1.Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).Article
Google Scholar
2.Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).PubMed
PubMed Central
Article
Google Scholar
3.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article
Google Scholar
4.Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article
Google Scholar
5.Cahill, A. E. et al. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).Article
Google Scholar
6.Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: When and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).PubMed
Article
PubMed Central
Google Scholar
7.Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).ADS
Article
Google Scholar
8.Kubisch, A., Holt, R. D., Poethke, H. J. & Fronhofer, E. A. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123, 5–22 (2014).Article
Google Scholar
9.Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. PNAS 108, 5708–5711 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Wolz, M. et al. Dispersal and life-history traits in a spider with rapid range expansion. Mov. Ecol. 8, 1–11 (2020).Article
Google Scholar
11.Hill, J. K., Griffiths, H. M. & Thomas, C. D. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 56(56), 143–159 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Kaluthota, C., Brinkman, B. E., Dos Santos, E. B. & Rendall, D. Transcontinental latitudinal variation in song performance and complexity in house Wrens (Troglodytes aedon). Proc. R. Soc. B 283, 1–8 (2016).Article
CAS
Google Scholar
13.Golab, M. J., Johansson, F. & Sniegula, S. Let’s mate here and now—seasonal constraints increase mating efficiency. Ecol. Entomol. 44, 623–629 (2019).Article
Google Scholar
14.Monteiro, N. et al. Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: Implications for susceptibility to climate change. Glob. Change Biol. 23, 3600–3609 (2017).ADS
Article
Google Scholar
15.Hughes, C. L., Hill, J. K. & Dytham, C. Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc. R. Soc. B 270, S147–S150 (2003).PubMed
PubMed Central
Article
Google Scholar
16.Dudaniec, R. Y. et al. Latitudinal clines in sexual selection, sexual size dimorphism, and sex‐specific genetic dispersal during a poleward range expansion. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13488 (2021).Article
PubMed
PubMed Central
Google Scholar
17.De Lisle, S. P., Goedert, D., Reedy, A. M. & Svensson, E. I. Climatic factors and species range position predict sexually antagonistic selection across taxa. Philos. Trans. R. Soc. B 373, 20170415 (2018).Article
Google Scholar
18.Holt, R. D. & Keitt, T. H. Species’ borders: A unifying theme in ecology. Oikos 108, 3–6 (2005).Article
Google Scholar
19.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B 316, 335–427 (1987).ADS
Article
Google Scholar
21.Bowlin, M. S. & Wikelski, M. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS One 3, e2154 (2008).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
22.DeVries, P. J., Penz, C. M. & Hill, R. I. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J. Anim. Ecol. 79, 1077–1085 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Le Roy, C., Debat, V. & Llaurens, V. Adaptive evolution of butterfly wing shape: From morphology to behaviour. Biol. Rev. 94, 1261–1281 (2019).PubMed
PubMed Central
Google Scholar
24.Cassel-Lundhagen, A., Tammaru, T., Windig, J. J., Ryrholm, N. & Nylin, S. Are peripheral populations special? Congruent patterns in two butterfly species. Ecography 32, 591–600 (2009).Article
Google Scholar
25.Taylor-Cox, E. D. et al. Wing morphological responses to latitude and colonisation in a range expanding butterfly. PeerJ 8, e10352 (2020).PubMed
PubMed Central
Article
Google Scholar
26.Hassall, C., Thompson, D. J. & Harvey, I. F. Variation in morphology between core and marginal populations of three British damselflies. Aquat. Insect. 31, 187–197 (2009).Article
Google Scholar
27.Therry, L., Zawal, A., Bonte, D. & Stoks, R. What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range?. Biol. J. Linn. Soc. 112, 556–568 (2014).Article
Google Scholar
28.Johansson, F. Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J. Biogeogr. 30, 29–34 (2003).Article
Google Scholar
29.Swaegers, J. et al. Ecological and evolutionary drivers of range size in Coenagrion damselflies. J. Evol. Biol. 27, 2386–2395 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506 (2005).ADS
Article
Google Scholar
31.Termaat, T. et al. Distribution trends of European dragonflies under climate change. Divers. Distrib. 25, 936–950 (2019).Article
Google Scholar
32.Outomuro, D. et al. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly. Evolution 70, 1582–1595 (2016).PubMed
Article
PubMed Central
Google Scholar
33.Arambourou, H., Sanmartín-Villar, I. & Stoks, R. Wing shape-mediated carry-over effects of a heat wave during the larval stage on post-metamorphic locomotor ability. Oecologia 184, 279–291 (2017).ADS
PubMed
Article
PubMed Central
Google Scholar
34.Therry, L., Nilsson-Örtman, V., Bonte, D. & Stoks, R. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly. J. Evol. Biol. 27, 141–152 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Dijkstra, K.-D.B. & Schröter, A. Field Guide to the Dragonflies of Britain and Europe 2nd edn. (Bloomsbury Wildlife, 2020).
Google Scholar
36.Corbet, P. S., Suhling, F. & Soendgerath, D. Voltinism of odonata: A review. Int. J. Odonatol. 9, 1–44 (2006).Article
Google Scholar
37.Sniegula, S., Golab, M. J. & Johansson, F. A large-scale latitudinal pattern of life-history traits in a strictly univoltine damselfly. Ecol. Entomol. 41, 459–472 (2016).Article
Google Scholar
38.Stoks, R. Components of lifetime mating success and body size in males of a scrambling damselfly. Anim. Behav. 59, 339–348 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Sniegula, S., Prus, M. A., Golab, M. J. & Outomuro, D. Do males with higher mating success invest more in armaments? An across-populations study in damselflies. Ecol. Entomol. 42, 526–530 (2017).Article
Google Scholar
40.Jenkins, D. G. et al. Does size matter for dispersal distance?. Glob. Ecol. Biogeogr. 16, 415–425 (2007).Article
Google Scholar
41.Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size & Gender Roles (Oxford University Press, 2007).Book
Google Scholar
42.Sekar, S. A meta-analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy?. J. Anim. Ecol. 81, 174–184 (2012).PubMed
Article
PubMed Central
Google Scholar
43.Malmqvist, B. How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)?. Biol. Conserv. 93, 271–276 (2000).Article
Google Scholar
44.Lancaster, J. & Downes, B. J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 184, 171–182 (2017).ADS
PubMed
Article
PubMed Central
Google Scholar
45.Rundle, S. D., Bilton, D. T. & Foggo, A. By wind, wings or water: Body size, dispersal and range size in aquatic invertebrates. In Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge University Press, 2007).46.Wootton, R. J. The functional morphology of the wings of Odonata. Adv. Odonatol. 5, 153–169 (1991).
Google Scholar
47.Dudley, R. The Biomechanics of Insect Flight. Form, Function, Evolution (Princeton University Press, 2000).Book
Google Scholar
48.Roff, D. Optimizing development time in a seasonal environment—The ups and downs of clinal variation. Oecologia 45, 202–208 (1980).ADS
PubMed
Article
PubMed Central
Google Scholar
49.Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).PubMed
Article
PubMed Central
Google Scholar
50.Utzeri, C., Carchini, G., Falchetti, E. & Belfiore, C. Philopatry, homing and dispersal in Lestes barbarus (Fabricius) (Zygoptera: Lestidae). Odonatologica 13, 573–584 (1984).
Google Scholar
51.Wang, X. & Clarke, J. A. The evolution of avian wing shape and previously unrecognized trends in covert feathering. Proc. R. Soc. B 282, 20151935 (2015).PubMed
PubMed Central
Article
Google Scholar
52.Johansson, F., Söderquist, M. & Bokma, F. Insect wing shape evolution: Independent effects of migratory and mate guarding flight on dragonfly wings. Biol. J. Linn. Soc. 97, 362–372 (2009).Article
Google Scholar
53.Outomuro, D., Adams, D. C. & Johansson, F. Wing shape allometry and aerodynamics in calopterygid damselflies: A comparative approach. BMC Evol. Biol. 13, 118 (2013).PubMed
PubMed Central
Article
Google Scholar
54.Berwaerts, K., Van Dyck, H. & Aerts, P. Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct. Ecol. 16, 484–491 (2002).Article
Google Scholar
55.Jantzen, B. & Eisner, T. Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera. PNAS 105, 16636–16640 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
56.Kalkman, V. J. Lestes sponsa. The IUCN Red List of Threatened Species 2014: e.T165475A19165578. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T165475A19165578.en. Downloaded on 20 April 2021. (2014).57.Corbet, P. S. Dragonflies. Behaviour and Ecology of ODONATA (Cornell University Press, 1999).
Google Scholar
58.Córdoba-Aguilar, A., López-Valenzuela, A. & Brunel, O. Allometry in damselfly ornamental and genital traits: Solving some pitfalls of allometry and sexual selection. Genetica 138, 1141–1146 (2010).PubMed
Article
PubMed Central
Google Scholar
59.Śniegula, S., Drobniak, S. M., GołaB, M. J. & Johansson, F. Photoperiod and variation in life history traits in core and peripheral populations in the damselfly Lestes sponsa. Ecol. Entomol. 39, 137–148 (2014).Article
Google Scholar
60.Rohlf, F. J. tpsDig2 version 2.19. (Accessed 1 September 2021); https://sbmorphometrics.org (2015).61.Rohlf, F. J. & Slice, D. Extension of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).Article
Google Scholar
62.Rohlf, F. J. tpsRelw. Relative warps version 1.49. (Accessed 1 September 2021); https://sbmorphometrics.org (2010).63.Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Balken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. (Accessed 1 September 2021); https://sbmorphometrics.org (2021).64.Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (Accessed 1 September 2021); https://sbmorphometrics.org (2020).65.Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).PubMed
Article
PubMed Central
Google Scholar More