More stories

  • in

    First tracks of newborn straight-tusked elephants (Palaeoloxodon antiquus)

    The MTS proboscidean tracks and trackmakersRounded-to-elliptical tracks, with an axial length range from 9.6 to 54.5 cm (pes), were found mostly isolated and as manus-pes couples, or associated forming at least eight short trackways (see Table 1). They reveal good preservation in one 6-footprint trackway (see below), two converging trackways and some couples, showing anteriorly directed, wide, short and blunt toe impressions (Figs. 2, 3 and 4). Toe impressions are not commonly visible in elephant footprints9,13, (but see27), which attests to cases of exceptional preservation in Matalascañas tracks. Preservation as true tracks is identified through expulsion marginal rims (e.g., Fig. 4a, g) and possible ejecta (Fig. 3b,e). Large and flat sole surfaces sometimes show evidence of pockmarks23 (Fig. 4f).Table 1 Measurements of Proboscipeda tracks, ordered from smallest to largest in length.Full size tableFigure 2Proboscidean tracks (Proboscipeda panfamilia) attributed in the MTS to straight-tusked elephants. (a–h) Morphological features of small-sized tracks produced by calves and juveniles. Examples of manus impressions in (a) PAT/MTS/011a, (b) PAT/MTS/016 and (f) PAT/MTS/015x, and for further interpretation of (a) see Fig. 3; the latter two with drag marks made during the foot-off event. (c) and (g) PAT/MTS/002a,b: Manus-pes couple found isolated showing heteropody and different number of toe impressions (interpretation as left-side tracks by peak pressure deformation in the left side of the track according to27); interpretation in (c). (d) PAT/MTS/014 and (e) PAT/MTS/007a: Calf-sized pes with three toe impressions. (h) PAT/MTS/011 h: Badly preserved manus of a calf. Scale bar = 5 cm.Full size imageFigure 3Photograph, outline, high-resolution 3D and false-coloured 3D images of the PAT/MTS/0011a track representing the best preserved manus of a juvenile-sized Proboscipeda track. (a) and (c) From the photograph and high-resolution images, five toe impressions in the anterior part of the rounded track are clear (especially toes I–IV). (b) and (f) The false coloured images in orthogonal (b) and oblique angle views (f) highlight the deepening of the track fore- and outwards, thus revealing a peak pressure pattern typical of left forefoot (toes III–IV), as well as a possible ejecta mound in front of the track. The poorly evident and narrow expulsion rim developed around the track is the result of the high cohesiveness and plasticity of the clayey fine-sand substrate. (d) Contour map supporting previous interpretation. (e) The cross-section of the track details the anterior migration of the foot pressure during its rotation, creating a peak pressure in the foot-off event that is represented in the deepest part of the track. Scale bars are 10 cm.Full size imageFigure 4Large-sized Proboscipeda tracks attributed to P. antiquus adults. (a) to (d) PAT/MTS/001: Right manus showing clearly 5 toe impressions and the frontal and lateral displacement rims (morphological interpretation based on the orthogonal (b) and oblique (d) depth and contour (c) maps). (e) and (f) PAT/MTS/010e: Deeper manus with pockmarks; toe pad impressions indicated (I–III). (g) PAT/MTS/004a,b: large manus-pes couple where the hind foot deformed the fore foot during overstepping, and revealing a typical elephantine gait; the toe impressions in both tracks indicate the direction of movement. Scale bar = 10 cm.Full size imageIrrespective of the track size, pes are elliptical to sub-rounded, with the length axis larger than the width and manus are circular or elliptical, with the width axis larger than the length (Figs. 2c and 4d, g for small and large size tracks, respectively). The safest way to differentiate between pes and manus is through the orientation of the track provided by the toe impressions, or by the orientation of the longer axis in trackways. When arranged in trackways, manus-pes couples show the typical elephantine gait, showing a short pace resulting from the fore- and hind feet on the same side swinging forward simultaneously below the body, as it is known from modern elephant gait28. In some cases, the partial impression of a pes overstepping the proximal part of a manus can be seen (Fig. 2c, g). Based on similar preservational style and opposing directions of movement without overlapping at the meeting point, a converging pair of trackways was apparently produced contemporaneously by an adult and a rather small juvenile. Sharp edges of the toe impressions indicate the presence of nails. These are found mostly in well preserved, smaller-sized tracks (Fig. 2a, d, e) because nails are commonly worn down in adult elephants and not always shown in their tracks13. These morphological features allow us to attribute the MTS trackways to the ichnospecies Proboscipeda panfamilia used previously for describing, among other tracksites, those tracks attributed confidently to the straight-tusked elephant Palaeoloxodon antiquus in the paleogeographical context of southern Europe11,14 (see supplementary Table S1).Manus-pes couples, when showing overstepping, were not considered in Table 1 (Fig. 2c, g). Overstepping depends on the speed of walking; at faster speeds the overstepping is only partial or there is no overstepping; elephants maintain the footfall pattern at all speeds, shifting toward a calculated 25% phase offset between limbs as they increase speed28 (Fig. 2g). The smallest tracks usually do not show overstepping possibly because of the greater activity, with longer pace and stride lengths, demonstrated by calves and juveniles when compared to adults. Manus or pes showing a large width-length ratio (below 0.80–0.96 sensu25) were not considered for the estimates since they represent slippage.Younger elephants have more pliable skin and musculature than adults. Also, the greater expansion and distribution of the weight in heavier adult animals is enough to reduce or negate toe impressions in some types of sediments, such as compacted substrates24,29. Interpreting the sedimentological data for the paleosol where MTS was developed15,17,30, suggests a drying clayey-sandy substrate14 that was still plastic enough to absorb the impact of the limbs during the locomotion of the elephants (presence of expulsion rims and absence of radial pressure cracks), and preserving, in many cases, the morphological details of the feet in good condition (Figs. 2a, 3, 4a; see Fig. 2h for a badly preserved example).Ichnological inference about the height, body mass and age of Palaeoloxodon antiquus in the MTSSeveral methods have been proposed for estimating the height at the shoulders for proboscideans, and the relationship between body mass and age with shoulder height 1,31,32. A linear relationship between foot length and shoulder height was confirmed by Lee and Moss33 from extant elephants and compared with fossil examples by Pasenko24. Pes length has been especially used in studies as an indicator of shoulder height21,34,35,36. Among Asian elephants, manus circumference has been shown to have a similar predictive relationship with shoulder height33. These parameters were determined for each isolated track (or representative track in a trackway), including manus and pes (Table 1), using equations previously proposed31,33 (see Methods). A similar approach has been applied to mammoth track studies in North America21,27, where modern ontogenetic and body-mass data has been used to provide age and size estimates from fossil tracks.From the skeletal record, sexual dimorphism of P. antiquus was observed to be more accentuated than in extant elephants, especially in terms of size differences1. During the first 10 years of life, both male and female African bush elephant foot lengths increase rapidly, with the fastest growth shown in the first two years for calves33,37. In P. antiquus, males would have continued to grow until their fifties according to bone data1, while females would have been much smaller as result of energy expenditure with reproduction, flattening the growth curve just after puberty. That is why the equations of Lee and Moss33 that discriminates the shoulder height from tracks for males and females have been applied. However, by comparison with the study of Marano and Palombo32 (based on the progress of eruption and degree of wear of teeth compared to extant elephants), and the body mass correlation of Larramendi et al.1 for calculating the age of P. antiquus, our MTS ages obtained from the application of the regression curve of Lee and Moss33 are underestimated and must be analysed as minimum age approximations for track lengths corresponding to adolescent and adult animals, especially for males. The obtained estimations from tracks are subject to a level of uncertainty related to biotic and abiotic factors that can distort the data (i.e., taphonomy) as it happens also with the calculations taken from skeletal proportions. Therefore, McNeil et al.21 even included data from frozen mammoth carcasses on the growth curve of Lee and Moss33 for correcting size discrepancies along ontogeny. For P. antiquus, our best data for comparison comes, however, from the flesh reconstructions1.Ontogenetic implicationsBased on the best fossil site found for this species in Europe, corresponding to 70 individual Palaeoloxodon antiquus specimens recovered in Geiseltal, Germany, Larramendi et al.1 developed the best reconstruction, so far, of the life appearance of this species and discussed size, body mass, ontogeny and sexual dimorphism. The Neumark-Nord bone site may be contemporary or slightly older than MTS, corresponding to late Middle Pleistocene-to-Eemian interglacial period1. The authors found that the body mass of P. antiquus males was up to three times more that of male Asian elephants and twice that of extant male African bush elephants. The large size determined for straight-tusked elephants (with an estimated  > 400 cm shoulder height in the flesh and body mass of 13 tonnes) and a later complete epiphyseal-diaphyseal fusion of limb bones (not yet totally fused at an estimated age of 47 years), in comparison with extant elephants, suggests that this species had a longer lifespan of 80 years or more1. Sexual dimorphism of P. antiquus was observed to be more accentuated than in extant elephants, with females generally not exceeding 300 cm at the shoulders with an estimated weight of not more than 5.5 tonnes, while males continued to grow until their fifties1. Males in extant elephant species grow more rapidly than females after puberty (i.e., around 7 years in age), which are affected by a trade-off between growth and reproduction. Under normal nutritional conditions, the growth rate is generally higher in males than females leading to a marked difference in size between sexes at already around 10 years in age33,37,38,39.The ontogenetic variation in growth projected for the MTS, when compared to what we known from extant proboscideans, is expressed in the track size distribution plot, with the definition of five age classes (Fig. 5; see also Table 1): calves under 2 years in age (when extant elephants experience fastest growth rates in both sexes), juveniles between 2 and 7 years in age (up to when elephant females reach their sexual maturity and therefore experience a strong reduction of growth rate in comparison to males), 7–15 years in age which include pre-puberty males and young female adults, over 15 years in age and  More

  • in

    Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems

    1.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.DeLong, J. P. et al. The body size dependence of trophic cascades. Am. Nat. 185, https://doi.org/10.1086/679735 (2015).3.Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Lin Jiang & Peter J., Morin Predator diet Breadth Influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am. Nat. 165, 350–363 (2005).PubMed 
    Article 

    Google Scholar 
    5.Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Suttle, C. A. Marine viruses: major players in the global ecosystem. Nat. Rev. Micro 5, 801–812 (2007).CAS 
    Article 

    Google Scholar 
    7.Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Micro 3, 537–546 (2005).CAS 
    Article 

    Google Scholar 
    8.Rotem, O. et al. in The Prokaryotes: Deltaproteobacteria and 740 Epsilonproteobacteria (eds Rosenberg, R. et al.) 3–17 (Springer, 2014).9.Chen, H., Athar, R., Zheng, G. & Williams, H. N. Prey bacteria shape the community structure of their predators. ISME J. https://doi.org/10.1038/ismej.2011.4 (2011).10.Koval, S. F. et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int. J. Syst. Evol. Microbiol 63, 146–151 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Jurkevitch, E., Minz, D., Ramati, B. & Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 66, 2365–2371 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Kadouri, D. E., To, K., Shanks, R. M. Q. & Doi, Y. Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS ONE 8, e63397 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Williams, H. N. et al. Halobacteriovorax, an underestimated predator on bacteria: potential impact relative to viruses on bacterial mortality. ISME J. 10, 491–499 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020–fix020 (2017).Article 
    CAS 

    Google Scholar 
    15.Chauhan, A., Cherrier, J. & Williams, H. N. Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proc. Natl Acad. Sci. USA 106, 4301–4306 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Li, N. & Williams, H. 454 Pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water. Antonie van Leeuwenhoek 107, 305–311 (2015).PubMed 
    Article 

    Google Scholar 
    18.Daims, H., Taylor, M. W. & Wagner, M. Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 24, 483–489 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Yu, R., Zhang, S., Chen, Z. & Li, C. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement. Front. Env. Sci. Eng. 11, 10 (2017).Article 
    CAS 

    Google Scholar 
    21.Pineiro, S. et al. Niche partition of Bacteriovorax operational taxonomic units along salinity and temporal gradients in the chesapeake bay reveals distinct estuarine strains. Microb. Ecol. 65, 652–660 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cohen, Y. et al. Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environ. Microbiol. 21, 1757–1770 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Mahmoud, K. K., McNeely, D., Elwood, C. & Koval, S. F. Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization. Appl. Environ. Microbiol. 73, 7488–7493 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H. & Nielsen, P. H. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLOS ONE 10, e0132783 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Welsh, R. M. et al. Bacterial predation in a marine host-associated microbiome. ISME J. 10, 1540–1544 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Newman, M. E. J. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Tudor, J. J. & Conti, S. F. Characterization of bdellocysts of Bdellovibrio sp. J. Bacteriol. 131, 314–322 (1977).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Williams, H. N. The recovery of high numbers of bdellovibrios from the surface water microlayer. Can. J. Microbiol. 33, 572–575 (1987).Article 

    Google Scholar 
    33.Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J https://doi.org/10.1038/ismej.2015.29 (2015).34.Wilén, B.-M., Jin, B. & Lant, P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 37, 2127–2139 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Phuong, K., Kakii, K. & Nikata, T. Intergeneric coaggregation of non-flocculating Acinetobacter spp. isolates with other sludge-constituting bacteria. J. Biosci. Bioeng. 107, 394–400 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kadouri, D. & O’Toole, G. A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microbiol. 71, 4044–4051 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Im, H., Dwidar, M. & Mitchell, R. J. Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. https://doi.org/10.1038/s41396-018-0154-5 (2018).38.Feng, S., Tan, C. H., Cohen, Y. & Rice, S. A. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ. Microbiol. 18, 3923–3931 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Rice, T. D., Williams, H. N. & Turng, B. F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Szabó, E. et al. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors. AMB Express 7, 168 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Wilén, B.-M., Jin, B. & Lant, P. Impacts of structural characteristics on activated sludge floc stability. Water Res. 37, 3632–3645 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Hahn, M. W. & Hofle, M. G. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65, 4863–4872 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kadouri, D., Venzon, N. C. & O’Toole, G. A. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl. Environ. Microbiol. 73, 605–614 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Dashiff, A., Junka, R., Libera, M. & Kadouri, D. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. https://doi.org/10.1111/j.1365-2672.2010.04900.x (2011).45.Winder, M. Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. J. Plankton Res. 31, 1307–1320 (2009).Article 

    Google Scholar 
    46.Dini-Andreote, F. et al. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8, 1989 (2014).47.Kelley, J., Turng, B., Williams, H. & Baer, M. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl. Environ. Microbiol. 63, 84–90 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Thingstad, T. A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363, 59–72 (1998).Article 

    Google Scholar 
    49.Shapiro, O. H., Kushmaro, A. & Brenner, A. Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J. 4, 327–336 (2009).PubMed 
    Article 

    Google Scholar 
    50.Dwidar, M., Nam, D. & Mitchell, R. J. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ. Microbiol. 17, 1009–1022 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Mun, W. et al. Cyanide production by chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. mBio https://doi.org/10.1128/mBio.01370-17 (2017).52.Sathyamoorthy, R. et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J. 15, 109–123 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-Offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiol. Molec. Biol. Rev. 74, 42–57 (2010).CAS 
    Article 

    Google Scholar 
    54.Chanyi, R. M., Ward, C., Pechey, A. & Koval, S. F. To invade or not to invade: two approaches to a prokaryotic predatory life cycle. Can. J. Microbiol. 59, 273–279 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lu, F. & Cai, J. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp. enterica serovar Typhimurium. Lett. Appl. Microbiol. 51, 625–631 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Peura, S., Bertilsson, S., Jones, R. I. & Eiler, A. Resistant microbial cooccurrence patterns inferred by network topology. Appl. Environ. Microbiol. 81, 2090–2097 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.de Celis, M. et al. Tuning up microbiome analysis to monitor WWTPs’ biological reactors functioning. Sci. Rep. 10, 1–8 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Hashimoto, T., Diedrich, D. L. & Conti, S. F. Isolation of a bacteriophage for Bdellovibrio bacteriovorus. J. Virol. 5, 87–98 (1970).Article 

    Google Scholar 
    60.Varon, M. & Levisohn, R. Three-membered parasitic systems: a bacteriophage, Bdellovibrio bacteriovorus, and Escherichia coli. J. Virol. 9, 519–525 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Johnke, J., Boen–igk, J., Harms, H. & Chatzinotas, A. Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol. Lett. 364, fnx089–fnx089 (2017).Article 
    CAS 

    Google Scholar 
    62.Johnke, J. et al. A generalist protist predator enables coexistence in multitrophic predator–prey systems containing a phage and the bacterial predator Bdellovibrio. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00124 (2017).63.Berleman, J. E., Chumley, T., Cheung, P. & Kirby, J. R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Shimkets, L. J. Social and developmental biology of myxobacteria. Microbiol. Rev. 54, 473–501 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Friman, V.-P. & Buckling, A. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME J. 8, 1820 (2014).66.Matassa, S., Verstraete, W., Pikaar, I. & Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 101, 137–146 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Semblante, G. U. et al. The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Sci. Tot. Environ. 607–608, 558–567 (2017).Article 
    CAS 

    Google Scholar 
    68.Xia, Y., Kong, Y., Thomsen, T. R. & Halkjær Nielsen, P. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Appl. Environ. Microbiol. 74, 2229–2238 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Niu, T. et al. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process. Water Res. 90, 369–377 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ju, F., Xia, Y., Guo, F., Wang, Z. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Günther, S. et al. Correlation of community dynamics and process parameters as a tool for the prediction of the stability of wastewater treatment. Environ. Sci. Technol. 46, 84–92 (2012).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Nettmann, E. et al. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol. 13, 278–278 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Kim, J. M. et al. Analysis of the fine-scale population structure of “Candidatus accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence In Situ hybridization and flow cytometric sorting. Appl. Environl. Microbiol. 76, 3825–3835 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Wallner, G., Erhart, R. & Amann, R. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl. Environ. Microbiol. 61, 1859–1866 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Pasternak, Z. et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 8, 625–635 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Pernthaler, J. & Amann, R. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol. Mol. Biol. Rev. 69, 440–461 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Jurkevitch, E. In The Ecology of Predation at the Microscale (eds Mitchell, R. J.) 37–64 (Springer, 2020).79.Delmont, T. O. et al. Accessing the soil metagenome for studies of microbial diversity. Appl. Environ. Microbiol. 77, 1315–1324 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Green, S. J., Venkatramanan, R. & Naqib, A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PloS ONE 10, e0128122 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Mather, P. Computational Methods of Multivariate Analysis in Physical Geography (J Wiley and Sons, 1976).88.Berry, K. J. & Mielke, P. W. Computation of exact probability values for multi-response permutation procedures (MRPP). Commun. Stat. – Simul. Comput. 13, 417–432 (1984).MathSciNet 
    Article 

    Google Scholar 
    89.Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    90.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol https://doi.org/10.1093/molbev/mst197 (2013).91.Kendall, M. G. Rank Correlation Methods 2nd edn, (Hafner, 1955).92.Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Icwsm 8, 361–362 (2009).
    Google Scholar 
    93.Sathyamoorthy, R. et al. Bacterial predation under changing viscosities. Environ. Microbiol. 21, 2997–3010 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Jurkevitch, E. In Current Protocols in Microbiology (ed Coico, R. et al.) (John Wiley and Sons, 2012).95.Whelan, J. A., Russell, N. B. & Whelan, M. A. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278, 261–269 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. https://www.nature.com/articles/ncomms2441 (2013).97.Van Essche, M. et al. Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ. Microbiol. Rep. 1, 228–233 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    98.Zheng, G., Wang, C., Williams, H. N. & Pineiro, S. A. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater. Bacteriovorax. Environ. Microbiol. 10, 2515–2526 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Liu, Z. et al. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol. 21, 164–181 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Cichocki, N. et al. Bacterial mock communities as standards for reproducible cytometric microbiome analysis. Nat. Protoc. 15, 2788–2812 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Trait-mediated shifts and climate velocity decouple an endothermic marine predator and its ectothermic prey

    1.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).ADS 
    Article 

    Google Scholar 
    3.Fodrie, F. J., Heck, K. L. Jr., Powers, S. P., Graham, W. M. & Robinson, K. L. Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob. Change Biol. 16, 48–59 (2010).ADS 
    Article 

    Google Scholar 
    4.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Simpson, S. D. et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21, 1565–1570 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (2017).8.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Article 

    Google Scholar 
    9.Oswald, S. A. & Arnold, J. M. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints. Integr. Zool. 7, 121–136 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Boyles, J. G., Seebacher, F., Smit, B. & McKechnie, A. E. Adaptive thermoregulation in endotherms may alter responses to climate change. Integr. Comp. Biol. 51, 676–690 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B Biol. Sci. 281, 20141097 (2014).Article 

    Google Scholar 
    12.Gibson-Reinemer, D. K., Sheldon, K. S. & Rahel, F. J. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5, 2340–2347 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pörtner, H.-O. et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont. Shelf Res. 21, 1975–1997 (2001).ADS 
    Article 

    Google Scholar 
    14.Neuheimer, A., Thresher, R., Lyle, J. & Semmens, J. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Chang. 1, 110–113 (2011).ADS 
    Article 

    Google Scholar 
    15.Pörtner, H.-O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 739–761 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).Article 

    Google Scholar 
    17.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Przeslawski, R., Falkner, I., Ashcroft, M. B. & Hutchings, P. Using rigorous selection criteria to investigate marine range shifts. Estuar. Coast. Shelf Sci. 113, 205–212 (2012).ADS 
    Article 

    Google Scholar 
    20.Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.MacLeod, C. D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    22.Sydeman, W., Poloczanska, E., Reed, T. & Thompson, S. Climate change and marine vertebrates. Science 350, 772–777 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bowen, W. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158, 74 (1997).Article 

    Google Scholar 
    24.Williams, T. M., Estes, J. A., Doak, D. F. & Springer, A. M. Killer appetites: assessing the role of predators in ecological communities. Ecology 85, 3373–3384 (2004).Article 

    Google Scholar 
    25.Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).Article 

    Google Scholar 
    26.Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. U.S.A. 102, 5443–5447 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Macnab, B. K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).
    Google Scholar 
    29.Robinson, R. A. et al. Climate change and migratory species (2005).30.Worthy, G. A. & Edwards, E. F. Morphometric and biochemical factors affecting heat loss in a small temperate cetacean (Phocoena phocoena) and a small tropical cetacean (Stenella attenuata). Physiol. Zool., 432–442 (1990).31.Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291 (2007).Article 

    Google Scholar 
    32.Adamczak, S. K., Pabst, D. A., McLellan, W. A. & Thorne, L. H. Do bigger bodies require bigger radiators? Insights into thermal ecology from closely related marine mammal species and implications for ecogeographic rules. J. Biogeogr. 47, 1193–1206 (2020).Article 

    Google Scholar 
    33.Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    34.Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Salvadeo, C. J., Lluch-Belda, D., Gómez-Gallardo, A., Urbán-Ramírez, J. & MacLeod, C. D. Climate change and a poleward shift in the distribution of the Pacific white-sided dolphin in the northeastern Pacific. Endanger. Species Res. 11, 13–19 (2010).Article 

    Google Scholar 
    36.Kovacs, K. M., Lydersen, C., Overland, J. E. & Moore, S. E. Impacts of changing sea-ice conditions on Arctic marine mammals. Mar. Biodivers. 41, 181–194 (2011).Article 

    Google Scholar 
    37.MacLeod, C. D. et al. Climate change and the cetacean community of north-west Scotland. Biol. Cons. 124, 477–483 (2005).Article 

    Google Scholar 
    38.Higdon, J. W. & Ferguson, S. H. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecol. Appl. 19, 1365–1375 (2009).PubMed 
    Article 

    Google Scholar 
    39.Evans, P. G. & Hammond, P. S. Monitoring cetaceans in European waters. Mammal Rev. 34, 131–156 (2004).Article 

    Google Scholar 
    40.Kaschner, K., Quick, N. J., Jewell, R., Williams, R. & Harris, C. M. Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLoS ONE 7, e44075 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Taylor, B. L., Martinez, M., Gerrodette, T., Barlow, J. & Hrovat, Y. N. Lessons from monitoring trends in abundance of marine mammals. Mar. Mamm. Sci. 23, 157–175 (2007).Article 

    Google Scholar 
    42.Pyenson, N. D. The high fidelity of the cetacean stranding record: insights into measuring diversity by integrating taphonomy and macroecology. Proc. R. Soc. B Biol. Sci. 278, 3608–3616 (2011).Article 

    Google Scholar 
    43.Leeney, R. H. et al. Spatio-temporal analysis of cetacean strandings and bycatch in a UK Wsheries hotspot. Biodivers. Conserv. 17, 2323–2338 (2008).Article 

    Google Scholar 
    44.Lambert, E. et al. Quantifying likely cetacean range shifts in response to global climatic change: implications for conservation strategies in a changing world. Endanger. Species Res. 15, 205–222 (2011).Article 

    Google Scholar 
    45.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    46.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Nawojchik, R., St. Aubin, D. J. & Johnson, A. Movements and dive behavior of two stranded, rehabilitated long-finned pilot whales (Globicephala melas) in the northwest Atlantic. Mar. Mammal Sci. 19, 232–239 (2003).Article 

    Google Scholar 
    48.Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–8 (2003).Article 

    Google Scholar 
    49.Hayes, S., Josephson, E., Maze‐Foley, K. & Rosel, P. US Atlantic and Gulf of Mexico marine mammal stock assessments–2019. NOAA Tech Memo NMFS‐NE 264 (2020).50.Gannon, D., Read, A., Craddock, J., Fristrup, K. & Nicolas, J. Feeding ecology of long-finned pilot whales Globicephala melas in the western North Atlantic. Mar. Ecol. Prog. Ser. Oldendorf 148, 1–10 (1997).ADS 
    Article 

    Google Scholar 
    51.Harden Jones, F. R. In Animal migration. Soc. Exp. Biol. Sem. Ser. 13 (ed. Aidley, D. J.) 139–165 (Cambridge Univ. Press, 1981).
    Google Scholar 
    52.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    53.Heide-Jørgensen, M. P. et al. Diving behaviour of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 8, 307–313 (2002).Article 

    Google Scholar 
    54.Baird, R. W., Borsani, J. F., Hanson, M. B. & Tyack, P. L. Diving and night-time behavior of long-finned pilot whales in the Ligurian Sea. Mar. Ecol. Prog. Ser. 237, 301–305 (2002).ADS 
    Article 

    Google Scholar 
    55.Adamczak, S. K., McLellan, W. A., Read, A. J., Wolfe, C. L. & Thorne, L. H. The impact of temperature at depth on estimates of thermal habitat for short‐finned pilot whales. Mar. Mammal Sci. (2020).56.Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evolut. 4, 109–114 (2020).Article 

    Google Scholar 
    57.Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).ADS 
    Article 

    Google Scholar 
    58.Kleisner, K. M. et al. The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE 11, e0149220 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).ADS 
    Article 

    Google Scholar 
    60.Kavanaugh, M. T., Rheuban, J. E., Luis, K. M. & Doney, S. C. Thirty-three years of ocean benthic warming along the US northeast continental shelf and slope: Patterns, drivers, and ecological consequences. J. Geophys. Res. Oceans 122, 9399–9414 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Grady, J. M. et al. Metabolic asymmetry and the global diversity of marine predators. Science 363 (2019).62.Williams, T. M. et al. The diving physiology of bottlenose dolphins (Tursiops truncatus). III. Thermoregulation at depth. J. Exp. Biol. 202, 2763–2769 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Pabst, D. A., Rommel, S. A. & McLELLAN, W. A. The emergence of whales 379–397 (Springer, 1998).Book 

    Google Scholar 
    64.McNab, B. K. Short-term energy conservation in endotherms in relation to body mass, habits, and environment. J. Therm. Biol 27, 459–466 (2002).Article 

    Google Scholar 
    65.Yeates, L. C. & Houser, D. S. Thermal tolerance in bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 211, 3249–3257 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans (2016).67.Kenney, R. D., Scott, G. P., Thompson, T. J. & Winn, H. E. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northwest Atl. Fish. Sci. 22, 155–171 (1997).Article 

    Google Scholar 
    68.Read, A. J. & Brownstein, C. R. Considering other consumers: fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7, 2 (2003).
    Google Scholar 
    69.Overholtz, W. & Link, J. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine-Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES J. Mar. Sci. J. Conseil 64, 83–96 (2007).Article 

    Google Scholar 
    70.Smith, L. A., Link, J. S., Cadrin, S. X. & Palka, D. L. Consumption by marine mammals on the Northeast US continental shelf. Ecol. Appl. 25, 373–389 (2015).PubMed 
    Article 

    Google Scholar 
    71.Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. (CR) 33, 271–283 (2007).ADS 
    Article 

    Google Scholar 
    75.Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).PubMed 
    Article 

    Google Scholar 
    76.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 

    Google Scholar 
    77.Evans, K. et al. Periodic variability in cetacean strandings: links to large-scale climate events. Biol. Let. 1, 147–150 (2005).CAS 
    Article 

    Google Scholar 
    78.Overholtz, W., Hare, J. & Keith, C. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the US Northeast continental shelf. Mar. Coastal Fish. 3, 219–232 (2011).Article 

    Google Scholar 
    79.Roper, C., Lu, C. & Vecchione, M. A revision of the systematics and distribution of Illex species (Cephalopoda: Ommastrephidae). Smithsonian Contrib. Zool., 405–424 (1998).80.Brodziak, J. & Hendrickson, L. An analysis of environmental effects on survey catches of squids Loligo pealei and Illex illecebrosus in the northwest Atlantic. Fish. Bull. 97, 9–24 (1999).
    Google Scholar 
    81.Henderson, M. E., Mills, K. E., Thomas, A. C., Pershing, A. J. & Nye, J. A. Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf. Rev. Fish Biol. Fisheries 27, 411–424 (2017).Article 

    Google Scholar 
    82.Sosebee, K. A. & Cadrin, S. X. A historical perspective on the abundance and biomass of northeast demersal complex stocks from NMFS and Massachusetts inshore bottom trawl surveys, 1963–2002. (2006).83.Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evolut. 10, 2195–2202 (2019).Article 

    Google Scholar  More

  • in

    The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China

    1.Huai, J. J. Dynamics of resilience of wheat to drought in Australia from 1991–2010. Sci. Rep. 7, 9532 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Li, M., Peterson, C. A., Tautges, N. E., Scow, K. M. & Gaudin, A. C. M. Yields and resilience outcomes of organic cover crop, and conventional practices in a Mediterranean climate. Sci. Rep. 9, 12283 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Keersmaecker, W. D. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).Article 

    Google Scholar 
    4.Griffith, G. P. et al. Ecological resilience of Arctic marine food webs to climate change. Nat. Clim. Change 9, 868–872 (2019).ADS 
    Article 

    Google Scholar 
    5.You, N. S., Meng, J. J. & Zhu, L. K. Sensitivity and resilience of ecosystems to climate variability in the semi-arid to hyper-arid areas of Northern China: a case study in the Heihe River Basin. Ecol. Res. 33, 161–174 (2018).Article 

    Google Scholar 
    6.Reijers, V. C. et al. Resilience of beach grasses along a biogeomorphic successive gradient: resource availability vs. clonal integration. Oceologia https://doi.org/10.1007/s00442-019-04568-w (2019).Article 

    Google Scholar 
    7.Chambers, J. C. et al. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in clod desert shrublands of western North America. Ecosystems 17, 360–375 (2014).CAS 
    Article 

    Google Scholar 
    8.Driessen, M. M. Fire resilience of a rare, freshwater crustacean in a fire-prone ecosystem and the implications for fire management. Austral Ecol. 44, 1030–1039 (2019).Article 

    Google Scholar 
    9.Ren, H., Lu, H. F., Li, Y. D. & Wen, Y. G. Vegetation restoration and its research advancement in Southern China. J. Trop. Subtrop. Bot. 27(5), 469–480 (2019).
    Google Scholar 
    10.Yan, H. M., Zhan, J. Y. & Zhang, T. Review of ecosystem resilience research progress. Prog. Geogr. 31(3), 303–314 (2012).
    Google Scholar 
    11.Zhan, J. Y., Yan, H. M., Deng, X. Z. & Zhang, T. Assessment of forest ecosystem resilience in Lianhua County of Jiangxi Province. J. Nat. Resour. 27(8), 1304–1315 (2012).
    Google Scholar 
    12.Pérez-Girón, J. C., Álvarez-Álvarez, P., Díaz-Valera, E. R. & Lopes, D. M. M. Influence of climate variations on primary production indicators and on the resilience of forest ecosystems in a future scenario of climate change: application to sweet chestnut agroforestry systems in the Iberian Peninsula. Ecol. Indic. 113, 106199 (2020).Article 

    Google Scholar 
    13.Meng, Y. Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).Article 

    Google Scholar 
    14.Han, L. et al. Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River. Plant Sci. J. 37(3), 324–336 (2019).
    Google Scholar 
    15.Zhou, H. H. et al. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: evidence from tree-rings of Populus euphratica. Ecol. Indic. 111, 105997 (2020).Article 

    Google Scholar 
    16.Aini, A. et al. Analysis of stakeholders’ cognition on desert riparian forest ecosystem services in the lower reaches of Tarim River, China. Res. Soil Water Conserv. 23(1), 205–209 (2016).
    Google Scholar 
    17.Li, Y. Q., Chen, Y. N., Zhang, Y. Q. & Xia, Y. Rehabilitating China’s largest inland river. Conserv. Biol. 23(3), 531–536 (2009).PubMed 
    Article 

    Google Scholar 
    18.Dai, J. S. Evaluation of eco-environment and socio-economic benefits on comprehensive reclamation projects on the Tarim River Basin. Doctoral Dissertation of Xinjiang Agricultural University (2015).19.Han, L., Wang, H. Z., Niu, J. L., Wang, J. Q. & Liu, W. Y. Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim River Basin. Acta Ecol. Sin. 37, 6836–6846 (2017).
    Google Scholar 
    20.Yang, G. & Guo, Y. P. The change and prospect of vegetation in the end of the lower reaches of Tarim River after ecological water delivery. J. Desert Res. 24(2), 167–172 (2004).
    Google Scholar 
    21.Yan, H. M., Zhan, J. Y. & Zhang, T. Resilience of forest ecosystems and its influencing factors. Procedia Environ. Sci. 10, 2201–2206 (2011).Article 

    Google Scholar 
    22.Abenayake, C. C., Mikami, Y., Matsuda, Y. & Jayasinghe, A. Ecosystem service-based composite indicator for assessing community resilience to floods. Environ. Dev. 27, 34–46 (2018).Article 

    Google Scholar 
    23.Maestas, J. D., Campbell, S. B., Chambers, J. C., Pellant, M. & Miller, R. F. Tapping soil survey information for rapid assessment of sagebrush ecosystem resilience and resistance. Rangelands 38(3), 120–128 (2016).Article 

    Google Scholar 
    24.Ponce-Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Frazier, A. E., Renschler, C. S. & Miles, S. B. Evaluating post-disaster ecosystem resilience using MODIS GPP data. Int. J. Appl. Earth Obs. Geoinform. 21, 43–52 (2013).ADS 
    Article 

    Google Scholar 
    26.Kahiluoto, H. et al. Decline in climate resilience of European wheat. PNAS 116(1), 123–128 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Li, X. Y. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evolut. 4, 1075–1083 (2020).Article 

    Google Scholar 
    28.Li, C. H., Zhou, M., Wang, Y. T., Zhu, T. B., Sun, H., Yin, H. H., Cao, H. J., Han, H. Y. Inter-annual variations of vegetation net primary productivity and their spatial-temporal contribution and climate driving in arid Northwest China: a case study of Hexi Corridor. Chin. J. Ecol. (2020).29.Song, J. et al. A global database of plant production and carbon exchange from global change manipulative experiments. Sci. Data 7, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    30.Yang, G. et al. Research progress of ecosystem resilience assessment. Zhejiang Agric. Sci. 60(3), 508–513 (2019).
    Google Scholar 
    31.Liu, J. Z. & Chen, Y. N. Analysis on converse succession of plant communities at the lower reaches of Tarim River. Arid Land Geogr. 25(3), 231–236 (2002).
    Google Scholar 
    32.Chen, X., Bao, A. M., Wang, X. P., Guli, J. P. E. & Huang, Y. Recent ecological effectiveness assessment of integrated management projects in the Tarim River. Bull. Chin. Acad. Sci. 32(1), 20–28 (2017).
    Google Scholar 
    33.Zhao, H., Yan, L. & Ji, F. The dynamics of land utilization in the upper reaches of Tarim River. J. Arid Land Resour. Environ. 15(4), 40–43 (2001).
    Google Scholar 
    34.Sun, F., Wang, Y. & Chen, Y. N. Dynamics of desert-oasis ecotone and its influencing factors in the Tarim Basin. Chin. J. Ecol. 39(10), 1–11 (2020).
    Google Scholar 
    35.Xu, G. H. A genetic explanation of the recent changes of ecological environment in the Tarim River Basin, southern Xinjiang. Xinjiang Meteorol. 28–31 (2005).36.Kamkin, A. & Lozinsky, I. Mechanically Gated Channels and Their Regulation (Springer, 2012).Book 

    Google Scholar 
    37.Feyisa, K. et al. Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. CATENA 159, 9–19 (2017).Article 

    Google Scholar 
    38.Wang, G. H., Ren, Y. J. & Gou, Q. Q. The changes of soil physical and chemical property during the enclosure process in a typical desert oasis ecotone of the Hexi Corridor in northwestern China. J. Desert Res. 40(2), 222–231 (2020).
    Google Scholar 
    39.Xu, H. L., Ye, M. & Li, J. M. Changes in groundwater levels and the response of natural vegetation to the transfer of water to the lower reaches of the Tarim River. J. Environ. Sci. 19(10), 1199–1207 (2007).Article 

    Google Scholar 
    40.Zhang, P. F., Guli, J., Bao, A. M., Meng, F. H. & Guo, H. Ecological effects evaluation for short term planning of the Tarim River. Arid Land Geogr. 40(1), 156–164 (2017).
    Google Scholar 
    41.Gulimire, H., Wang, G. Y., Zhang, Y., Liu, Q. Q. & Su, L. T. Influence mechanisms of intermittent ecological water conveyance on groundwater level and vegetation in arid land. Arid Land Geogr. 41(4), 726–733 (2018).
    Google Scholar 
    42.Guo, H. W., Xu, H. L. & Ling, H. B. Study of ecological water transfer mode and ecological compensation scheme of the Tarim River Basin in dry years. J. Nat. Resour. 32(10), 1705–1717 (2017).
    Google Scholar 
    43.Wu, T. Z., Ding, J., Guan, W. K., Ruan, C. J. & Guan, Y. Populus euphratica forest replacement and photosynthetic characteristics in Tarim Populus euphratica national nature reserve. Prot. For. Sci. Technol. 8, 1–4 (2020).
    Google Scholar 
    44.Zhu, C. G., Aikeremu, A., Li, W. H. & Zhou, H. H. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River. Arid Land Geography, 44(3), 629–636 (2021).
    Google Scholar 
    45.Chen, Y. N. Study on Eco-hydrological Problems of the Tarim River Basin in Xinjiang (Science Press, 2010).
    Google Scholar 
    46.Halik, U., Aishan, T., Betz, F., Kurban, A. & Rouzi, A. Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecol. Eng. 127, 11–22 (2019).Article 

    Google Scholar 
    47.Xinjiang Morning News. In the past three years, the area of the Populus euphratica forest reserve in the Tarim River Basin has increased by 569.95 km2. https://www.sohu.com/a/308626663_100034331?sec=wd (2019).48.China News Service. Ecological water transfer for desert vegetation in lower reaches of Konqi River in Xinjiang. https://news.sina.com.cn/o/2020-02-22/doc-iimxyqvz4945915.shtml (2020). More

  • in

    The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole

    Research cruisesThis dataset consists of sequence data from 4 separate cruises: ARK-XXVII/1 (PS80)—17th June to 9th July 2012; Stratiphyt-II— April to May 2011; ANT-XXIX/1 (PS81)—1st to 24th November 2012 and ANT-XXXII/2 (PS103)—16th December 2016 to 3rd February 2017 and covers a transect of the Atlantic Ocean from Greenland to the Weddell Sea (71.36°S to 79.09°N) (Supplementary Table 1). In order to study the composition, distribution and activity of microbial communities in the upper ocean across the broadest latitudinal ranges possible, samples have been collected during four field campaigns as shown in Fig. 1A. The first collection of samples was collected in the North Atlantic Ocean from April to May 2011 by Dr. Willem van de Poll of the University of Groningen, Netherlands and Dr. Klaas Timmermans of the Royal Netherlands Institute for Sea Research. The second set of samples was collected in the Arctic Ocean from June to July 2012, and the third set of samples was collected in the South Atlantic Ocean from October to November 2012. Both of which were collected by Dr. Katrin Schmidt of the University of East Anglia. The final set of samples was collected in the Antarctic Ocean from December 2016 to January 2017 by Dr. Allison Fong of the Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.SamplingWater samples from the Arctic Ocean and South Atlantic Ocean expeditions were collected using 12 L Niskin bottles (Rosette sampler with an attached Sonde (CTD, conductivity, temperature, depth) either at the chlorophyll maximum (10–110 m) and/or upper of the ocean (0–10 m). As soon as the rosette sampler was back on board, water samples were immediately transferred into plastic containers and transported to the laboratory. All samples were accompanied by measurements on salinity, temperature, sampling depth and silicate, nitrate, phosphate concentration (Supplementary Table 1). Water samples were pre-filtered with a 100 μm mesh to remove larger organisms and subsequently filtered onto 1.2 μm polycarbonate filters (Isopore membrane, Millipore, MA, USA). All filters were snap frozen in liquid nitrogen and stored at −80 °C until further analysis.Water samples from the North Atlantic Ocean cruise were also taken with 12 L Niskin bottles attached to a Rosette sampler with a Sonde. However, these samples were filtered onto 0.2 μm polycarbonate filters (Isopore membrane, Millipore, MA, USA) without pre-filtration but snap frozen in liquid nitrogen and stored at −80 °C as the other samples.Water samples from the Southern Ocean cruise were taken with 12 L Niskin bottles attached to an SBE911plus CTD system equipped with 24 Niskin samplers. These samples were filtered onto 1.2 μm polycarbonate membrane filters (Merck Millipore, Germany) in a container cooled to 4 °C and snap frozen in liquid nitrogen and stored at −80 °C as the other samples. Environmental data recorded at the time of sampling can be found in Supplementary Table 1.DNA extractions: Arctic Ocean and South Atlantic Ocean samplesDNA was extracted with the EasyDNA Kit (Invitrogen, Carlsbad, CA, USA) with modification to optimise DNA quantity and quality. Briefly, cells were washed off the filter with pre-heated (65 °C) Solution A and the supernatant was transferred into a new tube with one small spoon of glass beads (425–600 μm, acid washed) (Sigma-Aldrich, St. Louis, MO, USA). Samples were vortexed three times in intervals of 3 s to break the cells. RNase A was added to the samples and incubated for 30 min at 65 °C. The supernatant was transferred into a new tube and Solution B was added followed by a chloroform phase separation and an ethanol precipitation step. DNA was pelleted by centrifugation and washed several times with isopropanol, air dried and suspended in 100 μL TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, pH 8.0). Samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.DNA extractions: North Atlantic Ocean samplesNorth Atlantic Ocean samples were extracted with the ZR-Duet™DNA/RNA MiniPrep kit (Zymo Research, Irvine, USA) allowing simultaneous extraction of DNA and RNA from one sample filter. Briefly, cells were washed from the filters with DNA/RNA Lysis Buffer and one spoon of glass beads (425–600 μm, Sigma-Aldrich, MO, USA) was added. Samples were vortexed quickly and loaded onto Zymno-Spin™IIIC columns. The columns were washed several times and DNA was eluted in 60 μmL, DNase-free water. Samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.DNA extractions: Southern Ocean samplesDNA from the Southern Ocean samples was extracted with the NucleoSpin Soil DNA extraction kit (Macherey‐Nagel) following the manufacturer’s instructions. Briefly, cells were washed from the filters with DNA Lysis Buffer and into a lysis tube containing glass beads was added. Samples were disrupted by bead beating for 2 × 30 s interrupted by 1 min cooling on ice and loaded onto the NucleoSpin columns. The columns were washed three times and DNA was eluted in 50 μL, DNase-free water. Samples were stored at −20 °C until further processing.Amplicon sequencing of 16S and 18S rDNAAll extracted DNA samples were sequenced and pre-processed by the Joint Genome Institute (JGI) (Department of Energy, Berkeley, CA, USA). iTAG amplicon sequencing was performed at JGI with primers for the V4 region of the 16S (FW(515F): GTGCCAGCMGCCGCGGTAA; RV(806R): GGACTACNVGGGTWTCTAAT)49 and 18S (FW(565F): CCAGCASCYGCGGTAATTCC; RV(948R): ACTTTCGTTCTTGATYRA)50. (Supplementary Table 6) rRNA gene (on an Illumina MiSeq instrument with a 2 × 300 base pairs (bp) read configuration51. 18S sequences were pre-processed, this consisted of scanning for contamination with the tool Duk (US Department of Energy Joint Genome Institute (JGI), 2017,a) and quality trimming of reads with cutadapt52. Paired end reads were merged using FLASH53 with a max mismatch set to 0.3 and min overlap set to 20. A total of 54 18S samples passed quality control after sequencing. After read trimming, there was an average of 142,693 read pairs per 18S sample with an average length of 367 bp and 2.8 Gb of data over all samples.16S sequences were pre-processed, this consisted of merging the overlapping read pairs using USEARCH’s merge pairs54 with the parameter minimum number of differences (merge max diff pct) set to 15.0 into unpaired consensus sequences. Any reads that could not be merged are discarded. JGI then applied the tool USEARCH’s search oligodb tool with the parameters mean length (len mean) set to 292, length standard deviation (len stdev) set to 20, primer trimmed max difference (primer trim max diffs) set to 3, a list of primers and length filter max difference (len filter max diffs) set to 2.5 to ensure the Polymerase Chain Reaction (PCR) primers were located with the correct direction and inside the expected spacing. Reads that did not pass this quality control step were discarded. With a max expected error rate (max exp err rate) set to 0.02, JGI evaluated the quality score of the reads and those with too many expected errors were discarded. Any identical sequence was de-duplicated. These are then counted and sorted alphabetically for merging with other such files later. A total of 57 × 16S samples passed quality control after sequencing. There was an average 393,247 read pairs per sample and an average base length of 253 bp for each sequence with a total of 5.6 Gb.RNA extractions: Arctic Ocean and Atlantic samplesRNA from the Arctic and Atlantic Ocean samples was extracted using the Direct-zol RNA Miniprep Kit (Zymo Research, USA). Briefly, cells were washed off the filters with Trizol into a tube with one spoon of glass beads (425–600 μm, Sigma-Aldrich, MO, USA). Filters were removed and tubes bead beaten for 3 min. An equal volume of 95% ethanol was added, and the solution was transferred onto Zymo-Spin™ IICR Column and the manufacturer instructions were followed. Samples were treated with DNAse to remove DNA impurities, snap frozen in liquid nitrogen and stored at −80 °C until sequencing.RNA extractions: Southern OceanRNA from the Southern Ocean samples was extracted using the QIAGEN RNeasy Plant Mini Kit (QIAGEN, Germany) following the manufacturer’s instructions with on-column DNA digestion. Cells were broken by bead beating like for the DNA extractions before loading samples onto the columns. Elution was performed with 30 µm RNase-free water. Extracted samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.Metatranscriptome sequencingAll samples were sequenced and pre-processed by the U.S. Department of Energy Joint Genome Institute (JGI). Metatranscriptome sequencing was performed on an Illumina HiSeq-2000 instrument27. A total of 79 samples passed quality control after sequencing with 19.87 Gb of sequence read data over all samples for analysis. This comprised a total of 34,241,890 contigs, with an average length of 503 and an average GC% of 51%. This resulted in 36354419 of non-redundant genes detected.JGI employed their suite of tools called BBTools55 for preprocessing the sequences. First, the sequences were cleaned using Duk a tool in the BBTools suite that performs various data quality procedures such as quality trimming and filtering by kmer matching. In our dataset, Duk identified and removed adaptor sequences, and also quality trimmed the raw reads to a phred score of Q10. In Duk the parameters were; kmer-trim (ktrim) was set to r, kmer (k) was set to 25, shorter kmers (mink) set to 12, quality trimming (qtrim) was set to r, trimming phred (trimq) set to 10, average quality below (maq) set to 10, maximum Ns (maxns) set to 3, minimum read length (minlen) set to 50, the flag “tpe” was set to t, so both reads are trimmed to the same length and the “tbo” flag was set to t, so to trim adaptors based on pair overlap detection. The reads were further filtered to remove process artefacts also using Duk with the kmer (k) parameter set to 16.BBMap55 is another a tool in the BBTools suite, that performs mapping of DNA and RNA reads to a database. BBMap aligns the reads by using a multi-kmer-seed-and-extend approach. To remove ribosomal RNA reads, the reads were aligned against a trimmed version of the SILVA database using BBMap with parameters set to; minratio (minid) set to 0.90, local alignment converter flag (local) set to t and fast flag (fast) set to t. Also, any human reads identified were removed using BBMap.BBmerge56 is a tool in the BBTools suite that performs the merging of overlapping paired end reads (Bushnell, 2017). For assembling the metatranscriptome, the reads were first merged with the tool BBmerge, and then BBNorm was used to normalise the coverage so as to generate a flat coverage distribution. This type of operation can speed up assembly and can even result in an improved assembly quality.Rnnotator52 was employed for assembling the metatranscriptome samples 1–68. Rnnotator assembles the transcripts by using a de novo assembly approach of RNA-Seq data and it accomplishes this without a reference genome52. MEGAHIT57 was employed for assembling the metatranscriptome samples 69–82. The tool BBMap was used for reference mapping, the cleaned reads were mapped to metagenome/isolate reference(s) and the metatranscriptome assembly.Metatranscriptome analysisJGI performed the functional analysis on the metatranscriptomic dataset. JGI’s annotation system is called the Metagenome Annotation Pipeline (MAP) (v4.15.2)27. JGI used HMMER 3.1b258 and the Pfam v3059 database for the functional analysis of our metatranscriptomic dataset. This resulted in 11,205,641 genes assigned to one or more Pfam domain. This resulted in 8379 Pfam functional assignments and their gene counts across the 79 samples. The files were further normalised by applying hits per million.18S rDNA analysisA reference dataset of 18S rRNA gene sequences that represent algae taxa was compiled for the construction of the phylogenetic tree by retrieving sequences of algae and outgroups taxa from the SILVA database (SSUREF 115)60 and Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database61. The algae reference database consists of 1636 species from the following groups: Opisthokonta, Cryptophyta, Glaucocystophyceae, Rhizaria, Stramenopiles, Haptophyceae, Viridiplantae, Alveolata, Amoebozoa and Rhodophyta. A diagram of the 18S classification pipeline can be found in Supplementary Fig. 1. In order to construct the algae 18S reference database, we first retrieved all eukaryotic species from the SILVA database with a sequence length of  > = 1500 base pairs (bp) and converted all base letters of U to T. Under each genus, we took the first species to represent that genus. Using a custom written script (https://github.com/SeaOfChange/SOC/blob/master/get_ref_seqs.pl), the species of interest (as stated above) were selected from the SILVA database, classified with NCBI taxa IDs and a sequence information file produced that describes each of the algae sequences by their sequence ID and NCBI species ID. Taxonomy from the NCBI database, eukaryote sequences from the SILVA database and a list of algal taxa including outgroups were used as input for the script. This information was combined with the MMETSP database excluding duplications.The algae reference database was clustered to remove closely related sequences with CD-HIT (4.6.1)62 using a similarity threshold of 97%. Using ClustalW (2.1)63 we aligned the reference sequences with the addition of the parameter iteration numbers set to 5. The alignment was examined by colour coding each species to their groups and visualising in iTOL64. It was observed that a few species were misaligning to other groups and these were then deleted using Jalview65. The resulting alignment was tidied up with TrimAL (1.1)66 by applying parameters to delete any positions in the alignment that have gaps in 10% or more of the sequence, except if this results in less than 60% of the sequence remaining. A maximum likelihood phylogenetic reference tree and statistics file based on our algae reference alignment was constructed by employing RaxML (8.0.20)67 with a general time reversible model of nucleotide substitution along with the GAMMA model of rate heterogeneity. For a description of the lineages of all species back to the root in the algae reference database, the taxa IDs were submitted for each species to extract a subset of the NCBI taxonomy with the NCBI taxtastic tool (0.8.4)68 Based on the algae reference multiple sequence alignment, with HMMER3 (3.1B1)69 a Profile HMM was created. A pplacer reference package using taxtastic was generated, which produced an organized collection of all the files and taxonomic information into one directory. With the reference package, a SQLite database was created using pplacer’s Reference Package PReparer (rppr). With hmmalign, the query sequences were aligned to the reference set and created a combined Stockholm format alignment. Pplacer (re-aligned to the reference set and created a combined Stockholm format alignment. Pplacer (1.1)70 was used to place the query sequences on the phylogenetic reference tree by means of the reference alignment according to a maximum likelihood model70 The place files were converted to CSV with pplacer’s guppy tool; in order to easily take those with a maximum likelihood score of  > = 0.5 and counted the number of reads assigned to each classification. This resulted in 6,053,291 reads that were taxonomically assigned being taken for analysis.Normalisation of 18S rDNA gene copy number18S rDNA gene copy number vary widely among eukaryotes. In order to create an estimate of abundances of the species in the samples the data had to be normalised. Previous work has explored the link between copy number and genome size71. However, there is not a single database of 18S rDNA gene copy numbers for eukaryote species. In order to address this, gene copy number and related genome sizes of 185 species across the eukaryote tree was investigated and plotted (Supplementary Fig. 2, Supplementary Table 4)68,71,72,73,74,75,76,77,78,79. Based on the log transformed data, a significant correlation with a R2 of 0.55 with a p-value  More

  • in

    A spotlight on seafood for global human nutrition

    NEWS AND VIEWS
    15 September 2021

    A spotlight on seafood for global human nutrition

    What role might seafood have in boosting human health in diets of the future? A modelling study that assesses how a rise in seafood intake by 2030 might affect human populations worldwide offers a way to begin to answer this.

    Lotte Lauritzen

     ORCID: http://orcid.org/0000-0001-7184-5949

    0

    Lotte Lauritzen

    Lotte Lauritzen is in the Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    An adequate and sustainable supply and intake of nutritious food is essential to tackle major global health issues such as dietary deficiencies. Seafood, which in this context includes fish, shellfish and marine mammals, is rich in micronutrients (such as vitamin A, iron, vitamin B12 and calcium) needed to combat the most common such deficiencies. Seafood is also the dominant source of marine omega-3 fatty acids, which have many health-promoting effects. Writing in Nature, Golden et al.1 present ambitious research that puts seafood centre stage.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02436-3

    References1.Golden, C. et al. Nature https://doi.org/10.1038/s41586-021-03917-1 (2021).Article 

    Google Scholar 
    2.Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2020. Sustainability in Action (FAO, 2020).3.FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All (FAO, 2021).4.Kumssa, D. B. et al. Sci. Rep. 5, 10974 (2015).PubMed 
    Article 

    Google Scholar 
    5.Mithal, A. et al. Osteoporosis Int. 20, 1807–1820 (2009).Article 

    Google Scholar 
    6.Vuholm, S. et al. Eur. J. Nutr. 59, 1205–1218 (2020).PubMed 
    Article 

    Google Scholar 
    7.Gebauer, S. K., Psota, T. L., Harris, W. S. & Kris-Etherton, P. M. Am. J. Clin. Nutr. 83, 1526S–1535S (2006).PubMed 
    Article 

    Google Scholar 
    8.Djuricic, I. & Calder, P. C. Nutrients 13, 2421 (2021).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Aquatic foods to nourish nations

    Transforming the global food system

    How to buffer against an urban food shortage

    See all News & Views

    Subjects

    Ecology

    Environmental sciences

    Latest on:

    Ecology

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Preventing spillover as a key strategy against pandemics
    Correspondence 14 SEP 21

    Puffins and friends suffer in washing-machine waves
    Research Highlight 13 SEP 21

    Environmental sciences

    Anthropocene: event or epoch?
    Correspondence 14 SEP 21

    Spacefarers, protect our planet from falling debris
    Correspondence 07 SEP 21

    Australian bush fires and fuel loads
    Correspondence 31 AUG 21

    Jobs

    Tenure-Track Faculty Position

    Yale School of Medicine (YSM)
    New Haven, CT, United States

    Postdoctoral Associate – Mucosal Immunology

    The Scripps Research Institute (TSRI) – Scripps Florida
    Jupiter, FL, United States

    Assitant Editor, Genes & Development

    Cold Spring Harbor Laboratory (CSHL)
    Cold Spring Harbor, United States

    Open Rank Professor in Virology

    American University
    Washington, DC, United States More

  • in

    Identifying and characterizing pesticide use on 9,000 fields of organic agriculture

    We first identify the location of organic crop fields in Kern County and then estimate whether status as organic versus conventional fields determines pesticide use (Fig. 5).Fig. 5: Methodology overview.Figure outlines the main method steps from identifying organic fields to creating the analysis data to performing the statistical analyses. All images shown are simplified, visual representations of the datasets. CDFA refers to the California Department of Food and Agriculture, while APN is the Assessor’s Parcel Number and TRS is the Township-Range-Section. Identifying organic fields combines the created CDFA organic APN, CDFA organic TRS, and organic pesticides data layers together to create the final organic versus conventional fields layer used in the analysis data section. All analysis data layers are then inputted into the various statistical analyses.Full size imageIdentifying organic fieldsWe identified organic fields using a combination of California Department of Food and Agriculture (CDFA) records and Kern County Agricultural Commissioner’s Office spatial data (“fields shapefiles”) and pesticide use records. No single source was complete, and as such, we evaluated several different approaches to identifying organic fields.California Department of Food and Agriculture (CDFA) recordsData on the location of organic fields, per the California State Organic Program, for 2013–2019 was obtained by request from the California Department of Food and Agriculture (CDFA). The CDFA, through the State Organic Program, requires annual registration of certified organic producers who have an expected gross sale of over $5000. We were specifically interested in the pesticide aspects of organic production, which is governed in our study region by the USDA’s National List of Allowed and Prohibited Substances. The National List of Allowed and Prohibited Substances delineates which synthetic substances can be used and which natural substances cannot be used for pest control in US organic production. Besides substances specifically (dis)allowed on the National List, allowed substances include non-synthetic biological, botanical, and mineral inputs. Field location data were in the form of either Assessor’s Parcel Number (APN) or PLS System Township-Range-Section (TRS) values, though data were reported without systematic formatting. We harmonized the CDFA APN values to merge with the Kern County Assessor’s parcel shapefile (2017), which we then spatially joined with the Kern fields shapefiles. We followed a similar process with PLSS TRS values, which were then merged with the Kern County PLS Section shapefile, and joined to Kern field shapefiles. We refer to our final organic designation as “CDFA Organic”. Details of the data cleaning process are described in the Ancillary Data Processing Methods section below.Using pesticide use reports to refine organic field identificationAfter spot-checking pesticide use on CDFA Organic fields, it became clear we had not entirely eliminated conventional fields. This was likely due to variation in polygon geometries between PLSS Sections, Kern County Assessor parcels, and Kern agricultural fields data. To further refine our classification, we used field-level pesticide use, again from the Kern County Agricultural Commissioner’s Office. As thousands of pesticide products (active ingredients + adjuvants) are in use in Kern County, we took an iterative approach to eliminate fields using conventional pesticides. We first limited the universe of pesticides to those applied to fields that were CDFA Organic. We then identified the 50 most commonly used pesticide products by a number of applications, and manually classified each as organic or conventional. Having identified these products as described below, we matched them back in, eliminating fields that used conventional products and identifying as “PUR Organic” those that used only organic products. We repeated this process, hand identifying the most commonly used products and eliminating fields using conventional products until we had isolated fields using only organic products.To classify a product as organic or conventional, we first searched for each product’s U.S. EPA-registered product label, using the exact product name and EPA product registration number. If there was any indication on the label that the product was certified as organic by the Organic Materials Review Institute (OMRI), or said “for use in organic production” or “organic”, then the pesticide was identified as organic (n = 132). If there was no organic indication on the product label, we searched the OMRI certification database for products with identical names and manufacturers, and identified products as organic if such certifications existed (n = 39). If all ingredients were defined (i.e., no inert or undefined ingredients) and were known organic active ingredients, then the pesticide was identified as organic (n = 1) (Supplementary Data 1). We failed to find EPA-registered labels for three products and confirmed on the California Department of Pesticide Regulation website that they are either inactive or out of production (EPA registration numbers: 52467-50008-AA-5905, 36208-50020-AA, 2935-48-AA-120). Each of the three was rarely used (n  0) to be the same as the mechanisms determining the amount sprayed when some pesticides are used (pesticides when pesticides  > 0). Double-hurdle models64 are an alternative to the Tobit model that allows for the separation of these two decisions.The mechanisms underlying the two decisions (to spray, how much to spray if spraying) can differ such that different covariates can describe each process, and the same covariates are allowed to influence the two processes in different ways (i.e., sign and magnitude can differ). The first, binary decision is usually modeled with a probit model.$${{{{{rm{P}}}}}}left(y=0|{{{{{bf{x}}}}}}right)=1-Phi left({{{{{bf{x}}}}}}gammaright)$$
    (1)
    Then, the second decision is modeled as a linear model with pesticide use following a lognormal distribution, conditional on positive pesticide use64$$log (y)|{{{{{bf{x}}}}}},y , > , 0 sim {{{{{rm{Normal}}}}}}({{{{{bf{x}}}}}}{{{{{mathbf{upbeta }}}}}},{sigma }^{2})$$
    (2)
    where Φ is the standard normal cdf, x is a vector of explanatory variables including organic status, y is pesticide use, and ({{{{{mathbf{upbeta }}}}}}) is a vector of coefficients. We use a lognormal hurdle model rather than a truncated normal hurdle model since pesticide use is highly non-normal, and Q-Q plots suggested substantial model improvement using a lognormal rather than normal distribution. In contrast to the panel data models described in the Ancillary Statistical Methods below, our estimation equation used natural log-transformed variables for pesticides (and field and farm size) rather than inverse hyperbolic sine (IHS) transformation since only positive observations are included in the second hurdle model. Following insights derived from our panel data models (Supplementary Notes), we build on the basic hurdle model concept using the farm-by-crop family interaction as a random intercept in both the first and second hurdle. We chose the farm-by-crop family interaction rather than a crossed random effect due to computational feasibility with thousands of permits and hundreds of crops, due to similarity of results to the within estimator model (i.e., fixed effects in causal inference terminology; Supplementary Notes, Supplementary Table 2), and due to AIC/BIC (Supplementary Table 3). Further, we find evidence of heteroskedasticity from both visual inspection and Levine’s test, which adds additional complications to computing crossed random effects. Thus, we proceed with the farm-by-crop family interaction in a random intercept model with cluster robust standard errors clustered at the same grouping. In doing so, observations, where the taxonomic family of the crop was unclear, were dropped. Of the 7367 fields that were dropped due to missing crop families, 6684 were uncultivated agriculture.Our data are effectively repeated cross-sections rather than a true panel since fields are defined by the farm-site-year combination and thus generally change year-to-year or when crops rotate. We model it as such. This implies we do not require observations to have no spray in all time periods, as would be the case in a double hurdle panel model. Linking field IDs over time through spatial processing is complicated by crop rotations of different size areas. Since farmers may farm multiple fields under different management systems, as we illustrate here, and have different contractual obligations at a sub-farm level, requiring farms to never use pesticides on all fields is not reflective of on-the-ground decisions.We repeated the lognormal hurdle models individually for carrots, grapes, oranges, potatoes, and onions, which were the only widely-grown crops with more than 100 organic fields. This allowed for a different slope and intercept by crop type.We conduct several robustness checks. First, we do not have data on crop yields. However, to assess the potential implications of a yield gap on our results, we modify our per hectare rates following Ponisio et al.15 as a robustness check. We group commodities into cereals, roots and tubers, oilseeds, legumes/pulses, fruits, and vegetables and assign them the Ponisio et al.15 yield gap estimates for that group. Crops that did not fall into any of the above groups (e.g., cannabis) were provided the all-crop average from Ponisio et al.15. Second, we analyze how conventional and organic differ with respect to soil quality using a within estimator approach to account for crop-specific differences in soil quality. Third, binary toxicity metrics, while valuable given the number of chemicals and endpoints of interest here, nevertheless fail to distinguish gradations of toxicity for chemicals above (or below) the regulatory threshold. As mentioned above, the data needed to calculate many aggregate indices (e.g., Pesticide Load57 and Environmental Impact Quotient58) are not readily available for all of the chemicals in our study. For completeness, we attempted to calculate the Pesticide Toxicity Index for one well-studied endpoint, fish. We supplemented data provided in Nowell et al.41 with data from Standartox42. However, only about 70% of the chemicals used in our study matched, and pesticide products used on organic fields were more likely to lack toxicity information for one or more chemicals. We briefly discuss the highly preliminary investigation, given the non-random missing toxicity data.All spatial analyses were performed in R Statistical Software v 3.5.3 and all statistical analyses were performed Stata 16 MP. For all tests, statistical significance was based on two-tailed tests with (alpha =0.05.)Ancillary data processing methodsCleaning parcel dataTo spatially locate organic fields, we needed to match the Assessor’s parcel numbers (APNs) provided in the CDFA tabular data to APNs in the Kern County Parcel shapefile (from 2017). Over 90% of the APN entries in the CDFA data were in the format [xxx-xxx-xx], though multiple APNs were often provided in the same cell separated by line breaks, semi-colons, commas, and/or spaces. We made initial edits separating values into individual cells in Microsoft Excel since formatting was highly inconsistent. Observations whose APNs were not in the [xxx-xxx-xx] were modified so that their format matched. In the R environment, dashes were inserted after the third, sixth, and eighth characters (1234567895 became 123-456-78-95) for APNs that did not already contain them. Occasionally, APN numbers were provided with dashes, but with segments of incorrect length (e.g., 12-34-567). In these instances, APN segments were either trimmed from the right or padded with a zero on the left so they matched the [xxx-xxx-xx] format. This approach yielded the greatest number of matches and was checked for accuracy as described below. Additional segments (from APNs with more than two dashes and eight numeric characters) were dropped. A handful of APNs with fewer than eight numeric characters and no dashes were dropped entirely.The edited CDFA APNs were then joined with the Kern County Assessor’s parcel shapefile, creating the “CDFA organic shapefile”. In total, 1637 of 1829 individual CDFA records joined successfully. To evaluate the accuracy of joins between CDFA tabular data, Kern County parcel, and Kern County agricultural spatial data, we spot-checked ownership information using “Company” (CDFA) and “PERMITTEE” (Kern County agricultural data) values.To then identify the crop fields within the organic parcels, we performed a spatial join between the CDFA organic shapefile and the Kern County fields shapefiles. Prior to performing the join, the CDFA parcels’ dimensions were reduced with a 50-m buffer to eliminate spatial joins between CDFA parcels and crop fields that were only touching the parcel margins. Of five different buffer widths evaluated, 50 m reduced the number of false positives and negatives, as determined by comparing the “Company” and “PERMITTEE” values. We refer to the fields that match as “APN Organic”.Cleaning PLSS Township-Range-Section valuesEach year several producers reported Township, Section, and Range (TRS) values, consistent with the PLS System (PLSS), rather than APN values. We used these TRS values to identify PLSS Sections that contained organic fields.We separated any cell containing multiple TRS values and removed any prefixes such as “S”, “Section”, “Sec.”, “T”, and “R” that would prevent joining to Kern County PLSS spatial data in Excel. In the R environment, we padded the left side of the “S” value with a 0 if it was a single digit, then concatenated the three columns into a “TRS” column. We joined TRS from the CDFA tabular data to PLSS spatial data, which identified 563 Sections as containing organic fields, from 2013 to 2019, out of a total of 664 unique TRS codes in the CDFA dataset. We then performed a spatial join between PLSS Sections that contain organic fields and Kern County fields shapefiles, to identify all agriculture fields that overlap with those Sections. Additional processing using the Pesticide Use Reports is described above.Ancillary statistical methodsWe began with a pooled ordinary least squares (OLS) model that, as the name suggests, pools observations over farms, years, and crop types. However, there may be attributes of crops or farms that may be systematically different between organic and conventional, and this systematic difference could bias our pooled OLS results. To address this, we first considered propensity score approaches but were unable to find a sufficient balance of our covariate distribution between organic and conventional fields. As an alternative, we limited our sample to fields with overlapping farmers and crop types. In other words, we focused on the subset of fields that are grown by farmers producing both organic and conventional fields and to crops that are produced both conventionally and organically. However, this shrunk our dataset by two-thirds.To leverage more of our data, we next considered panel data models as a means to address unobserved variables. We consider both within-estimator models (also known as “fixed effects” in causal inference terminology, but different from the biostatistical use of the term) and random effects models (with random intercepts), seeking to capture characteristics of the crop, grower, and year. The advantage of a within-estimator approach is that the omitted variables are removed (through differencing) and thus, they can be correlated with covariates without biasing the estimation. In other words, pesticide use and all covariates are differenced from their crop-specific mean (or crop family, farmer, etc. specific mean, depending on the model). In doing so, the propensity for certain crops (crop family, farmer) to be grown organic or to be fast or slow adopters of new technologies is removed. The disadvantage is that characteristics shared by all fields of a crop (e.g., value) are lost in the differencing, and more importantly, that the differencing is not easily translated to nonlinear models that we employ later in the analysis. Random effects are more easily translated to nonlinear models. The disadvantage of random effects is the strong assumption that the unobserved variables are uncorrelated with the covariates18,65, which is required for random effects coefficient estimates to be unbiased. Here, we see the difference in coefficient estimates between the within-estimator and random effects models are quite small (Supplementary Table 2).Random effects particularly crossed random effects with thousands of permits and hundreds of crops, introduce computational challenges due to large, sparse matrices. Further, we find evidence of heteroskedasticity from both visual inspection and Levine’s test, which adds additional complications to computing crossed random effects. We proceed using the farm-by-crop family interaction in a random intercept model with cluster robust standard errors clustered at the same grouping based on AIC/BIC (Supplementary Table 3), computational feasibility, and similarity to the within-estimator results (Supplementary Table 2). Observations, where the taxonomic family of the crop was unclear, were dropped in any models including family in either the random effects or the cluster robust standard errors. Of the 7367 fields that were dropped due to missing crop families, 6684 were uncultivated agriculture.In the panel data models, we used IHS transformations to accommodate highly non-normal pesticide (and field and farm size) data. IHS is very similar to natural log transformation66 but is defined at zero, which is important given a sizable fraction of our observations have zero pesticide use. As with log–log transformations, IHS–IHS transformation can be interpreted as elasticities. We pre-multiply pesticide use by 100 to improve estimation66, though this does not affect interpretation. As described above, we leverage insights on model specification from the panel data models, but rely on the double hurdle models to parse apart the decision to spray from the decision of how much to spray.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Localised labyrinthine patterns in ecosystems

    The absence of the first principles for biological systems in general, and in particular for vegetation populations where phenomena are interconnected makes their mathematical modelling complex. The theory of vegetation pattern formation rests on the self-organisation hypothesis and symmetry-breaking instability that provoke the fragmentation of the uniform cover. The symmetry-breaking instability takes place even if the environment is isotropic31,33,35. This instability may be an advection-induced transition that requires the pre-existence of the environment anisotropy due to the topography of the landscape34,39,40. Generally speaking, this transition requires at least two feedback mechanisms having a short-range activation and a long-range inhibition. In this respect, we consider three different vegetation models that are experimentally relevant systems: (i) the generic interaction redistribution model describing vegetation pattern formation which incorporates explicitly the facilitation, competition and seed dispersion nonlocal interactions (ii) the local nonvariational partial differential model described by a nonvariational Swift–Hohenberg type of model equation, and (iii) the reaction–diffusion system that incorporate explicetely water transport.The interaction-redistribution approachThe integrodifferential modelThis approach consists of considering a well-known logistic equation with nonlocal plant-to-plant interactions. Three types of interactions are considered: the facilitative (M_{f}(mathbf {r},t)), the competitive (M_{c}(mathbf {r},t)), and the seed dispersion (M_{d}(mathbf {r},t)) nonlocal interactions. To simplify further the mathematical modelling, we consider that the seed dispersion obeys a diffusive process (M_{d}(mathbf {r},t)approx nabla ^{2}b(mathbf {r},t)), with D the diffusion coefficient, b the biomass density, and (nabla ^{2}=partial ^2/partial x^2+partial ^2/partial y^2) is the Laplace operator acting in the (x,y) plane. The interaction-redistribution reads$$begin{aligned} M_{i}=expleft{ frac{xi _{i}}{N_{i}}int b(mathbf {r}+mathbf {r}’,t)phi _i(r,t)dmathbf {r}’right} , { text{ with } } phi _i(r,t)= exp(-r/L_{i}) end{aligned}$$
    (1)
    where (i=f,c). (xi _i) represents the strength of the interaction, (N_i) is a normalisation constant. We assume that their Kernels (phi _i(r,t)) are exponential functions with (L_i) the range of their interactions. The facilitative interaction (M_{f}(mathbf {r},t)) favouring vegetation development. They involve the accumulation of nutrients in the neighbourhood of plants, the reciprocal sheltering of neighbouring plants against climatic harshness which improves the water budget in the soil. The range of the facilitative interaction (L_f) operates on the crown size. The competitive interaction operates over a length (L_c) and involves the below-ground structures, i.e., the rhizosphere. In nutrient-poor or/and in water-limited territories, lateral spreading may extend beyond the radius of the crown. This extension of roots relative to their crown size is necessary for the survival and the development of the plant in order to extract enough nutrients and/or water from the soil. When incorporating these nonlocal interactions in the paradigmatic logistic equation, the spatiotemporal evolution of the normalised biomass density (b(mathbf {r}, t)) in isotropic environmental conditions reads14$$begin{aligned} partial _{t} b(mathbf {r},t)=b(mathbf {r},t)[1-b(mathbf {r},t)]M_{f}(mathbf {r},t)- mu b(mathbf {r},t)M_{c}(mathbf {r},t)+Dnabla ^{2}b(mathbf {r},t). end{aligned}$$
    (2)
    The normalisation is performed with respect to the total amount of biomass supported by the system. The first two terms in the logistic equation with nonlocal interaction Eq. (2) describe the biomass gains and losses, respectively. The third term models seed dispersion. The aridity parameter (mu) accounts for the biomass loss and gain ratio, which depends on water availability and nutrients soil distribution, topography, etc. The homogeneous cover solutions of Eq. (2) are: (b_{o}=0) which corresponds to the state totally devoid of vegetation, and the homogeneous cover solutions satisfy the equation$$begin{aligned} mu =(1-b)exp (Delta b), end{aligned}$$
    (3)
    with (Delta =xi _{f}-xi _{c}) measures the community cooperativity if (Delta >0) or anti-cooperativity when (Delta 0). The solution (u_{-}) is always unstable even in the presence of small spatial fluctuations. The linear stability analysis of vegetated cover ((u_{+})) with respect to small spatial fluctuations, yields the dispersion relation$$begin{aligned} sigma (k)=u_{+}(kappa -2u_{+})-(nu -gamma u_{+})k^{2}-alpha u_{+}k^{4}. end{aligned}$$
    (8)
    Imposing (partial sigma /partial k|_{k_{c}}=0) and (sigma (k_{c})=0), the critical mode can be determined$$begin{aligned} k_{c}=sqrt{frac{gamma -nu /u_{c}}{2alpha }}, end{aligned}$$
    (9)
    where (u_{c}) satisfies (4alpha u_{c}^2(2u_{c}-kappa )=(2gamma u_{c}-nu )^2). The corresponding aridity parameter (eta _{c}) can be calculated from Eq. (7).The reaction–diffusion approachThe second approach explicitly adds the water transport by below ground diffusion. The coupling between the water dynamics and the plant biomass involves positive feedbacks that tend to enhance water availability. Negative feedbacks allow for an increase in water consumption caused by vegetation growth, which inhibits further biomass growth.The modelling considers the coupled evolution of biomass density (b(mathbf {r},t)) and groundwater density (w(mathbf {r},t)). In its dimensionless form, this model reads33$$begin{aligned} frac{partial b}{partial t}= & {} frac{gamma w}{1+omega w}b-b^{2}-theta b+nabla ^{2}b, end{aligned}$$
    (10)
    $$begin{aligned} frac{partial w}{partial t}= & {} p-(1-rho b)w-w^{2}b+delta nabla ^{2}(w-beta b). end{aligned}$$
    (11)
    The first term in the first equation describes plant growth at a constant rate ((gamma /omega)) that grows linearly with w for dry soil. The quadratic nonlinearity (-b^{2}) accounts for saturation imposed by poor nutrients soil. The term proportional to (theta) accounts for mortality, grazing or herbivores. The mechanisms of dispersion are modelled by a simple diffusion process. The groundwater evolves due to a precipitation input p. The term ((1-rho b)w) in the second equation accounts for the evaporation and drainage, that decreases with the presence of vegetation. The term (w^{2}b) models the water uptake by the plants due to the transpiration process. The groundwater movement follows the Darcy’s law in unsaturated conditions; that is, the water flux is proportional to the gradient of the water matric potential41. The matric potential is equal to w, under the assumption that the hydraulic diffusivity is constant41. To model the suction of water by the roots, a correction to the matric potential is included; (-beta b), where (beta) is the strength of the suction. More