1.Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 2.Threats Classification Scheme (Version 3.2) (International Union for Conservation of Nature and Natural Resources, 2020); https://www.iucnredlist.org/resources/threat-classification-scheme3.Living Planet Report 2018: Aiming Higher (World Wildlife Fund, 2018).4.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 5.Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).Article 
 Google Scholar 
 6.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 7.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421 (2020).Article 
 Google Scholar 
 8.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 9.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 10.Burgess, B. J., Purves, D., Mace, G. & Murrell, D. J. Ecological theory predicts ecosystem stressor interactions in freshwater ecosystems, but highlights the strengths and weaknesses of the additive null model. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.243972 (2020).11.Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 12.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 13.Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 14.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 15.Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 16.Ashauer, R. & Jager, T. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ. Sci. Process Impacts 20, 48–57 (2018).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 17.Caswell, H. in Ecotoxicology. A Hierarchical Treatment (eds Newman, M. C. & Jagoe, C. H) 255–292 (CRC Press, 1996).18.Judd, A., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 
 Google Scholar 
 19.Schafer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).Article 
 Google Scholar 
 20.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
 Google Scholar 
 21.Beyer, J. et al. Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar. Environ. Res. 96, 81–91 (2014).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 22.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).Article 
 Google Scholar 
 23.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0802 (2017).24.De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).Article 
 Google Scholar 
 25.Goussen, B., Price, O. R., Rendal, C. & Ashauer, R. Integrated presentation of ecological risk from multiple stressors. Sci. Rep. 6, 36004 (2016).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 26.Liess, M., Foit, K., Knillmann, S., Schafer, R. B. & Liess, H. D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 27.Van den Brink, P. J. et al. Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. Sci. Total Environ. 684, 722–726 (2019).PubMed 
 Article 
 CAS 
 PubMed Central 
 Google Scholar 
 28.Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems: Applications to Ecotoxicology (Cambridge Univ. Press, 1993).29.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 
 Google Scholar 
 30.Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).PubMed 
 Article 
 Google Scholar 
 31.Bolker, B., Holyoak, M., Krivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).Article 
 Google Scholar 
 32.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 
 Google Scholar 
 33.Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. & Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds G. A. Polis & K. O. Winemiller) 371–395 (Chapman & Hall, 1996).34.Thompson, P. L., MacLennan, M. M. & Vinebrooke, R. D. Species interactions cause non‐additive effects of multiple environmental stressors on communities. Ecosphere 9, e02518 (2018).Article 
 Google Scholar 
 35.Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc. B Biol. Sci. 365, 49–60 (2010).Article 
 Google Scholar 
 36.Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 37.Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 38.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 39.Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).Article 
 Google Scholar 
 40.Ohlmann, M. et al. Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 41.Ohlmann, M. et al. Mapping the imprint of biotic interactions on β‐diversity. Ecol. Lett. 21, 1660–1669 (2018).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 42.Brun, P. et al. The productivity–biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 43.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2018).PubMed 
 Article 
 Google Scholar 
 44.Bracewell, S. et al. Qualifying the effects of single and multiple stressors on the food web structure of Dutch drainage ditches using a literature review and conceptual models. Sci. Total Environ. 684, 727–740 (2019).CAS 
 PubMed 
 Article 
 Google Scholar 
 45.Kohler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341, 759–765 (2013).PubMed 
 Article 
 CAS 
 Google Scholar 
 46.Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).47.Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).48.Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.01.005 (2021).49.Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).Article 
 Google Scholar 
 50.Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 51.Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 52.Crespi, E. J., Williams, T. D., Jessop, T. S. & Delehanty, B. Life history and the ecology of stress: how do glucocorticoid hormones influence life‐history variation in animals? Funct. Ecol. 27, 93–106 (2013).Article 
 Google Scholar 
 53.Matthiopoulos, J., Moss, R. & Lambin, X. The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecol. Modell. 127, 53–63 (2000).Article 
 Google Scholar 
 54.Moss, R., Watson, A. & Parr, R. Experimental prevention of a population cycle in red grouse. Ecology 77, 1512–1530 (1996).Article 
 Google Scholar 
 55.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 56.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 57.Schmitz, O. J. Press perturbations and the predictability ofecological interactions in a food web. Ecology 78, 55–69 (1997).
 Google Scholar 
 58.Ernest, S. K. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).Article 
 Google Scholar 
 59.Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 60.Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).Article 
 Google Scholar 
 61.Pawar, S., Dell, A. I., Savage, V. M. & Knies, J. L. Real versus artificial variation in the thermal sensitivity of biological traits. Am. Nat. 187, E41–E52 (2016).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 62.Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 63.Yee, E. & Murray, S. Effects of temperature on activity, food consumption rates, and gut passage times of seaweed-eating Tegula species (Trochidae) from California. Mar. Biol. 145, 895–903 (2004).Article 
 Google Scholar 
 64.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, E429–E441 (2004).Article 
 Google Scholar 
 65.Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2612 (2014).66.Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 67.Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 68.Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B Biol. Sci. 367, 2935–2944 (2012).Article 
 Google Scholar 
 69.Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).Article 
 Google Scholar 
 70.Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 71.Robinson, S. I., McLaughlin, Ó. B., Marteinsdóttir, B. & O’Gorman, E. J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. J. Anim. Ecol. 87, 634–646 (2018).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 72.McKee, D. et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr. 48, 707–722 (2003).Article 
 Google Scholar 
 73.McKee, D. et al. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshw. Biol. 47, 1557–1570 (2002).Article 
 Google Scholar 
 74.Allen, A., Gillooly, J. & Brown, J. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).Article 
 Google Scholar 
 75.Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature‐dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 76.Clarke, A. & Fraser, K. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).Article 
 Google Scholar 
 77.Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).Article 
 Google Scholar 
 78.Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B Biol. Sci. 365, 2081–2091 (2010).Article 
 Google Scholar 
 79.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 80.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article 
 Google Scholar 
 81.Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 82.Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 83.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).84.Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002).Article 
 Google Scholar 
 85.Jeschke, J. M. & Tollrian, R. Density-dependent effects of prey defences. Oecologia 123, 391–396 (2000).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 86.Jorgensen, C., Ernande, B. & Fiksen, O. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol. Appl. 2, 356–370 (2009).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 87.Kuparinen, A., Kuikka, S. & Merila, J. Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evol. Appl. 2, 234–243 (2009).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 88.Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).PubMed 
 Article 
 CAS 
 PubMed Central 
 Google Scholar 
 89.Day, T., Abrams, P. A. & Chase, J. M. The role of size-specific predation in the evolution and diversification of prey life histories. Evolution 56, 877–887 (2002).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 90.Heino, M., Pauli, B. D. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).Article 
 Google Scholar 
 91.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).Article 
 Google Scholar 
 92.Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).Article 
 CAS 
 Google Scholar 
 93.Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 94.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).CAS 
 PubMed 
 Article 
 Google Scholar 
 95.Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).Article 
 Google Scholar 
 96.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).CAS 
 PubMed 
 Article 
 Google Scholar 
 97.Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 98.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
 PubMed 
 Article 
 Google Scholar 
 99.Duchet, C. et al. Pesticide‐mediated trophic cascade and an ecological trap for mosquitoes. Ecosphere 9, e02179 (2018).Article 
 Google Scholar 
 100.Halstead, N. T. et al. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecol. Lett. 17, 932–941 (2014).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 101.Ferger, S. W. et al. Synergistic effects of climate and land use on avian beta‐diversity. Divers. Distrib. 23, 1246–1255 (2017).Article 
 Google Scholar 
 102.Maris, V. et al. Prediction in ecology: promises, obstacles and clarifications. Oikos 127, 171–183 (2018).Article 
 Google Scholar 
 103.Palmer, M. A. et al. Ecological science and sustainability for the 21st century. Front. Ecol. Environ. 3, 4–11 (2005).Article 
 Google Scholar 
 104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).Article 
 Google Scholar 
 105.Grimm, V. & Berger, U. Structural realism, emergence, and predictions in next-generation ecological modelling: synthesis from a special issue. Ecol. Modell. 326, 177–187 (2016).Article 
 Google Scholar 
 106.Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 107.Rosenblatt, A. E., Smith-Ramesh, L. M. & Schmitz, O. J. Interactive effects of multiple climate change variables on food web dynamics: Modeling the effects of changing temperature, CO2, and water availability on a tri-trophic food web. Food Webs https://doi.org/10.1016/j.fooweb.2016.10.002 (2017).108.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0772-3 (2019).109.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 110.Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 111.Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 112.Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).Article 
 Google Scholar 
 113.Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 114.Beckerman, A. P., Petchey, O. L. & Warren, P. H. Foraging biology predicts food web complexity. Proc. Natl Acad. Sci. USA 103, 13745–13749 (2006).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 115.O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).Article 
 Google Scholar 
 116.Williams, R. J., Brose, U. & Martinez, N. D. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems (eds Rooney, N. et al.) 37–51 (Springer, 2007).117.Blanchard, J. L. et al. How does abundance scale with body size in coupled size‐structured food webs? J. Anim. Ecol. 78, 270–280 (2009).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 118.Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 119.Kerr, S. R. & Dickie, L. M. The Biomass Spectrum: A Predator–Prey Theory of Aquatic Production (Columbia Univ. Press, 2001).120.Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).PubMed 
 Article 
 Google Scholar 
 121.Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).Article 
 Google Scholar 
 122.McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).Article 
 Google Scholar 
 123.Delmas, E., Brose, U., Gravel, D., Stouffer, D. B. & Poisot, T. Simulations of biomass dynamics in community food webs. Methods Ecol. Evol. 8, 881–886 (2017).Article 
 Google Scholar 
 124.Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 125.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 126.Tabi, A., Petchey, O. L. & Pennekamp, F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol. Lett. 22, 1061–1071 (2019).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 127.O’Brien, A. L., Dafforn, K. A., Chariton, A. A., Johnston, E. L. & Mayer-Pinto, M. After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. Sci. Total Environ. 684, 753–764 (2019).PubMed 
 Article 
 CAS 
 PubMed Central 
 Google Scholar 
 128.Hampton, S. E. et al. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94, 2663–2669 (2013).PubMed 
 Article 
 Google Scholar 
 129.Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).Article 
 Google Scholar 
 130.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
 Google Scholar 
 131.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 132.Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 133.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 134.Brennan, G. L., Colegrave, N. & Collins, S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc. Natl Acad. Sci. USA 114, 9930–9935 (2017).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 135.De Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).Article 
 Google Scholar 
 136.Ellner, S. P., Seifu, Y. & Smith, R. H. Fitting population dynamic models to time‐series data by gradient matching. Ecology 83, 2256–2270 (2002).Article 
 Google Scholar 
 137.Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
 PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 138.Law, R., Plank, M. J., James, A. & Blanchard, J. L. Size‐spectra dynamics from stochastic predation and growth of individuals. Ecology 90, 802–811 (2009).PubMed 
 Article 
 PubMed Central 
 Google Scholar 
 139.Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).Article 
 Google Scholar 
 140.Ives, A. R. Predicting the response of populations to environmental change. Ecology 76, 926–941 (1995).Article 
 Google Scholar  More