Combatting global grassland degradation
1.Suttie, J. M. Reynolds, S. G. & Batello, C. Grasslands of the World (FAO, 2005).2.O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270 (2012).Article
Google Scholar
3.Wilsey, B. J. The Biology of Grasslands (Oxford Univ. Press, 2018).4.White, R. P. Murray, S., Rohweder, M., Prince, S. D. & Thompson, K. M. Grassland Ecosystems (World Resources Institute, 2000).5.Gibbs, H. K. & Salmon, J. M. Mapping the world’s degraded lands. Appl. Geogr. 57, 12–21 (2015).Article
Google Scholar
6.Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).Article
Google Scholar
7.Abberton, M., Conant, R. & Batello, C. (eds) Grassland Carbon Sequestration: Management, Policy and Economics (FAO, 2010).8.Gang, C. et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72, 4273–4282 (2014).Article
Google Scholar
9.Dong, S., Kassam, K.-A. S., Tourrand, J. F. & Boone, R. B. (eds) Building Resilience of Human-Natural Systems of Pastoralism in the Developing World (Springer, 2016).10.Bengtsson, J. et al. Grasslands — more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).Article
Google Scholar
11.Kwon, H. Y. et al. in Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (eds Nkonya, E., Mirzabaev, A. & von Braun, J.) 197–214 (Springer, 2015).12.Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).Article
Google Scholar
13.Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363, 789–813 (2008).Article
Google Scholar
14.Mermoz, S., Bouvet, A., Toan, T. L. & Herold, M. Impacts of the forest definitions adopted by African countries on carbon conservation. Environ. Res. Lett. 13, 104014 (2018).Article
Google Scholar
15.Erdős, L. et al. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21, 345–362 (2018).Article
Google Scholar
16.Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).Article
Google Scholar
17.Bullock, J. M. et al. in The UK National Ecosystem Assessment Technical Report (UNEP-WCMC, 2011).18.Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).Article
Google Scholar
19.Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).Article
Google Scholar
20.Palchan, D. & Torfstein, A. A drop in Sahara dust fluxes records the northern limits of the African Humid Period. Nat. Commun. 10, 3803 (2019).Article
Google Scholar
21.Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article
Google Scholar
22.Eriksson, O. & Cousins, S. A. Historical landscape perspectives on grasslands in Sweden and the Baltic region. Land 3, 300–321 (2014).Article
Google Scholar
23.Bråthen, K., Pugnaire. F. I. & Bardgett, R. D. The paradox of forbs in grasslands and their legacy of the Mammoth steppe. Front. Ecol. Environ. (in the press).24.Shava, S. & Masuku, S. Living currency: The multiple roles of livestock in livelihood sustenance and exchange in the context of rural indigenous communities in southern Africa. South. Afr. J. Environ. Educ. https://doi.org/10.4314/sajee.v35i1.16 (2019).Article
Google Scholar
25.FAO. Livestock Keepers – Guardians of Biodiversity (FAO, 2009).26.Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).Article
Google Scholar
27.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).Article
Google Scholar
28.Arbieu, U., Grünewald, C., Martín-López, B., Schleuning, M. & Böhning-Gaese, K. Large mammal diversity matters for wildlife tourism in Southern African Protected Areas: Insights for management. Ecosyst. Serv. 31, 481–490 (2018).Article
Google Scholar
29.Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).Article
Google Scholar
30.Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233 (1998).Article
Google Scholar
31.Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118 (2021).Article
Google Scholar
32.Goldstein, A. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).Article
Google Scholar
33.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article
Google Scholar
34.IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES, 2018).35.Cao, J. et al. Grassland degradation on the Qinghai-Tibetan Plateau: reevaluation of causative factors. Rangel. Ecol. Manag. 72, 988–995 (2019).Article
Google Scholar
36.Andrade, B. O. et al. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Nat. Conserv. 13, 95–104 (2015).Article
Google Scholar
37.Okpara, U. T. et al. A social-ecological systems approach is necessary to achieve land degradation neutrality. Environ. Sci. Policy 89, 59–66 (2018).Article
Google Scholar
38.Castro, A. J. et al. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 132, 102–110 (2014).Article
Google Scholar
39.Felipe-Lucia, M. R. et al. Ecosystem services flows: why stakeholders’ power relationships matter. PLoS One 10, e0132232 (2015).Article
Google Scholar
40.Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).Article
Google Scholar
41.Wang, S. et al. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agric. Ecosyst. Environ. 142, 329–340 (2011).Article
Google Scholar
42.Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).Article
Google Scholar
43.Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).Article
Google Scholar
44.Ridding, L. E., Watson, S. C. L., Newton, A. C., Rowland, C. S. & Bullock, J. M. Ongoing, but slowing, habitat loss in a rural landscape over 85 years. Landsc. Ecol. 35, 257–273 (2020).Article
Google Scholar
45.Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. J. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 20, 418–428 (2014).Article
Google Scholar
46.Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands – lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).Article
Google Scholar
47.Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).Article
Google Scholar
48.Aune, S., Bryn, A. & Hovstad, K. A. Loss of semi-natural grassland in a boreal landscape: impacts of agricultural intensification and abandonment. J. Land Use Sci. 13, 375–390 (2018).Article
Google Scholar
49.Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).Article
Google Scholar
50.Shukla, P. R. et al. (eds) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (CGIAR, 2019).51.Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).Article
Google Scholar
52.Archer, S. R. et al. in Rangeland Systems: Processes, Management and Challenges (ed. Briske, D. D.) 25–84 (Springer, 2017).53.Zhang, G. et al. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl. 28, 442–456 (2018).Article
Google Scholar
54.Dudley, N. et al. Grassland and Savannah Ecosystems: An Urgent Need for Conservation and Sustainable Management (WWF Deutschland, 2020).55.Henderson, K. A. et al. Landowner perceptions of the value of natural forest and natural grassland in a mosaic ecosystem in southern Brazil. Sustain. Sci. 11, 321–330 (2016).Article
Google Scholar
56.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article
Google Scholar
57.Durigan, G., Pilon, N. A. P., Assis, G. B., Souza, F. M. & Baitello, J. B. Plantas Pequenas do Cerrado: Biodiversidade Negligenciada. (Instituto Florestal, Secretaria do Meio Ambiente, 2018).58.Assandri, G., Bogliani, G., Pedrini, P. & Brambilla, M. Toward the next Common Agricultural Policy reform: Determinants of avian communities in hay meadows reveal current policy’s inadequacy for biodiversity conservation in grassland ecosystems. J. Appl. Ecol. 56, 604–617 (2019).Article
Google Scholar
59.Liang, L., Chen, F., Shi, L. & Niu, S. NDVI-derived forest area change and its driving factors in China. PLoS One 13, e0205885 (2018).Article
Google Scholar
60.Cao, S. et al. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio 39, 279–283 (2010).Article
Google Scholar
61.Cao, S., Wang, G. & Chen, l Questionable value of planting thirsty trees in dry regions. Nature 465, 31 (2010).Article
Google Scholar
62.Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–475 (2019).Article
Google Scholar
63.Landau, E., da Silva, G. A., Moura, L., Hirsch, A., & Guimaraes, D. Dinâmica da produção agropecuária e da paisagem natural no Brasil nas últimas décadas: sistemas agrícolas, paisagem natural e análise integrada do espaço rural (Embrapa Milho e Sorgo-Livro científico (ALICE), 2020).64.Wolff, S., Schrammeijer, E. A., Schulp, C. J. & Verburg, P. H. Meeting global land restoration and protection targets: What would the world look like in 2050? Glob. Environ. Change 52, 259–272 (2018).Article
Google Scholar
65.Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article
Google Scholar
66.Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).Article
Google Scholar
67.Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).Article
Google Scholar
68.Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).Article
Google Scholar
69.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article
Google Scholar
70.Berthrong, S. T., Jobbágy, E. G. & Jackson, R. B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 19, 2228–2241 (2009).Article
Google Scholar
71.Kirschbaum, M. U. F. et al. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).Article
Google Scholar
72.Conant, R. T. Challenges and Opportunities for Carbon Sequestration in Grassland Systems. A Technical Report on Grassland Management and Climate Change Mitigation (FAO, 2010).73.Wu, G. L. et al. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. J. Appl. Ecol. 57, 875–885 (2020).Article
Google Scholar
74.Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2015).Article
Google Scholar
75.Burrascano, S. et al. Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biol. Conserv. 201, 370–376 (2016).Article
Google Scholar
76.Vanak, A. T., Hiremath, A. & Rai, N. Wastelands of the mind: Identity crisis of India’s tropical savannas. Curr. Conserv. 7, 16–23 (2014).
Google Scholar
77.Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150305 (2016).Article
Google Scholar
78.Overbeck, G. E. et al. Conservation in Brazil needs to include non-forest ecosystems. Divers. Distrib. 21, 1455–1460 (2015).Article
Google Scholar
79.Kumar, D. et al. Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biol. Conserv. 241, 108293 (2020).Article
Google Scholar
80.Kemp, D. R. et al. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl Acad. Sci. USA 110, 8369–8374 (2013).Article
Google Scholar
81.Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2018).82.Lamarque, P. et al. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Change 11, 791–804 (2011).Article
Google Scholar
83.Hauck, J., Schmidt, J. & Werner, A. Using social network analysis to identify key stakeholders in agricultural biodiversity governance and related land-use decisions at regional and local level. Ecol. Soc. 21, 49 (2016).Article
Google Scholar
84.Reid, R. S., Fernández-Giménez, M. E. & Galvin, K. A. Dynamics and resilience of rangelands and pastoral peoples around the globe. Annu. Rev. Environ. Resour. 39, 217–242 (2014).Article
Google Scholar
85.Quétier, F., Rivoal, F., Marty, P., De Chazal, J. & Lavorel, S. Social representations of an alpine grassland landscape and socio-political discourses on rural development. Reg. Environ. Change 10, 119–130 (2010).Article
Google Scholar
86.Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).Article
Google Scholar
87.Gos, P. & Lavorel, S. Stakeholders’ expectations on ecosystem services affect the assessment of ecosystem services hotspots and their congruence with biodiversity. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 93–106 (2012).Article
Google Scholar
88.Fontana, V. et al. Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecol. Econ. 93, 128–136 (2013).Article
Google Scholar
89.Jellinek, S. et al. Integrating diverse social and ecological motivations to achieve landscape restoration. J. Appl. Ecol. 56, 246–252 (2019).Article
Google Scholar
90.Lavorel, S. & Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 100, 128–140 (2012).Article
Google Scholar
91.Stürck, J. et al. Simulating and delineating future land change trajectories across Europe. Reg. Environ. Change 18, 733–749 (2018).Article
Google Scholar
92.Lavorel, S. in Grasslands and Climate Change (eds Gibson, D. J. & Newman, J. A.) 131–146) (Cambridge Univ. Press, 2018).93.Ayanu, Y. et al. Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem services? Reg. Environ. Change 15, 155–167 (2015).Article
Google Scholar
94.Mbaabu, P. R. et al. Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services. Sci. Rep. 10, 20391 (2020).Article
Google Scholar
95.Sayer, J. A. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).Article
Google Scholar
96.Flintan, F. & Cullis, A. Introductory Guidelines to Participatory Rangeland Management in Pastoral Areas (Save the Children USA, 2010).97.Robinson, L. W. et al. Participatory Rangeland Management Toolkit for Kenya (ILRI, 2018).98.Roba, G. & David, J. Participatory Rangeland Management Planning: A Field Guide (IUCN, 2018).99.Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S. & Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 62, 45–56 (2016).Article
Google Scholar
100.Adem Esmail, B. & Geneletti, D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods Ecol. Evol. 9, 42–53 (2018).Article
Google Scholar
101.Martin-Lopez, B. et al. A novel tele-coupling framework to assess social relations across spatial scales for ecosystem services research. J. Environ. Manage. 241, 251–263 (2019).Article
Google Scholar
102.Joseph, L. N., Maloney, R. F. & Possingham, H. P. Optimal allocation of resources among threatened species: a project prioritization protocol. Conserv. Biol. 23, 328–338 (2009).Article
Google Scholar
103.Wortley, L., Hero, J. M. & Howes, M. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543 (2013).Article
Google Scholar
104.Cameron, A. Restoration of ecosystems and ecosystem services, in Ecosystem Services and Poverty Alleviation: Trade-offs and Governance (eds Schreckenberg, K., Mace, G. & Poudyal. M.) (Routledge, 2018).105.Suding, K. N. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487 (2011).Article
Google Scholar
106.Mekuria, W., Veldkamp, E., Corre, M. D. & Haile, M. Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci. Soc. Am. J. 75, 246–256 (2011).Article
Google Scholar
107.Mekuria, W. & Aynekulu, E. Exclosure land management for restoration of the soils in degraded communal grazing lands in northern Ethiopia. Land Degrad. Dev. 24, 528–538 (2011).Article
Google Scholar
108.Hu, Y. & Nacun, B. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990–2015. Sustainability 10, 4048 (2018).Article
Google Scholar
109.Nedessa, B., Ali, J. & Nyborg, I. Exploring Ecological and Socio-Economic Issues for the Improvement of Area Enclosure Management (Drylands Coordination Group, 2005).110.Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).Article
Google Scholar
111.Vågen, T. G. & Winowiecki, L. A. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environ. Res. Lett. 8, 015011 (2013).Article
Google Scholar
112.Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).Article
Google Scholar
113.Spawn, S. A. et al. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).Article
Google Scholar
114.Bellocchi, G. & Chabbi, A. Grassland management for sustainable agroecosystems. Agronomy 10, 78 (2020).Article
Google Scholar
115.Plas, F. et al. Towards the development of general rules describing landscape heterogeneity – multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).Article
Google Scholar
116.Kimberley, A. et al. Functional rather than structural connectivity explains grassland plant diversity patterns following landscape scale habitat loss. Landsc. Ecol. 36, 265–280 (2021).Article
Google Scholar
117.Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).Article
Google Scholar
118.Smith, F. P., Prober, S. M., House, A. P. N. & McIntyre, S. Maximizing retention of native biodiversity in Australian agricultural landscapes — The 10:20:40:30 guidelines. Agric. Ecosyst. Environ. 166, 35–45 (2013).Article
Google Scholar
119.Auffret, A. G. et al. Plant functional connectivity — integrating landscape structure and effective dispersal. J. Ecol. 105, 1648–1656 (2017).Article
Google Scholar
120.Isaac, N. J. B. et al. Defining and delivering resilient ecological networks: Nature conservation in England. J. Appl. Ecol. 55, 2537–2543 (2018).Article
Google Scholar
121.Vörösmarty, C. J. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article
Google Scholar
122.Barbier, E. B. The economic linkages between rural poverty and land degradation: some evidence from Africa. Agric. Ecosyst. Environ. 82, 355–370 (2000).Article
Google Scholar
123.Kardol, P. & Wardle, D. A. How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25, 670–679 (2010).Article
Google Scholar
124.Bardgett, R. D. Plant trait-based approaches for interrogating belowground function. Biol. Environ. 117, 1–13 (2017).
Google Scholar
125.Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).Article
Google Scholar
126.Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).Article
Google Scholar
127.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article
Google Scholar
128.Cole et al. Grassland biodiversity restoration increase resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).Article
Google Scholar
129.Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2018).Article
Google Scholar
130.Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).Article
Google Scholar
131.Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).Article
Google Scholar
132.Wubs, E. R., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).Article
Google Scholar
133.Pilon, N. A., Assis, G. B., Souza, F. M. & Durigan, G. Native remnants can be sources of plants and topsoil to restore dry and wet cerrado grasslands. Restor. Ecol. 27, 569–580 (2019).Article
Google Scholar
134.Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 201807354 (2019).
Google Scholar
135.Wang, X. et al. High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant Soil 448, 265–276 (2020).Article
Google Scholar
136.Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).Article
Google Scholar
137.Buisson, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. 94, 590–609 (2019).Article
Google Scholar
138.Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).Article
Google Scholar
139.Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).Article
Google Scholar
140.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article
Google Scholar
141.Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).Article
Google Scholar
142.Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).Article
Google Scholar
143.Dudley et al. Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restor. Ecol. 28, 1313–1317 (2020).Article
Google Scholar
144.Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker, C. J. III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations (Springer, 2015).145.Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m, epoch 2015, Globe (Version V2.0.2) [data set]. Zenodo https://doi.org/10.5281/zenodo.3243509 (2019).Article
Google Scholar
146.Rossiter, J., Wondie Minale, M., Andarge, W. & Twomlow, S. A communities Eden–grazing Exclosure success in Ethiopia. Int. J. Agric. Sustain. 15, 514–526 (2017).Article
Google Scholar
147.Durigan, G. et al. Invasão por Pinus spp: Ecologia, Prevenção, Controle e Restauração (Instituto Florestal, 2020).148.Wang, Z. et al. Effect of manipulating animal stocking rate on the carbon storage capacity in a degraded desert steppe. Ecol. Res. 32, 1001–1009 (2017).Article
Google Scholar
149.Wang, Z. et al. Effects of stocking rate on the variability of peak standing crop in a desert steppe of Eurasia grassland. Environ. Manag. 53, 266–273 (2014).Article
Google Scholar
150.Zhang, R. et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China. Agric. Ecosyst. Environ. 265, 73–83 (2018).Article
Google Scholar
151.Wang, Z. et al. Impact of stocking rate and rainfall on sheep performance in a desert steppe. Rangel. Ecol. Manag. 64, 249–256 (2011).Article
Google Scholar
152.Li, Z. et al. Identifying management strategies to improve sustainability and household income for herders on the desert steppe in Inner Mongolia, China. Agric. Syst. 132, 62–72 (2015).Article
Google Scholar
153.Shao, Q., Cao, W., Fan, J., Huang, L. & Xu, X. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 27, 183–204 (2017).Article
Google Scholar
154.Li, X. L. et al. Restoration prospects for Heitutan degraded grassland in the Sanjiangyuan. J. Mt. Sci. 10, 687–698 (2013).Article
Google Scholar
155.Xu, Y. et al. Trade-offs and cost-benefit of ecosystem services of revegetated degraded alpine meadows over time on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 279, 130–138 (2019).Article
Google Scholar
156.Dong, S. K. et al. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environ. Conserv. 34, 246–254 (2007).Article
Google Scholar More