 

    Google Scholar 
    28.Carton, Y., Bouletreau, M., van Alphen, J. J. M. & van Lenteren, J. C. The Drosophila parasitic wasps. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 347–394 (Academic Press, 1986).29.Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after seeing parasites. Science 339, 947–950 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hwang, R. Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mortimer, N. T. et al. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl Acad. Sci. USA 110, 9427–9432 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Huang, J. et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 12, 234 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H. & Werren, J. H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 27, 2007–2013 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Xu, J. et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 3, 1526–1538 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Werner, E. GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B. & Pierre, J. S. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47, 339–348 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hofsvang, T. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomol. Bohemosl 87, 161–175 (1990).
    Google Scholar 
    47.van Lenteren, J. C. in Semiochemicals: Their Role in Pest Control (eds Nordlund, D. A., Jones, R. L. & Lewis, W. J.) 153–179 (Wiley and Sons, 1981).48.Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (hymenoptera: Ichneumonidae). Entomol. Exp. Appl. 17, 36–44 (2011).Article 

    Google Scholar 
    49.Hoffmeister, T. S. & Roitberg, B. D. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11, 145–168 (1997).Article 

    Google Scholar 
    50.Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 15, 1–12 (2002).Article 

    Google Scholar 
    51.Liang, Q., Jia, Y. & Liu, T. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110, 430–437 (2017).PubMed 

    Google Scholar 
    52.Gandon, S., Varaldi, J., Fleury, F. & Rivero, A. Evolution and manipulation of parasitoid egg load. Evolution 63, 2974–2984 (2009).PubMed 
    Article 

    Google Scholar 
    53.Hughes, D. P. & Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 63, 471–487 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zuzarte-Luis, V. & Mota, M. M. Parasite sensing of host nutrients and environmental cues. Cell Host Microbe 23, 749–758 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Cox, F. E. G. Parasites affect behavior of mice. Nature 294, 515–515 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7, e34414 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401–140 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Mcallister, M. K. & Roitberg, B. D. Adaptive suicidal-behavior in pea aphids. Nature 328, 797–799 (1987).ADS 
    Article 

    Google Scholar 
    60.Maure, F., Brodeur, J., Droit, A., Doyon, J. & Thomas, F. Bodyguard manipulation in a multipredator context: different processes, same effect. Behav. Process. 99, 81–86 (2013).Article 

    Google Scholar 
    61.Mohan, P. & Sinu, P. A. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLoS ONE 12, e0178108 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Muller, C. B. & Schmidhempel, P. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363, 65–67 (1993).ADS 
    Article 

    Google Scholar 
    63.Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Louradour, I. et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 6, e25496 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Sinenko, S. A., Shim, J. & Banerjee, U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in. Drosoph. EMBO Rep. 13, 83–89 (2012).CAS 
    Article 

    Google Scholar 
    66.Wang, Y. et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Colinet, D. et al. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 286, 40110–40121 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Colinet, D. et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 43, 601–611 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Carton, Y., Frey, F. & Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69, 393–399 (1992).PubMed 
    Article 

    Google Scholar 
    70.Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, 2029–2037 (2007).CAS 
    Article 

    Google Scholar 
    71.Colinet, D. et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 6, e1001206 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Schlenke, T. A., Morales, J., Govind, S. & Clark, A. G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3, 1486–1501 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Anderl, I. et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12, e1005746 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).PubMed 
    Article 

    Google Scholar 
    75.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    77.Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. P. Roy. Soc. B-Biol. Sci. 274, 839–844 (2007).
    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Huang, J., Reilein, A. & Kalderon, D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development 144, 2584–2594 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Phylogenet. Evol. 35, 543–548 (2017).Article 
    CAS 

    Google Scholar 
    86.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Werren, J. H. et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Consortium, H. G. S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    93.Geib, S. M., Liang, G. H., Murphy, T. D. & Sim, S. B. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies. G3-Genes Genom. Genet. 7, 2407–2411 (2017).CAS 

    Google Scholar 
    94.Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Lindsey, A. R. et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 16, 54 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Korf, I. Gene finding in novel genomes. BMC Biol. 5, 59 (2004).
    Google Scholar 
    98.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25, 402–408 (2001).CAS 
    Article 

    Google Scholar 
    105.Zhang, X. S., Wang, T., Lin, X. W., Denlinger, D. L. & Xu, W. H. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 114, 7832–7840 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    First tracks of newborn straight-tusked elephants (Palaeoloxodon antiquus)

    The MTS proboscidean tracks and trackmakersRounded-to-elliptical tracks, with an axial length range from 9.6 to 54.5 cm (pes), were found mostly isolated and as manus-pes couples, or associated forming at least eight short trackways (see Table 1). They reveal good preservation in one 6-footprint trackway (see below), two converging trackways and some couples, showing anteriorly directed, wide, short and blunt toe impressions (Figs. 2, 3 and 4). Toe impressions are not commonly visible in elephant footprints9,13, (but see27), which attests to cases of exceptional preservation in Matalascañas tracks. Preservation as true tracks is identified through expulsion marginal rims (e.g., Fig. 4a, g) and possible ejecta (Fig. 3b,e). Large and flat sole surfaces sometimes show evidence of pockmarks23 (Fig. 4f).Table 1 Measurements of Proboscipeda tracks, ordered from smallest to largest in length.Full size tableFigure 2Proboscidean tracks (Proboscipeda panfamilia) attributed in the MTS to straight-tusked elephants. (a–h) Morphological features of small-sized tracks produced by calves and juveniles. Examples of manus impressions in (a) PAT/MTS/011a, (b) PAT/MTS/016 and (f) PAT/MTS/015x, and for further interpretation of (a) see Fig. 3; the latter two with drag marks made during the foot-off event. (c) and (g) PAT/MTS/002a,b: Manus-pes couple found isolated showing heteropody and different number of toe impressions (interpretation as left-side tracks by peak pressure deformation in the left side of the track according to27); interpretation in (c). (d) PAT/MTS/014 and (e) PAT/MTS/007a: Calf-sized pes with three toe impressions. (h) PAT/MTS/011 h: Badly preserved manus of a calf. Scale bar = 5 cm.Full size imageFigure 3Photograph, outline, high-resolution 3D and false-coloured 3D images of the PAT/MTS/0011a track representing the best preserved manus of a juvenile-sized Proboscipeda track. (a) and (c) From the photograph and high-resolution images, five toe impressions in the anterior part of the rounded track are clear (especially toes I–IV). (b) and (f) The false coloured images in orthogonal (b) and oblique angle views (f) highlight the deepening of the track fore- and outwards, thus revealing a peak pressure pattern typical of left forefoot (toes III–IV), as well as a possible ejecta mound in front of the track. The poorly evident and narrow expulsion rim developed around the track is the result of the high cohesiveness and plasticity of the clayey fine-sand substrate. (d) Contour map supporting previous interpretation. (e) The cross-section of the track details the anterior migration of the foot pressure during its rotation, creating a peak pressure in the foot-off event that is represented in the deepest part of the track. Scale bars are 10 cm.Full size imageFigure 4Large-sized Proboscipeda tracks attributed to P. antiquus adults. (a) to (d) PAT/MTS/001: Right manus showing clearly 5 toe impressions and the frontal and lateral displacement rims (morphological interpretation based on the orthogonal (b) and oblique (d) depth and contour (c) maps). (e) and (f) PAT/MTS/010e: Deeper manus with pockmarks; toe pad impressions indicated (I–III). (g) PAT/MTS/004a,b: large manus-pes couple where the hind foot deformed the fore foot during overstepping, and revealing a typical elephantine gait; the toe impressions in both tracks indicate the direction of movement. Scale bar = 10 cm.Full size imageIrrespective of the track size, pes are elliptical to sub-rounded, with the length axis larger than the width and manus are circular or elliptical, with the width axis larger than the length (Figs. 2c and 4d, g for small and large size tracks, respectively). The safest way to differentiate between pes and manus is through the orientation of the track provided by the toe impressions, or by the orientation of the longer axis in trackways. When arranged in trackways, manus-pes couples show the typical elephantine gait, showing a short pace resulting from the fore- and hind feet on the same side swinging forward simultaneously below the body, as it is known from modern elephant gait28. In some cases, the partial impression of a pes overstepping the proximal part of a manus can be seen (Fig. 2c, g). Based on similar preservational style and opposing directions of movement without overlapping at the meeting point, a converging pair of trackways was apparently produced contemporaneously by an adult and a rather small juvenile. Sharp edges of the toe impressions indicate the presence of nails. These are found mostly in well preserved, smaller-sized tracks (Fig. 2a, d, e) because nails are commonly worn down in adult elephants and not always shown in their tracks13. These morphological features allow us to attribute the MTS trackways to the ichnospecies Proboscipeda panfamilia used previously for describing, among other tracksites, those tracks attributed confidently to the straight-tusked elephant Palaeoloxodon antiquus in the paleogeographical context of southern Europe11,14 (see supplementary Table S1).Manus-pes couples, when showing overstepping, were not considered in Table 1 (Fig. 2c, g). Overstepping depends on the speed of walking; at faster speeds the overstepping is only partial or there is no overstepping; elephants maintain the footfall pattern at all speeds, shifting toward a calculated 25% phase offset between limbs as they increase speed28 (Fig. 2g). The smallest tracks usually do not show overstepping possibly because of the greater activity, with longer pace and stride lengths, demonstrated by calves and juveniles when compared to adults. Manus or pes showing a large width-length ratio (below 0.80–0.96 sensu25) were not considered for the estimates since they represent slippage.Younger elephants have more pliable skin and musculature than adults. Also, the greater expansion and distribution of the weight in heavier adult animals is enough to reduce or negate toe impressions in some types of sediments, such as compacted substrates24,29. Interpreting the sedimentological data for the paleosol where MTS was developed15,17,30, suggests a drying clayey-sandy substrate14 that was still plastic enough to absorb the impact of the limbs during the locomotion of the elephants (presence of expulsion rims and absence of radial pressure cracks), and preserving, in many cases, the morphological details of the feet in good condition (Figs. 2a, 3, 4a; see Fig. 2h for a badly preserved example).Ichnological inference about the height, body mass and age of Palaeoloxodon antiquus in the MTSSeveral methods have been proposed for estimating the height at the shoulders for proboscideans, and the relationship between body mass and age with shoulder height 1,31,32. A linear relationship between foot length and shoulder height was confirmed by Lee and Moss33 from extant elephants and compared with fossil examples by Pasenko24. Pes length has been especially used in studies as an indicator of shoulder height21,34,35,36. Among Asian elephants, manus circumference has been shown to have a similar predictive relationship with shoulder height33. These parameters were determined for each isolated track (or representative track in a trackway), including manus and pes (Table 1), using equations previously proposed31,33 (see Methods). A similar approach has been applied to mammoth track studies in North America21,27, where modern ontogenetic and body-mass data has been used to provide age and size estimates from fossil tracks.From the skeletal record, sexual dimorphism of P. antiquus was observed to be more accentuated than in extant elephants, especially in terms of size differences1. During the first 10 years of life, both male and female African bush elephant foot lengths increase rapidly, with the fastest growth shown in the first two years for calves33,37. In P. antiquus, males would have continued to grow until their fifties according to bone data1, while females would have been much smaller as result of energy expenditure with reproduction, flattening the growth curve just after puberty. That is why the equations of Lee and Moss33 that discriminates the shoulder height from tracks for males and females have been applied. However, by comparison with the study of Marano and Palombo32 (based on the progress of eruption and degree of wear of teeth compared to extant elephants), and the body mass correlation of Larramendi et al.1 for calculating the age of P. antiquus, our MTS ages obtained from the application of the regression curve of Lee and Moss33 are underestimated and must be analysed as minimum age approximations for track lengths corresponding to adolescent and adult animals, especially for males. The obtained estimations from tracks are subject to a level of uncertainty related to biotic and abiotic factors that can distort the data (i.e., taphonomy) as it happens also with the calculations taken from skeletal proportions. Therefore, McNeil et al.21 even included data from frozen mammoth carcasses on the growth curve of Lee and Moss33 for correcting size discrepancies along ontogeny. For P. antiquus, our best data for comparison comes, however, from the flesh reconstructions1.Ontogenetic implicationsBased on the best fossil site found for this species in Europe, corresponding to 70 individual Palaeoloxodon antiquus specimens recovered in Geiseltal, Germany, Larramendi et al.1 developed the best reconstruction, so far, of the life appearance of this species and discussed size, body mass, ontogeny and sexual dimorphism. The Neumark-Nord bone site may be contemporary or slightly older than MTS, corresponding to late Middle Pleistocene-to-Eemian interglacial period1. The authors found that the body mass of P. antiquus males was up to three times more that of male Asian elephants and twice that of extant male African bush elephants. The large size determined for straight-tusked elephants (with an estimated  > 400 cm shoulder height in the flesh and body mass of 13 tonnes) and a later complete epiphyseal-diaphyseal fusion of limb bones (not yet totally fused at an estimated age of 47 years), in comparison with extant elephants, suggests that this species had a longer lifespan of 80 years or more1. Sexual dimorphism of P. antiquus was observed to be more accentuated than in extant elephants, with females generally not exceeding 300 cm at the shoulders with an estimated weight of not more than 5.5 tonnes, while males continued to grow until their fifties1. Males in extant elephant species grow more rapidly than females after puberty (i.e., around 7 years in age), which are affected by a trade-off between growth and reproduction. Under normal nutritional conditions, the growth rate is generally higher in males than females leading to a marked difference in size between sexes at already around 10 years in age33,37,38,39.The ontogenetic variation in growth projected for the MTS, when compared to what we known from extant proboscideans, is expressed in the track size distribution plot, with the definition of five age classes (Fig. 5; see also Table 1): calves under 2 years in age (when extant elephants experience fastest growth rates in both sexes), juveniles between 2 and 7 years in age (up to when elephant females reach their sexual maturity and therefore experience a strong reduction of growth rate in comparison to males), 7–15 years in age which include pre-puberty males and young female adults, over 15 years in age and  More

  • in

    Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems

    1.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.DeLong, J. P. et al. The body size dependence of trophic cascades. Am. Nat. 185, https://doi.org/10.1086/679735 (2015).3.Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Lin Jiang & Peter J., Morin Predator diet Breadth Influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am. Nat. 165, 350–363 (2005).PubMed 
    Article 

    Google Scholar 
    5.Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Suttle, C. A. Marine viruses: major players in the global ecosystem. Nat. Rev. Micro 5, 801–812 (2007).CAS 
    Article 

    Google Scholar 
    7.Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Micro 3, 537–546 (2005).CAS 
    Article 

    Google Scholar 
    8.Rotem, O. et al. in The Prokaryotes: Deltaproteobacteria and 740 Epsilonproteobacteria (eds Rosenberg, R. et al.) 3–17 (Springer, 2014).9.Chen, H., Athar, R., Zheng, G. & Williams, H. N. Prey bacteria shape the community structure of their predators. ISME J. https://doi.org/10.1038/ismej.2011.4 (2011).10.Koval, S. F. et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int. J. Syst. Evol. Microbiol 63, 146–151 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Jurkevitch, E., Minz, D., Ramati, B. & Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 66, 2365–2371 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Kadouri, D. E., To, K., Shanks, R. M. Q. & Doi, Y. Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS ONE 8, e63397 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Williams, H. N. et al. Halobacteriovorax, an underestimated predator on bacteria: potential impact relative to viruses on bacterial mortality. ISME J. 10, 491–499 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020–fix020 (2017).Article 
    CAS 

    Google Scholar 
    15.Chauhan, A., Cherrier, J. & Williams, H. N. Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proc. Natl Acad. Sci. USA 106, 4301–4306 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Li, N. & Williams, H. 454 Pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water. Antonie van Leeuwenhoek 107, 305–311 (2015).PubMed 
    Article 

    Google Scholar 
    18.Daims, H., Taylor, M. W. & Wagner, M. Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 24, 483–489 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Yu, R., Zhang, S., Chen, Z. & Li, C. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement. Front. Env. Sci. Eng. 11, 10 (2017).Article 
    CAS 

    Google Scholar 
    21.Pineiro, S. et al. Niche partition of Bacteriovorax operational taxonomic units along salinity and temporal gradients in the chesapeake bay reveals distinct estuarine strains. Microb. Ecol. 65, 652–660 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cohen, Y. et al. Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environ. Microbiol. 21, 1757–1770 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Mahmoud, K. K., McNeely, D., Elwood, C. & Koval, S. F. Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization. Appl. Environ. Microbiol. 73, 7488–7493 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H. & Nielsen, P. H. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLOS ONE 10, e0132783 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Welsh, R. M. et al. Bacterial predation in a marine host-associated microbiome. ISME J. 10, 1540–1544 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Newman, M. E. J. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Tudor, J. J. & Conti, S. F. Characterization of bdellocysts of Bdellovibrio sp. J. Bacteriol. 131, 314–322 (1977).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Williams, H. N. The recovery of high numbers of bdellovibrios from the surface water microlayer. Can. J. Microbiol. 33, 572–575 (1987).Article 

    Google Scholar 
    33.Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J https://doi.org/10.1038/ismej.2015.29 (2015).34.Wilén, B.-M., Jin, B. & Lant, P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 37, 2127–2139 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Phuong, K., Kakii, K. & Nikata, T. Intergeneric coaggregation of non-flocculating Acinetobacter spp. isolates with other sludge-constituting bacteria. J. Biosci. Bioeng. 107, 394–400 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kadouri, D. & O’Toole, G. A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microbiol. 71, 4044–4051 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Im, H., Dwidar, M. & Mitchell, R. J. Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. https://doi.org/10.1038/s41396-018-0154-5 (2018).38.Feng, S., Tan, C. H., Cohen, Y. & Rice, S. A. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ. Microbiol. 18, 3923–3931 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Rice, T. D., Williams, H. N. & Turng, B. F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Szabó, E. et al. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors. AMB Express 7, 168 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Wilén, B.-M., Jin, B. & Lant, P. Impacts of structural characteristics on activated sludge floc stability. Water Res. 37, 3632–3645 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Hahn, M. W. & Hofle, M. G. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65, 4863–4872 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kadouri, D., Venzon, N. C. & O’Toole, G. A. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl. Environ. Microbiol. 73, 605–614 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Dashiff, A., Junka, R., Libera, M. & Kadouri, D. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. https://doi.org/10.1111/j.1365-2672.2010.04900.x (2011).45.Winder, M. Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. J. Plankton Res. 31, 1307–1320 (2009).Article 

    Google Scholar 
    46.Dini-Andreote, F. et al. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8, 1989 (2014).47.Kelley, J., Turng, B., Williams, H. & Baer, M. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl. Environ. Microbiol. 63, 84–90 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Thingstad, T. A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363, 59–72 (1998).Article 

    Google Scholar 
    49.Shapiro, O. H., Kushmaro, A. & Brenner, A. Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J. 4, 327–336 (2009).PubMed 
    Article 

    Google Scholar 
    50.Dwidar, M., Nam, D. & Mitchell, R. J. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ. Microbiol. 17, 1009–1022 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Mun, W. et al. Cyanide production by chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. mBio https://doi.org/10.1128/mBio.01370-17 (2017).52.Sathyamoorthy, R. et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J. 15, 109–123 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-Offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiol. Molec. Biol. Rev. 74, 42–57 (2010).CAS 
    Article 

    Google Scholar 
    54.Chanyi, R. M., Ward, C., Pechey, A. & Koval, S. F. To invade or not to invade: two approaches to a prokaryotic predatory life cycle. Can. J. Microbiol. 59, 273–279 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lu, F. & Cai, J. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp. enterica serovar Typhimurium. Lett. Appl. Microbiol. 51, 625–631 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Peura, S., Bertilsson, S., Jones, R. I. & Eiler, A. Resistant microbial cooccurrence patterns inferred by network topology. Appl. Environ. Microbiol. 81, 2090–2097 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.de Celis, M. et al. Tuning up microbiome analysis to monitor WWTPs’ biological reactors functioning. Sci. Rep. 10, 1–8 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Hashimoto, T., Diedrich, D. L. & Conti, S. F. Isolation of a bacteriophage for Bdellovibrio bacteriovorus. J. Virol. 5, 87–98 (1970).Article 

    Google Scholar 
    60.Varon, M. & Levisohn, R. Three-membered parasitic systems: a bacteriophage, Bdellovibrio bacteriovorus, and Escherichia coli. J. Virol. 9, 519–525 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Johnke, J., Boen–igk, J., Harms, H. & Chatzinotas, A. Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol. Lett. 364, fnx089–fnx089 (2017).Article 
    CAS 

    Google Scholar 
    62.Johnke, J. et al. A generalist protist predator enables coexistence in multitrophic predator–prey systems containing a phage and the bacterial predator Bdellovibrio. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00124 (2017).63.Berleman, J. E., Chumley, T., Cheung, P. & Kirby, J. R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Shimkets, L. J. Social and developmental biology of myxobacteria. Microbiol. Rev. 54, 473–501 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Friman, V.-P. & Buckling, A. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME J. 8, 1820 (2014).66.Matassa, S., Verstraete, W., Pikaar, I. & Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 101, 137–146 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Semblante, G. U. et al. The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Sci. Tot. Environ. 607–608, 558–567 (2017).Article 
    CAS 

    Google Scholar 
    68.Xia, Y., Kong, Y., Thomsen, T. R. & Halkjær Nielsen, P. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Appl. Environ. Microbiol. 74, 2229–2238 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Niu, T. et al. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process. Water Res. 90, 369–377 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ju, F., Xia, Y., Guo, F., Wang, Z. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Günther, S. et al. Correlation of community dynamics and process parameters as a tool for the prediction of the stability of wastewater treatment. Environ. Sci. Technol. 46, 84–92 (2012).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Nettmann, E. et al. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol. 13, 278–278 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Kim, J. M. et al. Analysis of the fine-scale population structure of “Candidatus accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence In Situ hybridization and flow cytometric sorting. Appl. Environl. Microbiol. 76, 3825–3835 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Wallner, G., Erhart, R. & Amann, R. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl. Environ. Microbiol. 61, 1859–1866 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Pasternak, Z. et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 8, 625–635 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Pernthaler, J. & Amann, R. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol. Mol. Biol. Rev. 69, 440–461 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Jurkevitch, E. In The Ecology of Predation at the Microscale (eds Mitchell, R. J.) 37–64 (Springer, 2020).79.Delmont, T. O. et al. Accessing the soil metagenome for studies of microbial diversity. Appl. Environ. Microbiol. 77, 1315–1324 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Green, S. J., Venkatramanan, R. & Naqib, A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PloS ONE 10, e0128122 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Mather, P. Computational Methods of Multivariate Analysis in Physical Geography (J Wiley and Sons, 1976).88.Berry, K. J. & Mielke, P. W. Computation of exact probability values for multi-response permutation procedures (MRPP). Commun. Stat. – Simul. Comput. 13, 417–432 (1984).MathSciNet 
    Article 

    Google Scholar 
    89.Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    90.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol https://doi.org/10.1093/molbev/mst197 (2013).91.Kendall, M. G. Rank Correlation Methods 2nd edn, (Hafner, 1955).92.Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Icwsm 8, 361–362 (2009).
    Google Scholar 
    93.Sathyamoorthy, R. et al. Bacterial predation under changing viscosities. Environ. Microbiol. 21, 2997–3010 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Jurkevitch, E. In Current Protocols in Microbiology (ed Coico, R. et al.) (John Wiley and Sons, 2012).95.Whelan, J. A., Russell, N. B. & Whelan, M. A. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278, 261–269 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. https://www.nature.com/articles/ncomms2441 (2013).97.Van Essche, M. et al. Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ. Microbiol. Rep. 1, 228–233 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    98.Zheng, G., Wang, C., Williams, H. N. & Pineiro, S. A. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater. Bacteriovorax. Environ. Microbiol. 10, 2515–2526 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Liu, Z. et al. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol. 21, 164–181 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Cichocki, N. et al. Bacterial mock communities as standards for reproducible cytometric microbiome analysis. Nat. Protoc. 15, 2788–2812 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Trait-mediated shifts and climate velocity decouple an endothermic marine predator and its ectothermic prey

    1.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).ADS 
    Article 

    Google Scholar 
    3.Fodrie, F. J., Heck, K. L. Jr., Powers, S. P., Graham, W. M. & Robinson, K. L. Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob. Change Biol. 16, 48–59 (2010).ADS 
    Article 

    Google Scholar 
    4.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Simpson, S. D. et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21, 1565–1570 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (2017).8.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Article 

    Google Scholar 
    9.Oswald, S. A. & Arnold, J. M. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints. Integr. Zool. 7, 121–136 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Boyles, J. G., Seebacher, F., Smit, B. & McKechnie, A. E. Adaptive thermoregulation in endotherms may alter responses to climate change. Integr. Comp. Biol. 51, 676–690 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B Biol. Sci. 281, 20141097 (2014).Article 

    Google Scholar 
    12.Gibson-Reinemer, D. K., Sheldon, K. S. & Rahel, F. J. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5, 2340–2347 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pörtner, H.-O. et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont. Shelf Res. 21, 1975–1997 (2001).ADS 
    Article 

    Google Scholar 
    14.Neuheimer, A., Thresher, R., Lyle, J. & Semmens, J. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Chang. 1, 110–113 (2011).ADS 
    Article 

    Google Scholar 
    15.Pörtner, H.-O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 739–761 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).Article 

    Google Scholar 
    17.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Przeslawski, R., Falkner, I., Ashcroft, M. B. & Hutchings, P. Using rigorous selection criteria to investigate marine range shifts. Estuar. Coast. Shelf Sci. 113, 205–212 (2012).ADS 
    Article 

    Google Scholar 
    20.Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.MacLeod, C. D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    22.Sydeman, W., Poloczanska, E., Reed, T. & Thompson, S. Climate change and marine vertebrates. Science 350, 772–777 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bowen, W. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158, 74 (1997).Article 

    Google Scholar 
    24.Williams, T. M., Estes, J. A., Doak, D. F. & Springer, A. M. Killer appetites: assessing the role of predators in ecological communities. Ecology 85, 3373–3384 (2004).Article 

    Google Scholar 
    25.Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).Article 

    Google Scholar 
    26.Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. U.S.A. 102, 5443–5447 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Macnab, B. K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).
    Google Scholar 
    29.Robinson, R. A. et al. Climate change and migratory species (2005).30.Worthy, G. A. & Edwards, E. F. Morphometric and biochemical factors affecting heat loss in a small temperate cetacean (Phocoena phocoena) and a small tropical cetacean (Stenella attenuata). Physiol. Zool., 432–442 (1990).31.Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291 (2007).Article 

    Google Scholar 
    32.Adamczak, S. K., Pabst, D. A., McLellan, W. A. & Thorne, L. H. Do bigger bodies require bigger radiators? Insights into thermal ecology from closely related marine mammal species and implications for ecogeographic rules. J. Biogeogr. 47, 1193–1206 (2020).Article 

    Google Scholar 
    33.Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    34.Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Salvadeo, C. J., Lluch-Belda, D., Gómez-Gallardo, A., Urbán-Ramírez, J. & MacLeod, C. D. Climate change and a poleward shift in the distribution of the Pacific white-sided dolphin in the northeastern Pacific. Endanger. Species Res. 11, 13–19 (2010).Article 

    Google Scholar 
    36.Kovacs, K. M., Lydersen, C., Overland, J. E. & Moore, S. E. Impacts of changing sea-ice conditions on Arctic marine mammals. Mar. Biodivers. 41, 181–194 (2011).Article 

    Google Scholar 
    37.MacLeod, C. D. et al. Climate change and the cetacean community of north-west Scotland. Biol. Cons. 124, 477–483 (2005).Article 

    Google Scholar 
    38.Higdon, J. W. & Ferguson, S. H. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecol. Appl. 19, 1365–1375 (2009).PubMed 
    Article 

    Google Scholar 
    39.Evans, P. G. & Hammond, P. S. Monitoring cetaceans in European waters. Mammal Rev. 34, 131–156 (2004).Article 

    Google Scholar 
    40.Kaschner, K., Quick, N. J., Jewell, R., Williams, R. & Harris, C. M. Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLoS ONE 7, e44075 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Taylor, B. L., Martinez, M., Gerrodette, T., Barlow, J. & Hrovat, Y. N. Lessons from monitoring trends in abundance of marine mammals. Mar. Mamm. Sci. 23, 157–175 (2007).Article 

    Google Scholar 
    42.Pyenson, N. D. The high fidelity of the cetacean stranding record: insights into measuring diversity by integrating taphonomy and macroecology. Proc. R. Soc. B Biol. Sci. 278, 3608–3616 (2011).Article 

    Google Scholar 
    43.Leeney, R. H. et al. Spatio-temporal analysis of cetacean strandings and bycatch in a UK Wsheries hotspot. Biodivers. Conserv. 17, 2323–2338 (2008).Article 

    Google Scholar 
    44.Lambert, E. et al. Quantifying likely cetacean range shifts in response to global climatic change: implications for conservation strategies in a changing world. Endanger. Species Res. 15, 205–222 (2011).Article 

    Google Scholar 
    45.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    46.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Nawojchik, R., St. Aubin, D. J. & Johnson, A. Movements and dive behavior of two stranded, rehabilitated long-finned pilot whales (Globicephala melas) in the northwest Atlantic. Mar. Mammal Sci. 19, 232–239 (2003).Article 

    Google Scholar 
    48.Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–8 (2003).Article 

    Google Scholar 
    49.Hayes, S., Josephson, E., Maze‐Foley, K. & Rosel, P. US Atlantic and Gulf of Mexico marine mammal stock assessments–2019. NOAA Tech Memo NMFS‐NE 264 (2020).50.Gannon, D., Read, A., Craddock, J., Fristrup, K. & Nicolas, J. Feeding ecology of long-finned pilot whales Globicephala melas in the western North Atlantic. Mar. Ecol. Prog. Ser. Oldendorf 148, 1–10 (1997).ADS 
    Article 

    Google Scholar 
    51.Harden Jones, F. R. In Animal migration. Soc. Exp. Biol. Sem. Ser. 13 (ed. Aidley, D. J.) 139–165 (Cambridge Univ. Press, 1981).
    Google Scholar 
    52.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    53.Heide-Jørgensen, M. P. et al. Diving behaviour of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 8, 307–313 (2002).Article 

    Google Scholar 
    54.Baird, R. W., Borsani, J. F., Hanson, M. B. & Tyack, P. L. Diving and night-time behavior of long-finned pilot whales in the Ligurian Sea. Mar. Ecol. Prog. Ser. 237, 301–305 (2002).ADS 
    Article 

    Google Scholar 
    55.Adamczak, S. K., McLellan, W. A., Read, A. J., Wolfe, C. L. & Thorne, L. H. The impact of temperature at depth on estimates of thermal habitat for short‐finned pilot whales. Mar. Mammal Sci. (2020).56.Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evolut. 4, 109–114 (2020).Article 

    Google Scholar 
    57.Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).ADS 
    Article 

    Google Scholar 
    58.Kleisner, K. M. et al. The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE 11, e0149220 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).ADS 
    Article 

    Google Scholar 
    60.Kavanaugh, M. T., Rheuban, J. E., Luis, K. M. & Doney, S. C. Thirty-three years of ocean benthic warming along the US northeast continental shelf and slope: Patterns, drivers, and ecological consequences. J. Geophys. Res. Oceans 122, 9399–9414 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Grady, J. M. et al. Metabolic asymmetry and the global diversity of marine predators. Science 363 (2019).62.Williams, T. M. et al. The diving physiology of bottlenose dolphins (Tursiops truncatus). III. Thermoregulation at depth. J. Exp. Biol. 202, 2763–2769 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Pabst, D. A., Rommel, S. A. & McLELLAN, W. A. The emergence of whales 379–397 (Springer, 1998).Book 

    Google Scholar 
    64.McNab, B. K. Short-term energy conservation in endotherms in relation to body mass, habits, and environment. J. Therm. Biol 27, 459–466 (2002).Article 

    Google Scholar 
    65.Yeates, L. C. & Houser, D. S. Thermal tolerance in bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 211, 3249–3257 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans (2016).67.Kenney, R. D., Scott, G. P., Thompson, T. J. & Winn, H. E. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northwest Atl. Fish. Sci. 22, 155–171 (1997).Article 

    Google Scholar 
    68.Read, A. J. & Brownstein, C. R. Considering other consumers: fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7, 2 (2003).
    Google Scholar 
    69.Overholtz, W. & Link, J. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine-Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES J. Mar. Sci. J. Conseil 64, 83–96 (2007).Article 

    Google Scholar 
    70.Smith, L. A., Link, J. S., Cadrin, S. X. & Palka, D. L. Consumption by marine mammals on the Northeast US continental shelf. Ecol. Appl. 25, 373–389 (2015).PubMed 
    Article 

    Google Scholar 
    71.Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. (CR) 33, 271–283 (2007).ADS 
    Article 

    Google Scholar 
    75.Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).PubMed 
    Article 

    Google Scholar 
    76.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 

    Google Scholar 
    77.Evans, K. et al. Periodic variability in cetacean strandings: links to large-scale climate events. Biol. Let. 1, 147–150 (2005).CAS 
    Article 

    Google Scholar 
    78.Overholtz, W., Hare, J. & Keith, C. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the US Northeast continental shelf. Mar. Coastal Fish. 3, 219–232 (2011).Article 

    Google Scholar 
    79.Roper, C., Lu, C. & Vecchione, M. A revision of the systematics and distribution of Illex species (Cephalopoda: Ommastrephidae). Smithsonian Contrib. Zool., 405–424 (1998).80.Brodziak, J. & Hendrickson, L. An analysis of environmental effects on survey catches of squids Loligo pealei and Illex illecebrosus in the northwest Atlantic. Fish. Bull. 97, 9–24 (1999).
    Google Scholar 
    81.Henderson, M. E., Mills, K. E., Thomas, A. C., Pershing, A. J. & Nye, J. A. Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf. Rev. Fish Biol. Fisheries 27, 411–424 (2017).Article 

    Google Scholar 
    82.Sosebee, K. A. & Cadrin, S. X. A historical perspective on the abundance and biomass of northeast demersal complex stocks from NMFS and Massachusetts inshore bottom trawl surveys, 1963–2002. (2006).83.Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evolut. 10, 2195–2202 (2019).Article 

    Google Scholar  More