More stories

  • in

    Puffins and friends suffer in washing-machine waves

    .readcube-buybox { display: none !important;}

    After cyclones in the north Atlantic, droves of emaciated, dead seabirds can wash ashore on North American and European beaches. New research probes the cause of these mass-mortality events, called winter wrecks, and suggests that climate change might worsen the pattern1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02494-7

    References1.Clairbaux, M. et al. Curr. Biol. https://doi.org/10.1016/j.cub.2021.06.059 (2021)Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Preventing spillover as a key strategy against pandemics
    Correspondence 14 SEP 21

    Pollination advantage of rare plants unveiled
    News & Views 08 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Jobs

    Postdoctoral fellow

    Dalhousie University
    Halifax, Canada

    Postdoctoral Research Fellowship in Pharmacogenomics and Clinical Pharmacology with a Focus on Adverse Drug Reactions

    The University of British Columbia (UBC)
    Vancouver, Canada

    English Speaking Secretary for the Institute Director

    Jülich Research Centre (FZJ)
    Aachen, Germany

    Officer for Strategic Support of Research Grant Applications

    German Cancer Research Center in the Helmholtz Association (DKFZ)
    Heidelberg, Germany More

  • in

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    1.Backhaus E, Berg S, Andersson R, Ockborn G, Malmström P, Dahl M, et al. Epidemiology of invasive pneumococcal infections: manifestations, incidence and case fatality rate correlated to age, gender and risk factors. BMC Infect Dis. 2016;16:367.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Bogaert D, de Groot R, Hermans P. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4:144–54.PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Wahl B, O’Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health. 2018;6:e744–57.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.McAllister DA, Liu L, Shi T, Chu Y, Reed C, Burrows J, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. Lancet Glob Health. 2019;7:e47–57.PubMed 
    Article 

    Google Scholar 
    5.Abdullahi O, Karani A, Tigoi CC, Mugo D, Kungu S, Wanjiru E, et al. The prevalence and risk factors for pneumococcal colonization of the nasopharynx among children in Kilifi District, Kenya. PloS ONE. 2012;7:e30787.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Kelly MS, Surette MG, Smieja M, Rossi L, Luinstra K, Steenhoff AP, et al. Pneumococcal colonization and the nasopharyngeal microbiota of children in Botswana. Pediatr Infect Dis J. 2018;37:1176–83.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Huang SS, Hinrichsen VL, Stevenson AE, Rifas-Shiman SL, Kleinman K, Pelton SI, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics 2009;124:e1–e11.PubMed 
    Article 

    Google Scholar 
    8.van Hoek AJ, Sheppard CL, Andrews NJ, Waight PA, Slack MP, Harrison TG, et al. Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine.2014;32:4349–55.PubMed 
    Article 

    Google Scholar 
    9.Almeida ST, Nunes S, Paulo ACS, Valadares I, Martins S, Breia F, et al. Low prevalence of pneumococcal carriage and high serotype and genotype diversity among adults over 60 years of age living in Portugal. PloS ONE 2014;9:e90974.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Kaplan SL, Mason EO, Wald ER, Schutze GE, Bradley JS, Tan TQ, et al. Decrease of invasive pneumococcal infections in children among 8 children’s hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics.2004;113:443–9.PubMed 
    Article 

    Google Scholar 
    11.Hammitt LL, Etyang AO, Morpeth SC, Ojal J, Mutuku A, Mturi N, et al. Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study. Lancet.2019;393:2146–54.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Cutts F, Zaman S, Enwere GY, Jaffar S, Levine O, Okoko J, et al. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet.2005;365:1139–46.PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Congdon M, Hong H, Young RR, Cunningham CK, Enane LA, Arscott-Mills T, et al. Effect of Haemophilus influenzae type b and 13-valent pneumococcal conjugate vaccines on childhood pneumonia hospitalizations and deaths in Botswana. Clin Infect Dis. 2020; e-pub ahead of print 8 July 2020; https://doi.org/10.1093/cid/ciaa919.14.Eskola J, Kilpi T, Palmu A, Jokinen J, Eerola M, Haapakoski J, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl J Med. 2001;344:403–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Pelton SI, Huot H, Finkelstein JA, Bishop CJ, Hsu KK, Kellenberg J, et al. Emergence of 19A as virulent and multidrug resistant Pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2007;26:468–72.PubMed 
    Article 

    Google Scholar 
    16.Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. JAMA.2007;298:1772–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Neves FP, Cardoso NT, Snyder RE, Marlow MA, Cardoso CA, Teixeira LM, et al. Pneumococcal carriage among children after four years of routine 10-valent pneumococcal conjugate vaccine use in Brazil: the emergence of multidrug resistant serotype 6C. Vaccine.2017;35:2794–800.PubMed 
    Article 

    Google Scholar 
    18.Bradshaw JL, McDaniel LS. Selective pressure: rise of the nonencapsulated pneumococcus. PLoS Pathog. 2019;15:e1007911.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Ladhani SN, Collins S, Djennad A, Sheppard CL, Borrow R, Fry NK, et al. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–17: a prospective national observational cohort study. Lancet Infect Dis. 2018;18:441–51.PubMed 
    Article 

    Google Scholar 
    20.Ouldali N, Levy C, Varon E, Bonacorsi S, Béchet S, Cohen R, et al. Incidence of paediatric pneumococcal meningitis and emergence of new serotypes: a time-series analysis of a 16-year French national survey. Lancet Infect Dis. 2018;18:983–91.PubMed 
    Article 

    Google Scholar 
    21.Zaneveld J, Turnbaugh PJ, Lozupone C, Ley RE, Hamady M, Gordon JI, et al. Host-bacterial coevolution and the search for new drug targets. Curr Opin Chem Biol. 2008;12:109–14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.de Steenhuijsen Piters WA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections. Cell Host Microbe. 2020;28:223–32.PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rümke H, et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet.2004;363:1871–2.PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Pettigrew MM, Gent JF, Revai K, Patel JA, Chonmaitree T. Microbial interactions during upper respiratory tract infections. Emerg Infect Dis. 2008;14:1584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Shiri T, Nunes MC, Adrian PV, Van Niekerk N, Klugman KP, Madhi SA. Interrelationship of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus colonization within and between pneumococcal-vaccine naïve mother–child dyads. BMC Infect Dis. 2013;13:483.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Jacoby P, Watson K, Bowman J, Taylor A, Riley TV, Smith DW, et al. Modelling the co-occurrence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine.2007;25:2458–64.PubMed 
    Article 

    Google Scholar 
    27.Nzenze S, Shiri T, Nunes M, Klugman K, Kahn K, Twine R, et al. Temporal association of infant immunisation with pneumococcal conjugate vaccine on the ecology of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus nasopharyngeal colonisation in a rural South African community. Vaccine.2014;32:5520–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Faden H, Stanievich J, Brodsky L, Bernstein J, Ogra PL. Changes in nasopharyngeal flora during otitis media of childhood. Pediatr Infect Dis J. 1990;9:623–6.PubMed 
    CAS 

    Google Scholar 
    29.Shekhar S, Khan R, Schenck K, Petersen FC. Intranasal Immunization with the commensal Streptococcus mitis confers protective immunity against pneumococcal lung infection. Appl Environ Microbiol. 2019;85:e02235–18.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Cangemi de Gutierrez R, Santos V, Nader-Macias ME. Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol Med Microbiol. 2001;31:187–95.PubMed 
    Article 
    CAS 

    Google Scholar 
    31.Wong SS, Quan Toh Z, Dunne EM, Mulholland EK, Tang ML, Robins-Browne RM, et al. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG. BMC Res Notes. 2013;6:135.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Laufer AS, Metlay JP, Gent JF, Fennie KP, Kong Y, Pettigrew MM. Microbial communities of the upper respiratory tract and otitis media in children. mBio.2011;2:e00245–10.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Bomar L, Brugger SD, Yost BH, Davies SS, Lemon KP. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio.2016;7:e01725–15.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Cope EK, Goldstein-Daruech N, Kofonow JM, Christensen L, McDermott B, Monroy F, et al. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease. PloS ONE. 2011;6:e28523.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Lysenko ES, Ratner AJ, Nelson AL, Weiser JN. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PloS Pathog. 2005;1:e1.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Weimer KE, Juneau RA, Murrah KA, Pang B, Armbruster CE, Richardson SH, et al. Divergent mechanisms for passive pneumococcal resistance to β-lactam antibiotics in the presence of Haemophilus influenzae. J Infect Dis. 2011;203:549–55.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Tikhomirova A, Kidd SP. Haemophilus influenzae and Streptococcus pneumoniae: living together in a biofilm. Pathog Dis. 2013;69:114–26.PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Brugger SD, Eslami SM, Pettigrew MM, Escapa IF, Henke MT, Kong Y, et al. Dolosigranulum pigrum cooperation and competition in human nasal microbiota. mSphere. 2020;5.39.Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17:704–15.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, et al. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol. 2015;135:905–12.PubMed 
    Article 

    Google Scholar 
    41.Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser BJ, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190:1283–92.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Bosch AA, Levin E, van Houten MA, Hasrat R, Kalkman G, Biesbroek G, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine.2016;9:336–45.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Biesbroek G, Bosch AA, Wang X, Keijser BJ, Veenhoven RH, Sanders EA, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med. 2014;190:298–308.PubMed 
    Article 

    Google Scholar 
    45.Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, Van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PloS ONE. 2011;6:e17035.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ. 2000;78:1078–92.PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    47.Pelissari DM, Diaz-Quijano FA. Household crowding as a potential mediator of socioeconomic determinants of tuberculosis incidence in Brazil. PloS ONE. 2017;12:e0176116.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Mannucci PM, Franchini M. Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health. 2017;14:1048.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    49.Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature.2012;486:222–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7.PubMed 
    Article 

    Google Scholar 
    52.Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. bioRxiv. 2021. https://doi.org/10.1101/2021.01.20.427420.53.Hojsak I, Snovak N, Abdović S, Szajewska H, Mišak Z, Kolaček S. Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2010;29:312–6.PubMed 
    Article 

    Google Scholar 
    54.Gluck U, Gebbers JO. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and beta-hemolytic streptococci). Am J Clin Nutr. 2003;77:517–20.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Feleszko W, Jaworska J, Rha RD, Steinhausen S, Avagyan A, Jaudszus A, et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy. 2007;37:498–505.PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Nhan T-X, Parienti J-J, Badiou G, Leclercq R, Cattoir V. Microbiological investigation and clinical significance of Corynebacterium spp. in respiratory specimens. Diagn Microbiol Infect Dis. 2012;74:236–41.PubMed 
    Article 

    Google Scholar 
    57.Díez-Aguilar M, Ruiz-Garbajosa P, Fernández-Olmos A, Guisado P, Del Campo R, Quereda C, et al. Non-diphtheriae Corynebacterium species: an emerging respiratory pathogen. Eur J Clin Microbiol Infect Dis. 2013;32:769–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    58.Teutsch B, Berger A, Marosevic D, Schönberger K, Lâm T-T, Hubert K, et al. Corynebacterium species nasopharyngeal carriage in asymptomatic individuals aged ≥ 65 years in Germany. Infection.2017;45:607–11.PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    60.Turner P, Turner C, Green N, Ashton L, Lwe E, Jankhot A, et al. Serum antibody responses to pneumococcal colonization in the first 2 years of life: results from an SE Asian longitudinal cohort study. Clin Microbiol Infect. 2013;19:e551–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Numminen E, Chewapreecha C, Turner C, Goldblatt D, Nosten F, Bentley SD, et al. Climate induces seasonality in pneumococcal transmission. Sci Rep. 2015;5:11344.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Kelly MS, Smieja M, Luinstra K, Wirth KE, Goldfarb DM, Steenhoff AP, et al. Association of respiratory viruses with outcomes of severe childhood pneumonia in Botswana. PloS ONE. 2015;10:e0126593.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.le Roux DM, Myer L, Nicol MP, Zar HJ. Incidence and severity of childhood pneumonia in the first year of life in a South African birth cohort: the Drakenstein Child Health Study. Lancet Glob Health. 2015;3:e95–103.PubMed 
    Article 

    Google Scholar 
    64.von Mollendorf C, von Gottberg A, Tempia S, Meiring S, de Gouveia L, Quan V, et al. Increased risk and mortality of invasive pneumococcal disease in HIV-exposed-uninfected infants More

  • in

    Historical land use has long-term effects on microbial community assembly processes in forest soils

    1.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    Article 

    Google Scholar 
    2.Ellis EC. Anthropogenic transformation of the terrestrial biosphere. Philos Trans R Soc A-Math Phys Eng Sci. 2011;369:1010–35.Article 

    Google Scholar 
    3.Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem. 2011;43:2184–93.CAS 
    Article 

    Google Scholar 
    4.Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 2010;91:3463–70.Article 

    Google Scholar 
    5.Hermans SM, Taylor M, Grelet G, Curran-Cournane F, Buckley HL, Handley KM, et al. From pine to pasture: land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiol Ecol. 2020;96:1–12.6.Keiser AD, Knoepp JD, Bradford MA. Disturbance decouples biogeochemical cycles across forests of the Southeastern US. Ecosystems. 2016;19:50–61.Article 

    Google Scholar 
    7.Goss-Souza D, Mendes LW, Borges CD, Baretta D, Tsai SM, Rodrigues J. Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiol Ecol. 2017;93:1–13.8.Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal. 2018;12:1072–83.CAS 
    Article 

    Google Scholar 
    9.Barnett SE, Youngblut ND, Buckley DH. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol Ecol. 2020;96:1–11.10.Osburn ED, McBride SG, Aylward FO, Badgley BD, Strahm BD, Knoepp JD, et al. Soil bacterial and fungal communities exhibit distinct long-term responses to disturbance in temperate forests. Front Microbiol. 2019;10:2872.11.Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    Article 

    Google Scholar 
    12.Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T, et al. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol. 2014;22:377–86.Article 

    Google Scholar 
    13.Wang P, Li SP, Yang X, Zhou J, Shu W, Jiang L. Mechanisms of soil bacterial and fungal community assembly differ among and within islands. Environ Microbiol. 2020;22:1559–71.Article 

    Google Scholar 
    14.Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.Article 

    Google Scholar 
    15.Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.Article 

    Google Scholar 
    16.Fillinger L, Hug K, Griebler, C. Selection imposed by local environmental conditions drives differences in microbial community composition across geographically distinct groundwater aquifers. FEMS Microbiol. Ecol. 2019;95:1–12.17.Powell JR, Karunaratne S, Campbell CD, Yao H, Robinson L, Singh BK. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat Commun. 2015;6:8444.CAS 
    Article 

    Google Scholar 
    18.Peay KG, Schubert MG, Nguyen NH, Bruns TD. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol. 2012;21:4122–36.Article 

    Google Scholar 
    19.Elliott KJ, Vose JM. The contribution of the Coweeta Hydrologic Laboratory to developing an understanding of long-term (1934-2008) changes in managed and unmanaged forests. For Ecol Manag. 2011;261:900–10.Article 

    Google Scholar 
    20.Zhang X, Johnston ER, Liu W, Li L, Han X. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. Global Change Biology. 2016;22:198–207.Article 

    Google Scholar 
    21.Dini-Andreote F, Stegen JC, Elsas JD, van, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–32.CAS 
    Article 

    Google Scholar  More

  • in

    Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae)

    1.Szathmáry E, Smith JM. The major evolutionary transitions. Nature 1995;374:227–32.PubMed 
    Article 

    Google Scholar 
    2.West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Moran NA. The coevolution of bacterial endosymbionts and phloem-feeding insects. Ann Mo Bot Gard. 2001;88:35–44.Article 

    Google Scholar 
    4.Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A. Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci USA. 2002;99:4454–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Tamames J, Gil R, Latorre A, Pereto J, Silva FJ, Moya A. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol. 2007;7:181.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013;153:1567–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Wilson ACC, Duncan RP. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci USA. 2015;112:10255–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 2001;412:433–6.Article 

    Google Scholar 
    10.McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christeller JT. Molecular and histological characterization of primary (Betaproteobacteria) and secondary (Gammaproteobacteria) endosymbionts of three mealybug species. Appl Environ Microbiol. 2012;78:1187–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Bennett GM, Moran NA. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol. 2013;5:1675–88.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Bressan A, Mulligan KL. Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae): Bacteriome-inhabiting symbionts in Oliarus filicicola. Environ Microbiol Rep. 2013;5:499–505.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bennett GM, Mao M. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Environ Microbiol. 2018;20:4461–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, et al. Dynamic acquisition and loss of dual-obligate symbionts in the plant-sap-feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol. 2017;8:1037.Article 

    Google Scholar 
    16.Mao M, Yang X, Poff K, Bennett G. Comparative genomics of the dual-obligate symbionts from the treehopper, Entylia carinata (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Genome Biol Evol. 2017;9:1803–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 my of evolution. Genome Biol Evol. 2010;2:708–18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Hall AAG, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, et al. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol. 2016;18:2591–603.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson A-S, Wernegreen JJ, et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 2002;296:2376–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 2000;407:81–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol. 2005;71:8802–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol. 2010;76:7521–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Koga R, Moran NA. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 2014;8:1237–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Mao M, Bennett GM. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 2020;14:1384–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL. Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol. 2003;1:e21.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Weglarz KM, Havill NP, Burke GR, von Dohlen CD. Partnering with a pest: genomes of hemlock woolly adelgid symbionts reveal atypical nutritional provisioning patterns in dual-obligate bacteria. Genome Biol Evol. 2018;10:1607–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Toenshoff ER, Penz T, Narzt T, Collingro A, Schmitz-Esser S, Pfeiffer S, et al. Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). ISME J 2012;6:384–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Toenshoff ER, Gruber D, Horn M. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environ Microbiol. 2012;14:1284–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Toenshoff ER, Szabó G, Gruber D, Horn M. The pine bark adelgid, Pineus strobi, contains two novel bacteriocyte-associated gammaproteobacterial symbionts. Appl Environ Microbiol. 2014;80:878–85.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C, Hoover K. Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and introduced range. Environ Microbiol. 2013;15:2043–62.Article 
    CAS 

    Google Scholar 
    33.Havelka J, Danilov J, Rakauskas R. Relationships between aphid species of the family Adelgidae (Hemiptera Adelgoidea) and their endosymbiotic bacteria: a case study in Lithuania. Bull Insectology. 2021;74:1–10.
    Google Scholar 
    34.Favret C, Havill NP, Miller GL, Sano M, Victor B. Catalog of the adelgids of the world (Hemiptera, Adelgidae). Zookeys 2015;534:35–54.Article 

    Google Scholar 
    35.Blackman RL, Eastop VF Aphids on the world’s trees: an identification and information guide. 1994. CAB International.36.Havill NP, Foottit RG. Biology and evolution of Adelgidae. Ann Rev Ento. 2007;52:325–49.CAS 
    Article 

    Google Scholar 
    37.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end read mergeR. Bioinformatics 2014;30:614–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Bio. 2012;19:455–77.CAS 
    Article 

    Google Scholar 
    40.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6:1287.Article 

    Google Scholar 
    43.Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Chu C, Li X, Wu Y. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genomics. 2019;20:426.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12:R30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20:1085–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, et al. The EcoCyc database. EcoSal Plus. 2018;8:10.1128.Article 

    Google Scholar 
    49.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49–e49.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47:W52–W58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Xu Y, Bi C, Wu G, Wei S, Dai X, Yin T, et al. VGSC: a web-based vector graph toolkit of genome synteny and collinearity. Biomed Res Int. 2016;2016:7823429.PubMed 
    PubMed Central 

    Google Scholar 
    55.Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Guy L. phyloSkeleton: taxon selection, data retrieval and marker identification for phylogenomics. Bioinformatics 2017;33:1230–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biology. 2011;9:1–17.Article 

    Google Scholar 
    63.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol. 2018;20:2142–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Burke GR, Normark BB, Favret C, Moran NA. Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol. 2009;75:5328–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Manzano‐Marín A, Szabó G, Simon J, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co‐obligate secondary endosymbionts within Lachninae aphids: co-obligate endosymbiont dynamics in the Lachninae. Environ Microbiol. 2017;19:393–408.PubMed 
    Article 
    CAS 

    Google Scholar 
    67.Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.ggplot2. Create elegant data visualisations using the grammar of graphics. https://ggplot2.tidyverse.org/. Accessed Apr 2021.69.Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biol Evol. 2015;7:2871–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Janda JM, Abbott SL. The genus Hafnia: from soup to nuts. Clin Microbiol Rev. 2006;19:12–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M Evolutionary recent dual obligatory symbiosis among adelgids indicates a transition between fungus and insect associated lifestyles. bioRxiv. 2020; e-pub ahead of print 16 October 2020; https://doi.org/10.1101/2020.10.16.342642.72.Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol. 2010;19:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol. 2014;31:857–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23:1473–96.PubMed 
    Article 

    Google Scholar 
    75.Manzano-Marı́n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.Article 
    CAS 

    Google Scholar 
    76.Lo W-S, Huang Y-Y, Kuo C-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 2016;40:855–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K, Hattori M, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 2006;16:149–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature 2001;409:1007–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Bennett GM, McCutcheon JP, MacDonald BR, Romanovicz D, Moran NA. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 2014;5:e01697–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Degnan PH, Ochman H, Moran NA. Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera. PLoS Genet. 2011;7:e1002252.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Van Leuven JT, Meister RC, Simon C, McCutcheon JP. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 2014;158:1270–80.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Gomez-Valero L. The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol. 2004;21:2172–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Manzano-Marı́n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. A freeloader? The highly eroded yet large genome of the Serratia symbiotica symbiont of Cinara strobi. Genome Biol Evol. 2018;10:2178–89.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol Evol. 2017;9:2893–910.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Havill NP, Foottit RG, von Dohlen CD. Evolution of host specialization in the Adelgidae (Insecta: Hemiptera) inferred from molecular phylogenetics. Mol Phylogenet. 2007;44:357–70.CAS 
    Article 

    Google Scholar 
    87.Manzano-Marı́n A, Latorre A. Snapshots of a shrinking partner: genome reduction in Serratia symbiotica. Sci Rep. 2016;6:32590.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Monnin D, Jackson R, Kiers ET, Bunker M, Ellers J, Henry LM. Parallel evolution in the integration of a co-obligate aphid symbiosis. Curr Biol. 2020;30:1949–57. e6CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA. 2016;113:e5416–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, et al. Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol. 2010;12:2060–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Burke GR, Moran NA. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol. 2011;3:195–208.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, et al. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991;173:6321–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc B 1993;253:167–71.Article 

    Google Scholar 
    95.Kuechler SM, Gibbs G, Burckhardt D, Dettner K, Hartung V. Diversity of bacterial endosymbionts and bacteria-host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae). Environ Microbiol. 2013;15:2031–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol. 2000;66:2898–905.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol. 2004;70:3401–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Meseguer AS, Manzano-Marín A, Coeur d’Acier A, Clamens AL, Godefroid M, Jousselin E. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Mol Ecol. 2017;26:2363–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics. 2015;16:226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    101.Rosenblueth M, Sayavedra L, Sámano-Sánchez H, Roth A, Martínez-Romero E. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J Evol Biol. 2012;25:2357–68.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, Jankowska W, Michalik A. Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea). Arthropod Struct Dev. 2016;45:265–72.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, et al. Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA. 2003;100:581–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    104.Vogel KJ, Moran NA. Effect of host genotype on symbiont titer in the aphid-Buchnera symbiosis. Insects 2011;2:423–34.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Bennett GM, McCutcheon JP, McDonald BR, Moran NA. Lineage-specific patterns of genome deterioration in obligate symbionts of sharpshooter leafhoppers. Genome Biol Evol. 2015;8:296–301.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    106.Havill NP, Griffin BP, Andersen JC, Foottit RG, Justesen MJ, Caccone A, et al. Species delimitation and invasion history of the balsam woolly adelgid, Adelges (Dreyfusia) piceae (Hemiptera: Aphidoidea: Adelgidae), species complex. Syst Entomol. 2021;46:186–204.Article 

    Google Scholar  More

  • in

    Selective feeding in Southern Ocean key grazers—diet composition of krill and salps

    1.Pakhomov, E. A., Froneman, P. W. & Perissinotto, R. Salp/krill interactions in the Southern Ocean: Spatial segregation and implications for the carbon flux. Deep Sea Res. II 49, 1881–1907 (2002).CAS 
    Article 

    Google Scholar 
    2.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I 101, 54–70 (2015).Article 

    Google Scholar 
    3.Whitehouse, M. J. et al. Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia. Mar. Ecol. Prog. Ser. 393, 69–82 (2009).CAS 
    Article 

    Google Scholar 
    4.Tarling, G. A. & Fielding, S. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 279–319 (Springer International Publishing, 2016).5.Henschke, N., Everett, J. D., Richardson, A. J. & Suthers, I. M. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720–733 (2016).PubMed 
    Article 

    Google Scholar 
    6.Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Phillips, B., Kremer, P. & Madin, L. P. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156, 455–467 (2009).Article 

    Google Scholar 
    9.Siegel, V. & Watkins, J. L. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 21–100 (Springer International Publishing, 2016).10.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).Article 

    Google Scholar 
    11.Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).Article 

    Google Scholar 
    12.Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B. 362, 67–94 (2007).Article 

    Google Scholar 
    13.Montes-Hugo, M. et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323, 1470–1473 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. T. R. Soc., B 362, 149–166 (2007).Article 

    Google Scholar 
    15.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).CAS 
    Article 

    Google Scholar 
    17.Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).Article 

    Google Scholar 
    18.Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).19.Foxton, P. The Distribution and Life-history of Salpa thompsoni Foxton with observations on a Related Species, Salpa gerlachei Foxton (The University Press, 1966).20.Bernard, K. S., Steinberg, D. K. & Schofield, O. M. E. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I 62, 111–122 (2012).Article 

    Google Scholar 
    21.Condon, R. H. et al. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc. Natl Acad. Sci. 108, 10225–10230 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Meyer, M. A. & Elsayed, S. Z. Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol. 1, 193–197 (1983).Article 

    Google Scholar 
    23.Haberman, K. L., Ross, R. M. & Quetin, L. B. Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J. Exp. Mar. Biol. Ecol. 283, 97–113 (2003).Article 

    Google Scholar 
    24.Schmidt, K. & Atkinson, A. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 175–224 (Springer International Publishing, 2016).25.Andersen, V. in The Biology of Pelagic Tunicates (ed Bone, Q.) 125–137 (Oxford University Press, 1998).26.Mitra, A. et al. Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog. Oceanogr. 129, 176–199 (2014).Article 

    Google Scholar 
    27.Sailley, S. F., Polimene, L., Mitra, A., Atkinson, A. & Allen, J. I. Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. J. Plankton Res. 37, 519–529 (2015).CAS 
    Article 

    Google Scholar 
    28.Hamner, W. M., Hamner, P. P., Strand, S. W. & Gilmer, R. W. Behavior of Antarctic krill, Euphausia superba: Chemoreception, feeding, schooling, and molting. Science 220, 433–435 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.DeMott, W. R. in Behavioural Mechanisms of Food Selection (ed Hughes, R. N.) 569–594 (Springer, 1990).30.Le Fèvre, J., Legendre, L. & Rivkin, R. B. Fluxes of biogenic carbon in the Southern Ocean: Roles of large microphagous zooplankton. J. Mar. Syst. 17, 325–345 (1998).Article 

    Google Scholar 
    31.Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).Article 

    Google Scholar 
    32.Frischer, M. E. et al. Selective feeding and linkages to the microbial food web by the doliolid Dolioletta gegenbauri. Limnol. Oceanogr. 66, 1993–2010 (2021).Article 

    Google Scholar 
    33.Dadon-Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).Article 

    Google Scholar 
    34.Metfies, K., Nicolaus, A., von Harbou, L., Bathmann, U. & Peeken, I. Molecular analyses of gut contents: elucidating the feeding of co-occurring salps in the Lazarev Sea from a different perspective. Antarct. Sci. 26, 5545–5553 (2014).Article 

    Google Scholar 
    35.Cleary, A. C., Durbin, E. G. & Casas, M. C. Feeding by Antarctic krill Euphausia superba in the West Antarctic Peninsula: differences between fjords and open waters. Mar. Ecol. Prog. Ser. 595, 39–54 (2018).CAS 
    Article 

    Google Scholar 
    36.Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Passmore, A. J. et al. DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Mar. Biotechnol. 8, 686–696 (2006).CAS 
    Article 

    Google Scholar 
    38.von Harbou, L. et al. Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics. Mar. Biol. 158, 2009–2026 (2011).Article 

    Google Scholar 
    39.Vernet, M. et al. Primary production throughout austral fall, during a time of decreasing daylength in the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 452, 45–61 (2012).CAS 
    Article 

    Google Scholar 
    40.Moreau, S. et al. Variability of the microbial community in the western Antarctic Peninsula from late fall to spring during a low ice cover year. Polar Biol. 33, 1599–1614 (2010).Article 

    Google Scholar 
    41.Selz, V. et al. Distribution of Phaeocystis antarctica-dominated sea ice algal communities and their potential to seed phytoplankton across the western Antarctic Peninsula in spring. Mar. Ecol. Prog. Ser. 586, 91–112 (2018).CAS 
    Article 

    Google Scholar 
    42.Nichols, D. S., Nichols, P. D. & Sullivan, C. W. Fatty acid, sterol and hydrocarbon composition of Antarctic sea ice diatom communities during the spring bloom in McMurdo Sound. Antarct. Sci. 5, 271–278 (1993).Article 

    Google Scholar 
    43.Fahl, K. & Kattner, G. Lipid Content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol. 13, 405–409 (1993).Article 

    Google Scholar 
    44.Boyd, C. M., Heyraud, M. & Boyd, C. N. Feeding of the Antarctic krill Euphausia superba. J. Crust. Biol. 4, 123–141 (1984).Article 

    Google Scholar 
    45.Bone, Q., Carré, C. & Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. U. K. 83, 907–919 (2003).Article 

    Google Scholar 
    46.Nelson, M. M., Phleger, C. F., Mooney, B. D. & Nichols, P. D. Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids 35, 551–559 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Huntley, M. E., Sykes, P. F. & Marin, V. Biometry and trophodynamics of Salpa thompsoni Foxton (Tunicata: Thaliacea) near the Antarctic Peninsula in austral summer, 1983–1984. Polar Biol. 10, 59–70 (1989).Article 

    Google Scholar 
    48.Hopkins, T. L. Food web of an Antarctic midwater ecosystem. Mar. Biol. 89, 197–212 (1985).Article 

    Google Scholar 
    49.Paffenhöfer, G. A. & Köster, M. Digestion of diatoms by planktonic copepods and doliolids. Mar. Ecol. Prog. Ser. 297, 303–310 (2005).Article 

    Google Scholar 
    50.von Harbou, L. Trophodynamics of Salps in the Atlantic Southern Ocean. PhD thesis, University of Bremen (2009).51.Hargraves, P. E. The ebridian flagellates Ebria and Hermesinum. Plankton Biol. Ecol. 49, 9–16 (2002).
    Google Scholar 
    52.Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821–830 (2015).CAS 
    Article 

    Google Scholar 
    53.Smith, K. L. Jr. et al. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution. Limnol. Oceanogr. 59, 745–757 (2014).CAS 
    Article 

    Google Scholar 
    54.Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).
    Google Scholar 
    55.Ploug, H., Iversen, M. H., Koski, M. & Buitenhuis, E. T. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53, 469–476 (2008).CAS 
    Article 

    Google Scholar 
    56.Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. II 59-60, 147–158 (2012).CAS 
    Article 

    Google Scholar 
    57.Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36 (2014).Article 

    Google Scholar 
    58.Cripps, G. C., Watkins, J. L., Hill, H. J. & Atkinson, A. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181, 177–188 (1999).CAS 
    Article 

    Google Scholar 
    59.Schmidt, K., Atkinson, A., Petzke, K.-J., Voss, M. & Pond, D. W. Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol. Oceanogr. 51, 2409–2427 (2006).CAS 
    Article 

    Google Scholar 
    60.Hagen, W., Van Vleet, E. S. & Kattner, G. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Prog. Ser. 134, 85–89 (1996).CAS 
    Article 

    Google Scholar 
    61.Kawaguchi, S. & Takahashi, Y. Antarctic krill (Euphausia superba Dana) eat salps. Polar Biol. 16, 479–481 (1996).
    Google Scholar 
    62.Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Coats, D. W. & Park, M. G. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J. Phycol. 38, 520–528 (2002).Article 

    Google Scholar 
    64.Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. 107, 15129–15134 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Gómez-Gutiérrez, J. & Morales-Avila, J. R. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 351–387 (Springer International Publishing, 2006).66.Cleary, A. C., Casas, M. C., Durbin, E. G. & Gómez-Gutiérrez, J. Parasites in Antarctic krill guts inferred from DNA sequences. Antarct. Sci. 31, 16–22 (2019).Article 

    Google Scholar 
    67.Zamora-Terol, S., Novotny, A. & Winder, M. Molecular evidence of host-parasite interactions between zooplankton and Syndiniales. Aquat. Ecol. 55, 125–134 (2021).CAS 
    Article 

    Google Scholar 
    68.Kawaguchi, S., Ichii, T. & Naganobu, M. Do krill and salps compete? Contrary evidence from the krill fisheries. CCAMLR Sci. 5, 205–216 (1998).
    Google Scholar 
    69.Fadeev, E. et al. Microbial communities in the east and west Fram Strait during sea ice melting season. Front. Mar. Sci. 5, 429 (2018).Article 

    Google Scholar 
    70.Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).73.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Callahan, B. DADA2 Pipeline Tutorial (1.16), available online: https://benjjneb.github.io/dada2/tutorial.html. Accessed: 3 Feb 2020.75.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 3 (2011).Article 

    Google Scholar 
    76.Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).Article 

    Google Scholar 
    78.Metfies, K. et al. Uncovering the intricacies of microbial community dynamics at Helgoland Roads at the end of a spring bloom using automated sampling and 18S meta-barcoding. PLoS ONE 15, e0233921 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Catlett, D. et al. Evaluation of accuracy and precision in an amplicon sequencing workflow for marine protist communities. Limnol. Oceanogr. Methods 18, 20–40 (2019).Article 

    Google Scholar 
    80.Kattner, G. & Fricke, H. S. G. Simple gas-liquid-chromatographic method for the simultaneous determination of fatty-acids and alcohols in wax esters of marine organisms. J. Chromatogr. 361, 263–268 (1986).CAS 
    Article 

    Google Scholar 
    81.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell. Lab. Syst. 143, 85–96 (2015).CAS 
    Article 

    Google Scholar 
    83.Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-Like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Bian, G. et al. The gut microbiota of healthy aged chinese is similar to that of the healthy young. mSphere 2, e00327–00317 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Borstein, S. R. dietr: An R package for calculating fractional trophic levels from quantitative and qualitative diet data. Hydrobiologia 847, 4285–4294 (2020).Article 

    Google Scholar 
    88.Lechowicz, M. J. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).PubMed 
    Article 

    Google Scholar 
    89.Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D. & Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).PubMed 
    Article 

    Google Scholar 
    90.Graeve, M., Kattner, G. & Hagen, W. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182, 97–110 (1994).CAS 
    Article 

    Google Scholar 
    91.Kharlamenko, V. I., Zhukova, N. V., Khotimchenko, S. V., Svetashev, V. I. & Kamenev, G. M. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Prog. Ser. 120, 231–241 (1995).CAS 
    Article 

    Google Scholar 
    92.Greenacre, M. Compositional Data Analysis in Practice (CRC Press, Taylor & Francis Group, 2018).93.Suh, H.-L. & Nemoto, T. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proc. NIPR Symp. Polar Biol. 1, 72–83 (1987).
    Google Scholar 
    94.Alldredge, A. L. & Madin, L. P. Pelagic tunicates: unique herbivores in the marine plankton. Bioscience 32, 655–663 (1982).Article 

    Google Scholar 
    95.Kelly, P. S. The Ecological Role of Salpa Thompsoni in the Kerguelen Plateau Region of the Southern Ocean: A First Comprehensive Evaluation. PhD thesis, University of Tasmania (2019).96.Ericson, J. A. et al. Seasonal and interannual variations in the fatty acid composition of adult Euphausia superba Dana, 1850 (Euphausiacea) samples derived from the Scotia Sea krill fishery. J. Crust. Biol. 38, 662–672 (2018).
    Google Scholar 
    97.Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).CAS 
    Article 

    Google Scholar 
    98.Matsuoka, K. et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ. Model. Softw. 140, 105015 (2021).Article 

    Google Scholar  More

  • in

    Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia

    We reviewed and mapped antimicrobial resistance in aquatic food animals in Asia during a period of substantial industry growth. Our findings indicate that between 2000 and 2018, antimicrobial resistance in bacteria from cultured aquatic food animals was stable (33%) while the resistance from wild-caught aquatic food animals decreased sharply (52% to 22%). These trends represent currently available evidence from point prevalence surveys, which serve as a surrogate in the absence of systematic surveillance and should be interpreted cautiously. Structured, systematic surveillance will be imperative to document trends in multi-drug resistance at the sub-national level in the future.Our results are consistent with an analysis of antimicrobial resistance in aquaculture-derived bacteria from forty countries, nearly half of which in Asia, which identified a global mean multi-antibiotic resistance index of .25, and a higher index ( >.35) in low-income and middle-income countries in Asia27. Although antimicrobial use in surveys from cultured animals was most frequently unspecified, in the limited surveys that recorded whether on-farm antimicrobials were either used or not used (n = 63; 11%), use was associated with higher multi-drug resistance than the absence of use (p  More

  • in

    Future phytoplankton diversity in a changing climate

    1.Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture http://www.fao.org/3/i2727e/i2727e00.htm (2012).2.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services https://doi.org/10.5281/zenodo.3553579 (2019).4.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).PubMed 
    Article 

    Google Scholar 
    7.Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Loreau, M. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Covich, A. P. et al. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54, 767–775 (2004).Article 

    Google Scholar 
    12.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    13.Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P. & Somerfield, P. J. Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 32, 643–655 (2010).Article 

    Google Scholar 
    14.Eloire, D. et al. Temporal variability and community composition of zooplankton at station L4 in the Western Channel: 20 years of sampling. J. Plankton Res. 32, 657–679 (2010).Article 

    Google Scholar 
    15.Hillebrand, H. et al. In Handbook on Marine Environment Protection (eds Salomon, M. & Markus, T.) 21 (Springer, 2018).16.Bindoff, N. L. et al. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. W) Cambridge University Press (2019).17.Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Pecuchet, L. et al. Spatio‐temporal dynamics of multi‐trophic communities reveal ecosystem‐wide functional reorganization. Ecography 43, 197–208 (2020).Article 

    Google Scholar 
    19.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).20.Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Dossena, M. et al. Warming alters community size structure and ecosystem functioning. Proc. R. Soc. B Biol. Sci. 279, 3011–3019 (2012).Article 

    Google Scholar 
    25.Brander, K. & Kiørboe, T. Decreasing phytoplankton size adversely affects ocean food chains. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15216 (2020).26.Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L. & Pilcher, D. Phytoplankton size impact on export flux in the global ocean. Glob. Biogeochem. Cycles 30, 1542–1562 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Magnan, A. K. et al. Implications of the Paris agreement for the ocean. Nat. Clim. Chang. 6, 732–735 (2016).ADS 
    Article 

    Google Scholar 
    29.Kuhn, A. M. et al. Temporal and spatial scales of correlation in marine phytoplankton communities. J. Geophys. Res. Ocean. 124, 9417–9438 (2019).ADS 
    Article 

    Google Scholar 
    30.Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, eaay4740 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Chang. Biol. 27, 1196–1213 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 
    Article 

    Google Scholar 
    36.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim. Dyn. 45, 1253–1280 (2015).Article 

    Google Scholar 
    38.Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: a global model study. Geophys. Res. Lett. 32, n/a−n/a (2005).Article 
    CAS 

    Google Scholar 
    39.Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).ADS 
    Article 

    Google Scholar 
    40.Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Marinov, I., Doney, S. C. & Lima, I. D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature, and light. Biogeosciences 7, 3941–3959 (2010).ADS 
    Article 

    Google Scholar 
    42.Dutkiewicz, S., Ward, B. A., Scott, J. R. & Follows, M. J. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11, 5445–5461 (2014).ADS 
    Article 

    Google Scholar 
    43.Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Kooijman, S. A. L. M. & Troost, T. A. Quantitative steps in the evolution of metabolic organisation as specified by the dynamic energy budget theory. Biol. Rev. 82, 113–142 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M. J. & D’Ovidio, F. The dynamical landscape of marine phytoplankton diversity. J. R. Soc. Interface 12, 20150481 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Chang. 5, 695–701 (2015).ADS 
    Article 

    Google Scholar 
    47.Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    49.Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).Article 

    Google Scholar 
    50.Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).Article 

    Google Scholar 
    51.Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA 114, E1441–E1449 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A. & Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 2044 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858–876 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).Article 

    Google Scholar 
    55.Doncaster, C. P. et al. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97, 3079–3090 (2016).PubMed 
    Article 

    Google Scholar 
    56.Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    57.Benedetti, F. et al. The seasonal and inter-annual fluctuations of plankton abundance and community structure in a North Atlantic Marine Protected Area. Front. Mar. Sci. 6, 214 (2019).58.Pannard, A., Bormans, M. & Lagadeuc, Y. Short-term variability in physical forcing in temperate reservoirs: effects on phytoplankton dynamics and sedimentary fluxes. Freshw. Biol. 52, 12–27 (2007).CAS 
    Article 

    Google Scholar 
    59.Vidal, T., Calado, A. J., Moita, M. T. & Cunha, M. R. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period. PLoS One 12, e0177237 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Cermeño, P., de Vargas, C., Abrantes, F. & Falkowski, P. G. Phytoplankton biogeography and community stability in the ocean. PLoS One 5, e10037 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Allen, S. et al. Interannual stability of phytoplankton community composition in the North-East Atlantic. Mar. Ecol. Prog. Ser. 655, 43–57 (2020).ADS 
    Article 

    Google Scholar 
    62.Barton, A. D., Lozier, M. S. & Williams, R. G. Physical controls of variability in North Atlantic phytoplankton communities. Limnol. Oceanogr. 60, 181–197 (2015).ADS 
    Article 

    Google Scholar 
    63.Collins, S., Rost, B. & Rynearson, T. A. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 7, 140–155 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Irwin, A. J., Finkel, Z. V., Müller-Karger, F. E. & Troccoli Ghinaglia, L. Phytoplankton adapt to changing ocean environments. Proc. Natl Acad. Sci. USA 112, 5762–5766 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Cael, B. B. et al. Marine ecosystem changepoints spread under ocean warming in an Earth System Model. Geophys. Res. Lett.67.Cael, B. B., Dutkiewicz, S. & Henson, S. A. Abrupt shifts in 21st-century plankton communities. Sci. Adv.68.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    72.Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Pond, D. W., Tarling, G. A. & Mayor, D. J. Hydrostatic pressure and temperature effects on the membranes of a seasonally migrating marine copepod. PLoS One 9, e111043 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Mayor, D. J., Sommer, U., Cook, K. B. & Viant, M. R. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci. Rep. 5, 13690 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Richardson, D. M. & Pyšek, P. Elton, C.S. 1958: The ecology of invasions by animals and plants. London: Methuen. Prog. Phys. Geogr. Earth Environ. 31, 659–666 (2007).Article 

    Google Scholar 
    76.May, R. M. Qualitative stability in model ecosystems. Ecology 54, 638–641 (1973).Article 

    Google Scholar 
    77.Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Chang. 4, 211–216 (2014).ADS 
    Article 

    Google Scholar 
    79.Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).PubMed 
    Article 

    Google Scholar 
    80.Sokolov, A. P. et al. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation Joint Program Report Series, pp. 40 https://globalchange.mit.edu/publication/14579 (2005).81.Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Monier, E., Scott, J. R., Sokolov, A. P., Forest, C. E. & Schlosser, C. A. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0). Geosci. Model Dev. 6, 2063–2085 (2013).ADS 
    Article 

    Google Scholar 
    83.Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).ADS 
    Article 

    Google Scholar 
    85.Ward, B. A. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PLoS One 10, e0135581 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Dutkiewicz, S. GUD IGSM depth integrated biomass https://doi.org/10.7910/DVN/LWHQNS (2021).87.Dutkiewicz, S. & Jahn, O. GUD IGSM numerical code and inputs https://doi.org/10.7910/DVN/UA8VNU (2021). More

  • in

    Numerical model of the spatio-temporal dynamics in a water strider group

    The model is organized as follows. We simulated water striders as an array of the discrete “objects” which interact one with another according to more or less natural rules. The interaction includes strong short-range repulsion between the animals. Mathematically, short range repulsion means that one animal cannot penetrate inside a private area of other animal. Normally such repulsion appears at relatively short distances corresponding to a radius (R^{repuls}) of their private territory. Besides, there is mutual attraction at longer distances (R^{attract} > R^{repuls}), which biologically corresponds to a tendency to aggregation4. The tendency to aggregation often gives some competitive advantage due to possible collective reactions on the external challenges (for example, on the attacks of predators).The simplest way to simulate an interaction with regulated characteristic distance is to use Gaussian effective potential with some characteristic radius (R_{0}), since the Gaussian potential guaranty the stability in dynamics simulations with relatively large (Delta t)4. Repulsion force in this case looks as follows:$$f_{j}^{rep} = A_{0} left( {vec{r} – vec{r}_{j} } right)expleft[ { – left( {frac{{vec{r} – vec{r}_{j} }}{{R_{0} }}} right)^{2} } right],$$
    (2)
    where factor A0  R^{repuls}) attraction normally causes a minimum of the interaction energy at some intermediate distance (R^{min }). In infinite empty space, being used in the equations of motion, such a combination of the forces leads to an ordering of the objects with the equilibrium distance corresponding to the position (R_{min }) of the energy minimum. But, if the area ({ [0,Lx],[0,Ly]}) is limited, the equations of motion must be supplied by appropriate boundary conditions which do not allow the animals to leave this area.The simplest way to introduce the boundary conditions is to apply mathematically “soft” but extremely high and narrow walls around the system, which repulse the animals back to the internal space with exponentially growing force$$f_{j}^{bound} = B_{j}^{bound} exp left[ { – left| {frac{{overrightarrow {r}_{j} – overrightarrow {r}_{bound} }}{{R_{{}}^{bound} }}} right|} right]$$
    (5)
    acting in the direction opposite to that in which the animal occasionally crosses any of the boundaries. The words “extremely high” mean that the amplitude of this force should be supplied by the pre-factor (B_{j}^{bound}) which is much bigger than the amplitude of the repulsion force between the animals (regulated by the amplitude (B_{{_{jk} }}^{repuls})) to be able to overpower their mutual repulsion (B_{j}^{bound} > > B_{j}^{repuls}) pushing them out the boundaries. Therefore also the characteristic distance of the repulsion from the wall should be much shorter than the typical distance between the animals in the population (R^{bond} < < R^{min }). In this sense the boundary should be as narrow as possible.One can expect that mean density of the population is not extremely high and does not force the animals to stay exactly on the minimal distance (R^{min }) between them. In this case total combination of the attracting and repulsing interactions combined with the rejecting boundary conditions normally leads to the specific patterns where relatively dense groups of the animals spread on the distances close to the equilibrium ones are accompanied by almost empty voids between them5. We have checked this hypothesis numerically many times. Below, such patterns will be seen in all the particular visualizations of the numerical results.It should be noted that mathematically, if number of the animals increases inside of the same limited and already populated area, the individuals tend to fill all the voids with the equilibrium (sometimes, even higher than equilibrium) density. It happens in real population as well in that cases when the number of the animals grows quickly for a self-regulation of the population and they become simply forced to occupy every empty space inside the area.However, normally when the population grows too quickly the growth should be regulated by a number of factors. In particular, it will be restricted by a competition for the food and space accompanied by death of some of the participants of the process. From mathematical point of view it means that the equations of motion, which will be written below, must be accompanied by natural generation of the new individuals as well as by their (reasonable) disappearance from the system.It is almost impossible to write such a generation in analytical form, but in numerical model it can be formally presented as a set of natural rules. First of all the length of the array is supposed to be a variable integer. Let us suppose that at every step of calculation (Delta t) the length of the array can potentially increase to the new one (N to N + 1). The potential act of the generation becomes real if the numerically generated random number (varsigma) uniformly distributed in interval [0;1] is less than some threshold (varsigma_{thres} < 1). In the numerical procedure the rate of the generation is certainly regulated by (varsigma_{{{text{thres}}}}) and can be extremely low for example, if (varsigma_{thres} < < 1).New member of the array is generated with random coordinates within the prescribed area ({ [0,Lx],[0,Ly]}) with the mass ((m_{N + 1})) randomly distributed around a starting (basically small) one (m_{s}). Qualitatively it means that at every time moment the array can be supplemented with some probability by a new member which is physically placed in some arbitrary place inside the area ({ [0,Lx],[0,Ly]}). At the same time, we have to introduce a process of disappearance of some of the array members. Natural criterion for this will be established below from the checking of the accumulation or loss of the mass (e.g. reserve fat mass) (m_{j}) by every individual. It is supposed that, if an animal gets critical size (which can be both: maximal (m_{max }) or minimal (m_{min })) it disappears from the system and the length of the array decreases (N to N - 1).Both of such events must be adjusted numerically to some rate natural for a particular biological system. It is quite expected from the very beginning, that there should be a kind of balance between the creation and disappearance rates. If new animas statistically appear too often, the overpopulation will take place. In opposite limit the array will quickly shrink (N to 0) and it will cause a distinction of the population.Obviously both these rates should be naturally regulated by the available food resources. For the particular problem under consideration the resources are generated by a random deposition of the potentially available food onto the water surface. It means that we introduce a new array for the food with coordinates (overrightarrow {r}_{n}^{food}). The length of the array (N^{food}) is also variable and index (n) running in the interval (n = 0,..,N^{food}). In principle, it is possible, and very often happened in our simulations, that at some particular moment available food inside the area can completely disappear. In this case the length of the food array reduces to zero (N^{food} = 0).The food is generated by the random deposition of the food portions distributed inside the area of the system ({ [0,Lx],[0,Ly]}). Generally, it is organized in the same manner as the deposition of the new individuals. If the random number (zeta) uniformly distributed in the interval [0;1] is less than some threshold (varsigma_{thres} < 1) the food portion is deposed at an arbitrary place of the area, in principle at any given time step (Delta t).It is obvious that if the threshold is much smaller than unit: (zeta_{thres}^{food} < < 1) the food portions are produced very rarely. Certainly, the rate of the “food production” in the frames of the model must be properly regulated to make its behaviour natural. Of course, it relates to the size of the portions, but also to the intervals between the food depositions. In any case, these intervals are expected to be much longer than discrete time steps (Delta t) used to solve numerically the equations of motion. At the same time, it must be much shorter than other (biologically reasonable) time-scales of the problem. To control the stability and reasonability of the simulations we have varied this rate in very wide intervals. It was found that at all the reasonable rates food balance in the system tends to the stationary scenario, which corresponds to the expected scenarios in nature.When a portion of the food falls onto the surface the animals which occasionally appear relatively close to it are attracted to this food portion and “eat” it with some characteristic rate. In the particular simulation it was simulated by the additional term of the attraction force:$$f_{{_{jn} }}^{food} (overrightarrow {r}_{j} ,overrightarrow {r}_{n} ) = B_{jn}^{food} (overrightarrow {r}_{j} - overrightarrow {r}_{n} )exp left[ { - left( {frac{{overrightarrow {r}_{j} - overrightarrow {r}_{n} }}{{R_{{_{j} }}^{food} }}} right)^{2} } right]$$ (6) As it is seen from the interactions in the model the animals compete for the food, repulsing one another and reacting faster on the force (f_{{_{jk} }}^{food} (overrightarrow {r}_{j} ,overrightarrow {r}_{k} )). It’s why we apply here non-uniform coefficient (B_{{_{jk} }}^{food}), which is different for different index (j) and in fact depends on some power of mass (B_{jk}^{food} sim m_{j}^{alpha }) with some exponent (alpha). Scaling estimation gives the value of the exponent (alpha) = 2/3. Another form of the competition is related to their simultaneous consumption the food with different rate depending on the size of the different individuals. We suppose that the consumption is proportional to already accumulated mass of the individual: (partial m_{j} /partial t = mu m_{j}). Effective dumping (eta_{j}) on the water surface also depends on the mass of animal (eta_{j} sim m_{j}^{beta }), where estimated exponent (beta) = 1/3.Let us remind that the consumption of the food portion with index (n) is possible only when the animal is close enough to this portion. In other words, one more threshold has to be incorporated: (left| {overrightarrow {r}_{j} - overrightarrow {r}_{n} } right| < R_{thres}^{food}). As we see, the model consists of the dynamic equations of motion and a number of the procedures, which work in parallel and essentially affect both: the dynamic behavior and the results.The equations of motion can be formally written accumulating all the above mentioned forces of the problem:$$m_{j} partial^{2} r_{j} /partial t^{2} + eta_{j} partial r_{j} /partial t = sumlimits_{k} {left[ {f_{{_{jk} }}^{repuls} (overrightarrow {r}_{j} ,overrightarrow {r}_{k} ) + f_{{_{jk} }}^{attract} (overrightarrow {r}_{j} ,overrightarrow {r}_{k} )} right]} + sumlimits_{n} {f_{{_{jn} }}^{food} (overrightarrow {r}_{j} ,overrightarrow {r}_{n} )} + sumlimits_{Boundaries} {f_{j}^{bound} }$$ (7) with their solution combined with the procedures described above. All the initial velocities are zero. This combination makes the solution nontrivial because it is performed for the arrays with changeable lengths and with the varied sizes and forces of the participants. Nevertheless, expected scenarios can be generally predicted and verified later by the large set of numerical experiments at different combinations of the parameters.The longer the time an individual spends near the portion of food and the larger the size it has to the current moment the faster it eats up and faster accumulates additional mass. In general, the larger animals consume more food. However, one should remember that large animals may also have disadvantages. For example, due to inertia of motion faster animals can occasionally jump over a good position near the food. We have observed many such local events during the simulations. Such events partially can be observed in the movies presented below. It is also possible that small animals can appear near the randomly deposed food earlier than the big ones and start consuming it.In some cases such possibilities even emerges due to not just probabilistic but quite regular reason. For example, it can happen due to a further described effect of the “wave of fear”. By influence of such a wave (being scared by somebody moving along the shore), the animals almost synchronically start to run away from one of the boundaries. Big, strong and fast animals escape far away, while the small ones still remain near to the shore. As result, the food deposed into this region will be partially (or even completely) consumed by the weak individuals before the strong ones will return. This effect will be reported further on.Basically, dynamic balance of the population is determined by the relation between a set of the time constants of the problem: how often the food appears, how quick the animals consume it and how efficiently they grow. However, the population structure is also important for the total balance. The more an animal consumes the bigger and stronger it becomes, than faster moves to the new portion of the food and more eats. The individuals are born small and more or less equal. They grow initially depending on their “luck” only. However, population quickly forms some non-uniform distribution of the sizes.In terms of distributions one can say that with the time the individual members of the array shift along the distribution to the larger or smaller size depending on the personal balance of accumulation or losing the mass. At every instant moment the distribution actually demonstrates two opposite fluxes: to the limit of the small and large sizes. Strongest animals evolve to the predefined critical large size (m_{max }), at which they leave the population. Weakest ones tend to the critically small weight mmin and also leave the population. The balance is maintained by the fact that at every time moment the population is incorporated by new young members who either grow or die.In this respect, it is interesting to observe the dynamics of the animal’s sizes distribution. Obviously, the initial population consisting of young animals has histogram localized around small sizes. Later the distribution becomes wider and its edge moves to the larger sizes. The asymptotic histogram shape is determined by the two opposite processes described above. This shape will be compared further with a real distribution found from the field observations.Typical behavior of the model evolution for a population inside a limited area is presented in illustrative movie (video_S2). For a convenience, the population is formally divided into 3 subgroups, which are plotted by the circles having different sizes (small, medium, and big) and colors (blue, green, and red, respectively). The randomly deposed portions of food are shown by large black circles.We start from relatively young population, which contains 100 individuals and allow them to move, grow and disappear according to the rules of game. This behavior demonstrates correlative motions, as well as variation in the population composition, which look self-consistent and rather natural. The interactions between the animals with other animals and with food cause quite predictable motions of the individuals and the changes of their sizes (and colors, respectively) when they leave one of the three groups and join to another. The process stabilizes with the time and seems to become stationary. Below we will study this process by the quantitative time-dependencies and statistical histograms.The bigger an animal the faster it moves in average. Therefore, it is convenient to sort the animals according to the masses and velocities. Such representation is reproduced in the third movie “video_S3.mp4”. The separation between subgroups, their evolution from the initial to a stationary state is clearly seen from the movie in dynamics. Moreover, one can observe even how group of the small animals divides by itself into two subgroups with quite well pronounced gap between them. This separation is caused by the mentioned above two fluxes of the sub-populations, which either grow from the initially small sizes to the medium ones or “in unlucky case” decrease and disappear.Actually, the rate of evolution with fast changes of the masses after very few acts of the interaction with deposed food represented in both movies is strongly overestimated in contrast to the reality. Therefore, as a next step we reduced the rates of accumulation and loss of the mass and proportionally prolonged the simulation time. This process was also recorded in two movies “video_S4.mp4” and “video_S5.mp4”. To reduce the lengths of the videos the time intervals between the frames were made 10 times longer. Because of this reduction the movies look almost stroboscopic. Nevertheless, the movies illustrate quite well long-time dynamics of the system at realistic rate of food deposition and consumption.Information about the system accumulated during long runs including typical pattern formed by the moving animals at some intermediate stage and other plots is presented in Figs. 1, 2, 3 and 4. The spatial pattern in Fig. 1 is taken at some intermediate stage of evolution. Blue, green and red circles correspond to the small medium and large sizes of the individuals. Large black circles mark the food portions, which are recently deposed and not eaten yet.Figure 1Typical spatial pattern formed by the population at intermediate stage of evolution. Blue, green and red circles correspond to the small medium and large sizes of the individuals. One can see the groups packed by the individuals with the distances close to the equilibrium Rmin(R^{min }) and voids. Black circles show food portions remaining to the current moment.Full size imageFigure 2Histograms of the distances between nearest neighbors. Blue line shows some instant distribution. Black line presents histogram accumulated during long run. Maximum of the histogram corresponds to the distance Rmin close to the equilibrium. Long tail of the black curve corresponds to the presence of some individuals inside the voids.Full size imageFigure 3Mass depending values: (a) instant configuration of the velocities of different subgroups marked by the same symbols as in Fig. 1; (b) instant and long run averaged histograms of the masses for complete population; (c) instant and accumulated distributions of the velocities monotonously increasing with masses (volumes) of the individuals.Full size imageFigure 4The comparison between the numerically (curves with points) and experimentally (bars) obtained data. The subplot (a) shows the histogram of the distances between nearest neighbors and the subplot (b) presents the histograms of the volumes of the animals (which are supposed to be approximately proportional to their masses).Full size imageOne can well distinguish in Fig. 1 relatively dense domains packed with the distances between the individuals close to the equilibrium radius (R^{min }) determined by the relation between repulsive (f_{{_{jk} }}^{repuls} (overrightarrow {r}_{j} ,overrightarrow {r}_{k} )) and attraction (f_{{_{jk} }}^{attract} (overrightarrow {r}_{j} ,overrightarrow {r}_{k} )) forces. These domains are separated by voids. To characterize such patterns quantitatively the histograms of the distances between nearest neighbors6 were accumulated during a long simulation run. These histograms are shown in Fig. 2. Thin blue line here reproduces some arbitrary instant distribution. Black line with the circles presents the histogram accumulated during a long run. Maximum of the histogram is close to the equilibrium distance (R^{min }) determined by the balance of interactions. Long tail of the black curve, which extends to the few times longer distances than (R^{min }), exists, since some individuals are located inside voids far-away from all the neighbors.Typical size distributions to which the population evolves with the time are reproduced in Fig. 3. It shows three important size depending values. Figure 3a demonstrates an instant configuration of the velocities. Three different subgroups are marked by the same symbols as in Fig. 1. Figure 3b shows instant histogram of the animal’s masses in complete population and the histogram averaged over long run. They are plotted by the blue and black lines respectively. How mean velocities of the animals depend on their mass is shown in Fig. 3c. As above, the instant and accumulated distributions are plotted by the blue and black lines respectively.It can be noticed from the subplot (c), Fig. 3, that the averaged velocities correlate with the mass of the individuals. In principle, it could be expected according to the model rules, namely due to the nonlinear dependence of strength (f_{{_{jk} }}^{repuls} (overrightarrow {r}_{j} ,overrightarrow {r}_{k} )) as well as effective damping (eta_{j}) for the individual animals on their size (mass (m_{j})). However, taken into account multiple interactions in the system the result was not obvious in advance. The velocity increase is especially pronounced when the animals become large and are close to the final stage of its growth.Further, we would like to compare the numerical and experimentally obtained data. This comparison is presented in Fig. 4 by the curves and bar-plots respectively. From the field videos it is difficult to determine the masses (m_{j}) of the individuals, but we can estimate their volumes (V_{j}) which are approximately proportional to their masses (V_{j} sim m_{j}). Therefore, to compare numerical results with the measurements from videos we have plotted the distributions along the volume coordinate. The subplot (a) in Fig. 4 shows the histograms of the distances between nearest neighbors, and the subplot (b) presents the histograms of the volumes of the animals. The histograms obtained from simulations match very well to the histograms calculated using experimental data. Two sample Kolmogorov–Smirnov test does not reject the hypothesis, that the distributions obtained in experiment and in numerical simulations are from the same continues distribution for both the animal volumes (p = 0.59, D55,500 = 0.105) and for the distances between nearest neighbors (p = 0.84, D55,500 = 0.083).It is important to note that due to stability of the system the distributions independent on their initial shape converge to the same quasi-stationary histograms. To check this convergence, we started from two extreme populations. The first one consisted almost from the large individuals only and another one contained only small individuals. Time depending volume histograms were accumulated into the volume distribution over time gray-scale maps. In Fig. 5 the results for the two cases are shown in the subplots (a) and (b) respectively. Lighter gray color corresponds to the higher density. Both distributions attract to the practically the same final one with the time. The shapes of distributions, which have started from the two extreme initial distributions, almost coincide after long runs, while the distributions flanks shift in different directions as marked by the red and blue arrows in Fig. 6 and visualized in the supplementary movies “video_S6.mp4” and “video_S7.mp4” respectively. As in the static figures the instant and time averaged histograms are shown by the blue and black lines respectively. For the supplementary video “video_S6.mp4” the distribution is initially localized mainly near the right side of the interval and after some quick transient period “jumps” to the distribution close to the final histogram. Comparison with second video “video_S7.mp4” shows how both averaged distributions are attracted after a long simulation run to the similar distribution.Figure 5Gray-scale maps of time-volume histograms accumulated for two limit cases: starting from large and small animals, are shown in the subplots (a,b) respectively. Lighter gray color corresponds to the higher density. Dashed line marks common position of distribution maximums to which they converge during extremely long runs.Full size imageFigure 6Final volume distributions after long runs. It is seen that the maximums coincide already. Remaining trends of the histogram alterations for the distribution started from the large (open circles) and small (closed circles) individuals are marked by the red and blue arrows respectively.Full size imageDuring the system evolution some of the animals leave the population and some new appear. One can accumulate the numbers of died and survived animals for each given time moment. Accumulated numbers of died and survived animals are plotted in Fig. 7a by black and red curves respectively. The balance between these numbers depends on the relation of all the model parameters. Here the same set of the parameters was used as for simulations presented in Figs. 1, 2 and 3.Figure 7Time depending integral populations: (a) accumulated numbers of died (N1) and survived (N2) animals (black and red curves); (b) variations of the numbers of animals in subpopulations of small (Nc1), medium (Nc2) and large (Nc3) animals shown by blue, green and red curves respectively.Full size imageThe curves presenting the integral number of animals are relatively smooth, Fig. 7a, yet the instant numbers of animals in small, medium and large subpopulations shown by blue, green and red curves respectively in Fig. 7b vary much stronger, because at every particular time moment, their numbers are relatively small and the fluctuations are strong. From the figure, it is also obvious that during initial transient time interval the number of small individuals do not exceeds the number of two other populations. It is natural and was expected, because all newborn animals are small. Therefore, subpopulation with small size prevails at stationary stage.As we already announced nontrivial transformation of the spatial pattern and modification of all the resulting distributions can appear due to the “waves of fear”. Such a wave can appear when the animals almost synchronously try to escape from the shoreline if they are being scared by somebody moving along. Mathematically such a wave can be provoked by an additional repulsion force acting from one side of the simulation area to the distance much longer than already incorporated short range reflection from the boundary (Eq. 6). This force influences all the members of the array but appears for relatively limited time. It can be added to the model interaction occurring either randomly or periodically. Second variant is more regular and preferable and allows accumulate statistics faster.Analytically this force has the same form as (f_{j}^{bound}) with the same boundary position (overrightarrow {r}_{bound}):$$f_{j}^{wave} = B_{j}^{wave} exp left[ { - left| {frac{{overrightarrow {r}_{j} - overrightarrow {r}_{bound} }}{{R_{{}}^{wave} }}} right|} right],$$ (8) but it has larger amplitude (B_{j}^{wave} > B_{j}^{bound}) and much longer distance of the exponential decay (R_{{}}^{wave} > > R_{{}}^{bound}). So, it influences not only the individuals occasionally attempting to cross the boundary but almost all others too, even if they are currently relatively far from the boundary.The video in supplementary material “video_S8.mp4” illustrates typical behavior of the system at presence of the “waves of fear” occasionally observed in original sequences (video_S1.avi). One can see how bigger, stronger and faster animals escape quicker and further from the dangerous boundary, while some smallest ones do not react so quickly and remain almost near to it. Food deposition is not correlated with the “waves of fear”. As result, the food deposed near the dangerous boundary is consumed mostly by small animals, since that boundary region is practically depopulated by bigger animals. While stronger individuals return to the shore, such food may be already consumed by the weaker individuals.Static image of such “shifted” to one side pattern for a moment when food and weak members of the array are presented in one side of the area while absolute majority of the population is collected in a center or closer to another side of the area is reproduced in Fig. 8.Figure 8Shifted pattern at the presence of the “wave of fear”. Some food was just deposed inside the depopulated area near to the dangerous boundary. Some small individuals are in the vicinity to the food, while absolute majority of the population is localized in a center or near opposite boundary. The symbols have the same meaning as in Fig. 1.Full size imageBeing regularly applied the “waves of fear” in principle leads to a redistribution of the food and animals in the space. It is quite expected that the density of the animals will spend some time in the areas distanced from the dangerous wall. As result, the food will longer remain available in the places close to the dangerous wall. We have accumulated these densities during long runs at different parameters and obtained such shifted distributions. Typical distributions of the food and animals for the set of parameters which were used in simulations presented in the previous figures are shown in Fig. 9.Figure 9Density distributions of the food and animals at presence of regularly applied “waves of fear”. The densities of the food and animals are shown by the solid black and dashed magenta curves respectively. The curves for the densities of large, middle and small individuals are plotted by the same colors as above. The density shift with increasing size is marked by the arrow.Full size imageMean density of the food is shown by the solid black curve. Total density of the animals is presented by the dashed magenta curve. These densities are anti-correlated. Besides, there is a fine structure of the partial densities of the animals. The curves for the densities of large, middle and small individuals are plotted by the same colors as above. Strongest correlation between the size of the animals and their spatial density is observed in interval between two dash-dotted lines. The density shift with increasing size is marked by the arrow. In close proximity to the dangerous wall, where mean density of the food is abnormally high, the density shift dependence on the individuals size change the direction. Number of the small individuals reduces in average, because they quickly move to the category of middle or even large individuals. More