More stories

  • in

    Tea plantations and their importance as host plants and hot spots for epiphytic cryptogams

    1.Namita, P., Mukesh, R. & Vijay, K. J. Camellia Sinensis (Green Tea): A review. Glob. J. Pharmacol. 6(2), 52–59 (2012).
    Google Scholar 
    2.Chang, K. World Tea Production and Trade. Current and Future Development (FAO, Rome, 2015).
    Google Scholar 
    3.Chang, K. & Brattlof, M. World Tea Production and Trade. Current and Future Development (FAO, 2015).
    Google Scholar 
    4.Kochlamazashvili, I. & Kakulia, N. The Georgian Tea Sector: A Value Chain Study. ISET Policy Institute. Study prepared in the framework of ENPARD project Cooperation for Rural Prosperity in Georgia (2015).5.Lesica, P., McCune, B., Cooper, S. V. & Hong, W. S. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Svan Valley Montana. Can. J. Bot. 69, 1745–1755 (1991).Article 

    Google Scholar 
    6.Nowak, A., Plášek, V., Nobis, M. & Nowak, S. Epiphytic communities of open habitats in the Western Tian-Shan Mts (Middle Asia: Kyrgyzstan). Cryptog. Bryol. 37(4), 415–433 (2016).Article 

    Google Scholar 
    7.Rhoades, F. M. Nonvascular epiphytes in forest canopies: Worldwide distribution, abundance and ecological roles. In Forest Canopies (eds. Lowman, M.D. & Nadkarni, N. M.) 353–408 (1995).8.Haines, W. P. & Renwick, J. A. A. Bryophytes as food: Comparative consumption and utilization of mosses by a generalist insect herbivore. Entomol Exp Appl. 133, 296–306. https://doi.org/10.1111/j.1570-7458.2009.00929.x (2009).Article 

    Google Scholar 
    9.Kuřavová, K. et al. Is feeding on mosses by groundhoppers in the genus Tetrix (Insecta: Orthoptera) opportunistic or selective?. Arthropod-Plant Int. 11, 35–43. https://doi.org/10.1007/s11829-016-9461-9 (2017).Article 

    Google Scholar 
    10.Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski (Wyd Nauk, PWN, 2001).
    Google Scholar 
    11.Krestov, P. V. Forest vegetation of easternmost Russia (Russian Far East). In Forest Vegetation of Northeast Asia (eds Kolbek, J. et al.) 93–180 (Springer, 2003).Chapter 

    Google Scholar 
    12.Kuznetsov, O. Topology-ecological classification of mire vegetation in the Republic of Karelia (Russia). In Biodiversity and Conservation of Boreal Nature. Proceedings of the 10 years anniversary symposium of the Nature Reserve Friendship (eds Heikkilä, R. & Lindholm, T.) 117–123 (Elsevier, 2003).
    Google Scholar 
    13.Černý, T. Phytosociological Study of Selected Critical Thermophilous Vegetation Complexes in the Czech Republic. A thesis submitted for the degree of Doctor of Philosophy in the Department of Botany Faculty of Sciences, Charles University (2007).14.Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra ecosystem in southern Siberia. Boreas 48, 36–56 (2019).Article 

    Google Scholar 
    15.Wolski, G. J. & Kruk, A. Determination of plant communities based on bryophytes: The combined use of Kohonen artificial neural network and indicator species analysis. Ecol. Indic 113, 106160. https://doi.org/10.1016/j.ecolind.2020.106160 (2020).Article 

    Google Scholar 
    16.Benzing, D. Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. Clim. Change 39, 519–540 (1998).Article 

    Google Scholar 
    17.Gustafsson, L., Fiskesjö, A., Ingelög, T., Petterson, B. & Thor, G. Factors of importance to some lichen species of deciduous broad-leaved woods in southern Sweden. Lichenologist 24, 255–266 (1992).Article 

    Google Scholar 
    18.Frahm, J. P. Ecology of bryophytes along altitudinal and latitudinal gradients in Chile. Trop. Bryol. 21, 67–79 (2002).
    Google Scholar 
    19.Číhal, L., Kaláb, O. & Plášek, V. Modeling the distribution of rare and interesting moss species of the family Orthotrichaceae (Bryophyta) in Tajikistan and Kyrgyzstan. Acta Soc. Bot. Pol. 86(2), 3543. https://doi.org/10.5586/asbp.3543 (2017).Article 

    Google Scholar 
    20.Łubek, A., Kukwa, M., Czortek, P. & Jaroszewicz, B. Impact of Fraxinus excelsior dieback on biota of ash-associated lichen epiphytes at the landscape and community level. Biodivers. Conserv. 29, 431–450. https://doi.org/10.1007/s10531-019-01890-w (2020).Article 

    Google Scholar 
    21.Łubek, A., Kukwa, M., Jaroszewicz, B. & Czortek, P. Identifying mechanisms shaping lichen functional diversity in a primeval forest. For. Ecol. Manag. 475, 118434. https://doi.org/10.1016/j.foreco.2020.118434 (2020).Article 

    Google Scholar 
    22.Barkman, J. J. Phytosociology and Ecology of Cryptogamic Epiphytes. Including a Taxonomic Survey and Description of Their Vegetation Units in Europe, Van Gorcum, Comp (N. V Assen, 1958).
    Google Scholar 
    23.Green, T. G. A. & Lange, O. L. Photosynthesis in poikilohydric plants: A comparison of lichens and bryophytes. In Ecophysiology of Photosynthesis (eds Schulze, E.-D. & Caldwell, M. M.) 319–341 (Springer-Verlag, 1995).Chapter 

    Google Scholar 
    24.Scheidegger, C., Wolseley, P. A. & Landolt, R. Towards conservation of lichens. Forest. Snow Landsc. Res. 75, 285–433 (2000).
    Google Scholar 
    25.Tønsberg, T. & Høiland, K. A study of the macrolichen flora on the sand-dune areas on Lista, SW Norway. Nor. J. Bot. 27, 131–134 (1980).
    Google Scholar 
    26.Thiet, R. K., Doshas, A. & Smith, S. M. Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant Soil 377(1), 235–244 (2014).CAS 
    Article 

    Google Scholar 
    27.Vaz, A. S., Marques, J. & Honrado, J. P. Patterns of lichen diversity in coastal sand-dunes of northern Portugal. Bot. Complut. 38, 89–96 (2014).Article 

    Google Scholar 
    28.Antoninka, A., Bowker, M. A., Reed, S. C. & Doherty, K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restor. Ecol. 24(3), 324–335 (2016).Article 

    Google Scholar 
    29.Jüriado, I., Kämärä, M.-L. & Oja, E. Environmental factors and ground disturbance affecting the composition of species and functional traits of ground layer lichens on grey dunes and dune heaths of Estonia. Nord. J. Bot. 34(2), 244–255 (2016).Article 

    Google Scholar 
    30.Balogh, R. et al. Mosses and lichens in dynamics of acidic sandy grasslands: Specific response to grazing exclosure. Acta Biol. Plant. Agriensis 5(1), 30 (2017).
    Google Scholar 
    31.Concostrina-Zubiri, L., Arenas, J. M., Martínez, I. & Escudero, A. Unassisted establishment of biological soil crusts on dryland road slopes. Web Ecol. 19(1), 39–51 (2019).Article 

    Google Scholar 
    32.Kubiak, D. & Oszyczka, P. Non-forested vs forest environments: The effect of habitat conditionson host tree parameters and the occurrence of associated epiphytic lichens. Fungal Ecol. 47, 100957 (2020).Article 

    Google Scholar 
    33.Gradstein, S. R. & Sporn, S. G. Land-use change and epiphytic bryophyte diversity in the Tropics. Nova Hedwigia 138, 311–323 (2010).
    Google Scholar 
    34.Guevara, S., Purata, S. E. & Van der Maarel, E. The role of remnant forest trees in tropical secondary succession. Vegetatio 66, 77–84 (1986).
    Google Scholar 
    35.Sillett, S. C., Gradstein, S. R. & Griffin, D. Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryologist 98(2), 251–260 (1995).Article 

    Google Scholar 
    36.Werner, F., Homeier, J. & Gradstein, S. R. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11, 21–40 (2005).
    Google Scholar 
    37.Lara, F., Garilleti, R. & Mazimpaka, V. Orthotrichum karoo (Orthotrichaceae), a new species with hyaline-awned leaves from southwestern Africa. Bryologist 112(1), 194–201 (2009).Article 

    Google Scholar 
    38.Lara, F. & Mazimpaka, V. Ma´s sobre la presencia de Orthotrichum acuminatum en la Península Ibérica. Cryptog. Bryol. Lichenol. 13(4), 349–354 (1992).
    Google Scholar 
    39.Garilleti, R., Lara, F. & Mazimpaka, V. Orthotrichum anodon (Orthotrichaceae, Bryopsida), a new species from California, and its relationships with other Orthotricha sharing puckered capsule mouths. Bryologist 109(2), 188–196 (2006).Article 

    Google Scholar 
    40.Hallingbäck, T. & Hodgetts, N. Mosses Liverworts and Hornworts. Status survey and conservation action plan for bryophytes (Cambridge University Press, 2000).
    Google Scholar 
    41.Belinchón, R., Martínez, I., Escudero, A., Aragón, G. & Valladares, F. Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. J. Veg. Sci. 18, 81–90. https://doi.org/10.1111/j.1654-1103.2007.tb02518.x (2007).Article 

    Google Scholar 
    42.Boudreault, C., Gauthier, S. & Bergeron, Y. Epiphytic lichens and bryophytes on Populus Tremuloides along a chronosequence in the Southwestern Boreal Forest of Quebec, Canada. Bryologist 103, 725–738. https://doi.org/10.1639/0007-2745(2000)103[0725:ELABOP]2.0.CO;2 (2009).Article 

    Google Scholar 
    43.Rambo, T. Structure and composition of corticolous epiphyte communities in a Sierra Nevada old-growth mixed-conifer forest. Bryologist 113, 55–71. https://doi.org/10.1639/0007-2745-113.1.55 (2010).Article 

    Google Scholar 
    44.Plášek, V., Nowak, A., Nobis, M., Kusza, G. & Kochanowska, K. Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environ. Monit. Assess. 186, 8943–8959. https://doi.org/10.1007/s10661-014-4056-3 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Skoupá, Z., Ochyra, R., Guo, S. L., Sulayman, M. & Plášek, V. Distributional novelties for Lewinskya, Nyholmiella and Orthotrichum (Orthotrichaceae) in China. Herzogia 30, 58–73. https://doi.org/10.13158/heia.30.1.2017.58 (2017).Article 

    Google Scholar 
    46.Skoupá, Z., Ochyra, R., Guo, S.-L., Sulayman, M. & Plášek, V. Three remarkable additions of Orthotrichum species (Orthotrichaceae) to the moss flora of China. Herzogia 31, 88–100. https://doi.org/10.13158/099.031.0105 (2018).Article 

    Google Scholar 
    47.Gradstein, R. et al. Bryophytes of Mount Patuha, West Java, Indonesia. Reinwardtia 13(2), 107–123 (2010).
    Google Scholar 
    48.Saat, A., Talib, M. S., Harun, N., Hamzah, Z. & Wood, A. K. Spatial variability of arsenic and heavy metals in a highland tea plantation using lichens and mosses as bio-monitors. Asian J. Nat. Appl. Sci. 5(1), 10–21 (2016).
    Google Scholar 
    49.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    50.Wirth, V. Ökologische Zeigerwerte von Flechten. Herzogia 23(2), 229–248 (2010).Article 

    Google Scholar 
    51.Ellenberger, H. et al. Zeigerwerte von Planzen in Mitteleuropa. Scr. Geobot. 18, 1–248 (1991).
    Google Scholar 
    52.Smith, C. W. et al. The Lichens of Great Britain and Ireland 1046 (British Lichen Society, 2009).
    Google Scholar 
    53.Hodgetts, N. et al. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J. Bryol. 42(1), 1–116. https://doi.org/10.1080/03736687.2019.1694329 (2020).Article 

    Google Scholar 
    54.Pancho, J. V. Some bryophytes in tea plantations, Pagilaran Central Java. Biotrop. Bull. 11, 279–282 (1979).
    Google Scholar 
    55.Tan, B. C. et al. Mosses of Gunung Halimun National Park, West Java, Indonesia. Reinwardtia 12, 205–214 (2006).
    Google Scholar 
    56.Ohsawa, M. Weeds of tea plantations. In Biology and Ecology of Weeds. Geobotany Vol. 2 (eds Holzner, W. & Numata, M.) (Springer, 1982).
    Google Scholar 
    57.Gradstein, R. et al. Bryophytes of Mount Patuha, West Java, Indonesia. Reinwardtia 13, 107–123 (2010).
    Google Scholar 
    58.Whitelaw, M. & Burton, M. A. S. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob. Ecol. Conserv. 4, 380–387. https://doi.org/10.1016/j.gecco.2015.07.014 (2015).Article 

    Google Scholar 
    59.Söderström, L. Bryophytes and decaying wood – a comparison between manager and natural forest. Holarc. Ecol. 14, 121–130 (1991).
    Google Scholar 
    60.Cieśliński, S. et al. Relikty lasu puszczańskiego, In Białowieski Park Narodowy (1921–1996) w badaniach geobotanicznych. Phytocoenosis, 8 (N.S.), Seminarium Geobotanicum (ed. Faliński, J. B.) 4, 47–64 (1996).61.Vanderpoorten, A., Engels, P. & Sotiaux, A. Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography 27, 567–576 (2004).Article 

    Google Scholar 
    62.Ódor, P., van Dort, K., Aude, E., Heilmann-Clausen, J. & Christensen, M. Diversity and composition of dead wood inhabiting bryophyte communities in European beech forest. Biol. Soc. Esp. Briol. 26–27, 85–102 (2005).
    Google Scholar 
    63.Friedel, A., Oheimb, G. V., Dengler, J. & Härdtle, W. Species diversity and species composition of epiphytic bryophytes and lichens: A comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert. 117(1–2), 172–185 (2006).Article 

    Google Scholar 
    64.Wolski, G. J. Siedliskowe Uwarunkowania Występowania Mszaków w Rezerwatach Przyrody Chroniących Jodłę Pospolitą w Polsce Środkowej (Praca doktorska wykonana w Katedrze Geobotaniki i Ekologii Roślin UŁ, 2013).
    Google Scholar 
    65.Fudali, E. & Wolski, G. J. Ecological diversity of bryophytes on tree trunks in protected forests (a case study from Central Poland). Herzogia 28(1), 91–107 (2015).Article 

    Google Scholar 
    66.Shi, X.-M. et al. Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load. Environ. Pollut. 229, 932–941. https://doi.org/10.1016/j.envpol.2017.07.077 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Cornelissen, J. H. C. & Gradstein, S. R. On the occurrence of bryophytes and macrolichens in different lowland rain forest types of Mabura Hill, Guyana. Trop. Bryol. 3, 29–35. https://doi.org/10.11646/bde.3.1.4 (1990).Article 

    Google Scholar 
    68.Lyons, B., Nadkarni, N. M. & North, M. P. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest. Can. J. Bot. 78(7), 957–968. https://doi.org/10.1139/cjb-78-7-957 (2000).Article 

    Google Scholar 
    69.Cornelissen, J. H. C. & Steege, H. T. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J. Trop. Ecol. 5, 131–150. https://doi.org/10.1017/S0266467400003400 (1989).Article 

    Google Scholar 
    70.Woods, C. L., Cardelús, C. L., Dewalt, S. J. & Piper, F. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 103(2), 421–430. https://doi.org/10.1111/1365-2745.12357 (2015).Article 

    Google Scholar 
    71.Sporn, S. G., Bos, M. M., Kessler, M. & Gradstein, S. R. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers. Conserv. 19(3), 745–760. https://doi.org/10.1007/s10531-009-9731-2 (2010).Article 

    Google Scholar 
    72.Czerepko, J. et al. How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieża forest. Ecol. Indic. 125, 107532. https://doi.org/10.1016/j.ecolind.2021.107532 (2021).Article 

    Google Scholar 
    73.Putna, S. & Mězaka, A. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptog. Estonica 51, 75–83 (2014).Article 

    Google Scholar 
    74.Manakyan, V. A. Results of bryological studies in Armenia. Arctoa 5, 15–33 (1995).Article 

    Google Scholar 
    75.Redfearn, P. L., Tan, B. C. & He, S. A newly updated and annotated checklist of Chines mosses. J. Hattori Bot. Lab. 79, 163–357 (1996).
    Google Scholar 
    76.Kürschner, H. Bryophyte Flora of the Arabian Peninsula and Socotra. Bryophytorum Bibliotheca (JCramer in der Gebrüder Borntraeger Verlagsbuchhandlung, 2000).
    Google Scholar 
    77.Higuchi, M. & Nishimura, N. Mosses of Pakistan. J. Hattori Bot. Lab. 93, 273–291 (2003).
    Google Scholar 
    78.Ignatov, M. S., Afonina, O. M. & Ignatova, E. A. Check-list of mosses of East Europe and North Asia. Arctoa 15, 1–130. https://doi.org/10.15298/arctoa.15.01 (2006).Article 

    Google Scholar 
    79.Sabovljević, M. et al. Check-list of the mosses of SE Europe. Phytol. Balcan. 14(2), 207–244 (2008).
    Google Scholar 
    80.Dandotiya, D., Govindapyari, H., Suman, S. & Uniyal, P. L. Checklist of the bryophytes of India. Arch. Bryol. 88, 71–72 (2011).
    Google Scholar 
    81.Hodgetts, N. G. Checklist and Country Status of European bryophytes—Towards a New Red List for Europe. Irish Wildlife Manuals, No. 84. (National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, 2011). https://www.hdl.handle.net/2262/73373.82.Kürschner, H. & Frey, W. Liverworts, Mosses and Hornworts of Southwest Asia (Marchantiophyta, Bryophyta, Anthoceroptophyta). Nova Hedwigia 139, 179–180 (2011).
    Google Scholar 
    83.Suzuki, T. A revised new catalog of the mosses of Japan. Hattoria 7, 9–223. https://doi.org/10.18968/hattoria.7.0_9 (2016).Article 

    Google Scholar 
    84.Kürschner, H. & Frey, W. Liverworts, mosses and hornworts of Afghanistan—our present knowledge. Acta Mus. Siles. Sci. Natur. 68, 11–24 (2019).
    Google Scholar 
    85.Brotherus, V. F. Enumeratio muscorum Caucasi. Acta Soc. Sci. Fenn. 19, 1–170 (1892).
    Google Scholar 
    86.Chikovani, N. & Svanidze, T. Checklist of bryophyte species of Georgia. Braun-Blanquetia 34, 97–116. https://doi.org/10.13158/heia.26.1.2013.213 (2004).Article 

    Google Scholar 
    87.Doroshina, G. Y. New moss records from Georgia. 1. Arctoa 19, 281 (2010).
    Google Scholar 
    88.Sohrabi, M., Ahti, T. & Urbanavichus, G. Parmelioid lichens of Iran and the caucasus Region. Mycol. Balc. 4, 21–30 (2007).
    Google Scholar 
    89.Hawksworth, D. L., Blanco, O., Divakar, P. K., Ahti, T. & Crespo, A. A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist 40(1), 1–21. https://doi.org/10.1017/S0024282908007329 (2008).Article 

    Google Scholar 
    90.Syrek, M. & Kukwa, M. Taxonomy of the lichen Cladonia rei and its status in Poland. Biologia 63(4), 493–497. https://doi.org/10.2478/s11756-008-0092-1 (2008).Article 

    Google Scholar 
    91.Burgaz, A. R., Ahti, T., Inashvili, T., Batsatsashvili, K. & Kupradze, I. Study of georgian Cladoniaceae. Bot. Complut. 42, 19–55. https://doi.org/10.5209/BOCM.61367 (2018).Article 

    Google Scholar 
    92.Fałtynowicz, W. The lichens, lichenicolous and allied fungi of Poland. An annotated checklist. In Biodiversity of Poland (ed. Mirek, A.) 1–435 (W. Szafer Institute of Botany, Polish Academy of Sciences, 2003).
    Google Scholar 
    93.Plášek, V., Sawicki, J., Ochyra, R., Szczecińska, M. & Kulik, T. New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta). Acta Mus. Sil. 64, 169–174. https://doi.org/10.1515/cszma-2015-0024 (2015).Article 

    Google Scholar 
    94.Lara, F. et al. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae). Cryptog. Bryol. 37, 361–382. https://doi.org/10.7872/cryb/v37.iss4.2016.361 (2016).Article 

    Google Scholar 
    95.Sawicki, J. et al. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta). Sci. Rep. 7, 4408. https://doi.org/10.1038/s41598-017-04833-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Kürschner, H., Batsatsashvili, K. & Parolly, G. Noteworthy additions to the bryophyte flora of Georgia. Herzogia 26, 213–216. https://doi.org/10.13158/heia.26.1.2013.213 (2013).Article 

    Google Scholar 
    97.Ellis, L. T. et al. New national and regional bryophyte records, 49. J. Bryol. 38(4), 327–347 (2016).Article 

    Google Scholar 
    98.Ellis, L. T. et al. New national and regional bryophyte records, 51. J. Bryol. 39(2), 177–190 (2017).Article 

    Google Scholar 
    99.Eckstein, J., Garilleti, R. & Lara, F. Lewinskya transcaucasica (Orthotrichaceae, Bryopsida) sp. nov. A contribution to the bryophyte flora of Georgia. J. Bryol. 40(1), 31–38. https://doi.org/10.1080/03736687.2017.1365218 (2018).Article 

    Google Scholar 
    100.Eckstein, J. & Zündorf, H.-J. Orthotrichaceous mosses (Orthotricheae, Orthotrichaceae) of the Genera Lewinskya, Nyholmiella, Orthotrichum, Pulvigera and Ulota Contributions to the bryophyte flora of Georgia 1. Cryptog. Bryol. 38(4), 365–382. https://doi.org/10.7872/cryb/v38.iss4.2017.365 (2017).Article 

    Google Scholar 
    101.Schäfer-Verwimp, A. Orthotrichum Hedw. In Die Moose Baden-Württembergs. Band 2: Spezieller Teil (Bryophytina II, Schistostegales bis Hypnobryales) (eds Nebel, M. & Philippi, G.) 170–197 (Eugen Ulmer, 2001).
    Google Scholar 
    102.Lara, F. & Garilleti, R. Orthotrichum Hedw. In Flora briofítica Ibérica (eds Guerra, J. & Brugués, C. M.) 50–135 (Universidad de Murcia Sociedad Española de Briología, 2014).
    Google Scholar 
    103.Lewinsky, J. The genus Orthotrichum Hedw. (Orthotrichaceae, Musci) in Southeast Asia. A taxonomic revision. J. Hattori Bot. Lab. 72, 1–88 (1992).
    Google Scholar 
    104.Schäfer-Verwimp, A. & Gruber, J. P. Orthotrichum (Orthotrichaceae, Bryopsida) in Pakistan. Trop. Bryol. 21, 1–9. https://doi.org/10.11646/bde.21.1.2 (2002).Article 

    Google Scholar 
    105.Draper, I., Mazimpaka, V., Albertos, B., Garilleti, R. & Lara, F. A survey of the epiphytic bryophyte flora of the Rif and Tazzeka Mountains (northern Morocco). J. Bryol. 27, 23–34. https://doi.org/10.1179/174328205X40554 (2005).Article 

    Google Scholar 
    106.Brassard, G. R. Orthotrichum stramineum new to North America. Bryologist 87, 168 (1984).Article 

    Google Scholar 
    107.Lewinsky-Haapasaari, J. & Long, D. G. Orthotrichum stramineum Hornsch. new to China. J. Bryol. 19, 350–352. https://doi.org/10.1179/jbr.1996.19.2.350 (1996).Article 

    Google Scholar 
    108.Plášek, V. et al. A synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with distribution maps and a key to determination. Plants 10, 499. https://doi.org/10.3390/plants10030499 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Regional heterogeneity in coral species richness and hue reveals novel global predictors of reef fish intra-family diversity

    1.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 
    Article 

    Google Scholar 
    2.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures—Animal species diversity driven by habitat heterogeneity. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    3.Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).ADS 
    Article 

    Google Scholar 
    4.Reimchen, T. E. Substratum heterogeneity, crypsis, and colour polymorphism in an intertidal snail (Littorina mariae). Can. J. Zool. 57, 1070–1085 (1979).Article 

    Google Scholar 
    5.Petren, K. & Case, T. J. Habitat structure determines competition intensity and invasion success in gecko lizards. Proc. Natl. Acad. Sci. 95, 11739–11744 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Gratwicke, B. & Speight, M. R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66, 650–667 (2005).Article 

    Google Scholar 
    7.Williams, S. E., Marsh, H. & Winter, J. Spatial scale, species diversity, and habitat structure: Small mammals in Australian tropical rain forest. Ecology 83, 1317–1329 (2002).Article 

    Google Scholar 
    8.Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed 
    Article 

    Google Scholar 
    9.Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    10.Guilford, T. & Dawkins, M. S. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1–14 (1991).Article 

    Google Scholar 
    11.Crook, A. C. Colour patterns in a coral reef fish is background complexity important?. J. Exp. Mar. Biol. Ecol. 217, 237–252 (1997).Article 

    Google Scholar 
    12.Marshall, J. Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 1243–1248 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Seehausen, O. et al. Speciation through sensory drive in cichlid fish. Nature 455, 620–626 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Wilkins, L., Marshall, N. J., Johnsen, S. & Osorio, D. Modelling colour constancy in fish: Implications for vision and signalling in water. J. Exp. Biol. 219, 1884–1892 (2016).PubMed 

    Google Scholar 
    15.Osorio, D. & Vorobyev, M. A review of the evolution of animal colour vision and visual communication signals. Vis. Res. 48, 2042–2051 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Caley, J. & St John, J. Refuge availability structures assemblages of tropical reef fishes. J. Anim. Ecol. 45, 414–428 (1996).Article 

    Google Scholar 
    17.Connolly, S. R., Hughes, T. P., Bellwood, D. R. & Karlson, R. H. Community structure of corals and reef fishes at multiple scales. Science 309, 1363–1365 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Allen, G. R. & Steene, R. Indo-Pacific Coral Reef Field Guide (Tropical Reef Research, 1994).
    Google Scholar 
    19.Bellwood, D. R. Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 1532–1535 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Humann, P., DeLoach, N., Allen, G. & Steene, G. Reef Fish Identification: Tropical Pacific (New World Publications, 2015).
    Google Scholar 
    21.Barneche, D. R. et al. Body size, reef area and temperature predict global reef-fish species richness across spatial scales. Glob. Ecol. Biogeogr. 28, 315–327 (2019).Article 

    Google Scholar 
    22.Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs: Cryptobenthic reef fishes. Biol. Rev. 93, 1846–1873 (2018).PubMed 
    Article 

    Google Scholar 
    23.Carr, M. H., Anderson, T. W. & Hixon, M. A. Biodiversity, population regulation, and the stability of coral-reef fish communities. Proc. Natl. Acad. Sci. 99, 11241–11245 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hixon, M. A. 60 years of coral reef fish ecology: Past, present, future. Bull. Mar. Sci. 87, 727–765 (2011).Article 

    Google Scholar 
    25.Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. http://www.fishbase.org (2019).27.Marshall, N. J., Jennings, K., McFarland, W. N., Loew, E. R. & Losey, G. S. Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Copeia 2003, 455–466 (2003).Article 

    Google Scholar 
    28.Merilaita, S. Visual background complexity facilitates the evolution of camouflage. Evolution 57, 1248–1254 (2003).PubMed 
    Article 

    Google Scholar 
    29.Matz, M. V., Lukyanov, K. A. & Lukyanov, S. A. Family of the green fluorescent protein: Journey to the end of the rainbow. BioEssays 24, 953–959 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Alieva, N. O. et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Veron, J., Stafford-Smith, M., DeVantier, L. & Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 1, 81 (2015).Article 

    Google Scholar 
    33.Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful?. Photochem. Photobiol. 82, 345 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Marshall, N. J., Jennings, K., McFarland, W. N., Loew, E. R. & Losey, G. S. Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 2003, 467–480 (2003).Article 

    Google Scholar 
    35.Neumeyer, C. Color vision in fishes and its neural basis. In Sensory Processing in Aquatic Environments (eds Collin, S. P. & Marshall, N. J.) 223–235 (Springer, 2003). https://doi.org/10.1007/978-0-387-22628-6_11.Chapter 

    Google Scholar 
    36.Oswald, F. et al. Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J. 274, 1102–1122 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Schweikert, L. E., Fitak, R. R., Caves, E. M., Sutton, T. T. & Johnsen, S. Spectral sensitivity in ray-finned fishes: Diversity, ecology, and shared descent. J. Exp. Biol. https://doi.org/10.1242/jeb.189761 (2018).Article 
    PubMed 

    Google Scholar 
    38.Veron, J. E. N., Stafford-Smith., M. G., Turak, E. & DeVantier, L. M. Corals of the World. www.coralsoftheworld.org (2020). Accessed April 2019.39.Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Cox, K., Woods, M. & Reimchen, T. E. Coral species richness, coral hue, and reef fish richness across 74 ecoregions within four oceanic basins. Figshare https://doi.org/10.6084/m9.figshare.12317591 (2020).41.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    42.The Ocean Agency & XL Catlin Seaview Survey. Coral Reef Image Bank. www.coralreefimagebank.org (2019). Accessed April 2019.43.Choat, J. H. & Bellwood, D. R. Reef fishes: Their history and evolution. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 39–66 (Academic Press, 1991).Chapter 

    Google Scholar 
    44.Jones, G. P., Barone, G., Sambrook, K. & Bonin, M. C. Isolation promotes abundance and species richness of fishes recruiting to coral reef patches. Mar. Biol. 167, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    45.Lirman, D. et al. Severe 2010 cold-water event caused unprecedented mortality to corals of the florida reef tract and reversed previous survivorship patterns. PLoS ONE 6, e23047 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Habary, A., Johansen, J. L., Nay, T. J., Steffensen, J. F. & Rummer, J. L. Adapt, move or die: How will tropical coral reef fishes cope with ocean warming?. Glob. Change Biol. 23, 566–577 (2017).ADS 
    Article 

    Google Scholar 
    47.Almany, G. R. & Webster, M. S. The predation gauntlet: Early post-settlement mortality in reef fishes. Coral Reefs 25, 19–22 (2006).ADS 
    Article 

    Google Scholar 
    48.Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014).Article 

    Google Scholar 
    50.Coker, D. J., Pratchett, M. S. & Munday, P. L. Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav. Ecol. 20, 1204–1210 (2009).Article 

    Google Scholar 
    51.Sale, P. F. Maintenance of high diversity in coral reef fish communities. Am. Nat. 111, 337–359 (1977).Article 

    Google Scholar 
    52.Munday, P. L. Competitive coexistence of coral-dwelling fishes: The lottery hypothesis revisited. Ecology 85, 623–628 (2004).Article 

    Google Scholar 
    53.Hixon, M. A. Synergistic predation, density dependence, and population regulation in marine fish. Science 277, 946–949 (1997).CAS 
    Article 

    Google Scholar 
    54.Endler, J. A. & Thery, M. Interacting effects of Lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am. Nat. 148, 421–452 (1996).Article 

    Google Scholar 
    55.Reimchen, T. E. Shell colour ontogeny and tubeworm mimicry in a marine gastropod Littorina mariae. Biol. J. Linn. Soc. 36, 97–109 (1989).Article 

    Google Scholar 
    56.Sparks, J. S. et al. The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE 9, e83259 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Allen, J. J., Akkaynak, D., Sugden, A. U. & Hanlon, R. T. Adaptive body patterning, three-dimensional skin morphology and camouflage measures of the slender filefish Monacanthus tuckeri on a Caribbean coral reef. Biol. J. Linn. Soc. 116, 377–396 (2015).Article 

    Google Scholar 
    58.Cheney, K. L., Skogh, C., Hart, N. S. & Marshall, N. J. Mimicry, colour forms and spectral sensitivity of the bluestriped fangblenny, Plagiotremus rhinorhynchos. Proc. R. Soc. B Biol. Sci. 276, 1565–1573 (2009).Article 

    Google Scholar 
    59.Stevens, M., Lown, A. E. & Denton, A. M. Rockpool gobies change colour for camouflage. PLoS ONE 9, e110325 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Gilby, B. L. et al. Colour change in a filefish (Monacanthus chinensis) faced with the challenge of changing backgrounds. Environ. Biol. Fishes 98, 2021–2029 (2015).Article 

    Google Scholar 
    61.Barnett, J. B. & Cuthill, I. C. Distance-dependent defensive coloration. Curr. Biol. 24, R1157–R1158 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).ADS 
    Article 

    Google Scholar 
    63.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Ortiz, J.-C. et al. Impaired recovery of the great barrier reef under cumulative stress. Sci. Adv. 4, eaar6127 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Roff, G. et al. Porites and the Phoenix effect: Unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393 (2014).Article 

    Google Scholar 
    67.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 1–8 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Soetaert, K. plot3D: Plotting Multi-Dimensional Data R package version 1.4. https://CRAN.R-project.org/package=plot3D (2021).70.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).MATH 
    Book 

    Google Scholar 
    71.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    72.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Centore, P. sRGB centroids for the ISCC-NBS colour system. Munsell Colour Sci. Paint. 21, 1–21 (2016).
    Google Scholar 
    74.Kelly, K. L. Central notations for the revised ISCC-NBS color-name blocks. J. Res. Natl. Bur. Stand. 61, 427 (1958).Article 

    Google Scholar 
    75.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar  More

  • in

    Phylogenetic conservatism drives nutrient dynamics of coral reef fishes

    1.McNaughton, S. J., Ruess, R. W. & Seagle, S. W. Large mammals and process dynamics in Aftican ecosystems. Bioscience 38, 794–800 (1988).Article 

    Google Scholar 
    2.Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).Article 

    Google Scholar 
    3.Schmitz, O. J. et al. Animating the carbon cycle. Ecosystems 17, 344–359 (2014).CAS 
    Article 

    Google Scholar 
    4.Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).ADS 
    Article 

    Google Scholar 
    6.Duffy, J. E. Biodiversity and ecosystem function: the consumer connection. Oikos 99, 201–219 (2002).Article 

    Google Scholar 
    7.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    10.McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evolution 4, 230–239 (2020).Article 

    Google Scholar 
    12.Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology. (Oxford University Press, 1991).13.Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Weeks, B., Claramunt, S. & Cracraft, J. Integrating systematics and biogeography to disentangle the roles of history and ecology in biotic assembly. J. Biogeogr. 43 (2016).15.Reiners, W. A. Complementary models for ecosystems. Am. Nat. 127, 59–73 (1986).Article 

    Google Scholar 
    16.Schreck, C. B. & Moyle, P. B. Methods for Fish Biology. (American Fisheries Society, 1990).17.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. 429 (2002).18.Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Gonzalez, A. L. et al. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: a test using detritus-based communities across Central and South America. Funct. Ecol. 32, 2448–2463 (2018).Article 

    Google Scholar 
    20.Atkinson, C. L., van Ee, B. C. & Pfeiffer, J. M. Evolutionary history drives aspects of stoichiometric niche variation and functional effects within a guild. Ecology 101, e03100 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Schluter, D. The Ecology of Adaptive Radiation. (OUP Oxford, 2000).22.Allgeier, J. E., Wenger, S. & Layman, C. A. Taxonomic identity best explains variation in body nutrient stoichiometry in a diverse marine animal community. Sci. Rep. 10, 13718 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Allgeier, J. E., Wenger, S. J., Schindler, D. E., Rosemond, A. D. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient cycling in a diverse food web. Proc. Natl Acad. Sci. USA 112, 2640–2647 (2015).Article 
    CAS 

    Google Scholar 
    24.Odum, H. T. & Odum, E. P. Trohic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).Article 

    Google Scholar 
    25.Hatcher, B. G. Coral reef primary productivity—a beggars banquet. Trends Ecol. Evolut. 3, 106–111 (1988).CAS 
    Article 

    Google Scholar 
    26.Deangelis, D. L. Energy-flow, nutrient cycling, and ecosystem resilience. Ecology 61, 764–771 (1980).Article 

    Google Scholar 
    27.Allgeier, J. E., Valdivia, A., Cox, C. & Layman, C. A. Fishing down nutrients on coral reefs. Nat. Commun. 7, 1–5 (2016).Article 
    CAS 

    Google Scholar 
    28.Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).ADS 
    Article 

    Google Scholar 
    29.Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Biogeochemical implications of biodiversity loss across regional gradients of coastal marine ecosystems. Ecol. Monogr. 85, 132 (2015).Article 

    Google Scholar 
    30.Bellwood, D. R. & Wainwright, P. C. CHAPTER 1—The History and Biogeography of Fishes on Coral Reefs. in Coral Reef Fishes (ed Sale, P. F.) 5–32 (Academic Press, 2002). https://doi.org/10.1016/B978-012615185-5/50003-7.31.Littler, M. M., Littler, D. S. & Titlyanov, E. A. Comparisons of N- and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradigm. Coral Reefs 10, 199–209 (1991).ADS 
    Article 

    Google Scholar 
    32.Haßler, K. et al. Provenance of nutrients in submarine fresh groundwater discharge on Tahiti and Moorea, French Polynesia. Appl. Geochem. 100, 181–189 (2019).Article 
    CAS 

    Google Scholar 
    33.Carew, J. L. & Mylroie, J. E. Geology of the Bahamas. Geol. Hydrogeol. Carbonate Isl. 54, 91–139 (1997).CAS 
    Article 

    Google Scholar 
    34.Allgeier, J. E., Rosemond, A. D., Mehring, A. S. & Layman, C. A. Synergistic nutrient co-limitation across a gradient of ecosystem fragmentation in subtropical mangrove-dominated wetlands. Limnol. Oceanogr. 55, 2660–2668 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Koch, M. S. & Madden, C. J. Patterns of primary production and nutrient availability in a Bahamas lagoon with fringing mangroves. Mar. Ecol. Prog. Ser. 219, 109–119 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).Article 

    Google Scholar 
    37.Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293 (2002).Article 

    Google Scholar 
    38.Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97, 3460–3471 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Sokal, R. R. The comparative method in evolutionary biology. (eds Paul H. Harvey, Mark D. Pagel) (Oxford University Press, New York, 1991). viii + 239 pp. ISBN 0-19-854640-8. $24.95 (paper). Am. J. Phys. Anthropol. 88, 405–406 (1992).40.Downs, K. N., Hayes, N. M., Rock, A. M., Vanni, M. J. & González, M. J. Light and nutrient supply mediate intraspecific variation in the nutrient stoichiometry of juvenile fish. Ecosphere 7, e01452 (2016).Article 

    Google Scholar 
    41.Sterner, R. W. & George, N. B. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81, 127–140 (2000).Article 

    Google Scholar 
    42.Brown, W. L. Jr & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).
    Google Scholar 
    43.Losos, J. B. Ecological character displacement and the study of adaptation. Proc. Natl Acad. Sci. USA 97, 5693–5695 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: the next generation. Ecol. Lett. 8, 875–894 (2005).Article 

    Google Scholar 
    45.Abrams, P. A. Evolution and the consequences of species introductions and deletions. Ecology 77, 1321–1328 (1996).Article 

    Google Scholar 
    46.Buchan, K. C. The Bahamas. Mar. Pollut. Bull. 41, 94–111 (2000).CAS 
    Article 

    Google Scholar 
    47.Siu, G. et al. Shore fishes of french polynesia. Cybium 41 (2017).48.Miloslavich, P. et al. Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PloS ONE 5, 119–126 (2010).Article 
    CAS 

    Google Scholar 
    49.Schaus, M. H. & Vanni, M. J. Effects of gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology 81, 1701–1719 (2000).Article 

    Google Scholar 
    50.Whiles, M. R., Huryn, A. D., Taylor, B. W. & Reeve, J. D. Influence of handling stress and fasting on estimates of ammonium excretion by tadpoles and fish: recommendations for designing excretion experiments. Limnol. Oceanogr. 7, 1–7 (2009).CAS 
    Article 

    Google Scholar 
    51.Taylor, B. W. et al. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J. North Am. Benthol. Soc. 26, 167–177 (2007).Article 

    Google Scholar 
    52.APHA. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, and Water Pollution Control Federation. (1995).53.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Chang, J., Rabosky, D. L., Smith, S. A. & Alfaro, M. E. An r package and online resource for macroevolutionary studies using the ray-finned fish tree of life. Methods Ecol. Evolut. 10, 1118–1124 (2019).Article 

    Google Scholar 
    56.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evolut. 3, 217–223 (2012).Article 

    Google Scholar 
    57.Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evolut. Biol. 23, 494–508 (2010).CAS 
    Article 

    Google Scholar 
    58.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    59.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evolut. 4, 133–142 (2013).Article 

    Google Scholar 
    60.Gelman, A. & Hill, J. Data Analysis Using Regression. (Cambridge University Press, 2007).61.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The use of multi-criteria method in the process of threat assessment to the environment

    The research was carried out on the basis of direct measurements in the surroundings of four selected working coal-fired power plants and four working coking plants. The samples of suspended dust PM10, respirable fraction PM2.5 and submicron particulate matter PM1 were collected in the surroundings of power generation facilities and in the surroundings of coking plants.Location of measurement pointsThe location of the measurement points was selected in southern Poland, around the selected four working coal-fired power plants and four working coking plants. The sampling points in the surroundings of the power plant (P1, P2, P3 and P4) and the coking plant (K1, K2, K3 and K4) were located at the distance of approximately 2 km to the north-east from the respective object (Fig. 1).Figure 1Location of the sampling sites (the map was generated based on data from the BDL18 website).Full size imageThe location of the measurement points was a compromise, taking into account the representativeness of the receptor, the possibility to connect the testing equipment and the consent of the property owners. To eliminate the impact of a heating season, and especially that of low emissions, presented in the studies by19, the measurement sessions were carried out only in the summer season. The samples of particulate matter were collected on a weekly basis, with 4 sessions at one site. The methodology applied in this work is presented in20,21. The location of measurement sites:

    point P1: 50° 08′ 37.87″ N; 18° 32′ 15.76″ (Golejów—a suburban district of Rybnik in the Śląskie Voivodeship, in the vicinity of a working power plant with a capacity of 1775 MW; population:

    2 300);

    point P2: 50° 45′ 35.41″ N; 17° 56′ 20.43″ E (Świerkle—a rural area in the Opolskie Voivodeship (Dobrzeń Wielki commune) near a working power plant with a capacity of 1,492 MW; population: 520);

    point P3: 50° 12′ 33.46″ N; 19° 28′ 28.77″ E (Czyżówka—rural area in the Małopolskie Voivodeship (commune of Trzebinia) near a working power plant with a capacity of 786 MW; population: 700);

    point P4: 50° 13′ 48.90″ N; 19° 13′ 24.45″ E (suburbs of Jaworzno (Śląskie Voivodeship) in the vicinity of a 1,345 MW power plant; number of inhabitants: 95 500);

    K1 point: 50° 10′ 11.36″ N; 18° 40′ 34.35″ E (Czerwionka—Leszczyny in the Śląskie Voivodeship, in the vicinity of a small coking plant; number of inhabitants: 27 300);

    K2 point: 50° 3′ 19.76″ N; 18° 30′ 21.69″ E (Popielów—a suburban district of Rybnik in the Śląskie Voivodeship, surrounded by a small working coking plant; population:3 300);

    K3 point: 50° 21′ 24.08″ N; 19° 21′ 37.46″ E (Łęka—Dąbrowa Górnicza district, in the Śląskie Voivodeship, surrounded by a large coking plant; number of inhabitants: 700);

    K4 point: 50° 21′ 0.47″ N; 18° 53′ 15.44″ E (Bytom—a city in the Śląskie Voivodeship, a small coking plant located on the outskirts of the city; population: 174 700).

    The state of air pollution with particulate matter in the area investigated in the study is affected by various local sources of pollution emissions. At the measurement sites P1, P2, P3 and P4, the emissions are mainly from power plant chimneys, but also from auxiliary processes, i.e. coal storage and its transport. In addition, the recorded emissions are also influenced by other industrial plants operating in the vicinity of the measurement sites, domestic and municipal sector and the impact of automotive industry. The measurement sites K1, K2, K3 and K4 involve primarily the emissions accompanying the processes of coal coking as well as auxiliary processes, i.e. coal deposition, its transmission, management of products and post-production wastes. Additionally, they are affected by the emissions from industrial plants and low emission sources operating in this area, as well as the emission from the combustion of solid fuels for domestic or municipal purposes, as well as by the automotive industry.Sampling processThe samples of suspended dust (PM10), respirable fraction (PM2.5) and submicron particulate matter (PM1) were collected using the Dekati PM10 cascade impactor serial No. 6648 by Dekati (Finland) with the air flow rate of (1.8 {mathrm{m}}^{3}/mathrm{h}). The impactor Dekati PM10 guarantees the collection of dust samples for three cutpoint diameters: 10 μm, 2.5 μm and 1 μm. For the sampling at the first, second and third stages of the impactor, polycarbonate filters were used (Nuclepore 800 203, with the diameter of 25 mm, by Whatman International Ltd., Maidstone, UK). At the fourth stage, the dust was collected on a Teflon filter for particles ≤ 1 μm in diameter (Pall Teflo R2PJ047, 47 mm in diameter, by Pall International Ltd., New York, NY, USA). The average volume of air passing through the filters was approximately 300 m3. The impactor’s capture efficiency was characterized by the uncertainty below 2.8%. The mass of dust collected at the individual stages of the impactor was determined by the gravimetric method, and it was referenced to the volume of passed air (left(mathrm{mu g}/{mathrm{m}}^{3}right)) according to the PN-EN1234122. All impactor samples were analysed by inductively coupled plasma mass spectrometry (ICP-MS).The samples were collected at a height of 1.5 m from the ground, i.e. in the breathing zone for people. The respective dust fractions were collected in 7-day cycles from 28 May to 24 September 2014 (16 weeks) in the surroundings of four working coal-fired power plants and from 4 May to 28 August 2015 (16 weeks) in the surroundings of four working coking plants. The measurement campaign comprised four measurement sessions separately for each sampling site. One session comprised dust sampling at each stage of the Dekati PM10 cascade impactor and filters used for reference. The filters were taken back after study period and labeled during the collection process in the field and stored in the plastic containers for safe transportation and storage in laboratory for further analysis.In each measurement session, blind filters were stored at the sampling site, but they were not subjected to exposure. The sample data were corrected from these blanks. The length of the measurement cycles was conditioned by the need to collect an appropriate amount of research material (with the aerodynamic diameter of the dust grains  10 μm). Analogous (7-day) periods of dust sampling were used in the studies by4,23.Polycarbonate and Teflon filters were conditioned before and after dust collection at a temperature of 20 ± 1 °C (relative humidity 50%(pm ) 5%) for 48 h, and then weighed on a microbalance with an accuracy of 1 (mathrm{mu g}) (MXA5/1, by RADWAG, Poland).Taking into account the measurement sessions at four sites in the surroundings of the power plant (P1 (div) P4) and at four sites in the surroundings of the coking plant (K1 (div) K4), the aggregate number of samples exceeded 450.Chemical analysisThe qualitative and quantitative analysis of the obtained solutions was performed by inductively coupled plasma mass spectrometry using an ICP-MS instrument (NexION 300D, PerkinElmer, Inc., Waltham, MA, USA). For all elements determined simultaneously, the same parameters of the instrument were used, which are presented in the publications20,21,24.As standards for the determination of 75As, 111Cd, 59Co, 53Cr, 200Hg, 55Mn, 60Ni, 206Pb, 121Sb and 82Se, we applied the 1000 (mathrm{mu g}/{mathrm{cm}}^{3}) CertPUR ICP multi-element standard solution VI for ICP-MS by Merck, Germany. Ten repetitions were performed for all samples. The determined limits of detection (LOD) were based on 10 independent measurements for blank test. For the results obtained in that way, the mean value and the value of the standard deviation SD were calculated. The values of LOD for individual elements were determined on the basis of the dependence (1):$$mathrm{LOD}= {mathrm{x}}_{mathrm{sr}}+ 3mathrm{SD}$$
    (1)

    where: xśr—mean concentration value of the element, (mathrm{g}/{mathrm{dm}}^{3}), SD—standard deviation.The determination correctness of the content of the elements was verified with the use of certified reference materials: European Reference Material ERM-CZ120 and Standard Reference Material SRM 1648a (National Institute of Standards and Technology, USA). The recovery with the use of the said certified reference materials was respectively as follows: As (111% for ERM-CZ120 and 96% for SRM 1648a), Cd (97% and 105%), Co (108% and 97%), Cr (103% and 94%), Mn (106% and 100%), Ni (107% and 102%), Pb (107% and 105%) and Sb (99% and 91%). The certified reference materials did not contain Hg or Se. More

  • in

    Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree

    1.Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Schwalm, C. R. et al. Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century. Sci. Rep. 10, 9059 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).ADS 
    Article 

    Google Scholar 
    5.Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Hararuk, O., Campbell, E. M., Antos, J. A. & Parish, R. Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada. Glob. Change Biol. 25, 1222–1234 (2019).ADS 
    Article 

    Google Scholar 
    7.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 
    Article 

    Google Scholar 
    9.Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 earth system models. Biogeosciences 12, 5211–5228 (2015).ADS 
    Article 

    Google Scholar 
    10.Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    11.Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O. & Linder, S. Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol. 33, 1192–1205 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).CAS 
    Article 

    Google Scholar 
    13.Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, (2010).14.van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. https://doi.org/10.1038/s41561-019-0530-4 (2020).19.Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).Article 

    Google Scholar 
    20.Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    21.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    22.Näsholm, T., Kielland, K. & Ganeteg, U. Uptake of organic nitrogen by plants. N. Phytol. 182, 31–48 (2009).Article 
    CAS 

    Google Scholar 
    23.Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443–1447 (2015).CAS 
    Article 

    Google Scholar 
    24.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. N. Phytol. 217, 507–522 (2018).CAS 
    Article 

    Google Scholar 
    26.Sulman, B. N. et al. Diverse Mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Smith, S. E. & Read, D. J. Mycorrhizal symbiosis. (Academic Press, 2010).30.Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).CAS 
    Article 

    Google Scholar 
    31.Phillips, R. P. et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15, 1042–1049 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Christian, N. & Bever, J. D. Carbon allocation and competition maintain variation in plant root mutualisms. Ecol. Evol. 8, 5792–5800 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hortal, S. et al. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J. 11, 2666–2676 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bogar, L. et al. Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza 29, 97–111 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bödeker, I. T. M., Nygren, C. M. R., Taylor, A. F. S., Olson, Å. & Lindahl, B. D. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J. 3, 1387–1395 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Hobbie, E. A. & Agerer, R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327, 71–83 (2010).CAS 
    Article 

    Google Scholar 
    38.Koide, R. T., Fernandez, C. & Malcolm, G. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. N. Phytol. 201, 433–439 (2014).Article 

    Google Scholar 
    39.Lindahl, B. D. et al. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol. Lett. 24, 1341–1351 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? N. Phytol. 157, 475–492 (2003).CAS 
    Article 

    Google Scholar 
    42.Bödeker, I. T. M. et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. N. Phytol. 203, 245–256 (2014).Article 
    CAS 

    Google Scholar 
    43.Bogar, L. & Peay, K. Processes maintaining the coexistence of ectomycorrhizal fungi at a fine spatial scale. in Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo, L.) vol. 230 79–105 (Springer, 2017).44.Xu, K. et al. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Sci. Rep. 7, 1945 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Nehrbass‐Ahles, C. et al. The influence of sampling design on tree-ring-based quantification of forest growth. Glob. Change Biol. 20, 2867–2885 (2014).ADS 
    Article 

    Google Scholar 
    46.Mathias, J. M. & Thomas, R. B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Change Biol. 24, 3938–3953 (2018).ADS 
    Article 

    Google Scholar 
    47.Fierer, N., Barberán, A. & Laughlin, D. C. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).48.Zak, D. R. & Pregitzer, K. S. Spatial and temporal variability of nitrogen cycling in northern lower Michigan. Science 36, 367–380 (1990).
    Google Scholar 
    49.Zak, D. R., Pregitzer, K. S. & Host, G. E. Landscape variation in nitrogen mineralization and nitrification. Can. J. Res. 16, 1258–1263 (1986).Article 

    Google Scholar 
    50.Chen, J. & Gupta, A. K. Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance. (Springer Science & Business Media, 2011).51.Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Pellitier, P. T., Zak, D. R., Argiroff, W. A. & Upchurch, R. A. Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosystems (2021).53.Sterkenburg, E., Clemmensen, K. E., Ekblad, A., Finlay, R. D. & Lindahl, B. D. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J. 12, 2187–2197 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Lilleskov, E. A., Hobbie, E. A. & Fahey, T. J. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. N. Phytol. 154, 219–231 (2002).CAS 
    Article 

    Google Scholar 
    55.Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Moeller, H. V., Peay, K. G. & Fukami, T. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol. Ecol. 87, 797–806 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Defrenne, C. E. et al. Shifts in Ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior douglas-fir forests of Western Canada. Front. Plant Sci. 10, 643 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Fawal, N. et al. PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res. 41, D441–D444 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Garajova, S. et al. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci. Rep. 6, 28276 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Janusz, G. et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941–962 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).CAS 
    Article 

    Google Scholar 
    63.Baldrian, P. Fungal laccases – occurrence and properties. FEMS Microbiol. Rev. 30, 215–242 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? N. Phytol. 209, 1382–1394 (2016).CAS 
    Article 

    Google Scholar 
    65.Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Andrew, C. & Lilleskov, E. A. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecol. Lett. 12, 813–822 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? N. Phytol. 198, 214–221 (2013).Article 
    CAS 

    Google Scholar 
    70.Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl Acad. Sci. USA 104, 14014–14019 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Merkel, D. Soil Nutrients in Glaciated Michigan Landscapes: Distribution of Nutrients and Relationships with Stand Productivity. (Doctoral Thesis Submitted to Michigan State University, 1988).72.Host, G. E. & Pregitzer, K. S. Geomorphic influences on ground-flora and overstory composition in upland forests of northwestern lower Michigan. Can. J. Res. 22, 1547–1555 (1992).Article 

    Google Scholar 
    73.Edwards, I. P. & Zak, D. R. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol. Ecol. 19, 1469–1482 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).ADS 
    Article 

    Google Scholar 
    76.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.McClaugherty, C. A., Pastor, J., Aber, J. D. & Melillo, J. M. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66, 266–275 (1985).Article 

    Google Scholar 
    78.Pastor, J., Aber, J. D., McClaugherty, C. A. & Melillo, J. M. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65, 256–268 (1984).CAS 
    Article 

    Google Scholar 
    79.Serra-Maluquer, X., Mencuccini, M. & Martínez-Vilalta, J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187, 343–354 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Vitousek, P. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572 (1982).Article 

    Google Scholar 
    81.Darrouzet-Nardi, A., Ladd, M. P. & Weintraub, M. N. Fluorescent microplate analysis of amino acids and other primary amines in soils. Soil Biol. Biochem. 57, 78–82 (2013).CAS 
    Article 

    Google Scholar 
    82.Ibáñez, I., Zak, D. R., Burton, A. J. & Pregitzer, K. S. Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate. Ecology 99, 411–420 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Lines, E. R., Zavala, M. A., Purves, D. W. & Coomes, D. A. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob. Ecol. Biogeogr. 21, 1017–1028 (2012).Article 

    Google Scholar 
    84.Taylor, D. L. et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl. Environ. Microbiol. 82, 7217–7226 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Konar, A. et al. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics 18, 417 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Sork, V. L. et al. First draft assembly and annotation of the genome of a California Endemic oak. Genes|Genomes|Genet. 6, 3485–3495 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Treiber, M. L., Taft, D. H., Korf, I., Mills, D. A. & Lemay, D. G. Pre- and post-sequencing recommendations for functional annotation of human fecal metagenomes. BMC Bioinforma. 21, 74 (2020).CAS 
    Article 

    Google Scholar 
    93.Peng, M. et al. Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genet. Biol. 112, 40–46 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Floudas, D. et al. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. https://doi.org/10.1038/s41396-020-0667-6 (2020).95.Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: an outlook and review. Bioinformatics 34, 2870–2878 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    98.Duhamel, M. et al. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. Ecol. Monogr. 89, e01367 (2019).Article 

    Google Scholar 
    99.Qin, C., Zhu, K., Chiariello, N. R., Field, C. B. & Peay, K. G. Fire history and plant community composition outweigh decadal multi-factor global change as drivers of microbial composition in an annual grassland. J. Ecol. 108, 611–625 (2020).CAS 
    Article 

    Google Scholar 
    100.Oksanen, J., et al. Package vegan.101.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    102.Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. V. D. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions

    1.Singh, M. & Bhatia, H. S. Thermal time requirement for phenophases of apple genotypes in Kullu valley. J. Agrometeorol. 13(1), 46–49 (2011).
    Google Scholar 
    2.Amgain, L. P. Agro-meteorological indices in relation to phenology and yields of promising wheat cultivars in Chitwan, Nepal. J. Agric. Environ. 14, 111–120 (2013).Article 

    Google Scholar 
    3.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Color-break effect on Kinnow (Citrus nobilis Lour x Citrus deliciosa Tenora) fruit‘s internal quality at early ripening stages under varying environmental conditions. Sci. Hortic. 256, 108514 (2019).Article 

    Google Scholar 
    4.Singh, M. & Jangra, S. Thermal indices and heat use cultivars in Himachal Himalay. Clim. Change 4(14), 224–234 (2018).
    Google Scholar 
    5.Singh, M., Niwas, R., Godara, A. K. & Khichar, M. L. Pheno-thermal response of plum genotypes in semi-arid region of Haryana. J. Agrometeorol 17(2), 230–233 (2015).
    Google Scholar 
    6.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of varying agrometeorological indices on peel color and composition of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones. J. Sci. Food Agric. 100(6), 2688–2704 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khan, M. F. & Khalid, A. Environmental variables influence the developmental stages of the citrus leafminer, infestation level and mined leaves physiological response of Kinnow mandarin. Sci. Rep. 11(1), 1–20 (2021).Article 
    CAS 

    Google Scholar 
    8.Plett, S. Comparison of seasonal thermal indices for measurement of corn maturity in a prairie environment. Can. J. Plant Sci. 72(4), 1157–1162 (1992).Article 

    Google Scholar 
    9.Dalal, R. P. S., Kumar, A. & Singh, R. Agrometeorological-heat and energy use of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 506–512 (2017).Article 

    Google Scholar 
    10.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 260, 108868 (2020).Article 

    Google Scholar 
    11.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environ. Exp. Bot. 171, 103936 (2020).CAS 
    Article 

    Google Scholar 
    12.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on fruit internal quality of Kinnow mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora) in ripening phase grown under varying environmental conditions. Sci. Hortic. 265, 109235 (2020).CAS 
    Article 

    Google Scholar 
    13.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A. & Ahmad, T. Economic analysis of citrus (Kinnow Mandarin) during on-year and off-year in the Punjab Province. Pakistan. J Hortic 5(250), 2376–3354 (2018).
    Google Scholar 
    14.Khalid, M. S., Malik, A. U., Saleem, B. A., Khan, A. S. & Javed, N. Horticultural mineral oil application and tree canopy management improve cosmetic fruit quality of Kinnow mandarin. Afr. J. Agric. Res. 7(23), 3464–3472 (2012).Article 

    Google Scholar 
    15.Nawaz, R. et al. Impact of climate change on kinnow fruit industry of Pakistan. Agrotechnology https://doi.org/10.4172/2168-9881.1000186 (2019).Article 

    Google Scholar 
    16.Mazhar, M. S., Malik, A. U., Jabbar, A., Malik, O. H. & Khan, M. N. Fruit blemishes caused by abiotic and biotic factors in Kinnow mandarin. Acta Hortic. 1120, 483–490 (2016).Article 

    Google Scholar 
    17.Solomon. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007).18.Ullah, R., Shivakoti, G. P. & Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disast. Risk Reduct. 13, 151–157 (2015).Article 

    Google Scholar 
    19.Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13(8), 1605–1615 (2007).ADS 
    Article 

    Google Scholar 
    20.Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22(3), 534–543 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8(1), 1–6 (2002).ADS 
    Article 

    Google Scholar 
    22.Stocker, T.F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).23.Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Clim. Change. 73, 319–343 (2005).ADS 
    Article 

    Google Scholar 
    24.Webb, L., Whetton, P. & Barlow, E. W. R. Modeled impact of future climate change on phenology of wine grapes in Australia. Aust. J. Grape Wine Res. 13, 165–175 (2007).Article 

    Google Scholar 
    25.Ferguson, J. J., Koch, K. E. & Huang, T. B. 240 Fruit removal effects on growth and carbon allocation in young citrus trees. HortScience 34(3), 483D – 483 (1999).Article 

    Google Scholar 
    26.Zekri, M. Factors affecting citrus production and quality, Citrus Industry. ifas.ufl.edu (2011).27.Ladaniya, M. S. Physico−chemical, respiratory and fungicide residue changes in wax coated mandarin fruit stored at chilling temperature with intermittent warming. J. Food Sci. Technol. 48(2), 150–158 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Monselise, S. P. & Goldschmidt, E. E. Alternate bearing in fruit trees. Hort. Rev. (Am. Soc. Hort. Sci.) 4, 128–173 (1982).
    Google Scholar 
    29.Garcia-Luis, A., Fornes, F. & Guardiola, J. L. Leaf carbohydrates and flower formation in Citrus. J. Am. Soc. Hort. Sci. 120, 222–227 (1995).CAS 
    Article 

    Google Scholar 
    30.Dalezios, N. R., Loukas, A. & Bampzelis, D. Assessment of NDVI and agrometeorological indices for major crops in central Greece. Phys. Chem. Earth,Parts A/B/C 27(23–24), 1025–1029 (2002).ADS 
    Article 

    Google Scholar 
    31.Dalezios, N. R., Loukas, A. & Bampzelis, D. The role of agrometeorological and agrohydrological indices in the phenology of wheat in central Greece. Phys. Chem. Earth Parts A/B/C 27(23–24), 1019–1023 (2002).ADS 
    Article 

    Google Scholar 
    32.Schmidt, D. et al. Base temperature, thermal time and phyllochron of escarole cultivation. Hortic. Bras. 36(4), 466–472 (2018).Article 

    Google Scholar 
    33.Forland, E. J., Skaugen, T. E., Benestad, R. E., Hanssen-Bauer, I. & Tveito, O. E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 36(3), 347–356 (2004).Article 

    Google Scholar 
    34.Gavilan, R. G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 50(2), 111–120 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12(2), 343–351 (2006).ADS 
    Article 

    Google Scholar 
    36.Kaleem, S., Hassan, F. & Saleem, A. Influence of environmental variations on physiological attributes of sunflower. Afr. J. Biotechnol. 8(15) (2009).37.Monselise, S. P., Brosh, P. & Costo, J. Off-season bloom in ‘Temple’ orange repressed by Gibberellin [Treatment]. HortScience (1981).38.Davies, F. S. & Albrigo, L. G. Citrus Crop Production Science in Agriculture (CAB International, 1994).
    Google Scholar 
    39.Wheaton, T. A. Alternate bearing of citrus. Proc. Int. Semin. Citric. 1, 224–228 (1992).
    Google Scholar 
    40.Flore, J. A. & Lakso, A. N. Environmental and physiological regulation of photosynthesis in fruit crops. Hortic. Rev. 11, 111–157 (1986).
    Google Scholar 
    41.Goldschmidt, E. E. Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hort. Sci. 34, 1020–1024 (1999).
    Google Scholar 
    42.Stander, O. P. J. 2018. Critical factors concomitant to the physiological development of alternate bearing in citrus (Citrus spp.) (Doctoral dissertation, Stellenbosch: Stellenbosch University) (2018).43.Iglesias, D. J. et al. Physiology of citrus fruiting. Braz. J. Plant. Physiol. 19(4), 333–362 (2007).CAS 
    Article 

    Google Scholar 
    44.Scholefield, P. B., Oag, D. R. & Sedgley, M. The relationship between vegetative and reproductive development in the mango in northern Australia. Aust. J. Agric. Res. 37(4), 425–433 (1986).Article 

    Google Scholar 
    45.Goldschmidt, E. E. & Golomb, A. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Am. Soc. Hort. Sci. 107, 206–208 (1982).
    Google Scholar 
    46.Hodgson, R. W. & Cameron, S. H. Studies on the bearing behavior of the “Fuerte” avocado variety. Calif. Avocado Soc. Yrbk. 1935, 150–165 (1935).
    Google Scholar 
    47.Seyyednejad, M., Ebrahimzadeh, H. & Talaie, A. Carbohydrate content in olive Zard cv and alternate bearing pattern. Int. Sugar J. 103(1226), 84–87 (2001).CAS 

    Google Scholar 
    48.Chacko, E. K., Reddy, Y. T. N. & Ananthanarayanan, T. V. Studies on the relationship between leaf number and area and fruit development in mango (Mangifera indica L). J. Hort. Sci. 57, 483–492 (1982).Article 

    Google Scholar 
    49.Nishikawa, F., Iwasaki, M., Fukamachi, H. & Matsumoto, H. The effect of fruit bearing on low-molecular-weight metabolites in stems of Satsuma Mandarin (Citrus unshiu Marc.). Hortic. J. 85(1), 23–29 (2016).CAS 
    Article 

    Google Scholar 
    50.Verreynne, J. S. & Lovatt, C. J. The effect of crop load on budbreak influences return bloom in alternate bearing ‘Pixie’mandarin. J. Am. Soc. Hortic. Sci. 134(3), 299–307 (2009).Article 

    Google Scholar 
    51.Dovis, V. L. et al. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’sweet orange trees with varying fruit load. Sci. Hortic. 174, 87–95 (2014).CAS 
    Article 

    Google Scholar 
    52.Martínez-Alcántara, B. et al. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. J. Plant Physiol. 176, 108–117 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Monerri, C. et al. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Sci. Hortic. 129(1), 71–78 (2011).CAS 
    Article 

    Google Scholar 
    54.Khan, S. R. A. Citrus Quality to meet Global Demand. Pakissan.com. http://www.pakissan.com/english/agri.overview/citrus.quality.to.meet.global.demand (2008).55.Moss, G. I., Bellamy, J. & Bevington, K. B. Controlling biennial bearing. Austral. Citrus News 50, 6–7 (1974).
    Google Scholar 
    56.Davis, K., Stover, E. & Wirth, F. Economic of fruit thinning: A review focusing on apple and citrus Production and marketing reports. Hort. Technol. 14(2), 282–289 (2004).Article 

    Google Scholar 
    57.Usman, M., Ashraf, I., Chaudhary, K. M. & Talib, U. Factors impeding citrus supply chain in central Punjab, Pakistan. Int. J. Agric. Ext. 6, 01–05 (2018).Article 

    Google Scholar 
    58.Ghafoor, U., Muhammad, S. & Chaudhary, K. M. Constrains in availability of inputs and information to citrus (Kinnow) growers of tehsil Toba Tek Singh, Pakistan. J. Agric. Sci. 45(4), 520–522 (2008).
    Google Scholar 
    59.Choudhary, D., Singh, R., Dagar, C. S., Kumar, A. & Singh, S. Temperature based agrometeorological indices for Indian mustard under different growing environments in western Haryana, India. Int. J. Curr. Microbiol. App. Sci. 7(1), 1025–1035 (2018).Article 

    Google Scholar 
    60.Hardy, S. & Khurshid, T. Calculating heat units for citrus. In Primefacts (NSW Department of Primary Industries, 2007).
    Google Scholar 
    61.Bootsma, A., Anderson, D. & Gameda, S. Potential impacts of climate change on agroclimatic indices in southern regions of Ontario and Quebec. Tech. Bull. ECORC Contrib. 03–284, 69–92 (2004).
    Google Scholar 
    62.Gordeev, A. V., Kleschenko, A. D., Chernyakov, B. A. & Sirotenko, O. D. Bioclimatic Potential of Russia: Theory and Practice (Tovarischestvo nauchnykh izdanyi KMK, 2006) ((in Russian)).
    Google Scholar 
    63.Karing, P., Kallis, A. & Tooming, H. Adaptation principles of agriculture to climate change. Climate Res. 12(2–3), 175–183 (1999).ADS 
    Article 

    Google Scholar 
    64.Chen, C. S. Digital computer simulation of heat units and their use for predicting plant maturity. Int. J. Biometeorol. 17(4), 329–335 (1973).ADS 
    Article 

    Google Scholar 
    65.Darby, H. M. & Lauer, J. G. Harvest date and hybrid influence on corn forage yield, quality, and preservation. Agron. J. 94(3), 559–566 (2002).Article 

    Google Scholar 
    66.Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45(4), 161–169 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Fealy, R. & Fealy, R. M. The spatial variation in degree days derived from locational attributes for the 1961 to 1990 period. Ir. J. Agric. Food Res. 47, 1–11 (2008).
    Google Scholar 
    68.Dolkar, D. et al. Effect of meteorological parameters on plant growth and fruit quality of Kinnow mandarin. Indian J. Agric. Sci. 88(7), 1004–1012 (2018).
    Google Scholar 
    69.Ferree, D. C. & Warrington, I. J. (eds) Apples: Botany, Production, and Uses (CABI, 2003).
    Google Scholar 
    70.Moretti, C. L., Mattos, L. M., Calbo, A. G. & Sargent, S. A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 43(7), 1824–1832 (2010).CAS 
    Article 

    Google Scholar 
    71.Chelong, I. A. & Sdoodee, S. Pollen viability, pollen germination and pollen tube growth of shogun (Citrus reticulate Blanco) under climate variability in southern Thailand. J. Agric. Technol 8, 2297–2307 (2012).
    Google Scholar 
    72.García-Tejero, I. et al. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agric. Water Manag. 97(5), 614–622 (2010).Article 

    Google Scholar 
    73.Zekri, M. & Rouse, R. E. Citrus Problems in the Home Landscape (University of Florida Cooperative Extension Service, 2002).
    Google Scholar 
    74.Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9(1), 1–12 (2019).CAS 
    Article 

    Google Scholar 
    75.Li, M., Yao, J., Guan, J. & Zheng, J. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmos. Res. 248, 105199 (2020).Article 

    Google Scholar 
    76.Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article 

    Google Scholar 
    78.Brodribb, T. J. & McAdam, S. A. Passive origins of stomatal control in vascular plants. Science 331(6017), 582–585 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mott, K. A. & Peak, D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ. 36(5), 936–944 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Allen, L. H. & Vu, J. C. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric. For. Meteorol. 149(5), 820–830 (2009).ADS 
    Article 

    Google Scholar 
    81.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023–1027 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    82.De Carcer, P. S., Signarbieux, C., Schlaepfer, R., Buttler, A. & Vollenweider, P. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings. Environ. Exp. Bot. 140, 128–140 (2017).Article 

    Google Scholar 
    83.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3(1), 52–58 (2013).ADS 
    Article 

    Google Scholar 
    84.Franks, P. J., Cowan, I. R. & Farquhar, G. D. The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20(1), 142–145 (1997).Article 

    Google Scholar 
    85.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226(6), 1550–1566 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.do Carmo Araújo, S. A. et al. Photosynthetic characteristics of dwarf elephant grass (Pennisetum purpureum Schum.) genotypes, under stress water. Acta Sci. Anim. Sci. 32(1), 1–7 (2010).
    Google Scholar 
    87.Shirke, P. A. & Pathre, U. V. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot. 55(405), 2111–2120 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47(2), 215–222 (2009).Article 

    Google Scholar 
    89.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 66(2), 203–211 (2009).CAS 
    Article 

    Google Scholar 
    90.Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737), 424–426 (1979).ADS 
    Article 

    Google Scholar 
    91.Bevington, K. B. & Castle, W. S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 110(6), 840–845 (1985).
    Google Scholar 
    92.Khurshid, T. & Hutton, R. J. Heat unit mapping a decision support system for selection and evaluation of citrus cultivars. In International Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region 694, 265–269 (2004).93.Dalal, R. P. S. & Raj Singh, A. K. ,. Prevailing weather condition impact on different phenophases of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 497–505 (2017).Article 

    Google Scholar 
    94.Koshita, Y. Effect of temperature on fruit color development. In Abiotic Stress Biology in Horticultural Plants 47–58 (Springer, 2015).
    Google Scholar 
    95.Sastry, P. S. N. & Chakravarty, N. V. K. Energy summation indices for wheat crop in India. Agric. Meteorol. 27, 45–48 (1982).Article 

    Google Scholar 
    96.Moriondo, M., Giannakopoulos, C. & Bindi, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104(3), 679–701 (2011).ADS 
    Article 

    Google Scholar 
    97.Hilgeman, R. H., Dunlap, J. A. & Sharp, P. O. Effect of time of harvest of ‘Valencia’ oranges in Arizona on fruit grade and size and yield, the following year. Proc. Amer. Soc. Hort. Sci. 90, 103–109. Fruit Load Limits Root Growth, Summer Vegetative Shoot Development, and Flowering in Alternatebearing ‘Nadorcott’ Mandarin Trees (1967).98.Dalal, R. P. S., Beniwal, B. S. & Sehrawat, S. K. Seasonal variation in growth, leaf physiology and fruit development in Kinnow, a Mandarin Hybrid. J. Plant Stud. 2(1), 72–77 (2013).
    Google Scholar 
    99.Bower, J. P. The Pre-and post -Harvest Application Potential for Crop- Set TM and ISR2000TM on Citrus. http://en.engormix.com/MAagriculture/articles/th-pre (2007).100.Sharma, N., Sharma, S. & Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 6(5), 27–30 (2017).
    Google Scholar 
    101.Goldschmidt, E. E. & Koch, K. E. Citrus. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relations (eds Zaminski, E. & Schaffer, A. A.) 797–823 (Marcel Dekker, 1996).
    Google Scholar 
    102.Munoz-Fambuena, N. et al. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann. Bot. 108, 511–519 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Shalom, L. et al. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Exp. Bot. 65(12), 3029–3044 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Smith, P. F. Collapse of ‘Murcott’ tangerine trees [Root starvation]. J. Am. Soc. Hortic. Sci. 101, 23–25 (1976).CAS 

    Google Scholar 
    105.Koshita, Y., Takahara, T., Ogata, T. & Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc). Sci. Hortic. 79(3–4), 185–194 (1999).CAS 
    Article 

    Google Scholar 
    106.Whiley, A. W., Rasmussen, T. S. & Wolstenholme, B. N. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. I. the early-maturing cv. Fuerte. Sci. Hortic. 66(1–2), 23–34 (1996).CAS 
    Article 

    Google Scholar 
    107.Syvertsen, J. P. & Lloyd, J. J. Citrus. Handb. Environ. Physiol. Fruit Crops 2, 65–99 (1994).
    Google Scholar 
    108.Scholefield, P. B., Sedgley, M. & Alexander, D. M. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci. Hortic. 25(2), 99–110 (1985).Article 

    Google Scholar 
    109.Shalom, L. et al. Alternate bearing in citrus: Changes in the expression of flowering control genes and in global gene expression in on-versus off-crop trees. PLoS ONE 7(10), e46930 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.der Merwe, V. & Schalk, I. Studies on the Phenology and Carbohydrate Status of Alternate Bearing ‘Nadorcott’mandarin trees (Doctoral dissertation, Stellenbosch: Stellenbosch University, 2012).111.Ward, D. L. Factors affecting Pre-harvest Fruit Drop of Apple. Ph.D thesis. Virginia Polytechnic Institute and State University 143 (2004).112.Blanusa, T., Else, M. A., Davies, W. J. & Atkinson, C. J. Regulation of sweet cherry fruit abscission: The role of photo-assimilation, sugars and abscisic acid. J. Hortic. Sci. Biotechnol. 81(4), 613–620 (2006).CAS 
    Article 

    Google Scholar 
    113.Nartvaranant, P., Sornsanid, K. & Nuanpraluk, S. Preharvest Fruit Drop and Seasonal Variation of Plant Nutrient in ‘Thongdee’and ‘Khao Nam Pleung’pummelo on Nakhon Chaisri-Mae Klong river basin regions. Research Project Report (Thailand Research Fund, 2010).
    Google Scholar 
    114.Ruiz, R., Garcıa-Luis, A., Monerri, C. & Guardiola, J. L. Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann. Bot. 87(6), 805–812 (2001).CAS 
    Article 

    Google Scholar 
    115.Atkinson, C. J. The effects of phloem girdling on the abscission of Prunus avium L. fruits. J. Hortic. Sci. Biotechnol. 77(1), 22–27 (2002).Article 

    Google Scholar 
    116.Spiegel-Roy, P. & Goldschmidt, E. E. The Biology of Citrus (Cambridge University Press, 1996).Book 

    Google Scholar 
    117.Thind, S. K. & Kumar, K. Integrated management of fruit drop in Kinnow mandarin. Indian J Hort 65(4), 497–499 (2008).
    Google Scholar 
    118.Kumar, A., Avasthe, R. K., Pandey, B., Lepcha, B. & Rahman, H. Effect of fruit size and orchard location on fruit quality and seed traits of mandarin (Citrus reticulata) in Sikkim Himalayas. Indian J. Agric. Sci. 81(9), 821 (2011).CAS 

    Google Scholar 
    119.Ashraf, M. Y., Gul, A., Ashraf, M., Hussain, F. & Ebert, G. Improvement in yield and quality of Kinnow (Citrus deliciosa × Citrus nobilis) by potassium fertilization. J. Plant Nutr. 33, 1625–1637 (2010).CAS 
    Article 

    Google Scholar 
    120.Ibrahim, M., Ahmad, N., Anwar, S. A. & Majeed, T. Effect of micronutrients on citrus fruit yield growing on calcareous soils. In Advances in Plant and Animal Boron Nutrition 179–182 (2007).121.Razi, M. F. D., Khan, I. A. & Jaskani, M. J. Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pak. J. Agri. Sci. 48, 299–304 (2011).
    Google Scholar 
    122.Valiente, J. I. & Albrigo, L. G. Flower bud induction of sweet orange trees [Citrus sinensis (L.) Osbeck]: Effect of low temperatures, crop load, and bud age. J. Am. Soc. Hortic. Sci. 129(2), 158–164 (2004).Article 

    Google Scholar 
    123.Yakushiji, H. et al. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 121, 466–472 (1996).CAS 
    Article 

    Google Scholar 
    124.Holland, N., Menezes, H. C. & Lafuente, M. T. Carbohydrates as related to the heat induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25, 181–191 (2002).CAS 
    Article 

    Google Scholar 
    125.Chelong, I. A. & Sdoodee, S. Effect of climate variability and degree-day on development, yield and quality of shogun (Citrus reticulata Blanco) in Southern Thailand. J. Nat. Sci. 47, 333–341 (2013).
    Google Scholar 
    126.Khalid, M. S. et al. Geographical location and agro-ecological conditions influence kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruit quality. Int. J. Agric. Biol. 20, 647–654 (2018).Article 

    Google Scholar 
    127.Guardiola, J. L. & García-Luis, A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31(1–2), 121–132 (2000).CAS 
    Article 

    Google Scholar 
    128.Hield, H. Z. & Hilgeman, R. H. Alternate bearing and chemical fruit thinning of certain citrus varieties. Proc. Intl. Citrus Symp. 3, 1145–1153 (1969).
    Google Scholar 
    129.Verreynne, J. S. The Mechanism and Underlying Physiology Perpetuating Alternate Bearing in ‘Pixie’mandarin (Citrus reticulata Blanco) (University of California, 2005).
    Google Scholar 
    130.Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24(3), 1108–1122 (2018).ADS 
    Article 

    Google Scholar  More

  • in

    The critical role of natural history museums in advancing eDNA for biodiversity studies: a case study with Amazonian fishes

    1.Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Ann. Mo. Bot. Gard. 87, 26–62 (2000).Article 

    Google Scholar 
    2.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article 

    Google Scholar 
    3.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Clare, A. I. M. et al. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?. Genes 10, 192 (2019).Article 
    CAS 

    Google Scholar 
    5.Tsuji, S., Shibata, N., Sawada, H. & Ushio, M. Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA. Mol. Ecol. Resour. 20, 1323–1332 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Miya, M., Gotoh, R. O. & Sado, T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 86, 939–970 (2020).CAS 
    Article 

    Google Scholar 
    7.Dagosta F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist, 431, 1–163 (2019).8.Jézéquel, C., Tedesco, P. A. & Bigorne, R. A database of freshwater fish species of the Amazon Basin. Sci. Data 7, 96 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Reis, R. E., Kullander, S. O. & Ferraris, C. J. Check List of the Freshwater Fishes of South and Central America. (Edipucrs, 2003).10.Tedesco, P. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Brito, P. M., Meunier, F. J. & Leal, M. E. C. Origine et diversification de líchthyofaune Neotropical: Une revue. Cybium 31, 139–153 (2007).
    Google Scholar 
    12.Lowe-McConnell, R. H. Ecological Studies in Tropical Fish Communities (Cambridge University Press, 1987).Book 

    Google Scholar 
    13.Bloom, D. D. & Lovejoy, N. R. On the origins of marine derived fishes in South America. J. Biogeogr. 44, 1927–1938 (2017).Article 

    Google Scholar 
    14.de Santana, C. D. et al. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nat. Commun. 10, 4000 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Carvalho, L. N., Zuanon, J. & Sazima, I. Natural history of Amazon fishes. In Tropical Biology and Natural Resources Theme (ed. Del-Claro, K.), K. Del-Claro & R. J. Marquis (Session Eds. the Natural History Session), Encyclopedia of Life Support Systems (EOLSS) (Eolss Publishers, 2007).16.Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13, e0202024 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    18.Baldwin, C. C., Castillo, C. I., Weigt, L. A. & Victor, B. C. Seven new species within western Atlantic Starksia atlantica, S. lepicoelia, and S. sluiteri (Teleostei, Labrisomidae), with comments on congruence of DNA barcodes and species. ZooKeys 79, 21–27 (2011).Article 

    Google Scholar 
    19.Robertson, D. R. et al. Deep-water bony fishes collected by the B/O Miguel Oliver on the shelf edge of Pacific Central America: An annotated, illustrated and DNA-barcoded checklist. Zootaxa 4348, 1–125 (2017).PubMed 
    Article 

    Google Scholar 
    20.Weigt, L. A. et al. Using DNA barcoding to assess Caribbean reef fish biodiversity: Expanding taxonomic and geographic coverage. PLoS ONE 7, e41059 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Seberg, O. et al. Global genome biodiversity network: Saving a blueprint of the tree of life—a botanical perspective. Ann. Bot. 118, 393–399 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Parenti, L. R. et al. Fishes collected during the 2017 MarineGEO assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. J. Mar. Biol. Assoc. UK 100, 607–637 (2020).Article 

    Google Scholar 
    23.Droege, G. et al. The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database https://doi.org/10.1093/database/baw125 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43, 1779–1790 (2020).Article 

    Google Scholar 
    25.Leray, M., Knowlton, N., Shien-Lei, H., Nguyen, B. N. & Machida, R. J. GenBank is a reliable resource for 21st biodiversity research. Proc. Natl. Acad. Sci. U.S.A. 116, 22651–22656 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Dillman, C. B. et al. Forensic investigations into a GenBank anomaly: Endangered taxa and the importance of voucher specimens in molecular studies. J. Appl. Ichthyol. 30, 1300–1309 (2014).CAS 
    Article 

    Google Scholar 
    27.Locatelli, N. S., McIntyre, P. B., Therkildsen, N. O. & Baetscher, D. S. GenBank’s reliability is uncertain for biodiversity researchers seeking species-level assignment for eDNA. Proc. Natl. Acad. Sci. U.S.A. 117, 32211–32212 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19, 19–22 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Nobile, A. B. et al. DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost. Metabarcoding Metagenom. 3, 35060 (2019).Article 

    Google Scholar 
    30.Cilleros, K. et al. Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): A text with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1, 119–130 (2019).Article 

    Google Scholar 
    32.Jackman, J. M. C. et al. eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environ. DNA https://doi.org/10.1002/edna3.191 (2021).Article 

    Google Scholar 
    33.Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McElroy, M. E. et al. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Front. Ecol. Evol. 8, 276 (2020).Article 

    Google Scholar 
    35.Dudgeon, D. Freshwater Biodiversity: Status (Cambridge University Press, 2020).Book 

    Google Scholar 
    36.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    37.Milan, D. T., Mendes, I. S. & Carvalho, D. C. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep. 10, 17966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).Article 

    Google Scholar 
    40.Antich, A. et al. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinf. 22, 177 (2021).CAS 
    Article 

    Google Scholar 
    41.Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, e0204114 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Zuanon, J., Bockmann, F. A. & Sazima, I. A remarkable sand-dwelling fish assemblage from central Amazonia, with comments on the evolution of psammophily in South American freshwater fishes. Neotrop. Ichthyol. 4, 107–118 (2006).Article 

    Google Scholar 
    43.Sazima, I., Carvalho, L. N., Mendonça, F. P. & Zuanon, J. Fallen leaves on the water-bed: Diurnal camouflage of three night-active fish species in an Amazonian streamlet. Neotrop. Ichthyol. 4, 119–122 (2006).Article 

    Google Scholar 
    44.Espírito-Santo, H. M. V. & Zuanon, J. Temporary pools provide stability to fish assemblages in Amazon headwater streams. Ecol. Freshw. Fish 26, 475–483 (2017).Article 

    Google Scholar 
    45.de Pinna, M. C. C., Zuanon, J., Rapp-Py-Daniel, L. R. & Petry, P. A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi). Zool. J. Linn. Soc. 182, 76–106 (2018).Article 

    Google Scholar 
    46.López-Rojas, H., Lundberg, J. G. & Marsh, E. Design and operation of a small trawling apparatus for use with dugout canoes. N. Am. J. Fish. Manag. 4, 331–334 (1984).Article 

    Google Scholar 
    47.Marrero, C. & Taphorn, D. C. Notas sobre la historia natural y la distribution de los peces Gymnotiformes in la cuenca del Rio Apure y otros rios de la Orinoquia. Biollania 8, 123–142 (1991).
    Google Scholar 
    48.Cox-Fernandes, C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    49.Peixoto, L. A. W., Dutra, G. M. & Wosiack, W. B. The electric. Glassknife fishes of the Eigenmannia trilineata group (Gymnotiformes: Sternopygidae): Monophyly and description of seven new species. Zool. J. Linn. Soc. 175, 384–414 (2015).Article 

    Google Scholar 
    50.de Santana, C. D. & Vari, R. P. Electric fishes of the genus Sternarchorhynchus (Teleostei, Ostariophysi, Gymnotiformes); phylogenetic and revisionary studies. Zool. J. Linn. Soc. 159, 223–371 (2010).Article 

    Google Scholar 
    51.Castro, R. M. C. Evolução da ictiofauna de riachos sul-americanos: Padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (eds Caramaschi, E. P., Mazzoni, R., & Peres-Neto, P. R.) Série Oecologia Brasiliensis volume VI, PPGE-UFRJ, Rio de Janeiro, 139–155 (1999).52.Mojica, J. I., Castellanos, C. & Lobón-Cerviá, J. High temporal species turnover enhances the complexity of fish assemblages in Amazonian Terra firme streams. Ecol. Freshw. Fish 18, 518–526 (2009).Article 

    Google Scholar 
    53.de Oliveira, R. R., Rocha, M. M., Anjos, M. B., Zuanon, J. & Rapp Py-Daniel, L. H. Fish fauna of small streams of the Catua-Ipixuna Extractive Reserve, State of Amazonas, Brazil. Check List 5, 154–172 (2009).Article 

    Google Scholar 
    54.Caramaschi E., Mazzoni, P. R., Bizerril, C. R. S. F. & Peres-Neto, P. R. Ecologia de Peixes de Riachos: Estado Atual e Perspectivas. Oecologia Brasiliensis, v. VI, Rio de Janeiro (1999).55.Anjos, M. B. & Zuanon, J. Sampling effort and fish species richness in small Terra firme forest streams of central Amazonia, Brazil. Neotrop. Ichthyol. 5, 45–52 (2007).Article 

    Google Scholar 
    56.Mojica, J. I., Lobón-Cerviá, J. & Castellanos, C. Quantifying fish species richness and abundance in Amazonian streams: Assessment of a multiple gear method suitable for Terra firme stream fish assemblages. Fish. Manag. Ecol. 21, 220–233 (2014).Article 

    Google Scholar 
    57.Barros, D. F. et al. The fish fauna of streams in the Madeira-Purus interfluvial region, Brazilian Amazon. Check List 7, 768–773 (2011).Article 

    Google Scholar 
    58.Escobar-Camacho, D., Barriga, R. & Ron, S. R. Discovering hidden diversity of characins (Teleostei: Characiformes) in Ecuador’s Yasuní National Park. PLoS ONE 10, e0135569 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Ramirez, J. L. et al. Revealing hidden diversity of the underestimated neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 149 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Crampton, W. G. R., de Santana, C. D., Waddell, J. C. & Lovejoy, N. R. The Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae): taxonomy and biology, with descriptions of 15 new species. Neotrop. Ichthyol. 14, 639–790 (2016).Article 

    Google Scholar 
    61.Abel, R. Conservation biology for the biodiversity crisis: A freshwater follow-up. Conserv. Biol. 5, 1435–1437 (2002).Article 

    Google Scholar 
    62.Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 5, 422–430 (2010).Article 

    Google Scholar 
    63.Jenkins, M. Prospects for biodiversity. Science 302, 1175–1177 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Bunn, S. E. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    65.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Gilbert, M. T. P. et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues–which methods are useful when?. PLoS ONE 2, e537 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Campos, P. F. & Gilbert, T. M. DNA extraction from formalin-fixed material. In Ancient DNA 81–85 (Humana Press, 2012).68.Hykin, S. M., Bi, K. & McGuire, J. A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE 10, e0141579 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Hagedorn, M. M. et al. Cryopreservation of fish spermatogonial cells: The future of natural history collections. Sci. Rep. 8, 6149 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Albert, J. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, 2011).Book 

    Google Scholar 
    71.Sabaj Pérez, M. H. Where the Xingu bends and will soon break. Am. Sci. 103, 395–403 (2015).Article 

    Google Scholar 
    72.Amigo, I. When will the Amazon hit a tipping point?. Nature 578, 505–507 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Murienne, J. et al. Aquatic DNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, 37518 (2019).Article 

    Google Scholar 
    74.McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Fernandes, G. W. et al. Dismantling Brazil’s science threatens global biodiversity heritage. Perspect. Ecol. Conserv. 15, 239–243 (2017).
    Google Scholar 
    76.Alves, R. J. V. et al. Brazilian legislation on genetic heritage harms Biodiversity Convention goals and threatens basic biology research and education. An. Acad. Bras. Ciênc. 90, 1279–1284 (2018).PubMed 
    Article 

    Google Scholar 
    77.Overbeck, G. E. et al. Global biodiversity threatened by science budget cuts in Brazil. Bioscience 68, 11–12 (2018).PubMed 
    Article 

    Google Scholar 
    78.Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. 117, 54741 (2016).
    Google Scholar 
    79.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    80.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    86.Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinf. 11, 43–48 (2015).CAS 
    Article 

    Google Scholar 
    87.Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.Rproject.org/.89.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    90.Oksanen, J., Kindt, R. & O’Hara, B. Package VEGAN. Community Ecology Package, Version 2 (2013).91.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    92.Adler D., Nenadic, O. & Zucchini, W. rgl: 3D visualization device system (OpenGL). R package version 0.93.945. http://CRAN.R-project.org/package=rgl (2013).93.Gu, Z. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. Fishualize: Color Palettes Based On Fish Species. CRAN version 0.2.0 (2019).95.Chao, A. Estimating population size for sparse data in capture-recapture experiments. Biometrics 45, 427 (1989).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    96.Hsieh T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 2.0.20 (2020).97.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Lett. 8, 148–215 (2005).Article 

    Google Scholar 
    98.Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Chao A., Ma, K. H., Hsieh, T. C. & Chiu, C. H. SpadeR (Species-richness Prediction and Diversity Estimation in R): An R package in CRAN. Program and User’s Guide also published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016). More

  • in

    The time course of molecular acclimation to seawater in a euryhaline fish

    1.Edwards, S. L. & Marshall, W. S. In Euryhaline Fishes. Fish Physiology Vol. 32 (eds Farrell Stephen, A. P. et al.) 1–44 (Academic Press, 2012).Chapter 

    Google Scholar 
    2.Evans, D. H., Piermarini, P. M. & Choe, K. P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97–177. https://doi.org/10.1152/physrev.00050.2003 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Kultz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218, 1907–1914. https://doi.org/10.1242/jeb.118695 (2015).Article 
    PubMed 

    Google Scholar 
    4.Schultz, E. T. & McCormick, S. D. In Euryhaline Fishes. Fish Physiology Vol. 32 (eds Farrell, A. P. et al.) 477–533 (Academic Press, 2012).Chapter 

    Google Scholar 
    5.Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. & Schulte, P. M. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. Cell Physiol. 287, C300–C309. https://doi.org/10.1152/ajpcell.00054.2004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Deane, E. E. & Woo, N. Y. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1054–R1063. https://doi.org/10.1152/ajpregu.00347.2004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Scott, G. R., Claiborne, J. B., Edwards, S. L., Schulte, P. M. & Wood, C. M. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: Insight into divergent mechanisms of ion transport. J. Exp. Biol. 208, 2719–2729. https://doi.org/10.1242/jeb.01688 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. Respir. Physiol. Neurobiol. 184, 282–292. https://doi.org/10.1016/j.resp.2012.08.025 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Hiroi, J. & McCormick, S. D. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir. Physiol. Neurobiol. 184, 257–268. https://doi.org/10.1016/j.resp.2012.07.019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Hsu, H. H., Lin, L. Y., Tseng, Y. C., Horng, J. L. & Hwang, P. P. A new model for fish ion regulation: Identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res. 357, 225–243. https://doi.org/10.1007/s00441-014-1883-z (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Hwang, P. P. & Lin, L. Y. In The Physiology of Fishes Vol. 4 (eds Evans, D. H. et al.) 205–233 (CRC Press, 2013).
    Google Scholar 
    12.Evans, T. G. & Somero, G. N. A microarray-based transcriptomic time-course of hyper- and hypo-osmotic stress signaling events in the euryhaline fish Gillichthys mirabilis: Osmosensors to effectors. J. Exp. Biol. 211, 3636–3649. https://doi.org/10.1242/jeb.022160 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Fiol, D. F. & Kultz, D. Osmotic stress sensing and signaling in fishes. FEBS J. 274, 5790–5798. https://doi.org/10.1111/j.1742-4658.2007.06099.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Kultz, D. The combinatorial nature of osmosensing in fishes. Physiology (Bethesda) 27, 259–275. https://doi.org/10.1152/physiol.00014.2012 (2012).CAS 
    Article 

    Google Scholar 
    15.Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981. https://doi.org/10.1111/eva.12385 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Foskett, J. K., Logsdon, C. D., Turner, T., Machen, T. E. & Bern, H. A. Differentiation of the chloride extrusion mechanism during seawater adaptation of a teleost fish, the cichlid Sarotherodon mossambicus. J. Exp. Biol. 93, 209–224 (1981).Article 

    Google Scholar 
    17.Katoh, F. & Kaneko, T. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established “time-differential double fluorescent staining” technique. J. Exp. Biol. 206, 4113–4123. https://doi.org/10.1242/jeb.00659 (2003).Article 
    PubMed 

    Google Scholar 
    18.Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S. & Hirano, T. Excellent salinity tolerance of mozambique tilapia (Oreochromis mossambicus): Elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool. Sci. 17, 149–160. https://doi.org/10.2108/zsj.17.149 (2000).Article 

    Google Scholar 
    19.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. J. Exp. Biol. 215, 1293–1305. https://doi.org/10.1242/jeb.062075 (2012).Article 
    PubMed 

    Google Scholar 
    20.Mundy, P. C., Jeffries, K. M., Fangue, N. A. & Connon, R. E. Differential regulation of select osmoregulatory genes and Na+/K+-ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 240, 110584. https://doi.org/10.1016/j.cbpa.2019.110584 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Jeffries, K. M. et al. Divergent transcriptomic signatures in response to salinity exposure in two populations of an estuarine fish. Evol. Appl. 12, 1212–1226. https://doi.org/10.1111/eva.12799 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Lam, S. H. et al. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 15, 921. https://doi.org/10.1186/1471-2164-15-921 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Evans, T. G. & Kultz, D. The cellular stress response in fish exposed to salinity fluctuations. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 421–435. https://doi.org/10.1002/jez.2350 (2020).Article 
    PubMed 

    Google Scholar 
    24.Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474. https://doi.org/10.1152/physrev.00056.2006 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Tine, M., Bonhomme, F., McKenzie, D. J. & Durand, J. D. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol. 10, 11. https://doi.org/10.1186/1472-6785-10-11 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Whitehead, A., Zhang, S., Roach, J. L. & Galvez, F. Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish. Mol. Ecol. 22, 3780–3796. https://doi.org/10.1111/mec.12316 (2013).Article 
    PubMed 

    Google Scholar 
    27.Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222. https://doi.org/10.1242/jeb.110445 (2015).Article 
    PubMed 

    Google Scholar 
    28.Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257. https://doi.org/10.1146/annurev.physiol.67.040403.103635 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Takei, Y. & Hwang, P.-P. In Biology of Stress in Fish—Fish Physiology Vol. 35 (eds Schreck, C. B. et al.) 207–249 (Academic Press, 2016).Chapter 

    Google Scholar 
    30.Tseng, Y. C. & Hwang, P. P. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 419–429. https://doi.org/10.1016/j.cbpc.2008.04.009 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Chen, X. L., Lui, E. Y., Ip, Y. K. & Lam, S. H. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after 6 days of seawater exposure. J. Fish Biol. 93, 215–228. https://doi.org/10.1111/jfb.13653 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Nguyen, T. V., Jung, H., Nguyen, T. M., Hurwood, D. & Mather, P. Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar. Genomics 25, 75–88. https://doi.org/10.1016/j.margen.2015.11.010 (2016).Article 
    PubMed 

    Google Scholar 
    33.Bœuf, G. & Payan, P. How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130, 411–423. https://doi.org/10.1016/s1532-0456(01)00268-x (2001).Article 
    PubMed 

    Google Scholar 
    34.Makrinos, D. L. & Bowden, T. J. Natural environmental impacts on teleost immune function. Fish Shellfish Immunol. 53, 50–57. https://doi.org/10.1016/j.fsi.2016.03.008 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Morgan, J. D. & Iwama, G. K. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 48, 2083–2094. https://doi.org/10.1139/f91-247 (1991).Article 

    Google Scholar 
    36.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl. Acad. Sci. U.S.A. 108, 6193–6198. https://doi.org/10.1073/pnas.1017542108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kozak, G. M., Brennan, R. S., Berdan, E. L., Fuller, R. C. & Whitehead, A. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 68, 63–80. https://doi.org/10.1111/evo.12265 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hrbek, T. & Meyer, A. Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J. Evol. Biol. 16, 17–36. https://doi.org/10.1046/j.1420-9101.2003.00475.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Schunter, C. et al. Desert fish populations tolerate extreme salinity change to overcome hydrological constraints. bioRxiv. https://doi.org/10.1101/2021.05.14.444120 (2021).Article 

    Google Scholar 
    40.Marshall, J. C. et al. Go with the flow: The movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshw. Biol. 61, 1242–1258. https://doi.org/10.1111/fwb.12707 (2016).Article 

    Google Scholar 
    41.Kerezsy, A., Balcombe, S. R., Tischler, M. & Arthington, A. H. Fish movement strategies in an ephemeral river in the Simpson Desert, Australia. Austral Ecol. 38, 798–808. https://doi.org/10.1111/aec.12075 (2013).Article 

    Google Scholar 
    42.Martin, C. H., Crawford, J. E., Turner, B. J. & Simons, L. H. Diabolical survival in Death Valley: Recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth. Proc. Biol. Sci. 283, 20152334. https://doi.org/10.1098/rspb.2015.2334 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Mossop, K. D. et al. Dispersal in the desert: Ephemeral water drives connectivity and phylogeography of an arid-adapted fish. J. Biogeogr. 42, 2374–2388. https://doi.org/10.1111/jbi.12596 (2015).Article 

    Google Scholar 
    44.Collins, J. P., Young, C., Howell, J. & Minckley, W. L. Impact of flooding in a Sonoran desert stream, including elimination of an endangered fish population (Poeciliopsis O. occidentalis, Poeciliidae). Southwest. Nat. 26, 415–423. https://doi.org/10.2307/3671085 (1981).Article 

    Google Scholar 
    45.Meffe, G. K. Effects of abiotic disturbance on coexistence of predator–prey fish species. Ecology 65, 1525–1534. https://doi.org/10.2307/1939132 (1984).Article 

    Google Scholar 
    46.Lotan, R. Sodium, chloride and water balance in the euryhaline teleost Aphanius dispar (Rüppell) (Cyprinodontidae). Z. Vgl. Physiol. 65, 455–462. https://doi.org/10.1007/bf00299054 (1969).Article 

    Google Scholar 
    47.Lotan, R. Osmotic adjustment in the euryhaline teleost Aphanius dispar (Cyprinodontidae). Z. Vgl. Physiol. 75, 383–387. https://doi.org/10.1007/bf00630558 (1971).CAS 
    Article 

    Google Scholar 
    48.Plaut, I. Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol. Biochem. Zool. 73, 590–596. https://doi.org/10.1086/317746 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Andrews, S. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).51.Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).CAS 
    Article 

    Google Scholar 
    53.Lafond-Lapalme, J., Duceppe, M. O., Wang, S., Moffett, P. & Mimee, B. A new method for decontamination of de novo transcriptomes using a hierarchical clustering algorithm. Bioinformatics 33, 1293–1300. https://doi.org/10.1093/bioinformatics/btw793 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. https://doi.org/10.1038/nprot.2013.084 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37. https://doi.org/10.1093/nar/gkr367 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).CAS 
    Article 

    Google Scholar 
    57.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.BioBam Bioinformatics. OmicsBox – Bioinformatics Made Easy. https://www.biobam.com/omicsbox (2019).61.Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314. https://doi.org/10.1093/nar/gky1085 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research https://doi.org/10.12688/f1000research.7563.1 (2015).Article 
    PubMed 

    Google Scholar 
    66.Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: Removing the noise and preserving large differences. Bioinformatics 35, 2084–2092. https://doi.org/10.1093/bioinformatics/bty895 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    68.Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536. https://doi.org/10.1007/s10695-020-00808-6 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Lee, S. Y., Lee, H. J. & Kim, Y. K. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci. Rep. 10, 1987. https://doi.org/10.1038/s41598-020-58915-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Su, H., Ma, D., Zhu, H., Liu, Z. & Gao, F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male). BMC Genomics 21, 110. https://doi.org/10.1186/s12864-020-6512-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Fischer, D. S., Theis, F. J. & Yosef, N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 46, e119. https://doi.org/10.1093/nar/gky675 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Hwang, P. P., Lee, T. H. & Lin, L. Y. Ion regulation in fish gills: Recent progress in the cellular and molecular mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R28–R47. https://doi.org/10.1152/ajpregu.00047.2011 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Marshall, W. S. Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiol. (Oxf.) 202, 487–499. https://doi.org/10.1111/j.1748-1716.2010.02189.x (2011).CAS 
    Article 

    Google Scholar 
    74.Lema, S. C., Carvalho, P. G., Egelston, J. N., Kelly, J. T. & McCormick, S. D. Dynamics of gene expression responses for ion transport proteins and aquaporins in the gill of a euryhaline pupfish during freshwater and high-salinity acclimation. Physiol. Biochem. Zool. 91, 1148–1171. https://doi.org/10.1086/700432 (2018).Article 
    PubMed 

    Google Scholar 
    75.Flemmer, A. W. et al. Phosphorylation state of the Na+–K+–Cl− cotransporter (NKCC1) in the gills of Atlantic killifish (Fundulus heteroclitus) during acclimation to water of varying salinity. J. Exp. Biol. 213, 1558–1566. https://doi.org/10.1242/jeb.039644 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Delpire, E. & Gagnon, K. B. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem. J. 409, 321–331. https://doi.org/10.1042/BJ20071324 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Rinehart, J. et al. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J. Biol. Chem. 286, 30171–30180. https://doi.org/10.1074/jbc.M111.222893 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Li, J. et al. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). Fish Physiol. Biochem. 46, 1255–1277. https://doi.org/10.1007/s10695-020-00786-9 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: Evolution of osmolyte systems. Science 217, 1214–1222. https://doi.org/10.1126/science.7112124 (1982).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    80.Kalujnaia, S., McVee, J., Kasciukovic, T., Stewart, A. J. & Cramb, G. A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (Anguilla anguilla). FASEB J. 24, 3981–3991. https://doi.org/10.1096/fj.10-161000 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Cui, W. X. et al. myo-inositol facilitates salinity tolerance by modulating multiple physiological functions in the turbot Scophthalmus maximus. Aquaculture 527, 735451. https://doi.org/10.1016/j.aquaculture.2020.735451 (2020).CAS 
    Article 

    Google Scholar 
    82.Ma, A. et al. Osmoregulation by the myo-inositol biosynthesis pathway in turbot Scophthalmus maximus and its regulation by anabolite and c-Myc. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 242, 110636. https://doi.org/10.1016/j.cbpa.2019.110636 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Wang, Y. F., Yan, J. J., Tseng, Y. C., Chen, R. D. & Hwang, P. P. Molecular physiology of an extra-renal Cl− uptake mechanism for body fluid Cl− homeostasis. Int. J. Biol. Sci. 11, 1190–1203. https://doi.org/10.7150/ijbs.11737 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Leguen, I., Le Cam, A., Montfort, J., Peron, S. & Fautrel, A. Transcriptomic analysis of trout gill ionocytes in fresh water and sea water using laser capture microdissection combined with microarray analysis. PLoS One 10, e0139938. https://doi.org/10.1371/journal.pone.0139938 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Richards, J. G., Semple, J. W., Bystriansky, J. S. & Schulte, P. M. Na+/K+-ATPase alpha-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol. 206, 4475–4486. https://doi.org/10.1242/jeb.00701 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.McCormick, S. D., Regish, A. M. & Christensen, A. K. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J. Exp. Biol. 212, 3994–4001. https://doi.org/10.1242/jeb.037275 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Bystriansky, J. S., Richards, J. G., Schulte, P. M. & Ballantyne, J. S. Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol. 209, 1848–1858. https://doi.org/10.1242/jeb.02188 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Tipsmark, C. K. et al. Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J. Endocrinol. 209, 237–244. https://doi.org/10.1530/JOE-10-0495 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Urbina, M. A., Schulte, P. M., Bystriansky, J. S. & Glover, C. N. Differential expression of Na+, K+-ATPase alpha-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. J. Comp. Physiol. B 183, 345–357. https://doi.org/10.1007/s00360-012-0719-y (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Velotta, J. P. et al. Transcriptomic imprints of adaptation to fresh water: Parallel evolution of osmoregulatory gene expression in the Alewife. Mol. Ecol. 26, 831–848. https://doi.org/10.1111/mec.13983 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Ip, Y. K. et al. Roles of three branchial Na+-K+-ATPase alpha-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R112–R125. https://doi.org/10.1152/ajpregu.00618.2011 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    92.Birrer, S. C., Reusch, T. B. & Roth, O. Salinity change impairs pipefish immune defence. Fish Shellfish Immunol. 33, 1238–1248. https://doi.org/10.1016/j.fsi.2012.08.028 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Delamare-Deboutteville, J., Wood, D. & Barnes, A. C. Response and function of cutaneous mucosal and serum antibodies in barramundi (Lates calcarifer) acclimated in seawater and freshwater. Fish Shellfish Immunol. 21, 92–101. https://doi.org/10.1016/j.fsi.2005.10.005 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Koppang, E. O., Kvellestad, A. & Fischer, U. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 93–133 (Academic Press, 2015).Chapter 

    Google Scholar 
    95.Poulin, R., Blanar, C. A., Thieltges, D. W. & Marcogliese, D. J. The biogeography of parasitism in sticklebacks: Distance, habitat differences and the similarity in parasite occurrence and abundance. Ecography 34, 540–551. https://doi.org/10.1111/j.1600-0587.2010.06826.x (2011).Article 

    Google Scholar 
    96.Takemura, A. F., Chien, D. M. & Polz, M. F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5, 38. https://doi.org/10.3389/fmicb.2014.00038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Nitzan, S., Shwartsburd, B. & Heller, E. D. The effect of growth medium salinity of Photobacterium damselae subsp. piscicida on the immune response of hybrid bass (Morone saxatilis × M. chrysops). Fish Shellfish Immunol. 16, 107–116. https://doi.org/10.1016/s1050-4648(03)00045-7 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    98.Zheng, D. H. et al. Effect of temperature and salinity on virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 35, 494–500. https://doi.org/10.1111/j.1365-2109.2004.01044.x (2004).Article 

    Google Scholar 
    99.Dominguez, M., Takemura, A., Tsuchiya, M. & Nakamura, S. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture 241, 491–500. https://doi.org/10.1016/j.aquaculture.2004.06.027 (2004).CAS 
    Article 

    Google Scholar 
    100.Mozanzadeh, M. T. et al. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture 534, 736329. https://doi.org/10.1016/j.aquaculture.2020.736329 (2021).CAS 
    Article 

    Google Scholar 
    101.Gao, Y., Tang, X., Sheng, X., Xing, J. & Zhan, W. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. Fish Shellfish Immunol. 55, 274–280. https://doi.org/10.1016/j.fsi.2016.05.042 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    102.Salinas, I. The mucosal immune system of teleost fish. Biology 4, 525–539. https://doi.org/10.3390/biology4030525 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 3, 41. https://doi.org/10.3390/fishes3040041 (2018).Article 

    Google Scholar 
    104.Shephard, K. L. Functions for fish mucus. Rev. Fish Biol. Fish. 4, 401–429. https://doi.org/10.1007/Bf00042888 (1994).Article 

    Google Scholar 
    105.Wong, M. K. S. et al. A sodium binding system alleviates acute salt stress during seawater acclimation in eels. Zool. Lett. 3, 22. https://doi.org/10.1186/s40851-017-0081-8 (2017).Article 

    Google Scholar 
    106.Malachowicz, M., Wenne, R. & Burzynski, A. De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS One 12, e0172282. https://doi.org/10.1371/journal.pone.0172282 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Roberts, S. D. & Powell, M. D. Comparative ionic flux and gill mucous cell histochemistry: Effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134, 525–537. https://doi.org/10.1016/s1095-6433(02)00327-6 (2003).Article 
    PubMed 

    Google Scholar 
    108.Mylonas, C. C. et al. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture 287, 203–210. https://doi.org/10.1016/j.aquaculture.2008.10.024 (2009).CAS 
    Article 

    Google Scholar 
    109.Roberts, S. D. & Powell, M. D. The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. J. Comp. Physiol. B 175, 1–11. https://doi.org/10.1007/s00360-004-0453-1 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    110.Kalujnaia, S. et al. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol. Genomics 31, 385–401. https://doi.org/10.1152/physiolgenomics.00059.2007 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    111.Shaw, J. R. et al. The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus. Cell Physiol. Biochem. 22, 69–78. https://doi.org/10.1159/000149784 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    112.Kammerer, B. D., Sardella, B. A. & Kultz, D. Salinity stress results in rapid cell cycle changes of tilapia (Oreochromis mossambicus) gill epithelial cells. J. Exp. Zool. A Ecol. Genet. Physiol. 311, 80–90. https://doi.org/10.1002/jez.498 (2009).Article 
    PubMed 

    Google Scholar 
    113.Ronkin, D., Seroussi, E., Nitzan, T., Doron-Faigenboim, A. & Cnaani, A. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comp. Biochem. Physiol. Part D Genomics Proteomics 13, 35–43. https://doi.org/10.1016/j.cbd.2015.01.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    114.Dong, Y. W. et al. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J. Exp. Biol. 224, jeb235515. https://doi.org/10.1242/jeb.235515 (2021).Article 
    PubMed 

    Google Scholar 
    115.Inokuchi, M. & Kaneko, T. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162, 245–251. https://doi.org/10.1016/j.cbpa.2012.03.018 (2012).CAS 
    Article 
    PubMed 

    Google Scholar  More