1.Singh, M. & Bhatia, H. S. Thermal time requirement for phenophases of apple genotypes in Kullu valley. J. Agrometeorol. 13(1), 46–49 (2011).
Google Scholar
2.Amgain, L. P. Agro-meteorological indices in relation to phenology and yields of promising wheat cultivars in Chitwan, Nepal. J. Agric. Environ. 14, 111–120 (2013).Article
Google Scholar
3.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Color-break effect on Kinnow (Citrus nobilis Lour x Citrus deliciosa Tenora) fruit‘s internal quality at early ripening stages under varying environmental conditions. Sci. Hortic. 256, 108514 (2019).Article
Google Scholar
4.Singh, M. & Jangra, S. Thermal indices and heat use cultivars in Himachal Himalay. Clim. Change 4(14), 224–234 (2018).
Google Scholar
5.Singh, M., Niwas, R., Godara, A. K. & Khichar, M. L. Pheno-thermal response of plum genotypes in semi-arid region of Haryana. J. Agrometeorol 17(2), 230–233 (2015).
Google Scholar
6.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of varying agrometeorological indices on peel color and composition of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones. J. Sci. Food Agric. 100(6), 2688–2704 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khan, M. F. & Khalid, A. Environmental variables influence the developmental stages of the citrus leafminer, infestation level and mined leaves physiological response of Kinnow mandarin. Sci. Rep. 11(1), 1–20 (2021).Article
CAS
Google Scholar
8.Plett, S. Comparison of seasonal thermal indices for measurement of corn maturity in a prairie environment. Can. J. Plant Sci. 72(4), 1157–1162 (1992).Article
Google Scholar
9.Dalal, R. P. S., Kumar, A. & Singh, R. Agrometeorological-heat and energy use of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 506–512 (2017).Article
Google Scholar
10.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 260, 108868 (2020).Article
Google Scholar
11.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environ. Exp. Bot. 171, 103936 (2020).CAS
Article
Google Scholar
12.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on fruit internal quality of Kinnow mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora) in ripening phase grown under varying environmental conditions. Sci. Hortic. 265, 109235 (2020).CAS
Article
Google Scholar
13.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A. & Ahmad, T. Economic analysis of citrus (Kinnow Mandarin) during on-year and off-year in the Punjab Province. Pakistan. J Hortic 5(250), 2376–3354 (2018).
Google Scholar
14.Khalid, M. S., Malik, A. U., Saleem, B. A., Khan, A. S. & Javed, N. Horticultural mineral oil application and tree canopy management improve cosmetic fruit quality of Kinnow mandarin. Afr. J. Agric. Res. 7(23), 3464–3472 (2012).Article
Google Scholar
15.Nawaz, R. et al. Impact of climate change on kinnow fruit industry of Pakistan. Agrotechnology https://doi.org/10.4172/2168-9881.1000186 (2019).Article
Google Scholar
16.Mazhar, M. S., Malik, A. U., Jabbar, A., Malik, O. H. & Khan, M. N. Fruit blemishes caused by abiotic and biotic factors in Kinnow mandarin. Acta Hortic. 1120, 483–490 (2016).Article
Google Scholar
17.Solomon. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007).18.Ullah, R., Shivakoti, G. P. & Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disast. Risk Reduct. 13, 151–157 (2015).Article
Google Scholar
19.Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13(8), 1605–1615 (2007).ADS
Article
Google Scholar
20.Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22(3), 534–543 (2008).PubMed
Article
PubMed Central
Google Scholar
21.Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8(1), 1–6 (2002).ADS
Article
Google Scholar
22.Stocker, T.F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).23.Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Clim. Change. 73, 319–343 (2005).ADS
Article
Google Scholar
24.Webb, L., Whetton, P. & Barlow, E. W. R. Modeled impact of future climate change on phenology of wine grapes in Australia. Aust. J. Grape Wine Res. 13, 165–175 (2007).Article
Google Scholar
25.Ferguson, J. J., Koch, K. E. & Huang, T. B. 240 Fruit removal effects on growth and carbon allocation in young citrus trees. HortScience 34(3), 483D – 483 (1999).Article
Google Scholar
26.Zekri, M. Factors affecting citrus production and quality, Citrus Industry. ifas.ufl.edu (2011).27.Ladaniya, M. S. Physico−chemical, respiratory and fungicide residue changes in wax coated mandarin fruit stored at chilling temperature with intermittent warming. J. Food Sci. Technol. 48(2), 150–158 (2011).PubMed
Article
PubMed Central
Google Scholar
28.Monselise, S. P. & Goldschmidt, E. E. Alternate bearing in fruit trees. Hort. Rev. (Am. Soc. Hort. Sci.) 4, 128–173 (1982).
Google Scholar
29.Garcia-Luis, A., Fornes, F. & Guardiola, J. L. Leaf carbohydrates and flower formation in Citrus. J. Am. Soc. Hort. Sci. 120, 222–227 (1995).CAS
Article
Google Scholar
30.Dalezios, N. R., Loukas, A. & Bampzelis, D. Assessment of NDVI and agrometeorological indices for major crops in central Greece. Phys. Chem. Earth,Parts A/B/C 27(23–24), 1025–1029 (2002).ADS
Article
Google Scholar
31.Dalezios, N. R., Loukas, A. & Bampzelis, D. The role of agrometeorological and agrohydrological indices in the phenology of wheat in central Greece. Phys. Chem. Earth Parts A/B/C 27(23–24), 1019–1023 (2002).ADS
Article
Google Scholar
32.Schmidt, D. et al. Base temperature, thermal time and phyllochron of escarole cultivation. Hortic. Bras. 36(4), 466–472 (2018).Article
Google Scholar
33.Forland, E. J., Skaugen, T. E., Benestad, R. E., Hanssen-Bauer, I. & Tveito, O. E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 36(3), 347–356 (2004).Article
Google Scholar
34.Gavilan, R. G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 50(2), 111–120 (2005).ADS
PubMed
Article
Google Scholar
35.Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12(2), 343–351 (2006).ADS
Article
Google Scholar
36.Kaleem, S., Hassan, F. & Saleem, A. Influence of environmental variations on physiological attributes of sunflower. Afr. J. Biotechnol. 8(15) (2009).37.Monselise, S. P., Brosh, P. & Costo, J. Off-season bloom in ‘Temple’ orange repressed by Gibberellin [Treatment]. HortScience (1981).38.Davies, F. S. & Albrigo, L. G. Citrus Crop Production Science in Agriculture (CAB International, 1994).
Google Scholar
39.Wheaton, T. A. Alternate bearing of citrus. Proc. Int. Semin. Citric. 1, 224–228 (1992).
Google Scholar
40.Flore, J. A. & Lakso, A. N. Environmental and physiological regulation of photosynthesis in fruit crops. Hortic. Rev. 11, 111–157 (1986).
Google Scholar
41.Goldschmidt, E. E. Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hort. Sci. 34, 1020–1024 (1999).
Google Scholar
42.Stander, O. P. J. 2018. Critical factors concomitant to the physiological development of alternate bearing in citrus (Citrus spp.) (Doctoral dissertation, Stellenbosch: Stellenbosch University) (2018).43.Iglesias, D. J. et al. Physiology of citrus fruiting. Braz. J. Plant. Physiol. 19(4), 333–362 (2007).CAS
Article
Google Scholar
44.Scholefield, P. B., Oag, D. R. & Sedgley, M. The relationship between vegetative and reproductive development in the mango in northern Australia. Aust. J. Agric. Res. 37(4), 425–433 (1986).Article
Google Scholar
45.Goldschmidt, E. E. & Golomb, A. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Am. Soc. Hort. Sci. 107, 206–208 (1982).
Google Scholar
46.Hodgson, R. W. & Cameron, S. H. Studies on the bearing behavior of the “Fuerte” avocado variety. Calif. Avocado Soc. Yrbk. 1935, 150–165 (1935).
Google Scholar
47.Seyyednejad, M., Ebrahimzadeh, H. & Talaie, A. Carbohydrate content in olive Zard cv and alternate bearing pattern. Int. Sugar J. 103(1226), 84–87 (2001).CAS
Google Scholar
48.Chacko, E. K., Reddy, Y. T. N. & Ananthanarayanan, T. V. Studies on the relationship between leaf number and area and fruit development in mango (Mangifera indica L). J. Hort. Sci. 57, 483–492 (1982).Article
Google Scholar
49.Nishikawa, F., Iwasaki, M., Fukamachi, H. & Matsumoto, H. The effect of fruit bearing on low-molecular-weight metabolites in stems of Satsuma Mandarin (Citrus unshiu Marc.). Hortic. J. 85(1), 23–29 (2016).CAS
Article
Google Scholar
50.Verreynne, J. S. & Lovatt, C. J. The effect of crop load on budbreak influences return bloom in alternate bearing ‘Pixie’mandarin. J. Am. Soc. Hortic. Sci. 134(3), 299–307 (2009).Article
Google Scholar
51.Dovis, V. L. et al. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’sweet orange trees with varying fruit load. Sci. Hortic. 174, 87–95 (2014).CAS
Article
Google Scholar
52.Martínez-Alcántara, B. et al. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. J. Plant Physiol. 176, 108–117 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
53.Monerri, C. et al. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Sci. Hortic. 129(1), 71–78 (2011).CAS
Article
Google Scholar
54.Khan, S. R. A. Citrus Quality to meet Global Demand. Pakissan.com. http://www.pakissan.com/english/agri.overview/citrus.quality.to.meet.global.demand (2008).55.Moss, G. I., Bellamy, J. & Bevington, K. B. Controlling biennial bearing. Austral. Citrus News 50, 6–7 (1974).
Google Scholar
56.Davis, K., Stover, E. & Wirth, F. Economic of fruit thinning: A review focusing on apple and citrus Production and marketing reports. Hort. Technol. 14(2), 282–289 (2004).Article
Google Scholar
57.Usman, M., Ashraf, I., Chaudhary, K. M. & Talib, U. Factors impeding citrus supply chain in central Punjab, Pakistan. Int. J. Agric. Ext. 6, 01–05 (2018).Article
Google Scholar
58.Ghafoor, U., Muhammad, S. & Chaudhary, K. M. Constrains in availability of inputs and information to citrus (Kinnow) growers of tehsil Toba Tek Singh, Pakistan. J. Agric. Sci. 45(4), 520–522 (2008).
Google Scholar
59.Choudhary, D., Singh, R., Dagar, C. S., Kumar, A. & Singh, S. Temperature based agrometeorological indices for Indian mustard under different growing environments in western Haryana, India. Int. J. Curr. Microbiol. App. Sci. 7(1), 1025–1035 (2018).Article
Google Scholar
60.Hardy, S. & Khurshid, T. Calculating heat units for citrus. In Primefacts (NSW Department of Primary Industries, 2007).
Google Scholar
61.Bootsma, A., Anderson, D. & Gameda, S. Potential impacts of climate change on agroclimatic indices in southern regions of Ontario and Quebec. Tech. Bull. ECORC Contrib. 03–284, 69–92 (2004).
Google Scholar
62.Gordeev, A. V., Kleschenko, A. D., Chernyakov, B. A. & Sirotenko, O. D. Bioclimatic Potential of Russia: Theory and Practice (Tovarischestvo nauchnykh izdanyi KMK, 2006) ((in Russian)).
Google Scholar
63.Karing, P., Kallis, A. & Tooming, H. Adaptation principles of agriculture to climate change. Climate Res. 12(2–3), 175–183 (1999).ADS
Article
Google Scholar
64.Chen, C. S. Digital computer simulation of heat units and their use for predicting plant maturity. Int. J. Biometeorol. 17(4), 329–335 (1973).ADS
Article
Google Scholar
65.Darby, H. M. & Lauer, J. G. Harvest date and hybrid influence on corn forage yield, quality, and preservation. Agron. J. 94(3), 559–566 (2002).Article
Google Scholar
66.Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45(4), 161–169 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
67.Fealy, R. & Fealy, R. M. The spatial variation in degree days derived from locational attributes for the 1961 to 1990 period. Ir. J. Agric. Food Res. 47, 1–11 (2008).
Google Scholar
68.Dolkar, D. et al. Effect of meteorological parameters on plant growth and fruit quality of Kinnow mandarin. Indian J. Agric. Sci. 88(7), 1004–1012 (2018).
Google Scholar
69.Ferree, D. C. & Warrington, I. J. (eds) Apples: Botany, Production, and Uses (CABI, 2003).
Google Scholar
70.Moretti, C. L., Mattos, L. M., Calbo, A. G. & Sargent, S. A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 43(7), 1824–1832 (2010).CAS
Article
Google Scholar
71.Chelong, I. A. & Sdoodee, S. Pollen viability, pollen germination and pollen tube growth of shogun (Citrus reticulate Blanco) under climate variability in southern Thailand. J. Agric. Technol 8, 2297–2307 (2012).
Google Scholar
72.García-Tejero, I. et al. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agric. Water Manag. 97(5), 614–622 (2010).Article
Google Scholar
73.Zekri, M. & Rouse, R. E. Citrus Problems in the Home Landscape (University of Florida Cooperative Extension Service, 2002).
Google Scholar
74.Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9(1), 1–12 (2019).CAS
Article
Google Scholar
75.Li, M., Yao, J., Guan, J. & Zheng, J. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmos. Res. 248, 105199 (2020).Article
Google Scholar
76.Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).PubMed
PubMed Central
Article
Google Scholar
77.Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article
Google Scholar
78.Brodribb, T. J. & McAdam, S. A. Passive origins of stomatal control in vascular plants. Science 331(6017), 582–585 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
79.Mott, K. A. & Peak, D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ. 36(5), 936–944 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Allen, L. H. & Vu, J. C. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric. For. Meteorol. 149(5), 820–830 (2009).ADS
Article
Google Scholar
81.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023–1027 (2016).ADS
CAS
Article
Google Scholar
82.De Carcer, P. S., Signarbieux, C., Schlaepfer, R., Buttler, A. & Vollenweider, P. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings. Environ. Exp. Bot. 140, 128–140 (2017).Article
Google Scholar
83.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3(1), 52–58 (2013).ADS
Article
Google Scholar
84.Franks, P. J., Cowan, I. R. & Farquhar, G. D. The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20(1), 142–145 (1997).Article
Google Scholar
85.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226(6), 1550–1566 (2020).PubMed
Article
PubMed Central
Google Scholar
86.do Carmo Araújo, S. A. et al. Photosynthetic characteristics of dwarf elephant grass (Pennisetum purpureum Schum.) genotypes, under stress water. Acta Sci. Anim. Sci. 32(1), 1–7 (2010).
Google Scholar
87.Shirke, P. A. & Pathre, U. V. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot. 55(405), 2111–2120 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
88.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47(2), 215–222 (2009).Article
Google Scholar
89.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 66(2), 203–211 (2009).CAS
Article
Google Scholar
90.Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737), 424–426 (1979).ADS
Article
Google Scholar
91.Bevington, K. B. & Castle, W. S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 110(6), 840–845 (1985).
Google Scholar
92.Khurshid, T. & Hutton, R. J. Heat unit mapping a decision support system for selection and evaluation of citrus cultivars. In International Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region 694, 265–269 (2004).93.Dalal, R. P. S. & Raj Singh, A. K. ,. Prevailing weather condition impact on different phenophases of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 497–505 (2017).Article
Google Scholar
94.Koshita, Y. Effect of temperature on fruit color development. In Abiotic Stress Biology in Horticultural Plants 47–58 (Springer, 2015).
Google Scholar
95.Sastry, P. S. N. & Chakravarty, N. V. K. Energy summation indices for wheat crop in India. Agric. Meteorol. 27, 45–48 (1982).Article
Google Scholar
96.Moriondo, M., Giannakopoulos, C. & Bindi, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104(3), 679–701 (2011).ADS
Article
Google Scholar
97.Hilgeman, R. H., Dunlap, J. A. & Sharp, P. O. Effect of time of harvest of ‘Valencia’ oranges in Arizona on fruit grade and size and yield, the following year. Proc. Amer. Soc. Hort. Sci. 90, 103–109. Fruit Load Limits Root Growth, Summer Vegetative Shoot Development, and Flowering in Alternatebearing ‘Nadorcott’ Mandarin Trees (1967).98.Dalal, R. P. S., Beniwal, B. S. & Sehrawat, S. K. Seasonal variation in growth, leaf physiology and fruit development in Kinnow, a Mandarin Hybrid. J. Plant Stud. 2(1), 72–77 (2013).
Google Scholar
99.Bower, J. P. The Pre-and post -Harvest Application Potential for Crop- Set TM and ISR2000TM on Citrus. http://en.engormix.com/MAagriculture/articles/th-pre (2007).100.Sharma, N., Sharma, S. & Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 6(5), 27–30 (2017).
Google Scholar
101.Goldschmidt, E. E. & Koch, K. E. Citrus. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relations (eds Zaminski, E. & Schaffer, A. A.) 797–823 (Marcel Dekker, 1996).
Google Scholar
102.Munoz-Fambuena, N. et al. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann. Bot. 108, 511–519 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
103.Shalom, L. et al. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Exp. Bot. 65(12), 3029–3044 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Smith, P. F. Collapse of ‘Murcott’ tangerine trees [Root starvation]. J. Am. Soc. Hortic. Sci. 101, 23–25 (1976).CAS
Google Scholar
105.Koshita, Y., Takahara, T., Ogata, T. & Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc). Sci. Hortic. 79(3–4), 185–194 (1999).CAS
Article
Google Scholar
106.Whiley, A. W., Rasmussen, T. S. & Wolstenholme, B. N. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. I. the early-maturing cv. Fuerte. Sci. Hortic. 66(1–2), 23–34 (1996).CAS
Article
Google Scholar
107.Syvertsen, J. P. & Lloyd, J. J. Citrus. Handb. Environ. Physiol. Fruit Crops 2, 65–99 (1994).
Google Scholar
108.Scholefield, P. B., Sedgley, M. & Alexander, D. M. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci. Hortic. 25(2), 99–110 (1985).Article
Google Scholar
109.Shalom, L. et al. Alternate bearing in citrus: Changes in the expression of flowering control genes and in global gene expression in on-versus off-crop trees. PLoS ONE 7(10), e46930 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
110.der Merwe, V. & Schalk, I. Studies on the Phenology and Carbohydrate Status of Alternate Bearing ‘Nadorcott’mandarin trees (Doctoral dissertation, Stellenbosch: Stellenbosch University, 2012).111.Ward, D. L. Factors affecting Pre-harvest Fruit Drop of Apple. Ph.D thesis. Virginia Polytechnic Institute and State University 143 (2004).112.Blanusa, T., Else, M. A., Davies, W. J. & Atkinson, C. J. Regulation of sweet cherry fruit abscission: The role of photo-assimilation, sugars and abscisic acid. J. Hortic. Sci. Biotechnol. 81(4), 613–620 (2006).CAS
Article
Google Scholar
113.Nartvaranant, P., Sornsanid, K. & Nuanpraluk, S. Preharvest Fruit Drop and Seasonal Variation of Plant Nutrient in ‘Thongdee’and ‘Khao Nam Pleung’pummelo on Nakhon Chaisri-Mae Klong river basin regions. Research Project Report (Thailand Research Fund, 2010).
Google Scholar
114.Ruiz, R., Garcıa-Luis, A., Monerri, C. & Guardiola, J. L. Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann. Bot. 87(6), 805–812 (2001).CAS
Article
Google Scholar
115.Atkinson, C. J. The effects of phloem girdling on the abscission of Prunus avium L. fruits. J. Hortic. Sci. Biotechnol. 77(1), 22–27 (2002).Article
Google Scholar
116.Spiegel-Roy, P. & Goldschmidt, E. E. The Biology of Citrus (Cambridge University Press, 1996).Book
Google Scholar
117.Thind, S. K. & Kumar, K. Integrated management of fruit drop in Kinnow mandarin. Indian J Hort 65(4), 497–499 (2008).
Google Scholar
118.Kumar, A., Avasthe, R. K., Pandey, B., Lepcha, B. & Rahman, H. Effect of fruit size and orchard location on fruit quality and seed traits of mandarin (Citrus reticulata) in Sikkim Himalayas. Indian J. Agric. Sci. 81(9), 821 (2011).CAS
Google Scholar
119.Ashraf, M. Y., Gul, A., Ashraf, M., Hussain, F. & Ebert, G. Improvement in yield and quality of Kinnow (Citrus deliciosa × Citrus nobilis) by potassium fertilization. J. Plant Nutr. 33, 1625–1637 (2010).CAS
Article
Google Scholar
120.Ibrahim, M., Ahmad, N., Anwar, S. A. & Majeed, T. Effect of micronutrients on citrus fruit yield growing on calcareous soils. In Advances in Plant and Animal Boron Nutrition 179–182 (2007).121.Razi, M. F. D., Khan, I. A. & Jaskani, M. J. Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pak. J. Agri. Sci. 48, 299–304 (2011).
Google Scholar
122.Valiente, J. I. & Albrigo, L. G. Flower bud induction of sweet orange trees [Citrus sinensis (L.) Osbeck]: Effect of low temperatures, crop load, and bud age. J. Am. Soc. Hortic. Sci. 129(2), 158–164 (2004).Article
Google Scholar
123.Yakushiji, H. et al. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 121, 466–472 (1996).CAS
Article
Google Scholar
124.Holland, N., Menezes, H. C. & Lafuente, M. T. Carbohydrates as related to the heat induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25, 181–191 (2002).CAS
Article
Google Scholar
125.Chelong, I. A. & Sdoodee, S. Effect of climate variability and degree-day on development, yield and quality of shogun (Citrus reticulata Blanco) in Southern Thailand. J. Nat. Sci. 47, 333–341 (2013).
Google Scholar
126.Khalid, M. S. et al. Geographical location and agro-ecological conditions influence kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruit quality. Int. J. Agric. Biol. 20, 647–654 (2018).Article
Google Scholar
127.Guardiola, J. L. & García-Luis, A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31(1–2), 121–132 (2000).CAS
Article
Google Scholar
128.Hield, H. Z. & Hilgeman, R. H. Alternate bearing and chemical fruit thinning of certain citrus varieties. Proc. Intl. Citrus Symp. 3, 1145–1153 (1969).
Google Scholar
129.Verreynne, J. S. The Mechanism and Underlying Physiology Perpetuating Alternate Bearing in ‘Pixie’mandarin (Citrus reticulata Blanco) (University of California, 2005).
Google Scholar
130.Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24(3), 1108–1122 (2018).ADS
Article
Google Scholar More