Microsatellites reveal that genetic mixing commonly occurs between invasive fall armyworm populations in Africa
1.CABI. Fall Armyworm (FAW) Portal. www.cabi.org/isc/fallarmyworm (2020).2.Westbrook, J., Nagoshi, R., Meagher, R., Fleischer, S. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS
CAS
Article
PubMed
Google Scholar
3.Nagoshi, R. & Meagher, R. Review of fall armyworm (Lepidoptera: noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554. https://doi.org/10.1653/0015-4040-91.4.546 (2008).Article
Google Scholar
4.Nagoshi, R. N., Meagher, R. L. & Jenkins, D. A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 103, 360–367. https://doi.org/10.1603/EC09253 (2010).Article
PubMed
Google Scholar
5.Johnson, S. J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int. J. Trop. Insect Sci. 8, 543–549. https://doi.org/10.1017/S1742758400022591 (1987).Article
Google Scholar
6.Abrahams, P. et al. Fall Armyworm: Impacts and Implications for Africa. Evidence Note 2 (CABI, 2017).
Google Scholar
7.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
8.Arias, O. et al. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): Implications for insect resistance management programs. Pest Manag. Sci. 75, 2948–2957. https://doi.org/10.1002/ps.5407 (2019).CAS
Article
PubMed
Google Scholar
9.Nagoshi, R. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. 8, 3710–3710. https://doi.org/10.1038/s41598-018-21954-1 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
10.Nagoshi, R. N., Adamczyk, J. J., Meagher, R. L., Gore, J. & Jackson, R. Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. J. Econ. Entomol. 100, 1569. https://doi.org/10.1603/0022-0493(2007)100[1569:USIATE]2.0.CO2 (2007).Article
PubMed
Google Scholar
11.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
12.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755. https://doi.org/10.1371/journal.pone.0217755 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
13.Nayyar, N. et al. Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Sci. Rep. 11, 7760. https://doi.org/10.1038/s41598-021-87414-5 (2021).ADS
MathSciNet
CAS
Article
PubMed
PubMed Central
Google Scholar
14.Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696. https://doi.org/10.1111/1755-0998.13219 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
15.Raymond, L., Plantegenest, M. & Vialatte, A. Migration and dispersal may drive to high genetic variation and significant genetic mixing: The case of two agriculturally important, continental hoverflies (E. pisyrphus balteatus and S. phaerophoria scripta). Mol. Ecol. 22, 5329–5339. https://doi.org/10.1111/mec.12483 (2013).Article
PubMed
Google Scholar
16.Stevens, L. et al. Migration and gene flow among domestic populations of the Chagas insect vector Triatoma dimidiata (Hemiptera: Reduviidae) detected by microsatellite loci. J. Med. Entomol. 52, 419–428. https://doi.org/10.1093/jme/tjv002 (2015).Article
PubMed
PubMed Central
Google Scholar
17.Arias, R. S., Blanco, C. A., Portilla, M., Snodgrass, G. L. & Scheffler, B. E. First microsatellites from Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use for population genetics. Ann. Entomol. Soc. Am. 104, 576–587. https://doi.org/10.1603/an10135 (2011).CAS
Article
Google Scholar
18.Pavinato, V. A., Martinelli, S., de Lima, P. F., Zucchi, M. I. & Omoto, C. Microsatellite markers for genetic studies of the fall armyworm, Spodoptera frugiperda. Genet. Mol. Res.: GMR https://doi.org/10.4238/2013.February.8.1 (2013).Article
PubMed
Google Scholar
19.Nagoshi, R., Silvie, P. & Meagher, R. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ. Entomol. 100, 954–961 (2007).Article
Google Scholar
20.Agapow, P.-M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).CAS
Article
Google Scholar
21.Weir, B. S. Genetic Data Analysis II: Methods for Discrete Population Genetic Data (Sinauer, 1996).
Google Scholar
22.Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321. https://doi.org/10.1073/pnas.70.12.3321 (1973).ADS
CAS
Article
PubMed
PubMed Central
MATH
Google Scholar
23.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x (2005).CAS
Article
PubMed
Google Scholar
24.Jost, L. O. U. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article
PubMed
Google Scholar
25.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS
Article
PubMed
Google Scholar
26.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS
Article
PubMed
PubMed Central
Google Scholar
27.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
28.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
29.Buès, R., Bouvier, J. C. & Boudinhon, L. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Prot. 24, 814–820. https://doi.org/10.1016/j.cropro.2005.01.006 (2005).CAS
Article
Google Scholar
30.Armes, N. J., Jadhav, D. R. & DeSouza, K. R. A survey of insecticide resistance in Helicoverpa armigera in the Indian subcontinent. Bull. Entomol. Res. 86, 499–514. https://doi.org/10.1017/S0007485300039298 (1996).CAS
Article
Google Scholar
31.Parry, H. R. et al. Estimating the landscape distribution of eggs by Helicoverpa spp., with implications for Bt resistance management. Ecol. Model. 365, 129–140. https://doi.org/10.1016/j.ecolmodel.2017.10.004 (2017).Article
Google Scholar
32.Jones, C. M., Parry, H., Tay, W. T., Reynolds, D. R. & Chapman, J. W. Movement ecology of pest Helicoverpa: Implications for ongoing spread. Annu. Rev. Entomol. 64, 277–295. https://doi.org/10.1146/annurev-ento-011118-111959 (2019).CAS
Article
PubMed
Google Scholar
33.Tucker, M. R., Mwandoto, S. & Pedgley, D. E. Further evidence for windborne movement of armyworm moths, Spodoptera exempta, in East Africa. Ecol. Entomol. 7, 463–473. https://doi.org/10.1111/j.1365-2311.1982.tb00689.x (1982).Article
Google Scholar
34.Rose, D. J. W. et al. Downwind migration of the African army worm moth, Spodoptera exempta, studied by mark-and-capture and by radar. Ecol. Entomol. 10, 299–313. https://doi.org/10.1111/j.1365-2311.1985.tb00727.x (1985).Article
Google Scholar
35.Rose, D. J. W., Dewhurst, C. F. & Page, W. W. The African Armyworm Handbook: The Status, Biology, Ecology, Epidemiology and Management of Spodoptera exempta (Lepidoptera: Noctuidae) (Natural Resources Institute, 2000).
Google Scholar
36.Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302. https://doi.org/10.1111/ele.12407 (2015).Article
PubMed
Google Scholar
37.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS
Article
PubMed
Google Scholar
38.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid Symp. Ser. 41, 95–98 (1999).CAS
Google Scholar
39.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).CAS
Article
PubMed
PubMed Central
Google Scholar
40.R Core Team. R Foundation for Statistical Computing (R Core Team, 2020).
Google Scholar
41.Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420. https://doi.org/10.1093/bioinformatics/btp696 (2010).CAS
Article
PubMed
Google Scholar
42.Adamack, A. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12158 (2014).Article
Google Scholar
43.Goudet, J. Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article
Google Scholar
44.Winter, D. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).Article
PubMed
Google Scholar
45.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article
PubMed
PubMed Central
Google Scholar
46.Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573 (1995).Article
Google Scholar
47.Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.0-2. (2012).48.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
Article
Google Scholar
49.Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article
Google Scholar
50.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).CAS
Article
PubMed
Google Scholar
51.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x (2004).Article
Google Scholar More
