More stories

  • in

    Author Correction: Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism

    AffiliationsPhysics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USAMartina Dal Bello, Hyunseok Lee, Akshit Goyal & Jeff GoreAuthorsMartina Dal BelloHyunseok LeeAkshit GoyalJeff GoreCorresponding authorsCorrespondence to
    Martina Dal Bello or Jeff Gore. More

  • in

    Secondary predation constrains DNA-based diet reconstruction in two threatened shark species

    1.Diaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100 (2020).Article 
    CAS 

    Google Scholar 
    2.Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2, 188–196 (2020).Article 

    Google Scholar 
    3.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.IUCN. International Union for Conservation of Nature Annual Report 2018. (Gland, Switzerland, 2018).5.Walker, T. I., Hudson, R. J. & Gason, A. S. Catch evaluation of target, by-product and by-catch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. J. Northwest Atlantic Fishery Sci. 35, 505–530 (2005).Article 

    Google Scholar 
    6.Braccini, M., Van Rijn, J. & Frick, L. High post-capture survival for sharks, rays and chimaeras discarded in the main shark fishery of Australia?. PLoS ONE 7(1–9), e32547 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Sumpton, W. D., Taylor, S. M., Gribble, N. A., McPherson, G. & Ham, T. Gear selectivity of large-mesh nets and drumlines used to catch sharks in the Queensland shark control program. Afr. J. Mar. Sci. 33, 37–43 (2011).Article 

    Google Scholar 
    8.Broadhurst, M. K. & Cullis, B. R. Mitigating the discard mortality of non-target, threatened elasmobranchs in bather-protection gillnets. Fisheries Res. 222, 105435 (2020).Article 

    Google Scholar 
    9.Stevens, J. D. & Wayte, S. E. Case study: The bycatch of pelagic sharks in Australia’s tuna longline fisheries. In Sharks of the Open Ocean; Biology, Fisheries and Conservation (eds Camhi, M. D. et al.) 260–267 (Blackwell Publishing, 2009).
    Google Scholar 
    10.Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31(5), 395–407 (2016).PubMed 
    Article 

    Google Scholar 
    11.Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Raoult, V., Broadhurst, M. K., Peddemors, V. M., Williamson, J. E. & Gaston, T. F. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. J. Fish Biol. 95, 1430–1440 (2019).PubMed 
    Article 

    Google Scholar 
    13.Raoult, V. et al. Predicting geographic ranges of marine animal populations using stable isotopes: A case study of great hammerhead sharks in eastern Australia. Front. Mar. Sci. 7, 594636 (2020).Article 

    Google Scholar 
    14.Chapman, D. D. & Gruber, S. H. A further observation of the prey-handling behavior of the great hammerhead shark, Sphyrna mokarran: Predation upon the spotted eagle ray, Aetobatus narinari. Bull. Mar. Sci. 70, 947–952 (2002).
    Google Scholar 
    15.Cliff, G. Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 8. The great hammerhead shark Sphyrna mokarran (Rüppell). S. Afr. J. Mar. Sci. 15, 105–114 (1995).Article 

    Google Scholar 
    16.Strong, W. R., Snelson, F. F. & Gruber, S. H. Hammerhead shark predation on stingrays: An observation of prey handling on Sphyrna mokarran. Copeia 3, 836–840 (1990).Article 

    Google Scholar 
    17.Mourier, J., Planes, S. & Buray, N. Trophic interactions at the top of the coral reef food chain. Coral Reefs 32, 285–285 (2013).ADS 
    Article 

    Google Scholar 
    18.Roemer, R. P., Gallagher, A. J. & Hammerschlag, N. Shallow water tidal flat use and associated specialized foraging behavior of the great hammerhead shark (Sphyrna mokarran). Mar. Freshw. Behav. Physiol. 49, 235–249 (2016).Article 

    Google Scholar 
    19.Gallagher, A. J. & Klimley, A. P. The biology and conservation status of the large hammerhead shark complex: The great, scalloped and smooth hammerheads. Rev. Fish Biol. Fisheries 28, 777–794 (2018).Article 

    Google Scholar 
    20.Barry, K. P., Condrey, R. E., Driggers, W. B. & Jones, C. M. Feeding ecology and growth of neonate and juvenile blacktip sharks Carcharhinus limbatus in the Timbalier-Terrebone Bay complex, LA, U.S.A. J. Fish Biol. 73, 650–662 (2008).Article 

    Google Scholar 
    21.Tavares, R. Occurrence, diet and growth of juvenile blacktip sharks, Carcharhinus limbatus, from Los Roques Archipelago National Park, Venezuela. Carib. J. Sci. 44, 291–302 (2008).Article 

    Google Scholar 
    22.Plumlee, J. D. & Wells, R. J. D. Feeding ecology of three coastal shark species in the northwest Gulf of Mexico. Mar. Ecol. Prog. Ser. 550, 163–174 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Young, J. W. et al. The trophodynamics of marine top predators: Current knowledge, recent advances and challenges. Deep Sea Res. Part II 113, 170–187 (2015).Article 

    Google Scholar 
    24.Leigh, S. C., Papastamatiou, Y. & German, D. P. The nutritional physiology of sharks. Rev. Fish Biol. Fisheries 27, 561–585 (2017).Article 

    Google Scholar 
    25.Amundsen, P.-A. & Sánchez-Hernández, J. Feeding studies take guts—critical review and recommendations of methods for stomach contents analysis in fish. J. Fish Biol. 95, 1364–1373 (2019).PubMed 
    Article 

    Google Scholar 
    26.Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).PubMed 
    Article 

    Google Scholar 
    27.Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    28.Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).PubMed 
    Article 

    Google Scholar 
    30.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA for Biodiversity Research and Monitoring (Oxford University Press, 2018).
    Google Scholar 
    31.Barbato, M., Kovacs, T., Coleman, M., Broadhurst, M. & de Bruyn, M. Metabarcoding of stomach-content analyses: Comparing tissue and ethanol preservative-derived DNA. Ecol. Evol. 9(5), 2678–2687 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 540, 167–181 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Bessey, C. et al. DNA metabarcoding assays reveal a diverse prey assemblage for Mobula rays in the Bohol Sea, Philippines. Ecol. Evol. 9(5), 2459–2474 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Clarke, L. J., Trebilco, R., Walters, A., Polanowski, A. M. & Deagle, B. E. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen Axis. Deep Sea Res. Part II Top. Stud. Oceanogr. 174, 104494 (2020).CAS 

    Google Scholar 
    35.Sousa, L. L. et al. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Sci. Rep. 6, 28762 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Takahashi, M. et al. Partitioning of diet between species and life history stages of sympatric and cryptic snappers (Lutjanidae) based on DNA metabarcoding. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    37.Yoon, T.-H. et al. Metabarcoding analysis of the stomach contents of the Antarctic Toothfish (Dissostichus mawsoni) collected in the Antarctic Ocean. PeerJ 5, e3977 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Varennes, Y.-D., Boyer, S. & Wratten, S. D. Un-nesting DNA Russian dolls: The potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23, 3925–3933 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2(7), 150088 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7(14), 5435–5453 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4, 558–565 (2013).Article 

    Google Scholar 
    43.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8(1), 1–11 (2017).Article 
    CAS 

    Google Scholar 
    45.Mousavi-Derazmahalleh, M., Stott, A., Lines, R., Peverley, G., Nester, G., Simpson, T., Zawierta, M., De La Pierre, M., Bunce, M., & Christophersen, C. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA (eDNA) sequences exploiting Nextflow and Singularity. Mol. Ecol. Resour. 21, 1697–1704 (2020).Article 
    CAS 

    Google Scholar 
    46.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).MATH 
    Book 

    Google Scholar 
    47.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2017).48.Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).49.Compagno, L. J. V. Sharks of the Order Carcharhiniformes (Princeton University Press, 1988).
    Google Scholar 
    50.Johnsen, P. B. & Teeter, J. H. Behavioral responses of the bonnethead shark (Sphyrna tiburo) to controlled olfactory stimulation. Mar. Behav. Phys. 11, 283–291 (1985).Article 

    Google Scholar 
    51.Nakaya, K. Hydrodynamic function of the head in the hammerhead sharks (Elasmobranchii: Sphyrinidae). Copeia 2, 330–336 (1995).Article 

    Google Scholar 
    52.Leray, M., Agudelo, N., Mills, S. C. & Meyer, C. P. Effectiveness of annealing blocking primers versus restriction enzymes for characterization of generalist diets: unexpected prey revealed in the gut contents of two coral reef fish species. PLoS ONE 8(4), e58076 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Leray, M., Meyer, C. P. & Mills, S. C. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3, e1047 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Van Zinnicq Bergmann, M. P. M. et al. Elucidating shark diets with DNA metabarcoding from cloacal swabs. Mol. Ecol. Resour. 21, 1056–1067 (2021).PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Microbial community of soda Lake Van as obtained from direct and enriched water, sediment and fish samples

    1.Nyakeri, E. M., Mwirichia, R. & Boga, H. Isolation and characterization of enzyme-producing bacteria from Lake Magadi, an extreme soda lake in Kenya. J. Microbiol. Exp. 6(2), 57–68 (2018).
    Google Scholar 
    2.Grant, W. D. Alkaline environments and biodiversity. In Extremophiles (eds Gerday, E. C. & Glansdorff, N.) (UNESCO, Eolss Publishers, 2006).
    Google Scholar 
    3.Jones, B. E. & Grant, W. D. Microbial diversity and ecology of alkaline environments. In Adaptation to Exotic Environments (ed. Seckbach, J.) 177–190 (Kluwer Academic Publishers, 2000).
    Google Scholar 
    4.Antony, C. P. et al. Microbiology of Lonar Lake and other soda lakes. J. Int. Soc. Microb. Ecol. 7(3), 468–476 (2013).
    Google Scholar 
    5.Boros, E. & Kolpakova, M. A review of the defining chemical properties of soda lakes and pans: An assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS ONE 13(8), e0202205 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Grant, W. D. & Jones, B. E. Bacteria, archaea and viruses of soda lakes. In Soda lakes of East Africa (ed. Schagerl, M.) 97–148 (Springer p, 2016).
    Google Scholar 
    7.Lanzén, A. et al. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS ONE 8(8), e72577 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Asao, M., Pinkart, H. C. & Madigan, M. T. Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) Soda Lake. Environ. Microbiol. 13(8), 2146–2157 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Kulp, T. R. et al. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl. Environ. Microbiol. 72(10), 6514–6526 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Sorokin, D. Y. & Kuenen, J. G. Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol. Ecol. 52(3), 287–295 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Groth, I. et al. Bogoriella caseilytica gen. nov., sp. Nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int. J. Syst. Evol. Microbiol. 47(3), 788–794 (1997).CAS 

    Google Scholar 
    12.Glombitza, C. et al. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Front. Microbiol. 4, 1–11 (2013).Article 

    Google Scholar 
    13.Bilgili, A. et al. Van Gölü’nden avlanan inci kefali örneklerinde arsenik düzeyleri. Turk. J. Vet. Anim. Sci. 23(2), 367–371 (1999).MathSciNet 

    Google Scholar 
    14.Kremer, B., Kaźmierczak, J. & Kempe, S. Authigenic replacement of cyanobacterially precipitated calcium carbonate by aluminium-silicates in giant microbialites of Lake Van (Turkey). Sedimentology 66(1), 285–304 (2019).CAS 
    Article 

    Google Scholar 
    15.Reimer, A., Landmann, G. & Kempe, S. Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat. Geochem. 15(1–2), 195–222 (2009).CAS 
    Article 

    Google Scholar 
    16.Tomonaga, Y. et al. Porewater salinity reveals past lake-level changes in Lake Van, the Earth’s largest soda lake. Sci. Rep. 7(1), 1–10 (2017).CAS 
    Article 

    Google Scholar 
    17.Pecoraino, G., Dlessandro, W. & Inguaggiato, S. The other side of the coin: Geochemistry of alkaline lakes in volcanic areas. In Volcanic Lakes (eds Rouwet, D. et al.) 219–237 (Springer, 2015).Chapter 

    Google Scholar 
    18.Kaden, H. et al. Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van. Turkey. Water Resour. Res. https://doi.org/10.1029/2009WR008555 (2010).ADS 
    Article 

    Google Scholar 
    19.Landmann, G. & Kempe, S. Annual deposition signal versus lake dynamics: Microprobe analysis of Lake Van (Turkey) sediments reveals missing varves in the period 11.2–10.2 ka BP. Facies 51(1–4), 135–145 (2005).Article 

    Google Scholar 
    20.Degens, E. T. et al. A geological study of Lake Van, eastern Turkey. Geol. Rundsch. 73(2), 701–734 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Duckworth, A. W. et al. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol. 19(3), 181–191 (1996).CAS 
    Article 

    Google Scholar 
    22.Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18(5), 791–809 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Zargar, K. et al. Identification of a novel oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola echrlichii strain MLHE-1. J. Bacteriol. 192, 3755–3762 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14(7), 1635–1645 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Zorz, J. K. et al. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 10(1), 1–10 (2019).CAS 
    Article 

    Google Scholar 
    26.Matyugina, E. & Belkova, N. Distribution and diversity of microbial communities in meromictic soda Lake Doroninskoe (Transbaikalia, Russia) during winter. Chin. J. Oceanol. Limn. 33(6), 1378 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Liu, D. et al. Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int. J. Food Microbiol. 91, 297–304 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).Article 
    CAS 

    Google Scholar 
    29.Ionescu, D. et al. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS ONE 7, e38319 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Ondov, B. et al. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    32.Pruesse, E. et al. SINA: Accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14), 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Quast, C. et al. The silva ribosomal RNA gene database project: Improved data processing and webbased tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Rognes, T. et al. Vsearch: A versatile open source tool for metagenomics. Peer J. 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Hammer, Ø., Harper, D. A. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
    Google Scholar 
    36.Duckworth, A. W. et al. Halomonas magadii sp. Nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles 4(1), 53–60 (2000).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Xin, H. et al. Natronobacterium nitratireducens sp. nov., a aloalkaliphilic archaeon isolated from a soda lake in China. Int. J. Syst. Evol. Microbiol. 51(5), 1825–1829 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Joshi, A. et al. Nitrincola tapanii sp. nov., a novel alkaliphilic bacterium from An Indian Soda Lake. Int. J. Syst. Evol. Microbiol. 70(2), 1106–1111 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Menes, R. J. et al. Bacillus natronophilus sp. nov., an alkaliphilic bacterium isolated from a soda lake. Int. J. Syst. Evol. Microbiol. 70(1), 562–568 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Vavourakis, C. D. et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome. 6(1), 1–18 (2018).Article 

    Google Scholar 
    41.Yigit, A. et al. Determination of water quality by ion characterization of Van Lake Water. Iğdır Univ. J. Inst. Sci. Tech. 7(4), 169–179. https://doi.org/10.21597/jist.2017.210 (2017).Article 

    Google Scholar 
    42.Bilgili, A. et al. The natural quality of Van Lake and the levels of some heavy metals in grey mullet (Chalcalburus tariehi, Pallas 1811) samples taken from this lake. Ankara Üniv Vet Fak Dergisi 42, 445–450 (1995).
    Google Scholar 
    43.Demir Yetis, A. & Ozguven, A. Investigation of heavy metal pollution in surface waters of the Van Lake Edremit coast. Uludağ Univ. J. Fac. Eng. 25(2), 831–847. https://doi.org/10.17482/uumfd.752460 (2020).Article 

    Google Scholar 
    44.Ersoy Omeroglu, E. & Karaboz, I. Characterization and arsenic-tolerance potential of Halomonas sp. from Van Lake, Turkey. VI Congress of Macedonian Microbiologists With International Participation, 30 May–6 June, Abstract Book, pp. 200–201 (2018).45.Ersoy Omeroglu, E. Evaluation of arsenic pollution and the effect of arsenic on Branchybacterium paraconglomeratum in Van Lake. 1st World Conference On Sustaninable Life Sciences WOCOLS 2019, 30 June–7 July, Abstract Book, p. 17 (2019).46.Reimer, A. Hydrochemie und Geochemie der Sedimente und Porenwa¨sser des hochalkalinen Van Sees in der Osttu¨rkei. Dissertation, Facult Geosci Univ Hamburg, 136 pp, unpublished, (1995).47.Kempe, S. et al. Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605–608 (1991).ADS 
    Article 

    Google Scholar 
    48.Kazmierczak, J. & Kempe, S. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001. Naturwissenschaften 90, 167–172 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Lopez-Garcia, P. et al. Bacterial diversity and carbonate precipitation in the microbialites of the highly alkaline Lake Van, Turkey. Extremophiles 9, 263–274 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Poyraz, N. & Mutlu, M. B. Characterization of microbial populations of Lake Van by 16S metagenomics study. ESTUJST-A. 9(1), 80–88 (2020).
    Google Scholar 
    51.Poyraz, N. & Mutlu, B. M. Alkaliphilic bacterial diversity of Lake Van/Turkey. Biological Biodivers. Conserv. 10(1), 92–103 (2017).
    Google Scholar 
    52.Sen, F. et al. Endemic fish species of Van Lake basin. YYU J. Agr. Sci. 28, 63–70 (2018).
    Google Scholar 
    53.Danulat, E. & Kempe, S. Nitrogenous waste excretion at extremely alkaline pH: The story of Chalcalburnus tarichi (Cyprinidae), endemic to Lake Van, Eastern Turkey. Fish Physiol. Biochem. 9, 377–386 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Bostanci, D. & Polat, N. Age and growth of Alburnus tarichi (Güldenstädt, 1814): An endemic fish species of Lake Van (Turkey). J. Appl. Ichthyol. 27, 1346–1349 (2011).Article 

    Google Scholar 
    55.Burger, J. et al. Armenian Gull (Larus armenicus). Handbook of the Birds of the World Alive, Lynx Edicions, Barcelona (2015).56.Oremland, R. S. et al. Methanogenesis in Big Soda Lake, Nevada: An alkaline, moderately hypersaline desert lake. Appl. Environ. Microbiol. 43, 462–468 (1982).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Iversen, N. et al. Big Soda Lake (Nevada): 3: Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32, 804–814 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Oremland, R. S. et al. The microbial arsenic cycle in Mono Lake, California. FEMS Microb. Ecol. 48, 15–27 (2004).CAS 
    Article 

    Google Scholar 
    59.Sorokin, D. Y. et al. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 67, 528–538 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Sorokin, D. Y. et al. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibiricum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int. J. Syst. Evol. Microbiol. 51, 565–580 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Sorokin, D. Y. et al. Thioalkalivibrio thiocyanooxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria from the soda lakes able to grow with thiocyanate. Int. J. Syst. Evol. Microbiol. 52, 657–664 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Gorlenko, V. M. et al. Ectothiorhodospira variabilis sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes. Int. J. Syst. Evol. Microbiol. 69, 558–564 (2009).
    Google Scholar 
    63.Mwirichia, R. et al. Bacterial diversity in the haloalkaline Lake Elmenteita, Kenya. Curr. Microbiol. 62, 209–221 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Mesbah, N. M. et al. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi an Natrun, Egypt. Microbial Ecol. 54, 598–616 (2007).CAS 
    Article 

    Google Scholar 
    65.Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Deshmukh, K. B. et al. Bacterial diversity of Lonar soda lake of India. Indian J. Microbiol. 51, 107–111 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Zhao, D. et al. Abundant taxa and favorable pathways in the microbiome of soda-saline lakes in Inner Mongolia. Front. Microbiol. 11, 1740 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Lavrentyeva, E. V. et al. Prokaryotic diversity in the biotopes of the Gudzhirganskoe saline lake (Barguzin Valley, Russia). Mikrobiologiya 89, 359–368 (2020).CAS 

    Google Scholar 
    69.Glaring, M. A. et al. Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS ONE 10, e0124863 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Tavormina, P. L. et al. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’clade of marine methanotrophs. Int. J. Syst. Evol. Microbiol. 65(1), 251–259 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Sorokin, D. Y. et al. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: Two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12, 431–439 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Holmes, D. E. et al. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 70, 6023–6030 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    73.Pikuta, E. V. et al. Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. Int. J. Syst. Evol. Microbiol. 59, 2302–2307 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Stams, A. J. M. & Hansen, T. A. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud: Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137, 329–337 (1984).CAS 
    Article 

    Google Scholar 
    75.Finegold, S. M. et al. Anaerofustis stercorihominis gen. nov., sp. nov., from human feces. Anaerobe 10, 41–45 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Matthies, C. et al. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int. J. Syst. Evol. Microbiol. 50, 1591–1594 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Higashiguchi, D. T. et al. Pilibacter termitis gen. nov., sp. nov., a lactic acid bacterium from the hindgut of the Formosan subterranean termite (Coptotermes formosanus). Int. J. Syst. Evol. Microbiol. 56, 15–20 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Labrenz, M. et al. Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int. J. Syst. Evol. Microbiol. 59, 1935–1940 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Sorokin, D. Y. et al. Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. Nov. and Nitriliruptorales ord. nov. Int. J. Syst. Evol. Microbiol. 59, 248–253 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Shahinpei, A. et al. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family “Saccharospirillaceae”. Int. J. Syst. Evol. Microbiol. 64, 3610–3615 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    81.Munson, M. A. et al. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacteriol. 41, 566–568 (1991).Article 

    Google Scholar  More

  • in

    Current contrasting population trends among North American hummingbirds

    1.United Nations Environment Programme. Making Peace With Nature (Tech. Rep, United Nations Environment Programme, 2021).2.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Urban, M. C. Accelerating extinction risk from climate change. Science. (80-. ) 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Rosenberg, K. V. et al. Decline of the North American avifauna. Science. (80-. ) 366, 120–124. https://doi.org/10.1126/science.aaw1313 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219. https://doi.org/10.1371/journal.pbio.0050157 (2007).CAS 
    Article 

    Google Scholar 
    6.Abrahamczyk, S. & Renner, S. S. The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evol. Biol.https://doi.org/10.1186/s12862-015-0388-z (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Grant, V. & Grant, K. A. A Hummingbird-Pollinated Species of Boraginaceae in the Arizona Flora. Proc. Natl. Acad. Sci. 66, 917–919. https://doi.org/10.1073/pnas.66.3.917 (1970).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: A meta-analysis. Front. Ecol. Environ. 16, 82–90. https://doi.org/10.1002/fee.1763 (2018).Article 

    Google Scholar 
    9.McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916. https://doi.org/10.1016/j.cub.2014.03.016 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & Ziolkowski, D. J. The North American breeding bird survey 1966–2011: Summary analysis and species accounts. N. Am. Fauna 79, 1–32. https://doi.org/10.3996/nafa.79.0001 (2013).Article 

    Google Scholar 
    11.Bairlein, F. Migratory birds under threat. Science (80-. ). 354, 547–548. https://doi.org/10.1126/science.aah6647 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Battey, C. J. Ecological release of the Anna’s Hummingbird during a Northern range expansion. Am. Nat. 194, 306–315. https://doi.org/10.1086/704249 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Clark, C. J. EBird records show substantial growth of the Allen’s Hummingbird (Selasphorus sasin sedentarius) population in urban Southern California. Condor 119, 122–130. https://doi.org/10.1650/CONDOR-16-153.1 (2017).Article 

    Google Scholar 
    14.Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Glob. Environ. Change 23, 733–748. https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).Article 

    Google Scholar 
    15.Gallant, A. L., Loveland, T. R., Sohl, T. L. & Napton, D. E. Using an ecoregion framework to analyze land-cover and land-use dynamics. Environ. Manag.https://doi.org/10.1007/s00267-003-0145-3 (2004).Article 

    Google Scholar 
    16.Williamson, S. L. A Field Guide to Hummingbirds of North America (Peterson Field Guide Series) (Houghton Mifflin Company, 2002).
    Google Scholar 
    17.Panjabi, A. O. et al. Avian Conservation Assessment Database Handbook Version 2021. Tech. Rep. (Partners in Flight Technical Series, Bird Conservancy of the Rockies, 2021).
    Google Scholar 
    18.Gillespie, C., Contreras-Martinez, S., Bishop, C. & Alexander, J. Rufous Hummingbird: State of the Science and Conservation : simplebooklet.com. Tech. Rep., (Western Hummingbird Partnership, 2020).19.International Union for Conservation of Nature. IUCN Red List Categories and Criteria: Version 3.1. Tech. Rep. (IUCN Species Survival Commission, 2001).
    Google Scholar 
    20.Lehikoinen, A. Climate change, phenology and species detectability in a monitoring scheme. Popul. Ecol. 55, 315–323. https://doi.org/10.1007/s10144-012-0359-9 (2013).Article 

    Google Scholar 
    21.Massimino, D., Harris, S. J. & Gillings, S. Phenological mismatch between breeding birds and their surveyors and implications for estimating population trends. J. Ornithol. 162, 143–154. https://doi.org/10.1007/s10336-020-01821-5 (2021).Article 

    Google Scholar 
    22.McGrath, L. J., van Riper III, C. & Fontaine, J. J. Flower power: Tree flowering phenology as a settlement cue for migrating birds. J. Anim. Ecol. 78, 22–30. https://doi.org/10.1111/j.1365-2656.2008.01464.x (2009).Article 
    PubMed 

    Google Scholar 
    23.Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108. https://doi.org/10.1111/j.1365-2656.2009.01610.x (2010).Article 
    PubMed 

    Google Scholar 
    24.Courter, J. R. Changes in spring arrival dates of rufous hummingbirds (Selasphorus rufus) In Western North America in the past century. Wilson J. Ornithol. 129, 535–544. https://doi.org/10.1676/16-133.1 (2017).Article 

    Google Scholar 
    25.Rooney, T. Deer impacts on forest ecosystems: A North American perspective. Forestry 74, 201–208. https://doi.org/10.1093/forestry/74.3.201 (2001).Article 

    Google Scholar 
    26.Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147. https://doi.org/10.2307/annurev.ecolsys.35.021103.30000006 (2004).Article 

    Google Scholar 
    27.Decalesta, D. S. Effect of white-tailed deer on songbirds within managed forests in Pennsylvania. J. Wildl. Manag. 58, 711–718 (1994).Article 

    Google Scholar 
    28.English, S. G. et al. Neonicotinoid pesticides exert metabolic effects on avian pollinators. Sci. Rep. 11, 2914. https://doi.org/10.1038/s41598-021-82470-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Bishop, C. A. et al. Determination of neonicotinoids and butenolide residues in avian and insect pollinators and their ambient environment in Western Canada (2017, 2018). Sci. Total Environ. 737, 139386. https://doi.org/10.1016/j.scitotenv.2020.139386 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Graves, E. E. et al. Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 26, 15458–15466. https://doi.org/10.1007/s11356-019-04903-x (2019).CAS 
    Article 

    Google Scholar 
    31.Hill, G. E., Sargent, R. R. & Sargent, M. B. Recent change in the winter distribution of Rufous Hummingbirds. Auk 115, 240–245. https://doi.org/10.2307/4089135 (1998).Article 

    Google Scholar 
    32.Smith, A. C. & Edwards, B. P. M. North American Breeding Bird Survey status and trend estimates to inform a wide range of conservation needs, using a flexible Bayesian hierarchical generalized additive model. Condor 123, 1–16. https://doi.org/10.1093/ornithapp/duaa065 (2021).Article 

    Google Scholar 
    33.Wilson, S. et al. Prioritize diversity or declining species? Trade-offs and synergies in spatial planning for the conservation of migratory birds in the face of land cover change. Biol. Conserv. 239, 108285. https://doi.org/10.1016/j.biocon.2019.108285 (2019).Article 

    Google Scholar 
    34.Toledo-Aceves, T., Meave, J. A., González-Espinosa, M. & Ramírez-Marcial, N. Tropical montane cloud forests: Current threats and opportunities for their conservation and sustainable management in Mexico. J. Environ. Manag. 92, 974–981. https://doi.org/10.1016/j.jenvman.2010.11.007 (2011).Article 

    Google Scholar 
    35.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science (80-. ). 342, 850–853. https://doi.org/10.1126/SCIENCE.1244693 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Westerling, A. L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci.https://doi.org/10.1098/RSTB.2015.0178 (2016).Article 

    Google Scholar 
    37.Neeraja, U. V., Rajendrakumar, S., Saneesh, C. S., Dyda, V. & Knight, T. M. Fire alters diversity, composition, and structure of dry tropical forests in the Eastern Ghats. Ecol. Evol. 11, 6593–6603. https://doi.org/10.1002/ECE3.7514 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Courter, J. R., Johnson, R. J., Bridges, W. C. & Hubbard, K. G. Assessing migration of Ruby-throated Hummingbirds (Archilochus colubris) at broad spatial and temporal scales at broad spatial and temporal scales. Auk 130, 107–117. https://doi.org/10.1525/auk.2012.12058 (2013).Article 

    Google Scholar 
    39.Greig, E. I., Wood, E. M. & Bonter, D. N. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc. R. Soc. B Biol. Sci.https://doi.org/10.1098/rspb.2017.0256 (2017).Article 

    Google Scholar 
    40.Jepson, W. L. & Hickman, J. C. The Jepson manual: Higher plants of California (University of California Press, 1993).
    Google Scholar 
    41.Scarfe, A. & Finlay, J. C. Rapid second nesting by Anna’s Hummingbird near its Northern breeding limit. West. Birds 32, 131–133 (2001).
    Google Scholar 
    42.Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).
    Google Scholar 
    43.Thogmartin, W. E. et al. A review of the population estimation approach of the North American landbird conservation plan. Auk 123, 892–904. https://doi.org/10.1093/auk/123.3.892 (2006).Article 

    Google Scholar 
    44.Carter, M. F., Hunter, W. C., Pashley, D. N. & Rosenberg, K. V. Setting conservation priorities for landbirds in the United States: The partners in flight approach. Auk 117, 541–548. https://doi.org/10.1093/auk/117.2.541 (2000).Article 

    Google Scholar 
    45.Sauer, J. R. & Link, W. A. Analysis of the North American breeding bird survey using hierarchical models. Auk 128, 87–98. https://doi.org/10.1525/auk.2010.09220 (2011).Article 

    Google Scholar 
    46.Sauer, J. R., Niven, D. K., Pardieck, K. L., Ziolkowski, D. J. & Link, W. A. Expanding the North American Breeding Bird Survey analysis to include additional species and regions. J. Fish Wildl. Manag. 8, 154–172. https://doi.org/10.3996/102015-JFWM-109 (2017).Article 

    Google Scholar 
    47.Stanton, J. C., Blancher, P., Rosenberg, K. V., Panjabi, A. O. & Thogmartin, W. E. Estimating uncertainty of North American landbird population sizes. Avian Conserv. Ecol.https://doi.org/10.5751/ACE-01331-140104 (2019).Article 

    Google Scholar 
    48.Schuster, R. et al. Optimizing the conservation of migratory species over their full annual cycle. Nat. Commun.https://doi.org/10.1038/s41467-019-09723-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Johnston, A. et al. Abundance models improve spatial and temporal prioritization of conservation resources. Ecol. Appl. 25, 1749–1756. https://doi.org/10.1890/14-1826.1 (2015).Article 
    PubMed 

    Google Scholar 
    50.Robbins, C., Bystrak, D. & Geissler, P. The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. Tech. Rep. (U.S. Fish and Wildlife Service, 1986).51.R Core Team. R: A language and environment for statistical computing (Version 4.0.3) [Computer software] (2020).52.Smith, A. C., Hudson, M.-A., Aponte, V. & Francis, C. North American Breeding Bird Survey—Canadian Trends Website. Data-version 2017 (2019).53.Edwards, B. P. M. & Smith, A. C. bbsBayes: An R package for hierarchical Bayesian analysis of North American breeding bird survey data. J. Open Res. Softw.https://doi.org/10.5334/JORS.329 (2021).Article 

    Google Scholar 
    54.North American Bird Conservation Initiative. Bird Conservation Region Descriptions. Tech. Rep. (U. S. Fish and Wildlife Service, 2000).
    Google Scholar  More

  • in

    Atypical for northern ungulates, energy metabolism is lowest during summer in female wild boars (Sus scrofa)

    Ethical statementThe present study was discussed and approved by the ethics and animals’ welfare committee of the University of Veterinary Medicine, Vienna, Austria, in accordance with good scientific practice and national legislation (GZ: BMWFW-68.205/0151-WF/V/3b/2016 and GZ: BMWFW-68.205/0224-WF/V/3b/2016). All methods were carried out in accordance with relevant guidelines and regulations. We confirm that the study was carried out in compliance with the ARRIVE guidelines. No plants or plant parts were used in this study.Animals and study areaThe study animals were kept in an outdoor enclosure (~ 55 ha, for details see “Supplementary Material”). The study enclosure was covered with a deciduous forest, mainly Turkey oak (Quercus cerris) and pubescent oak (Quercus pubescens) and included only few meadow patches. For the present study ten adult females, were used. We concentrated on females only because the live capture and handling of males are hampered by the large size and ferocity of boars. Also, due to competition and high levels of aggression between males during rut, the stocking of the enclosure was strongly female biased. During the study period (12/2016–01/2019), the animal density was ~ 1 adult female/ha plus up to 20 males (total) of different ages. Due to this relatively high density, animals were supplemented with 1–1.5 kg corn/individual once a day (at 2:00–14:00 h) at two feeding areas, each ~ 40 × 20 m. The enclosure was part of a game reserve, which was enclosed by 2.5 m high, solid, non-transparent fencing and was closed for the public. Thus, the study site provided an environment without disturbances due to hikers, bikers or straying dogs. There were no battue hunts or other disturbances due to hunting or forest management activities during the study period in the enclosure.Animals were trapped once a year in autumn within the feeding sites to collect data on reproductive success and body condition of females and to separate some of them for implantation/explantation of loggers. While feeding, we closed the access gates and released the boars one by one trough a wooden corridor back into the enclosure. While in the wooden corridor we recorded the body mass of each individual (Gallagher SmartScale® 500, Groningen, Netherlands). Due to management reasons the juveniles (born in spring) were removed from the enclosure during this procedure.Implantation of temperature and heart rate loggersWe implanted a heart rate logger (DST centi-HRT, Star-Oddi, Gardabaer, Iceland) and two custom-built temperature loggers in each of ten female wild boars in October/November 2016 and 2017 (age 5 and 6 years). All details about surgery techniques and anaesthesia protocols are provided in the “Supplementary Material”. Explantations were carried out approximately one year after implantations. The last explanation was carried out in January 2019. One female was implanted in two consecutive years. Mean body mass at date of implantation for all females was 71.8 ± 15.5 kg.The heart rate logger was adjusted to record data at a time interval of 12 min to cover one year of data recording. To remove outliers, all initial data from these recorders were subjected to a running median over five consecutive values. The HR recorder was positioned subcutaneously, in proximity to the heart on the lateral rib cage, behind the moving area of the elbow, to avoid rubbing, or inserted and tethered into the ventral subperitoneal space caudal of the xiphoid process of the sternum.The self-built temperature loggers were covered with inert surgical wax and had a weight of ~ 8 g. Time interval of recording was 4 min, the accuracy 0.01 °C. One of the two temperature loggers had an especially flat shape (3.4 × 1.9 × 0.5 cm) to fit smoothly into the subcutaneous neck region. The second temperature logger was placed into the intraperitoneal cavity, tethered at the Linea alba (diameter = 2.1 cm, height = 1.2 cm). For details on surgery, see “Supplement”.We collected and evaluated a mean of 227.45 ± 160.69 days of heart rate recording per individual (SD, n = 11: 33 days, 58 days, 79 days, 89 days, 143 days, 189 days, 272 days, 345 days, 412 days, 421 days, 461 days), and a mean of 382.00 ± 100.17 days (SD), of subcutaneous logger recording per individual (n = 8: 143 days, 363 days, 411 days, 414 days, 419 days, 421 days, 424 days, 461 days). From the loggers implanted in the abdominal cavity we collected 338.71 ± 117.01 days (SD) per individual (n = 10: 140 days, 143 days, 363 days, 364 days, 411 days, 419 days, 421 days, 421 days, 424 days, 461 days). The hourly means of monitored heart rates of each animal over the course of the year are shown in Supplementary Fig. S1.Activity dataTo record the activity of animals, a telemetry system (Smartbow System, Zoetis, New Jersey, USA) was installed around the two neighbouring feeding areas and two close water ponds in the enclosure. The system consisted of a central solar power and computing station and ten receivers located at the height of 2–3 m. Part of the system were ear-tags (34 g; 52 mm × 36 mm × 17 mm, for details see “Supplementary Material”). The accelerometer (located inside ear-tags) measured triaxial acceleration (x, y, z). As an estimate of locomotor activity (ACT), we computed the total acceleration vector from sqrt (x2 + y2 + z2).Climate and mastThe study site in Eastern Austria (altitude 130 m) is generally characterised by a Pannonian climate. According to long-term climate records, the mean annual temperature is 10 °C in combination with a mean precipitation of 600–700 mm and 1898 h of sunshine per year (ZAMG, 1971–2000).We recorded ambient temperature (Ta) and black bulb temperature (Tab) at 2 m height directly at the study site (Vantage Pro 2 with black bulb extension, Davis Instruments, Hayward, USA).To assess the extent of the acorn mast, each autumn seven nets, 4 × 4 m, were set up to collect acorns at random locations. The nets were regularly emptied between Sept. and Nov. each year, and the collected acorns were dried and weighed. In the autumns prior to the study (2016) and during both full study years (2017/2018) there was seeding of at least part of the oaks. Over ~ 90 days in each autumn we collected 52.4 g/m2, 134.8 g/m2, and 37.5 g/m2 acorn in 2016, 2017, and 2018, respectively. Thus, 2017 was a full mast year but there were acorns available in autumn throughout the study period.Data analysisTo facilitate handling of data and to reduce autocorrelation we compiled and evaluated hourly means for all data, i.e., heart rates (HR; see Suppl. Fig. S1), intraperitoneal and subcutaneous body temperature (Tbip and Tbsc, respectively) and activity (ACT), as well as ambient air temperature (Ta) and black-bulb temperature (Tab). We further tested for effects of day of year (DOY) and hour of day (HOUR). We did not assess the influence of environmental conditions in different years, because due to logger-failures and thus scarcity of heart rates, all data were pooled for different years (with similarly warm conditions and food available year-round). Also, we did not further evaluate daily rhythms, because animals were always fed in the early afternoon, which may have influenced their timing.We investigated the effects of season (DOY), hour of day (HOUR), and Ta on the response variables HR, Tbip, Tbsc, and ACT. We additionally used Tbip, Tbsc, and ACT as predictors for HR. As many of the relationships between these were non-linear, we used general additive mixed models (GAMMs), as implemented in package mgcv60 in R61. This function fits non-linear splines to the data, which are penalized for their “wiggliness”, i.e., the number of turning points in the fit. Because the data were repeated measurements, we calculated for all response variables mixed models with an intercept for each animal ID as a random factor (using s (ID, bs = ”re”)). Hence, these mixed models allowed for differences in the mean level of heart rates, temperatures and activities, between individuals. All residuals of models were approximately normally distributed, as inspected by normal quantile–quantile plots. Hourly means of the response variables contained various degrees of autocorrelation. This was corrected by including autoregressive order 1 (AR1) error models in GAMM-functions, which successfully reduced the autocorrelation at lag 1 to nonsignificant levels. This was confirmed by comparing the autocorrelation function of model residuals (ACF) before and after their correction. To illustrate the effects of independent variables, we show population-level predictions from GAMMs. These graphs contain rug plots to illustrate the distribution of independent variables. Because these plots were too dense for all original data (resulting in black bars), we show uniform random samples (n = 1000) from each independent predictor variable.Because hourly mean data consisted of ~ 117,000 observations we used the mgcv function “bam”, which uses numerical methods designed for large datasets. To fit non-linear functions to predictors, we used the default thin plate splines. Only the cyclic variables DOY and HOUR were modelled using cubic cyclic splines, which are guaranteed to have identical start- and endpoints (e.g., at Jan 1 and Dec 31). GAMMs were always fitted using method REML. As Tbip and Tbsc were only moderately correlated (r = 0.30), both were entered simultaneously as independent variables in the model on heart rate.We did not use partial regression plots from multiple regressions that included activity. This is because activity could only be recorded partly, in the vicinity of telemetry receivers. Thus, models that include ACT as well as all other predictors simultaneously, were restricted to ~ 7% of the data. However, we still used a full multiple regression model HR for the purpose of assessing relative variable importance (of DOY, HOUR, Ta, Tbip, Tbsc, and ACT). F-values from this model provide an indication of the importance of different predictors.To model a possible role of solar radiation and basking we computed the difference between Tab and Ta, called Tdiff, which represents an index of radiation. We used again GAMMs to test if Tdiff would affect Tbip, Tbsc and HR after adjusting for effects of Ta, hour of day, and the random factor animal ID.For a comparison of species we also computed monthly means and SEMs of HR in wild boars, and created a graph of seasonal time courses in other ungulates as published in Arnold2 that were kindly provided by the author. If not stated otherwise we provide means ± SEM. More

  • in

    A spotlight on seafood for global human nutrition

    NEWS AND VIEWS
    15 September 2021

    A spotlight on seafood for global human nutrition

    What role might seafood have in boosting human health in diets of the future? A modelling study that assesses how a rise in seafood intake by 2030 might affect human populations worldwide offers a way to begin to answer this.

    Lotte Lauritzen

     ORCID: http://orcid.org/0000-0001-7184-5949

    0

    Lotte Lauritzen

    Lotte Lauritzen is in the Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    An adequate and sustainable supply and intake of nutritious food is essential to tackle major global health issues such as dietary deficiencies. Seafood, which in this context includes fish, shellfish and marine mammals, is rich in micronutrients (such as vitamin A, iron, vitamin B12 and calcium) needed to combat the most common such deficiencies. Seafood is also the dominant source of marine omega-3 fatty acids, which have many health-promoting effects. Writing in Nature, Golden et al.1 present ambitious research that puts seafood centre stage.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02436-3

    References1.Golden, C. et al. Nature https://doi.org/10.1038/s41586-021-03917-1 (2021).Article 

    Google Scholar 
    2.Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2020. Sustainability in Action (FAO, 2020).3.FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All (FAO, 2021).4.Kumssa, D. B. et al. Sci. Rep. 5, 10974 (2015).PubMed 
    Article 

    Google Scholar 
    5.Mithal, A. et al. Osteoporosis Int. 20, 1807–1820 (2009).Article 

    Google Scholar 
    6.Vuholm, S. et al. Eur. J. Nutr. 59, 1205–1218 (2020).PubMed 
    Article 

    Google Scholar 
    7.Gebauer, S. K., Psota, T. L., Harris, W. S. & Kris-Etherton, P. M. Am. J. Clin. Nutr. 83, 1526S–1535S (2006).PubMed 
    Article 

    Google Scholar 
    8.Djuricic, I. & Calder, P. C. Nutrients 13, 2421 (2021).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Aquatic foods to nourish nations

    Transforming the global food system

    How to buffer against an urban food shortage

    See all News & Views

    Subjects

    Ecology

    Environmental sciences

    Latest on:

    Ecology

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Preventing spillover as a key strategy against pandemics
    Correspondence 14 SEP 21

    Puffins and friends suffer in washing-machine waves
    Research Highlight 13 SEP 21

    Environmental sciences

    Anthropocene: event or epoch?
    Correspondence 14 SEP 21

    Spacefarers, protect our planet from falling debris
    Correspondence 07 SEP 21

    Australian bush fires and fuel loads
    Correspondence 31 AUG 21

    Jobs

    Tenure-Track Faculty Position

    Yale School of Medicine (YSM)
    New Haven, CT, United States

    Postdoctoral Associate – Mucosal Immunology

    The Scripps Research Institute (TSRI) – Scripps Florida
    Jupiter, FL, United States

    Assitant Editor, Genes & Development

    Cold Spring Harbor Laboratory (CSHL)
    Cold Spring Harbor, United States

    Open Rank Professor in Virology

    American University
    Washington, DC, United States More

  • in

    Identifying and characterizing pesticide use on 9,000 fields of organic agriculture

    We first identify the location of organic crop fields in Kern County and then estimate whether status as organic versus conventional fields determines pesticide use (Fig. 5).Fig. 5: Methodology overview.Figure outlines the main method steps from identifying organic fields to creating the analysis data to performing the statistical analyses. All images shown are simplified, visual representations of the datasets. CDFA refers to the California Department of Food and Agriculture, while APN is the Assessor’s Parcel Number and TRS is the Township-Range-Section. Identifying organic fields combines the created CDFA organic APN, CDFA organic TRS, and organic pesticides data layers together to create the final organic versus conventional fields layer used in the analysis data section. All analysis data layers are then inputted into the various statistical analyses.Full size imageIdentifying organic fieldsWe identified organic fields using a combination of California Department of Food and Agriculture (CDFA) records and Kern County Agricultural Commissioner’s Office spatial data (“fields shapefiles”) and pesticide use records. No single source was complete, and as such, we evaluated several different approaches to identifying organic fields.California Department of Food and Agriculture (CDFA) recordsData on the location of organic fields, per the California State Organic Program, for 2013–2019 was obtained by request from the California Department of Food and Agriculture (CDFA). The CDFA, through the State Organic Program, requires annual registration of certified organic producers who have an expected gross sale of over $5000. We were specifically interested in the pesticide aspects of organic production, which is governed in our study region by the USDA’s National List of Allowed and Prohibited Substances. The National List of Allowed and Prohibited Substances delineates which synthetic substances can be used and which natural substances cannot be used for pest control in US organic production. Besides substances specifically (dis)allowed on the National List, allowed substances include non-synthetic biological, botanical, and mineral inputs. Field location data were in the form of either Assessor’s Parcel Number (APN) or PLS System Township-Range-Section (TRS) values, though data were reported without systematic formatting. We harmonized the CDFA APN values to merge with the Kern County Assessor’s parcel shapefile (2017), which we then spatially joined with the Kern fields shapefiles. We followed a similar process with PLSS TRS values, which were then merged with the Kern County PLS Section shapefile, and joined to Kern field shapefiles. We refer to our final organic designation as “CDFA Organic”. Details of the data cleaning process are described in the Ancillary Data Processing Methods section below.Using pesticide use reports to refine organic field identificationAfter spot-checking pesticide use on CDFA Organic fields, it became clear we had not entirely eliminated conventional fields. This was likely due to variation in polygon geometries between PLSS Sections, Kern County Assessor parcels, and Kern agricultural fields data. To further refine our classification, we used field-level pesticide use, again from the Kern County Agricultural Commissioner’s Office. As thousands of pesticide products (active ingredients + adjuvants) are in use in Kern County, we took an iterative approach to eliminate fields using conventional pesticides. We first limited the universe of pesticides to those applied to fields that were CDFA Organic. We then identified the 50 most commonly used pesticide products by a number of applications, and manually classified each as organic or conventional. Having identified these products as described below, we matched them back in, eliminating fields that used conventional products and identifying as “PUR Organic” those that used only organic products. We repeated this process, hand identifying the most commonly used products and eliminating fields using conventional products until we had isolated fields using only organic products.To classify a product as organic or conventional, we first searched for each product’s U.S. EPA-registered product label, using the exact product name and EPA product registration number. If there was any indication on the label that the product was certified as organic by the Organic Materials Review Institute (OMRI), or said “for use in organic production” or “organic”, then the pesticide was identified as organic (n = 132). If there was no organic indication on the product label, we searched the OMRI certification database for products with identical names and manufacturers, and identified products as organic if such certifications existed (n = 39). If all ingredients were defined (i.e., no inert or undefined ingredients) and were known organic active ingredients, then the pesticide was identified as organic (n = 1) (Supplementary Data 1). We failed to find EPA-registered labels for three products and confirmed on the California Department of Pesticide Regulation website that they are either inactive or out of production (EPA registration numbers: 52467-50008-AA-5905, 36208-50020-AA, 2935-48-AA-120). Each of the three was rarely used (n  0) to be the same as the mechanisms determining the amount sprayed when some pesticides are used (pesticides when pesticides  > 0). Double-hurdle models64 are an alternative to the Tobit model that allows for the separation of these two decisions.The mechanisms underlying the two decisions (to spray, how much to spray if spraying) can differ such that different covariates can describe each process, and the same covariates are allowed to influence the two processes in different ways (i.e., sign and magnitude can differ). The first, binary decision is usually modeled with a probit model.$${{{{{rm{P}}}}}}left(y=0|{{{{{bf{x}}}}}}right)=1-Phi left({{{{{bf{x}}}}}}gammaright)$$
    (1)
    Then, the second decision is modeled as a linear model with pesticide use following a lognormal distribution, conditional on positive pesticide use64$$log (y)|{{{{{bf{x}}}}}},y , > , 0 sim {{{{{rm{Normal}}}}}}({{{{{bf{x}}}}}}{{{{{mathbf{upbeta }}}}}},{sigma }^{2})$$
    (2)
    where Φ is the standard normal cdf, x is a vector of explanatory variables including organic status, y is pesticide use, and ({{{{{mathbf{upbeta }}}}}}) is a vector of coefficients. We use a lognormal hurdle model rather than a truncated normal hurdle model since pesticide use is highly non-normal, and Q-Q plots suggested substantial model improvement using a lognormal rather than normal distribution. In contrast to the panel data models described in the Ancillary Statistical Methods below, our estimation equation used natural log-transformed variables for pesticides (and field and farm size) rather than inverse hyperbolic sine (IHS) transformation since only positive observations are included in the second hurdle model. Following insights derived from our panel data models (Supplementary Notes), we build on the basic hurdle model concept using the farm-by-crop family interaction as a random intercept in both the first and second hurdle. We chose the farm-by-crop family interaction rather than a crossed random effect due to computational feasibility with thousands of permits and hundreds of crops, due to similarity of results to the within estimator model (i.e., fixed effects in causal inference terminology; Supplementary Notes, Supplementary Table 2), and due to AIC/BIC (Supplementary Table 3). Further, we find evidence of heteroskedasticity from both visual inspection and Levine’s test, which adds additional complications to computing crossed random effects. Thus, we proceed with the farm-by-crop family interaction in a random intercept model with cluster robust standard errors clustered at the same grouping. In doing so, observations, where the taxonomic family of the crop was unclear, were dropped. Of the 7367 fields that were dropped due to missing crop families, 6684 were uncultivated agriculture.Our data are effectively repeated cross-sections rather than a true panel since fields are defined by the farm-site-year combination and thus generally change year-to-year or when crops rotate. We model it as such. This implies we do not require observations to have no spray in all time periods, as would be the case in a double hurdle panel model. Linking field IDs over time through spatial processing is complicated by crop rotations of different size areas. Since farmers may farm multiple fields under different management systems, as we illustrate here, and have different contractual obligations at a sub-farm level, requiring farms to never use pesticides on all fields is not reflective of on-the-ground decisions.We repeated the lognormal hurdle models individually for carrots, grapes, oranges, potatoes, and onions, which were the only widely-grown crops with more than 100 organic fields. This allowed for a different slope and intercept by crop type.We conduct several robustness checks. First, we do not have data on crop yields. However, to assess the potential implications of a yield gap on our results, we modify our per hectare rates following Ponisio et al.15 as a robustness check. We group commodities into cereals, roots and tubers, oilseeds, legumes/pulses, fruits, and vegetables and assign them the Ponisio et al.15 yield gap estimates for that group. Crops that did not fall into any of the above groups (e.g., cannabis) were provided the all-crop average from Ponisio et al.15. Second, we analyze how conventional and organic differ with respect to soil quality using a within estimator approach to account for crop-specific differences in soil quality. Third, binary toxicity metrics, while valuable given the number of chemicals and endpoints of interest here, nevertheless fail to distinguish gradations of toxicity for chemicals above (or below) the regulatory threshold. As mentioned above, the data needed to calculate many aggregate indices (e.g., Pesticide Load57 and Environmental Impact Quotient58) are not readily available for all of the chemicals in our study. For completeness, we attempted to calculate the Pesticide Toxicity Index for one well-studied endpoint, fish. We supplemented data provided in Nowell et al.41 with data from Standartox42. However, only about 70% of the chemicals used in our study matched, and pesticide products used on organic fields were more likely to lack toxicity information for one or more chemicals. We briefly discuss the highly preliminary investigation, given the non-random missing toxicity data.All spatial analyses were performed in R Statistical Software v 3.5.3 and all statistical analyses were performed Stata 16 MP. For all tests, statistical significance was based on two-tailed tests with (alpha =0.05.)Ancillary data processing methodsCleaning parcel dataTo spatially locate organic fields, we needed to match the Assessor’s parcel numbers (APNs) provided in the CDFA tabular data to APNs in the Kern County Parcel shapefile (from 2017). Over 90% of the APN entries in the CDFA data were in the format [xxx-xxx-xx], though multiple APNs were often provided in the same cell separated by line breaks, semi-colons, commas, and/or spaces. We made initial edits separating values into individual cells in Microsoft Excel since formatting was highly inconsistent. Observations whose APNs were not in the [xxx-xxx-xx] were modified so that their format matched. In the R environment, dashes were inserted after the third, sixth, and eighth characters (1234567895 became 123-456-78-95) for APNs that did not already contain them. Occasionally, APN numbers were provided with dashes, but with segments of incorrect length (e.g., 12-34-567). In these instances, APN segments were either trimmed from the right or padded with a zero on the left so they matched the [xxx-xxx-xx] format. This approach yielded the greatest number of matches and was checked for accuracy as described below. Additional segments (from APNs with more than two dashes and eight numeric characters) were dropped. A handful of APNs with fewer than eight numeric characters and no dashes were dropped entirely.The edited CDFA APNs were then joined with the Kern County Assessor’s parcel shapefile, creating the “CDFA organic shapefile”. In total, 1637 of 1829 individual CDFA records joined successfully. To evaluate the accuracy of joins between CDFA tabular data, Kern County parcel, and Kern County agricultural spatial data, we spot-checked ownership information using “Company” (CDFA) and “PERMITTEE” (Kern County agricultural data) values.To then identify the crop fields within the organic parcels, we performed a spatial join between the CDFA organic shapefile and the Kern County fields shapefiles. Prior to performing the join, the CDFA parcels’ dimensions were reduced with a 50-m buffer to eliminate spatial joins between CDFA parcels and crop fields that were only touching the parcel margins. Of five different buffer widths evaluated, 50 m reduced the number of false positives and negatives, as determined by comparing the “Company” and “PERMITTEE” values. We refer to the fields that match as “APN Organic”.Cleaning PLSS Township-Range-Section valuesEach year several producers reported Township, Section, and Range (TRS) values, consistent with the PLS System (PLSS), rather than APN values. We used these TRS values to identify PLSS Sections that contained organic fields.We separated any cell containing multiple TRS values and removed any prefixes such as “S”, “Section”, “Sec.”, “T”, and “R” that would prevent joining to Kern County PLSS spatial data in Excel. In the R environment, we padded the left side of the “S” value with a 0 if it was a single digit, then concatenated the three columns into a “TRS” column. We joined TRS from the CDFA tabular data to PLSS spatial data, which identified 563 Sections as containing organic fields, from 2013 to 2019, out of a total of 664 unique TRS codes in the CDFA dataset. We then performed a spatial join between PLSS Sections that contain organic fields and Kern County fields shapefiles, to identify all agriculture fields that overlap with those Sections. Additional processing using the Pesticide Use Reports is described above.Ancillary statistical methodsWe began with a pooled ordinary least squares (OLS) model that, as the name suggests, pools observations over farms, years, and crop types. However, there may be attributes of crops or farms that may be systematically different between organic and conventional, and this systematic difference could bias our pooled OLS results. To address this, we first considered propensity score approaches but were unable to find a sufficient balance of our covariate distribution between organic and conventional fields. As an alternative, we limited our sample to fields with overlapping farmers and crop types. In other words, we focused on the subset of fields that are grown by farmers producing both organic and conventional fields and to crops that are produced both conventionally and organically. However, this shrunk our dataset by two-thirds.To leverage more of our data, we next considered panel data models as a means to address unobserved variables. We consider both within-estimator models (also known as “fixed effects” in causal inference terminology, but different from the biostatistical use of the term) and random effects models (with random intercepts), seeking to capture characteristics of the crop, grower, and year. The advantage of a within-estimator approach is that the omitted variables are removed (through differencing) and thus, they can be correlated with covariates without biasing the estimation. In other words, pesticide use and all covariates are differenced from their crop-specific mean (or crop family, farmer, etc. specific mean, depending on the model). In doing so, the propensity for certain crops (crop family, farmer) to be grown organic or to be fast or slow adopters of new technologies is removed. The disadvantage is that characteristics shared by all fields of a crop (e.g., value) are lost in the differencing, and more importantly, that the differencing is not easily translated to nonlinear models that we employ later in the analysis. Random effects are more easily translated to nonlinear models. The disadvantage of random effects is the strong assumption that the unobserved variables are uncorrelated with the covariates18,65, which is required for random effects coefficient estimates to be unbiased. Here, we see the difference in coefficient estimates between the within-estimator and random effects models are quite small (Supplementary Table 2).Random effects particularly crossed random effects with thousands of permits and hundreds of crops, introduce computational challenges due to large, sparse matrices. Further, we find evidence of heteroskedasticity from both visual inspection and Levine’s test, which adds additional complications to computing crossed random effects. We proceed using the farm-by-crop family interaction in a random intercept model with cluster robust standard errors clustered at the same grouping based on AIC/BIC (Supplementary Table 3), computational feasibility, and similarity to the within-estimator results (Supplementary Table 2). Observations, where the taxonomic family of the crop was unclear, were dropped in any models including family in either the random effects or the cluster robust standard errors. Of the 7367 fields that were dropped due to missing crop families, 6684 were uncultivated agriculture.In the panel data models, we used IHS transformations to accommodate highly non-normal pesticide (and field and farm size) data. IHS is very similar to natural log transformation66 but is defined at zero, which is important given a sizable fraction of our observations have zero pesticide use. As with log–log transformations, IHS–IHS transformation can be interpreted as elasticities. We pre-multiply pesticide use by 100 to improve estimation66, though this does not affect interpretation. As described above, we leverage insights on model specification from the panel data models, but rely on the double hurdle models to parse apart the decision to spray from the decision of how much to spray.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Localised labyrinthine patterns in ecosystems

    The absence of the first principles for biological systems in general, and in particular for vegetation populations where phenomena are interconnected makes their mathematical modelling complex. The theory of vegetation pattern formation rests on the self-organisation hypothesis and symmetry-breaking instability that provoke the fragmentation of the uniform cover. The symmetry-breaking instability takes place even if the environment is isotropic31,33,35. This instability may be an advection-induced transition that requires the pre-existence of the environment anisotropy due to the topography of the landscape34,39,40. Generally speaking, this transition requires at least two feedback mechanisms having a short-range activation and a long-range inhibition. In this respect, we consider three different vegetation models that are experimentally relevant systems: (i) the generic interaction redistribution model describing vegetation pattern formation which incorporates explicitly the facilitation, competition and seed dispersion nonlocal interactions (ii) the local nonvariational partial differential model described by a nonvariational Swift–Hohenberg type of model equation, and (iii) the reaction–diffusion system that incorporate explicetely water transport.The interaction-redistribution approachThe integrodifferential modelThis approach consists of considering a well-known logistic equation with nonlocal plant-to-plant interactions. Three types of interactions are considered: the facilitative (M_{f}(mathbf {r},t)), the competitive (M_{c}(mathbf {r},t)), and the seed dispersion (M_{d}(mathbf {r},t)) nonlocal interactions. To simplify further the mathematical modelling, we consider that the seed dispersion obeys a diffusive process (M_{d}(mathbf {r},t)approx nabla ^{2}b(mathbf {r},t)), with D the diffusion coefficient, b the biomass density, and (nabla ^{2}=partial ^2/partial x^2+partial ^2/partial y^2) is the Laplace operator acting in the (x,y) plane. The interaction-redistribution reads$$begin{aligned} M_{i}=expleft{ frac{xi _{i}}{N_{i}}int b(mathbf {r}+mathbf {r}’,t)phi _i(r,t)dmathbf {r}’right} , { text{ with } } phi _i(r,t)= exp(-r/L_{i}) end{aligned}$$
    (1)
    where (i=f,c). (xi _i) represents the strength of the interaction, (N_i) is a normalisation constant. We assume that their Kernels (phi _i(r,t)) are exponential functions with (L_i) the range of their interactions. The facilitative interaction (M_{f}(mathbf {r},t)) favouring vegetation development. They involve the accumulation of nutrients in the neighbourhood of plants, the reciprocal sheltering of neighbouring plants against climatic harshness which improves the water budget in the soil. The range of the facilitative interaction (L_f) operates on the crown size. The competitive interaction operates over a length (L_c) and involves the below-ground structures, i.e., the rhizosphere. In nutrient-poor or/and in water-limited territories, lateral spreading may extend beyond the radius of the crown. This extension of roots relative to their crown size is necessary for the survival and the development of the plant in order to extract enough nutrients and/or water from the soil. When incorporating these nonlocal interactions in the paradigmatic logistic equation, the spatiotemporal evolution of the normalised biomass density (b(mathbf {r}, t)) in isotropic environmental conditions reads14$$begin{aligned} partial _{t} b(mathbf {r},t)=b(mathbf {r},t)[1-b(mathbf {r},t)]M_{f}(mathbf {r},t)- mu b(mathbf {r},t)M_{c}(mathbf {r},t)+Dnabla ^{2}b(mathbf {r},t). end{aligned}$$
    (2)
    The normalisation is performed with respect to the total amount of biomass supported by the system. The first two terms in the logistic equation with nonlocal interaction Eq. (2) describe the biomass gains and losses, respectively. The third term models seed dispersion. The aridity parameter (mu) accounts for the biomass loss and gain ratio, which depends on water availability and nutrients soil distribution, topography, etc. The homogeneous cover solutions of Eq. (2) are: (b_{o}=0) which corresponds to the state totally devoid of vegetation, and the homogeneous cover solutions satisfy the equation$$begin{aligned} mu =(1-b)exp (Delta b), end{aligned}$$
    (3)
    with (Delta =xi _{f}-xi _{c}) measures the community cooperativity if (Delta >0) or anti-cooperativity when (Delta 0). The solution (u_{-}) is always unstable even in the presence of small spatial fluctuations. The linear stability analysis of vegetated cover ((u_{+})) with respect to small spatial fluctuations, yields the dispersion relation$$begin{aligned} sigma (k)=u_{+}(kappa -2u_{+})-(nu -gamma u_{+})k^{2}-alpha u_{+}k^{4}. end{aligned}$$
    (8)
    Imposing (partial sigma /partial k|_{k_{c}}=0) and (sigma (k_{c})=0), the critical mode can be determined$$begin{aligned} k_{c}=sqrt{frac{gamma -nu /u_{c}}{2alpha }}, end{aligned}$$
    (9)
    where (u_{c}) satisfies (4alpha u_{c}^2(2u_{c}-kappa )=(2gamma u_{c}-nu )^2). The corresponding aridity parameter (eta _{c}) can be calculated from Eq. (7).The reaction–diffusion approachThe second approach explicitly adds the water transport by below ground diffusion. The coupling between the water dynamics and the plant biomass involves positive feedbacks that tend to enhance water availability. Negative feedbacks allow for an increase in water consumption caused by vegetation growth, which inhibits further biomass growth.The modelling considers the coupled evolution of biomass density (b(mathbf {r},t)) and groundwater density (w(mathbf {r},t)). In its dimensionless form, this model reads33$$begin{aligned} frac{partial b}{partial t}= & {} frac{gamma w}{1+omega w}b-b^{2}-theta b+nabla ^{2}b, end{aligned}$$
    (10)
    $$begin{aligned} frac{partial w}{partial t}= & {} p-(1-rho b)w-w^{2}b+delta nabla ^{2}(w-beta b). end{aligned}$$
    (11)
    The first term in the first equation describes plant growth at a constant rate ((gamma /omega)) that grows linearly with w for dry soil. The quadratic nonlinearity (-b^{2}) accounts for saturation imposed by poor nutrients soil. The term proportional to (theta) accounts for mortality, grazing or herbivores. The mechanisms of dispersion are modelled by a simple diffusion process. The groundwater evolves due to a precipitation input p. The term ((1-rho b)w) in the second equation accounts for the evaporation and drainage, that decreases with the presence of vegetation. The term (w^{2}b) models the water uptake by the plants due to the transpiration process. The groundwater movement follows the Darcy’s law in unsaturated conditions; that is, the water flux is proportional to the gradient of the water matric potential41. The matric potential is equal to w, under the assumption that the hydraulic diffusivity is constant41. To model the suction of water by the roots, a correction to the matric potential is included; (-beta b), where (beta) is the strength of the suction. More