More stories

  • in

    Warming climate challenges breeding

    1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics, 4th edn (Longman, 1996).2.Xiong, W. et al. Nat. Plants https://doi.org/10.1038/s41477-021-00988-w (2021).3.Tadesse, W. et al. Crop Breed Genet Genom. 1, e190005 (2019).
    Google Scholar 
    4.Li, X., Guo, T., Mu, Q., Li, X. & Yu, J. Proc. Natl Acad. Sci. USA 115, 6679–6684 (2018).CAS 
    Article 

    Google Scholar 
    5.Anderson, D. R. Model Based Inference in the Life Sciences (Springer, 2008).6.Zhao, Y. et al. Sci. Adv. 7, eabf9106 (2021).CAS 
    Article 

    Google Scholar 
    7.Shi, L., Li, B., Kim, C., Kellnhofer, P. & Matusik, W. Nature 591, 234–239 (2021).CAS 
    Article 

    Google Scholar 
    8.Li, J. et al. Mol. Ecol. 28, 3544–3560 (2019).CAS 
    Article 

    Google Scholar 
    9.CGIAR. One CGIAR, https://www.cgiar.org/food-security-impact/one-cgiar/ More

  • in

    Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree

    1.Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Schwalm, C. R. et al. Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century. Sci. Rep. 10, 9059 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).ADS 
    Article 

    Google Scholar 
    5.Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Hararuk, O., Campbell, E. M., Antos, J. A. & Parish, R. Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada. Glob. Change Biol. 25, 1222–1234 (2019).ADS 
    Article 

    Google Scholar 
    7.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 
    Article 

    Google Scholar 
    9.Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 earth system models. Biogeosciences 12, 5211–5228 (2015).ADS 
    Article 

    Google Scholar 
    10.Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    11.Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O. & Linder, S. Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol. 33, 1192–1205 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).CAS 
    Article 

    Google Scholar 
    13.Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, (2010).14.van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. https://doi.org/10.1038/s41561-019-0530-4 (2020).19.Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).Article 

    Google Scholar 
    20.Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    21.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    22.Näsholm, T., Kielland, K. & Ganeteg, U. Uptake of organic nitrogen by plants. N. Phytol. 182, 31–48 (2009).Article 
    CAS 

    Google Scholar 
    23.Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443–1447 (2015).CAS 
    Article 

    Google Scholar 
    24.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. N. Phytol. 217, 507–522 (2018).CAS 
    Article 

    Google Scholar 
    26.Sulman, B. N. et al. Diverse Mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Smith, S. E. & Read, D. J. Mycorrhizal symbiosis. (Academic Press, 2010).30.Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).CAS 
    Article 

    Google Scholar 
    31.Phillips, R. P. et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15, 1042–1049 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Christian, N. & Bever, J. D. Carbon allocation and competition maintain variation in plant root mutualisms. Ecol. Evol. 8, 5792–5800 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hortal, S. et al. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J. 11, 2666–2676 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bogar, L. et al. Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza 29, 97–111 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bödeker, I. T. M., Nygren, C. M. R., Taylor, A. F. S., Olson, Å. & Lindahl, B. D. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J. 3, 1387–1395 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Hobbie, E. A. & Agerer, R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327, 71–83 (2010).CAS 
    Article 

    Google Scholar 
    38.Koide, R. T., Fernandez, C. & Malcolm, G. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. N. Phytol. 201, 433–439 (2014).Article 

    Google Scholar 
    39.Lindahl, B. D. et al. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol. Lett. 24, 1341–1351 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? N. Phytol. 157, 475–492 (2003).CAS 
    Article 

    Google Scholar 
    42.Bödeker, I. T. M. et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. N. Phytol. 203, 245–256 (2014).Article 
    CAS 

    Google Scholar 
    43.Bogar, L. & Peay, K. Processes maintaining the coexistence of ectomycorrhizal fungi at a fine spatial scale. in Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo, L.) vol. 230 79–105 (Springer, 2017).44.Xu, K. et al. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Sci. Rep. 7, 1945 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Nehrbass‐Ahles, C. et al. The influence of sampling design on tree-ring-based quantification of forest growth. Glob. Change Biol. 20, 2867–2885 (2014).ADS 
    Article 

    Google Scholar 
    46.Mathias, J. M. & Thomas, R. B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Change Biol. 24, 3938–3953 (2018).ADS 
    Article 

    Google Scholar 
    47.Fierer, N., Barberán, A. & Laughlin, D. C. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).48.Zak, D. R. & Pregitzer, K. S. Spatial and temporal variability of nitrogen cycling in northern lower Michigan. Science 36, 367–380 (1990).
    Google Scholar 
    49.Zak, D. R., Pregitzer, K. S. & Host, G. E. Landscape variation in nitrogen mineralization and nitrification. Can. J. Res. 16, 1258–1263 (1986).Article 

    Google Scholar 
    50.Chen, J. & Gupta, A. K. Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance. (Springer Science & Business Media, 2011).51.Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Pellitier, P. T., Zak, D. R., Argiroff, W. A. & Upchurch, R. A. Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosystems (2021).53.Sterkenburg, E., Clemmensen, K. E., Ekblad, A., Finlay, R. D. & Lindahl, B. D. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J. 12, 2187–2197 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Lilleskov, E. A., Hobbie, E. A. & Fahey, T. J. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. N. Phytol. 154, 219–231 (2002).CAS 
    Article 

    Google Scholar 
    55.Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Moeller, H. V., Peay, K. G. & Fukami, T. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol. Ecol. 87, 797–806 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Defrenne, C. E. et al. Shifts in Ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior douglas-fir forests of Western Canada. Front. Plant Sci. 10, 643 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Fawal, N. et al. PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res. 41, D441–D444 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Garajova, S. et al. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci. Rep. 6, 28276 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Janusz, G. et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941–962 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).CAS 
    Article 

    Google Scholar 
    63.Baldrian, P. Fungal laccases – occurrence and properties. FEMS Microbiol. Rev. 30, 215–242 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? N. Phytol. 209, 1382–1394 (2016).CAS 
    Article 

    Google Scholar 
    65.Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Andrew, C. & Lilleskov, E. A. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecol. Lett. 12, 813–822 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? N. Phytol. 198, 214–221 (2013).Article 
    CAS 

    Google Scholar 
    70.Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl Acad. Sci. USA 104, 14014–14019 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Merkel, D. Soil Nutrients in Glaciated Michigan Landscapes: Distribution of Nutrients and Relationships with Stand Productivity. (Doctoral Thesis Submitted to Michigan State University, 1988).72.Host, G. E. & Pregitzer, K. S. Geomorphic influences on ground-flora and overstory composition in upland forests of northwestern lower Michigan. Can. J. Res. 22, 1547–1555 (1992).Article 

    Google Scholar 
    73.Edwards, I. P. & Zak, D. R. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol. Ecol. 19, 1469–1482 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).ADS 
    Article 

    Google Scholar 
    76.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.McClaugherty, C. A., Pastor, J., Aber, J. D. & Melillo, J. M. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66, 266–275 (1985).Article 

    Google Scholar 
    78.Pastor, J., Aber, J. D., McClaugherty, C. A. & Melillo, J. M. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65, 256–268 (1984).CAS 
    Article 

    Google Scholar 
    79.Serra-Maluquer, X., Mencuccini, M. & Martínez-Vilalta, J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187, 343–354 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Vitousek, P. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572 (1982).Article 

    Google Scholar 
    81.Darrouzet-Nardi, A., Ladd, M. P. & Weintraub, M. N. Fluorescent microplate analysis of amino acids and other primary amines in soils. Soil Biol. Biochem. 57, 78–82 (2013).CAS 
    Article 

    Google Scholar 
    82.Ibáñez, I., Zak, D. R., Burton, A. J. & Pregitzer, K. S. Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate. Ecology 99, 411–420 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Lines, E. R., Zavala, M. A., Purves, D. W. & Coomes, D. A. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob. Ecol. Biogeogr. 21, 1017–1028 (2012).Article 

    Google Scholar 
    84.Taylor, D. L. et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl. Environ. Microbiol. 82, 7217–7226 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Konar, A. et al. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics 18, 417 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Sork, V. L. et al. First draft assembly and annotation of the genome of a California Endemic oak. Genes|Genomes|Genet. 6, 3485–3495 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Treiber, M. L., Taft, D. H., Korf, I., Mills, D. A. & Lemay, D. G. Pre- and post-sequencing recommendations for functional annotation of human fecal metagenomes. BMC Bioinforma. 21, 74 (2020).CAS 
    Article 

    Google Scholar 
    93.Peng, M. et al. Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genet. Biol. 112, 40–46 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Floudas, D. et al. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. https://doi.org/10.1038/s41396-020-0667-6 (2020).95.Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: an outlook and review. Bioinformatics 34, 2870–2878 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    98.Duhamel, M. et al. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. Ecol. Monogr. 89, e01367 (2019).Article 

    Google Scholar 
    99.Qin, C., Zhu, K., Chiariello, N. R., Field, C. B. & Peay, K. G. Fire history and plant community composition outweigh decadal multi-factor global change as drivers of microbial composition in an annual grassland. J. Ecol. 108, 611–625 (2020).CAS 
    Article 

    Google Scholar 
    100.Oksanen, J., et al. Package vegan.101.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    102.Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. V. D. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    The critical role of natural history museums in advancing eDNA for biodiversity studies: a case study with Amazonian fishes

    1.Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Ann. Mo. Bot. Gard. 87, 26–62 (2000).Article 

    Google Scholar 
    2.Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).Article 

    Google Scholar 
    3.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Clare, A. I. M. et al. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?. Genes 10, 192 (2019).Article 
    CAS 

    Google Scholar 
    5.Tsuji, S., Shibata, N., Sawada, H. & Ushio, M. Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA. Mol. Ecol. Resour. 20, 1323–1332 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Miya, M., Gotoh, R. O. & Sado, T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 86, 939–970 (2020).CAS 
    Article 

    Google Scholar 
    7.Dagosta F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist, 431, 1–163 (2019).8.Jézéquel, C., Tedesco, P. A. & Bigorne, R. A database of freshwater fish species of the Amazon Basin. Sci. Data 7, 96 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Reis, R. E., Kullander, S. O. & Ferraris, C. J. Check List of the Freshwater Fishes of South and Central America. (Edipucrs, 2003).10.Tedesco, P. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Brito, P. M., Meunier, F. J. & Leal, M. E. C. Origine et diversification de líchthyofaune Neotropical: Une revue. Cybium 31, 139–153 (2007).
    Google Scholar 
    12.Lowe-McConnell, R. H. Ecological Studies in Tropical Fish Communities (Cambridge University Press, 1987).Book 

    Google Scholar 
    13.Bloom, D. D. & Lovejoy, N. R. On the origins of marine derived fishes in South America. J. Biogeogr. 44, 1927–1938 (2017).Article 

    Google Scholar 
    14.de Santana, C. D. et al. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nat. Commun. 10, 4000 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Carvalho, L. N., Zuanon, J. & Sazima, I. Natural history of Amazon fishes. In Tropical Biology and Natural Resources Theme (ed. Del-Claro, K.), K. Del-Claro & R. J. Marquis (Session Eds. the Natural History Session), Encyclopedia of Life Support Systems (EOLSS) (Eolss Publishers, 2007).16.Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13, e0202024 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    18.Baldwin, C. C., Castillo, C. I., Weigt, L. A. & Victor, B. C. Seven new species within western Atlantic Starksia atlantica, S. lepicoelia, and S. sluiteri (Teleostei, Labrisomidae), with comments on congruence of DNA barcodes and species. ZooKeys 79, 21–27 (2011).Article 

    Google Scholar 
    19.Robertson, D. R. et al. Deep-water bony fishes collected by the B/O Miguel Oliver on the shelf edge of Pacific Central America: An annotated, illustrated and DNA-barcoded checklist. Zootaxa 4348, 1–125 (2017).PubMed 
    Article 

    Google Scholar 
    20.Weigt, L. A. et al. Using DNA barcoding to assess Caribbean reef fish biodiversity: Expanding taxonomic and geographic coverage. PLoS ONE 7, e41059 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Seberg, O. et al. Global genome biodiversity network: Saving a blueprint of the tree of life—a botanical perspective. Ann. Bot. 118, 393–399 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Parenti, L. R. et al. Fishes collected during the 2017 MarineGEO assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. J. Mar. Biol. Assoc. UK 100, 607–637 (2020).Article 

    Google Scholar 
    23.Droege, G. et al. The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database https://doi.org/10.1093/database/baw125 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43, 1779–1790 (2020).Article 

    Google Scholar 
    25.Leray, M., Knowlton, N., Shien-Lei, H., Nguyen, B. N. & Machida, R. J. GenBank is a reliable resource for 21st biodiversity research. Proc. Natl. Acad. Sci. U.S.A. 116, 22651–22656 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Dillman, C. B. et al. Forensic investigations into a GenBank anomaly: Endangered taxa and the importance of voucher specimens in molecular studies. J. Appl. Ichthyol. 30, 1300–1309 (2014).CAS 
    Article 

    Google Scholar 
    27.Locatelli, N. S., McIntyre, P. B., Therkildsen, N. O. & Baetscher, D. S. GenBank’s reliability is uncertain for biodiversity researchers seeking species-level assignment for eDNA. Proc. Natl. Acad. Sci. U.S.A. 117, 32211–32212 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19, 19–22 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Nobile, A. B. et al. DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost. Metabarcoding Metagenom. 3, 35060 (2019).Article 

    Google Scholar 
    30.Cilleros, K. et al. Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): A text with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1, 119–130 (2019).Article 

    Google Scholar 
    32.Jackman, J. M. C. et al. eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environ. DNA https://doi.org/10.1002/edna3.191 (2021).Article 

    Google Scholar 
    33.Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McElroy, M. E. et al. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Front. Ecol. Evol. 8, 276 (2020).Article 

    Google Scholar 
    35.Dudgeon, D. Freshwater Biodiversity: Status (Cambridge University Press, 2020).Book 

    Google Scholar 
    36.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    37.Milan, D. T., Mendes, I. S. & Carvalho, D. C. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep. 10, 17966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).Article 

    Google Scholar 
    40.Antich, A. et al. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinf. 22, 177 (2021).CAS 
    Article 

    Google Scholar 
    41.Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, e0204114 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Zuanon, J., Bockmann, F. A. & Sazima, I. A remarkable sand-dwelling fish assemblage from central Amazonia, with comments on the evolution of psammophily in South American freshwater fishes. Neotrop. Ichthyol. 4, 107–118 (2006).Article 

    Google Scholar 
    43.Sazima, I., Carvalho, L. N., Mendonça, F. P. & Zuanon, J. Fallen leaves on the water-bed: Diurnal camouflage of three night-active fish species in an Amazonian streamlet. Neotrop. Ichthyol. 4, 119–122 (2006).Article 

    Google Scholar 
    44.Espírito-Santo, H. M. V. & Zuanon, J. Temporary pools provide stability to fish assemblages in Amazon headwater streams. Ecol. Freshw. Fish 26, 475–483 (2017).Article 

    Google Scholar 
    45.de Pinna, M. C. C., Zuanon, J., Rapp-Py-Daniel, L. R. & Petry, P. A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi). Zool. J. Linn. Soc. 182, 76–106 (2018).Article 

    Google Scholar 
    46.López-Rojas, H., Lundberg, J. G. & Marsh, E. Design and operation of a small trawling apparatus for use with dugout canoes. N. Am. J. Fish. Manag. 4, 331–334 (1984).Article 

    Google Scholar 
    47.Marrero, C. & Taphorn, D. C. Notas sobre la historia natural y la distribution de los peces Gymnotiformes in la cuenca del Rio Apure y otros rios de la Orinoquia. Biollania 8, 123–142 (1991).
    Google Scholar 
    48.Cox-Fernandes, C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    49.Peixoto, L. A. W., Dutra, G. M. & Wosiack, W. B. The electric. Glassknife fishes of the Eigenmannia trilineata group (Gymnotiformes: Sternopygidae): Monophyly and description of seven new species. Zool. J. Linn. Soc. 175, 384–414 (2015).Article 

    Google Scholar 
    50.de Santana, C. D. & Vari, R. P. Electric fishes of the genus Sternarchorhynchus (Teleostei, Ostariophysi, Gymnotiformes); phylogenetic and revisionary studies. Zool. J. Linn. Soc. 159, 223–371 (2010).Article 

    Google Scholar 
    51.Castro, R. M. C. Evolução da ictiofauna de riachos sul-americanos: Padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (eds Caramaschi, E. P., Mazzoni, R., & Peres-Neto, P. R.) Série Oecologia Brasiliensis volume VI, PPGE-UFRJ, Rio de Janeiro, 139–155 (1999).52.Mojica, J. I., Castellanos, C. & Lobón-Cerviá, J. High temporal species turnover enhances the complexity of fish assemblages in Amazonian Terra firme streams. Ecol. Freshw. Fish 18, 518–526 (2009).Article 

    Google Scholar 
    53.de Oliveira, R. R., Rocha, M. M., Anjos, M. B., Zuanon, J. & Rapp Py-Daniel, L. H. Fish fauna of small streams of the Catua-Ipixuna Extractive Reserve, State of Amazonas, Brazil. Check List 5, 154–172 (2009).Article 

    Google Scholar 
    54.Caramaschi E., Mazzoni, P. R., Bizerril, C. R. S. F. & Peres-Neto, P. R. Ecologia de Peixes de Riachos: Estado Atual e Perspectivas. Oecologia Brasiliensis, v. VI, Rio de Janeiro (1999).55.Anjos, M. B. & Zuanon, J. Sampling effort and fish species richness in small Terra firme forest streams of central Amazonia, Brazil. Neotrop. Ichthyol. 5, 45–52 (2007).Article 

    Google Scholar 
    56.Mojica, J. I., Lobón-Cerviá, J. & Castellanos, C. Quantifying fish species richness and abundance in Amazonian streams: Assessment of a multiple gear method suitable for Terra firme stream fish assemblages. Fish. Manag. Ecol. 21, 220–233 (2014).Article 

    Google Scholar 
    57.Barros, D. F. et al. The fish fauna of streams in the Madeira-Purus interfluvial region, Brazilian Amazon. Check List 7, 768–773 (2011).Article 

    Google Scholar 
    58.Escobar-Camacho, D., Barriga, R. & Ron, S. R. Discovering hidden diversity of characins (Teleostei: Characiformes) in Ecuador’s Yasuní National Park. PLoS ONE 10, e0135569 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Ramirez, J. L. et al. Revealing hidden diversity of the underestimated neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 149 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Crampton, W. G. R., de Santana, C. D., Waddell, J. C. & Lovejoy, N. R. The Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae): taxonomy and biology, with descriptions of 15 new species. Neotrop. Ichthyol. 14, 639–790 (2016).Article 

    Google Scholar 
    61.Abel, R. Conservation biology for the biodiversity crisis: A freshwater follow-up. Conserv. Biol. 5, 1435–1437 (2002).Article 

    Google Scholar 
    62.Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 5, 422–430 (2010).Article 

    Google Scholar 
    63.Jenkins, M. Prospects for biodiversity. Science 302, 1175–1177 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Bunn, S. E. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    65.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Gilbert, M. T. P. et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues–which methods are useful when?. PLoS ONE 2, e537 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Campos, P. F. & Gilbert, T. M. DNA extraction from formalin-fixed material. In Ancient DNA 81–85 (Humana Press, 2012).68.Hykin, S. M., Bi, K. & McGuire, J. A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE 10, e0141579 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Hagedorn, M. M. et al. Cryopreservation of fish spermatogonial cells: The future of natural history collections. Sci. Rep. 8, 6149 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Albert, J. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, 2011).Book 

    Google Scholar 
    71.Sabaj Pérez, M. H. Where the Xingu bends and will soon break. Am. Sci. 103, 395–403 (2015).Article 

    Google Scholar 
    72.Amigo, I. When will the Amazon hit a tipping point?. Nature 578, 505–507 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Murienne, J. et al. Aquatic DNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, 37518 (2019).Article 

    Google Scholar 
    74.McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Fernandes, G. W. et al. Dismantling Brazil’s science threatens global biodiversity heritage. Perspect. Ecol. Conserv. 15, 239–243 (2017).
    Google Scholar 
    76.Alves, R. J. V. et al. Brazilian legislation on genetic heritage harms Biodiversity Convention goals and threatens basic biology research and education. An. Acad. Bras. Ciênc. 90, 1279–1284 (2018).PubMed 
    Article 

    Google Scholar 
    77.Overbeck, G. E. et al. Global biodiversity threatened by science budget cuts in Brazil. Bioscience 68, 11–12 (2018).PubMed 
    Article 

    Google Scholar 
    78.Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. 117, 54741 (2016).
    Google Scholar 
    79.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    80.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    86.Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinf. 11, 43–48 (2015).CAS 
    Article 

    Google Scholar 
    87.Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.Rproject.org/.89.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    90.Oksanen, J., Kindt, R. & O’Hara, B. Package VEGAN. Community Ecology Package, Version 2 (2013).91.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    92.Adler D., Nenadic, O. & Zucchini, W. rgl: 3D visualization device system (OpenGL). R package version 0.93.945. http://CRAN.R-project.org/package=rgl (2013).93.Gu, Z. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. Fishualize: Color Palettes Based On Fish Species. CRAN version 0.2.0 (2019).95.Chao, A. Estimating population size for sparse data in capture-recapture experiments. Biometrics 45, 427 (1989).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    96.Hsieh T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 2.0.20 (2020).97.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Lett. 8, 148–215 (2005).Article 

    Google Scholar 
    98.Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Chao A., Ma, K. H., Hsieh, T. C. & Chiu, C. H. SpadeR (Species-richness Prediction and Diversity Estimation in R): An R package in CRAN. Program and User’s Guide also published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016). More

  • in

    The time course of molecular acclimation to seawater in a euryhaline fish

    1.Edwards, S. L. & Marshall, W. S. In Euryhaline Fishes. Fish Physiology Vol. 32 (eds Farrell Stephen, A. P. et al.) 1–44 (Academic Press, 2012).Chapter 

    Google Scholar 
    2.Evans, D. H., Piermarini, P. M. & Choe, K. P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97–177. https://doi.org/10.1152/physrev.00050.2003 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Kultz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218, 1907–1914. https://doi.org/10.1242/jeb.118695 (2015).Article 
    PubMed 

    Google Scholar 
    4.Schultz, E. T. & McCormick, S. D. In Euryhaline Fishes. Fish Physiology Vol. 32 (eds Farrell, A. P. et al.) 477–533 (Academic Press, 2012).Chapter 

    Google Scholar 
    5.Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. & Schulte, P. M. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. Cell Physiol. 287, C300–C309. https://doi.org/10.1152/ajpcell.00054.2004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Deane, E. E. & Woo, N. Y. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1054–R1063. https://doi.org/10.1152/ajpregu.00347.2004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Scott, G. R., Claiborne, J. B., Edwards, S. L., Schulte, P. M. & Wood, C. M. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: Insight into divergent mechanisms of ion transport. J. Exp. Biol. 208, 2719–2729. https://doi.org/10.1242/jeb.01688 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. Respir. Physiol. Neurobiol. 184, 282–292. https://doi.org/10.1016/j.resp.2012.08.025 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Hiroi, J. & McCormick, S. D. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir. Physiol. Neurobiol. 184, 257–268. https://doi.org/10.1016/j.resp.2012.07.019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Hsu, H. H., Lin, L. Y., Tseng, Y. C., Horng, J. L. & Hwang, P. P. A new model for fish ion regulation: Identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res. 357, 225–243. https://doi.org/10.1007/s00441-014-1883-z (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Hwang, P. P. & Lin, L. Y. In The Physiology of Fishes Vol. 4 (eds Evans, D. H. et al.) 205–233 (CRC Press, 2013).
    Google Scholar 
    12.Evans, T. G. & Somero, G. N. A microarray-based transcriptomic time-course of hyper- and hypo-osmotic stress signaling events in the euryhaline fish Gillichthys mirabilis: Osmosensors to effectors. J. Exp. Biol. 211, 3636–3649. https://doi.org/10.1242/jeb.022160 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Fiol, D. F. & Kultz, D. Osmotic stress sensing and signaling in fishes. FEBS J. 274, 5790–5798. https://doi.org/10.1111/j.1742-4658.2007.06099.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Kultz, D. The combinatorial nature of osmosensing in fishes. Physiology (Bethesda) 27, 259–275. https://doi.org/10.1152/physiol.00014.2012 (2012).CAS 
    Article 

    Google Scholar 
    15.Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981. https://doi.org/10.1111/eva.12385 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Foskett, J. K., Logsdon, C. D., Turner, T., Machen, T. E. & Bern, H. A. Differentiation of the chloride extrusion mechanism during seawater adaptation of a teleost fish, the cichlid Sarotherodon mossambicus. J. Exp. Biol. 93, 209–224 (1981).Article 

    Google Scholar 
    17.Katoh, F. & Kaneko, T. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established “time-differential double fluorescent staining” technique. J. Exp. Biol. 206, 4113–4123. https://doi.org/10.1242/jeb.00659 (2003).Article 
    PubMed 

    Google Scholar 
    18.Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S. & Hirano, T. Excellent salinity tolerance of mozambique tilapia (Oreochromis mossambicus): Elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool. Sci. 17, 149–160. https://doi.org/10.2108/zsj.17.149 (2000).Article 

    Google Scholar 
    19.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. J. Exp. Biol. 215, 1293–1305. https://doi.org/10.1242/jeb.062075 (2012).Article 
    PubMed 

    Google Scholar 
    20.Mundy, P. C., Jeffries, K. M., Fangue, N. A. & Connon, R. E. Differential regulation of select osmoregulatory genes and Na+/K+-ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 240, 110584. https://doi.org/10.1016/j.cbpa.2019.110584 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Jeffries, K. M. et al. Divergent transcriptomic signatures in response to salinity exposure in two populations of an estuarine fish. Evol. Appl. 12, 1212–1226. https://doi.org/10.1111/eva.12799 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Lam, S. H. et al. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 15, 921. https://doi.org/10.1186/1471-2164-15-921 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Evans, T. G. & Kultz, D. The cellular stress response in fish exposed to salinity fluctuations. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 421–435. https://doi.org/10.1002/jez.2350 (2020).Article 
    PubMed 

    Google Scholar 
    24.Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474. https://doi.org/10.1152/physrev.00056.2006 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Tine, M., Bonhomme, F., McKenzie, D. J. & Durand, J. D. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol. 10, 11. https://doi.org/10.1186/1472-6785-10-11 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Whitehead, A., Zhang, S., Roach, J. L. & Galvez, F. Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish. Mol. Ecol. 22, 3780–3796. https://doi.org/10.1111/mec.12316 (2013).Article 
    PubMed 

    Google Scholar 
    27.Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222. https://doi.org/10.1242/jeb.110445 (2015).Article 
    PubMed 

    Google Scholar 
    28.Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257. https://doi.org/10.1146/annurev.physiol.67.040403.103635 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Takei, Y. & Hwang, P.-P. In Biology of Stress in Fish—Fish Physiology Vol. 35 (eds Schreck, C. B. et al.) 207–249 (Academic Press, 2016).Chapter 

    Google Scholar 
    30.Tseng, Y. C. & Hwang, P. P. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 419–429. https://doi.org/10.1016/j.cbpc.2008.04.009 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Chen, X. L., Lui, E. Y., Ip, Y. K. & Lam, S. H. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after 6 days of seawater exposure. J. Fish Biol. 93, 215–228. https://doi.org/10.1111/jfb.13653 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Nguyen, T. V., Jung, H., Nguyen, T. M., Hurwood, D. & Mather, P. Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar. Genomics 25, 75–88. https://doi.org/10.1016/j.margen.2015.11.010 (2016).Article 
    PubMed 

    Google Scholar 
    33.Bœuf, G. & Payan, P. How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130, 411–423. https://doi.org/10.1016/s1532-0456(01)00268-x (2001).Article 
    PubMed 

    Google Scholar 
    34.Makrinos, D. L. & Bowden, T. J. Natural environmental impacts on teleost immune function. Fish Shellfish Immunol. 53, 50–57. https://doi.org/10.1016/j.fsi.2016.03.008 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Morgan, J. D. & Iwama, G. K. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 48, 2083–2094. https://doi.org/10.1139/f91-247 (1991).Article 

    Google Scholar 
    36.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl. Acad. Sci. U.S.A. 108, 6193–6198. https://doi.org/10.1073/pnas.1017542108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kozak, G. M., Brennan, R. S., Berdan, E. L., Fuller, R. C. & Whitehead, A. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 68, 63–80. https://doi.org/10.1111/evo.12265 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hrbek, T. & Meyer, A. Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J. Evol. Biol. 16, 17–36. https://doi.org/10.1046/j.1420-9101.2003.00475.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Schunter, C. et al. Desert fish populations tolerate extreme salinity change to overcome hydrological constraints. bioRxiv. https://doi.org/10.1101/2021.05.14.444120 (2021).Article 

    Google Scholar 
    40.Marshall, J. C. et al. Go with the flow: The movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshw. Biol. 61, 1242–1258. https://doi.org/10.1111/fwb.12707 (2016).Article 

    Google Scholar 
    41.Kerezsy, A., Balcombe, S. R., Tischler, M. & Arthington, A. H. Fish movement strategies in an ephemeral river in the Simpson Desert, Australia. Austral Ecol. 38, 798–808. https://doi.org/10.1111/aec.12075 (2013).Article 

    Google Scholar 
    42.Martin, C. H., Crawford, J. E., Turner, B. J. & Simons, L. H. Diabolical survival in Death Valley: Recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth. Proc. Biol. Sci. 283, 20152334. https://doi.org/10.1098/rspb.2015.2334 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Mossop, K. D. et al. Dispersal in the desert: Ephemeral water drives connectivity and phylogeography of an arid-adapted fish. J. Biogeogr. 42, 2374–2388. https://doi.org/10.1111/jbi.12596 (2015).Article 

    Google Scholar 
    44.Collins, J. P., Young, C., Howell, J. & Minckley, W. L. Impact of flooding in a Sonoran desert stream, including elimination of an endangered fish population (Poeciliopsis O. occidentalis, Poeciliidae). Southwest. Nat. 26, 415–423. https://doi.org/10.2307/3671085 (1981).Article 

    Google Scholar 
    45.Meffe, G. K. Effects of abiotic disturbance on coexistence of predator–prey fish species. Ecology 65, 1525–1534. https://doi.org/10.2307/1939132 (1984).Article 

    Google Scholar 
    46.Lotan, R. Sodium, chloride and water balance in the euryhaline teleost Aphanius dispar (Rüppell) (Cyprinodontidae). Z. Vgl. Physiol. 65, 455–462. https://doi.org/10.1007/bf00299054 (1969).Article 

    Google Scholar 
    47.Lotan, R. Osmotic adjustment in the euryhaline teleost Aphanius dispar (Cyprinodontidae). Z. Vgl. Physiol. 75, 383–387. https://doi.org/10.1007/bf00630558 (1971).CAS 
    Article 

    Google Scholar 
    48.Plaut, I. Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol. Biochem. Zool. 73, 590–596. https://doi.org/10.1086/317746 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Andrews, S. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).51.Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).CAS 
    Article 

    Google Scholar 
    53.Lafond-Lapalme, J., Duceppe, M. O., Wang, S., Moffett, P. & Mimee, B. A new method for decontamination of de novo transcriptomes using a hierarchical clustering algorithm. Bioinformatics 33, 1293–1300. https://doi.org/10.1093/bioinformatics/btw793 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. https://doi.org/10.1038/nprot.2013.084 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37. https://doi.org/10.1093/nar/gkr367 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).CAS 
    Article 

    Google Scholar 
    57.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.BioBam Bioinformatics. OmicsBox – Bioinformatics Made Easy. https://www.biobam.com/omicsbox (2019).61.Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314. https://doi.org/10.1093/nar/gky1085 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research https://doi.org/10.12688/f1000research.7563.1 (2015).Article 
    PubMed 

    Google Scholar 
    66.Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: Removing the noise and preserving large differences. Bioinformatics 35, 2084–2092. https://doi.org/10.1093/bioinformatics/bty895 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    68.Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536. https://doi.org/10.1007/s10695-020-00808-6 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Lee, S. Y., Lee, H. J. & Kim, Y. K. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci. Rep. 10, 1987. https://doi.org/10.1038/s41598-020-58915-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Su, H., Ma, D., Zhu, H., Liu, Z. & Gao, F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male). BMC Genomics 21, 110. https://doi.org/10.1186/s12864-020-6512-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Fischer, D. S., Theis, F. J. & Yosef, N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 46, e119. https://doi.org/10.1093/nar/gky675 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Hwang, P. P., Lee, T. H. & Lin, L. Y. Ion regulation in fish gills: Recent progress in the cellular and molecular mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R28–R47. https://doi.org/10.1152/ajpregu.00047.2011 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Marshall, W. S. Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiol. (Oxf.) 202, 487–499. https://doi.org/10.1111/j.1748-1716.2010.02189.x (2011).CAS 
    Article 

    Google Scholar 
    74.Lema, S. C., Carvalho, P. G., Egelston, J. N., Kelly, J. T. & McCormick, S. D. Dynamics of gene expression responses for ion transport proteins and aquaporins in the gill of a euryhaline pupfish during freshwater and high-salinity acclimation. Physiol. Biochem. Zool. 91, 1148–1171. https://doi.org/10.1086/700432 (2018).Article 
    PubMed 

    Google Scholar 
    75.Flemmer, A. W. et al. Phosphorylation state of the Na+–K+–Cl− cotransporter (NKCC1) in the gills of Atlantic killifish (Fundulus heteroclitus) during acclimation to water of varying salinity. J. Exp. Biol. 213, 1558–1566. https://doi.org/10.1242/jeb.039644 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Delpire, E. & Gagnon, K. B. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem. J. 409, 321–331. https://doi.org/10.1042/BJ20071324 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Rinehart, J. et al. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J. Biol. Chem. 286, 30171–30180. https://doi.org/10.1074/jbc.M111.222893 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Li, J. et al. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). Fish Physiol. Biochem. 46, 1255–1277. https://doi.org/10.1007/s10695-020-00786-9 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: Evolution of osmolyte systems. Science 217, 1214–1222. https://doi.org/10.1126/science.7112124 (1982).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    80.Kalujnaia, S., McVee, J., Kasciukovic, T., Stewart, A. J. & Cramb, G. A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (Anguilla anguilla). FASEB J. 24, 3981–3991. https://doi.org/10.1096/fj.10-161000 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Cui, W. X. et al. myo-inositol facilitates salinity tolerance by modulating multiple physiological functions in the turbot Scophthalmus maximus. Aquaculture 527, 735451. https://doi.org/10.1016/j.aquaculture.2020.735451 (2020).CAS 
    Article 

    Google Scholar 
    82.Ma, A. et al. Osmoregulation by the myo-inositol biosynthesis pathway in turbot Scophthalmus maximus and its regulation by anabolite and c-Myc. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 242, 110636. https://doi.org/10.1016/j.cbpa.2019.110636 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Wang, Y. F., Yan, J. J., Tseng, Y. C., Chen, R. D. & Hwang, P. P. Molecular physiology of an extra-renal Cl− uptake mechanism for body fluid Cl− homeostasis. Int. J. Biol. Sci. 11, 1190–1203. https://doi.org/10.7150/ijbs.11737 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Leguen, I., Le Cam, A., Montfort, J., Peron, S. & Fautrel, A. Transcriptomic analysis of trout gill ionocytes in fresh water and sea water using laser capture microdissection combined with microarray analysis. PLoS One 10, e0139938. https://doi.org/10.1371/journal.pone.0139938 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Richards, J. G., Semple, J. W., Bystriansky, J. S. & Schulte, P. M. Na+/K+-ATPase alpha-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol. 206, 4475–4486. https://doi.org/10.1242/jeb.00701 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.McCormick, S. D., Regish, A. M. & Christensen, A. K. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J. Exp. Biol. 212, 3994–4001. https://doi.org/10.1242/jeb.037275 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Bystriansky, J. S., Richards, J. G., Schulte, P. M. & Ballantyne, J. S. Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol. 209, 1848–1858. https://doi.org/10.1242/jeb.02188 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Tipsmark, C. K. et al. Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J. Endocrinol. 209, 237–244. https://doi.org/10.1530/JOE-10-0495 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Urbina, M. A., Schulte, P. M., Bystriansky, J. S. & Glover, C. N. Differential expression of Na+, K+-ATPase alpha-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. J. Comp. Physiol. B 183, 345–357. https://doi.org/10.1007/s00360-012-0719-y (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Velotta, J. P. et al. Transcriptomic imprints of adaptation to fresh water: Parallel evolution of osmoregulatory gene expression in the Alewife. Mol. Ecol. 26, 831–848. https://doi.org/10.1111/mec.13983 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Ip, Y. K. et al. Roles of three branchial Na+-K+-ATPase alpha-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R112–R125. https://doi.org/10.1152/ajpregu.00618.2011 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    92.Birrer, S. C., Reusch, T. B. & Roth, O. Salinity change impairs pipefish immune defence. Fish Shellfish Immunol. 33, 1238–1248. https://doi.org/10.1016/j.fsi.2012.08.028 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Delamare-Deboutteville, J., Wood, D. & Barnes, A. C. Response and function of cutaneous mucosal and serum antibodies in barramundi (Lates calcarifer) acclimated in seawater and freshwater. Fish Shellfish Immunol. 21, 92–101. https://doi.org/10.1016/j.fsi.2005.10.005 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Koppang, E. O., Kvellestad, A. & Fischer, U. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 93–133 (Academic Press, 2015).Chapter 

    Google Scholar 
    95.Poulin, R., Blanar, C. A., Thieltges, D. W. & Marcogliese, D. J. The biogeography of parasitism in sticklebacks: Distance, habitat differences and the similarity in parasite occurrence and abundance. Ecography 34, 540–551. https://doi.org/10.1111/j.1600-0587.2010.06826.x (2011).Article 

    Google Scholar 
    96.Takemura, A. F., Chien, D. M. & Polz, M. F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5, 38. https://doi.org/10.3389/fmicb.2014.00038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Nitzan, S., Shwartsburd, B. & Heller, E. D. The effect of growth medium salinity of Photobacterium damselae subsp. piscicida on the immune response of hybrid bass (Morone saxatilis × M. chrysops). Fish Shellfish Immunol. 16, 107–116. https://doi.org/10.1016/s1050-4648(03)00045-7 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    98.Zheng, D. H. et al. Effect of temperature and salinity on virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 35, 494–500. https://doi.org/10.1111/j.1365-2109.2004.01044.x (2004).Article 

    Google Scholar 
    99.Dominguez, M., Takemura, A., Tsuchiya, M. & Nakamura, S. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture 241, 491–500. https://doi.org/10.1016/j.aquaculture.2004.06.027 (2004).CAS 
    Article 

    Google Scholar 
    100.Mozanzadeh, M. T. et al. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture 534, 736329. https://doi.org/10.1016/j.aquaculture.2020.736329 (2021).CAS 
    Article 

    Google Scholar 
    101.Gao, Y., Tang, X., Sheng, X., Xing, J. & Zhan, W. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. Fish Shellfish Immunol. 55, 274–280. https://doi.org/10.1016/j.fsi.2016.05.042 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    102.Salinas, I. The mucosal immune system of teleost fish. Biology 4, 525–539. https://doi.org/10.3390/biology4030525 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 3, 41. https://doi.org/10.3390/fishes3040041 (2018).Article 

    Google Scholar 
    104.Shephard, K. L. Functions for fish mucus. Rev. Fish Biol. Fish. 4, 401–429. https://doi.org/10.1007/Bf00042888 (1994).Article 

    Google Scholar 
    105.Wong, M. K. S. et al. A sodium binding system alleviates acute salt stress during seawater acclimation in eels. Zool. Lett. 3, 22. https://doi.org/10.1186/s40851-017-0081-8 (2017).Article 

    Google Scholar 
    106.Malachowicz, M., Wenne, R. & Burzynski, A. De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS One 12, e0172282. https://doi.org/10.1371/journal.pone.0172282 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Roberts, S. D. & Powell, M. D. Comparative ionic flux and gill mucous cell histochemistry: Effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134, 525–537. https://doi.org/10.1016/s1095-6433(02)00327-6 (2003).Article 
    PubMed 

    Google Scholar 
    108.Mylonas, C. C. et al. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture 287, 203–210. https://doi.org/10.1016/j.aquaculture.2008.10.024 (2009).CAS 
    Article 

    Google Scholar 
    109.Roberts, S. D. & Powell, M. D. The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. J. Comp. Physiol. B 175, 1–11. https://doi.org/10.1007/s00360-004-0453-1 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    110.Kalujnaia, S. et al. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol. Genomics 31, 385–401. https://doi.org/10.1152/physiolgenomics.00059.2007 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    111.Shaw, J. R. et al. The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus. Cell Physiol. Biochem. 22, 69–78. https://doi.org/10.1159/000149784 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    112.Kammerer, B. D., Sardella, B. A. & Kultz, D. Salinity stress results in rapid cell cycle changes of tilapia (Oreochromis mossambicus) gill epithelial cells. J. Exp. Zool. A Ecol. Genet. Physiol. 311, 80–90. https://doi.org/10.1002/jez.498 (2009).Article 
    PubMed 

    Google Scholar 
    113.Ronkin, D., Seroussi, E., Nitzan, T., Doron-Faigenboim, A. & Cnaani, A. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comp. Biochem. Physiol. Part D Genomics Proteomics 13, 35–43. https://doi.org/10.1016/j.cbd.2015.01.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    114.Dong, Y. W. et al. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J. Exp. Biol. 224, jeb235515. https://doi.org/10.1242/jeb.235515 (2021).Article 
    PubMed 

    Google Scholar 
    115.Inokuchi, M. & Kaneko, T. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162, 245–251. https://doi.org/10.1016/j.cbpa.2012.03.018 (2012).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Puffins and friends suffer in washing-machine waves

    .readcube-buybox { display: none !important;}

    After cyclones in the north Atlantic, droves of emaciated, dead seabirds can wash ashore on North American and European beaches. New research probes the cause of these mass-mortality events, called winter wrecks, and suggests that climate change might worsen the pattern1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02494-7

    References1.Clairbaux, M. et al. Curr. Biol. https://doi.org/10.1016/j.cub.2021.06.059 (2021)Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Preventing spillover as a key strategy against pandemics
    Correspondence 14 SEP 21

    Pollination advantage of rare plants unveiled
    News & Views 08 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Jobs

    Postdoctoral fellow

    Dalhousie University
    Halifax, Canada

    Postdoctoral Research Fellowship in Pharmacogenomics and Clinical Pharmacology with a Focus on Adverse Drug Reactions

    The University of British Columbia (UBC)
    Vancouver, Canada

    English Speaking Secretary for the Institute Director

    Jülich Research Centre (FZJ)
    Aachen, Germany

    Officer for Strategic Support of Research Grant Applications

    German Cancer Research Center in the Helmholtz Association (DKFZ)
    Heidelberg, Germany More

  • in

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    1.Backhaus E, Berg S, Andersson R, Ockborn G, Malmström P, Dahl M, et al. Epidemiology of invasive pneumococcal infections: manifestations, incidence and case fatality rate correlated to age, gender and risk factors. BMC Infect Dis. 2016;16:367.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Bogaert D, de Groot R, Hermans P. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4:144–54.PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Wahl B, O’Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health. 2018;6:e744–57.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.McAllister DA, Liu L, Shi T, Chu Y, Reed C, Burrows J, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. Lancet Glob Health. 2019;7:e47–57.PubMed 
    Article 

    Google Scholar 
    5.Abdullahi O, Karani A, Tigoi CC, Mugo D, Kungu S, Wanjiru E, et al. The prevalence and risk factors for pneumococcal colonization of the nasopharynx among children in Kilifi District, Kenya. PloS ONE. 2012;7:e30787.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Kelly MS, Surette MG, Smieja M, Rossi L, Luinstra K, Steenhoff AP, et al. Pneumococcal colonization and the nasopharyngeal microbiota of children in Botswana. Pediatr Infect Dis J. 2018;37:1176–83.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Huang SS, Hinrichsen VL, Stevenson AE, Rifas-Shiman SL, Kleinman K, Pelton SI, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics 2009;124:e1–e11.PubMed 
    Article 

    Google Scholar 
    8.van Hoek AJ, Sheppard CL, Andrews NJ, Waight PA, Slack MP, Harrison TG, et al. Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine.2014;32:4349–55.PubMed 
    Article 

    Google Scholar 
    9.Almeida ST, Nunes S, Paulo ACS, Valadares I, Martins S, Breia F, et al. Low prevalence of pneumococcal carriage and high serotype and genotype diversity among adults over 60 years of age living in Portugal. PloS ONE 2014;9:e90974.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Kaplan SL, Mason EO, Wald ER, Schutze GE, Bradley JS, Tan TQ, et al. Decrease of invasive pneumococcal infections in children among 8 children’s hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics.2004;113:443–9.PubMed 
    Article 

    Google Scholar 
    11.Hammitt LL, Etyang AO, Morpeth SC, Ojal J, Mutuku A, Mturi N, et al. Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study. Lancet.2019;393:2146–54.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Cutts F, Zaman S, Enwere GY, Jaffar S, Levine O, Okoko J, et al. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet.2005;365:1139–46.PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Congdon M, Hong H, Young RR, Cunningham CK, Enane LA, Arscott-Mills T, et al. Effect of Haemophilus influenzae type b and 13-valent pneumococcal conjugate vaccines on childhood pneumonia hospitalizations and deaths in Botswana. Clin Infect Dis. 2020; e-pub ahead of print 8 July 2020; https://doi.org/10.1093/cid/ciaa919.14.Eskola J, Kilpi T, Palmu A, Jokinen J, Eerola M, Haapakoski J, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl J Med. 2001;344:403–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Pelton SI, Huot H, Finkelstein JA, Bishop CJ, Hsu KK, Kellenberg J, et al. Emergence of 19A as virulent and multidrug resistant Pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2007;26:468–72.PubMed 
    Article 

    Google Scholar 
    16.Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. JAMA.2007;298:1772–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Neves FP, Cardoso NT, Snyder RE, Marlow MA, Cardoso CA, Teixeira LM, et al. Pneumococcal carriage among children after four years of routine 10-valent pneumococcal conjugate vaccine use in Brazil: the emergence of multidrug resistant serotype 6C. Vaccine.2017;35:2794–800.PubMed 
    Article 

    Google Scholar 
    18.Bradshaw JL, McDaniel LS. Selective pressure: rise of the nonencapsulated pneumococcus. PLoS Pathog. 2019;15:e1007911.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Ladhani SN, Collins S, Djennad A, Sheppard CL, Borrow R, Fry NK, et al. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–17: a prospective national observational cohort study. Lancet Infect Dis. 2018;18:441–51.PubMed 
    Article 

    Google Scholar 
    20.Ouldali N, Levy C, Varon E, Bonacorsi S, Béchet S, Cohen R, et al. Incidence of paediatric pneumococcal meningitis and emergence of new serotypes: a time-series analysis of a 16-year French national survey. Lancet Infect Dis. 2018;18:983–91.PubMed 
    Article 

    Google Scholar 
    21.Zaneveld J, Turnbaugh PJ, Lozupone C, Ley RE, Hamady M, Gordon JI, et al. Host-bacterial coevolution and the search for new drug targets. Curr Opin Chem Biol. 2008;12:109–14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.de Steenhuijsen Piters WA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections. Cell Host Microbe. 2020;28:223–32.PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rümke H, et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet.2004;363:1871–2.PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Pettigrew MM, Gent JF, Revai K, Patel JA, Chonmaitree T. Microbial interactions during upper respiratory tract infections. Emerg Infect Dis. 2008;14:1584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Shiri T, Nunes MC, Adrian PV, Van Niekerk N, Klugman KP, Madhi SA. Interrelationship of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus colonization within and between pneumococcal-vaccine naïve mother–child dyads. BMC Infect Dis. 2013;13:483.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Jacoby P, Watson K, Bowman J, Taylor A, Riley TV, Smith DW, et al. Modelling the co-occurrence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine.2007;25:2458–64.PubMed 
    Article 

    Google Scholar 
    27.Nzenze S, Shiri T, Nunes M, Klugman K, Kahn K, Twine R, et al. Temporal association of infant immunisation with pneumococcal conjugate vaccine on the ecology of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus nasopharyngeal colonisation in a rural South African community. Vaccine.2014;32:5520–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Faden H, Stanievich J, Brodsky L, Bernstein J, Ogra PL. Changes in nasopharyngeal flora during otitis media of childhood. Pediatr Infect Dis J. 1990;9:623–6.PubMed 
    CAS 

    Google Scholar 
    29.Shekhar S, Khan R, Schenck K, Petersen FC. Intranasal Immunization with the commensal Streptococcus mitis confers protective immunity against pneumococcal lung infection. Appl Environ Microbiol. 2019;85:e02235–18.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Cangemi de Gutierrez R, Santos V, Nader-Macias ME. Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol Med Microbiol. 2001;31:187–95.PubMed 
    Article 
    CAS 

    Google Scholar 
    31.Wong SS, Quan Toh Z, Dunne EM, Mulholland EK, Tang ML, Robins-Browne RM, et al. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG. BMC Res Notes. 2013;6:135.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Laufer AS, Metlay JP, Gent JF, Fennie KP, Kong Y, Pettigrew MM. Microbial communities of the upper respiratory tract and otitis media in children. mBio.2011;2:e00245–10.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Bomar L, Brugger SD, Yost BH, Davies SS, Lemon KP. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio.2016;7:e01725–15.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Cope EK, Goldstein-Daruech N, Kofonow JM, Christensen L, McDermott B, Monroy F, et al. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease. PloS ONE. 2011;6:e28523.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Lysenko ES, Ratner AJ, Nelson AL, Weiser JN. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PloS Pathog. 2005;1:e1.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Weimer KE, Juneau RA, Murrah KA, Pang B, Armbruster CE, Richardson SH, et al. Divergent mechanisms for passive pneumococcal resistance to β-lactam antibiotics in the presence of Haemophilus influenzae. J Infect Dis. 2011;203:549–55.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Tikhomirova A, Kidd SP. Haemophilus influenzae and Streptococcus pneumoniae: living together in a biofilm. Pathog Dis. 2013;69:114–26.PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Brugger SD, Eslami SM, Pettigrew MM, Escapa IF, Henke MT, Kong Y, et al. Dolosigranulum pigrum cooperation and competition in human nasal microbiota. mSphere. 2020;5.39.Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17:704–15.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, et al. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol. 2015;135:905–12.PubMed 
    Article 

    Google Scholar 
    41.Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser BJ, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190:1283–92.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Bosch AA, Levin E, van Houten MA, Hasrat R, Kalkman G, Biesbroek G, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine.2016;9:336–45.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Biesbroek G, Bosch AA, Wang X, Keijser BJ, Veenhoven RH, Sanders EA, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med. 2014;190:298–308.PubMed 
    Article 

    Google Scholar 
    45.Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, Van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PloS ONE. 2011;6:e17035.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ. 2000;78:1078–92.PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    47.Pelissari DM, Diaz-Quijano FA. Household crowding as a potential mediator of socioeconomic determinants of tuberculosis incidence in Brazil. PloS ONE. 2017;12:e0176116.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Mannucci PM, Franchini M. Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health. 2017;14:1048.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    49.Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature.2012;486:222–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7.PubMed 
    Article 

    Google Scholar 
    52.Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. bioRxiv. 2021. https://doi.org/10.1101/2021.01.20.427420.53.Hojsak I, Snovak N, Abdović S, Szajewska H, Mišak Z, Kolaček S. Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2010;29:312–6.PubMed 
    Article 

    Google Scholar 
    54.Gluck U, Gebbers JO. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and beta-hemolytic streptococci). Am J Clin Nutr. 2003;77:517–20.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Feleszko W, Jaworska J, Rha RD, Steinhausen S, Avagyan A, Jaudszus A, et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy. 2007;37:498–505.PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Nhan T-X, Parienti J-J, Badiou G, Leclercq R, Cattoir V. Microbiological investigation and clinical significance of Corynebacterium spp. in respiratory specimens. Diagn Microbiol Infect Dis. 2012;74:236–41.PubMed 
    Article 

    Google Scholar 
    57.Díez-Aguilar M, Ruiz-Garbajosa P, Fernández-Olmos A, Guisado P, Del Campo R, Quereda C, et al. Non-diphtheriae Corynebacterium species: an emerging respiratory pathogen. Eur J Clin Microbiol Infect Dis. 2013;32:769–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    58.Teutsch B, Berger A, Marosevic D, Schönberger K, Lâm T-T, Hubert K, et al. Corynebacterium species nasopharyngeal carriage in asymptomatic individuals aged ≥ 65 years in Germany. Infection.2017;45:607–11.PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    60.Turner P, Turner C, Green N, Ashton L, Lwe E, Jankhot A, et al. Serum antibody responses to pneumococcal colonization in the first 2 years of life: results from an SE Asian longitudinal cohort study. Clin Microbiol Infect. 2013;19:e551–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Numminen E, Chewapreecha C, Turner C, Goldblatt D, Nosten F, Bentley SD, et al. Climate induces seasonality in pneumococcal transmission. Sci Rep. 2015;5:11344.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Kelly MS, Smieja M, Luinstra K, Wirth KE, Goldfarb DM, Steenhoff AP, et al. Association of respiratory viruses with outcomes of severe childhood pneumonia in Botswana. PloS ONE. 2015;10:e0126593.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.le Roux DM, Myer L, Nicol MP, Zar HJ. Incidence and severity of childhood pneumonia in the first year of life in a South African birth cohort: the Drakenstein Child Health Study. Lancet Glob Health. 2015;3:e95–103.PubMed 
    Article 

    Google Scholar 
    64.von Mollendorf C, von Gottberg A, Tempia S, Meiring S, de Gouveia L, Quan V, et al. Increased risk and mortality of invasive pneumococcal disease in HIV-exposed-uninfected infants More

  • in

    Selective feeding in Southern Ocean key grazers—diet composition of krill and salps

    1.Pakhomov, E. A., Froneman, P. W. & Perissinotto, R. Salp/krill interactions in the Southern Ocean: Spatial segregation and implications for the carbon flux. Deep Sea Res. II 49, 1881–1907 (2002).CAS 
    Article 

    Google Scholar 
    2.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I 101, 54–70 (2015).Article 

    Google Scholar 
    3.Whitehouse, M. J. et al. Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia. Mar. Ecol. Prog. Ser. 393, 69–82 (2009).CAS 
    Article 

    Google Scholar 
    4.Tarling, G. A. & Fielding, S. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 279–319 (Springer International Publishing, 2016).5.Henschke, N., Everett, J. D., Richardson, A. J. & Suthers, I. M. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720–733 (2016).PubMed 
    Article 

    Google Scholar 
    6.Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Phillips, B., Kremer, P. & Madin, L. P. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156, 455–467 (2009).Article 

    Google Scholar 
    9.Siegel, V. & Watkins, J. L. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 21–100 (Springer International Publishing, 2016).10.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).Article 

    Google Scholar 
    11.Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).Article 

    Google Scholar 
    12.Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B. 362, 67–94 (2007).Article 

    Google Scholar 
    13.Montes-Hugo, M. et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323, 1470–1473 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. T. R. Soc., B 362, 149–166 (2007).Article 

    Google Scholar 
    15.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).CAS 
    Article 

    Google Scholar 
    17.Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).Article 

    Google Scholar 
    18.Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).19.Foxton, P. The Distribution and Life-history of Salpa thompsoni Foxton with observations on a Related Species, Salpa gerlachei Foxton (The University Press, 1966).20.Bernard, K. S., Steinberg, D. K. & Schofield, O. M. E. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I 62, 111–122 (2012).Article 

    Google Scholar 
    21.Condon, R. H. et al. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc. Natl Acad. Sci. 108, 10225–10230 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Meyer, M. A. & Elsayed, S. Z. Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol. 1, 193–197 (1983).Article 

    Google Scholar 
    23.Haberman, K. L., Ross, R. M. & Quetin, L. B. Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J. Exp. Mar. Biol. Ecol. 283, 97–113 (2003).Article 

    Google Scholar 
    24.Schmidt, K. & Atkinson, A. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 175–224 (Springer International Publishing, 2016).25.Andersen, V. in The Biology of Pelagic Tunicates (ed Bone, Q.) 125–137 (Oxford University Press, 1998).26.Mitra, A. et al. Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog. Oceanogr. 129, 176–199 (2014).Article 

    Google Scholar 
    27.Sailley, S. F., Polimene, L., Mitra, A., Atkinson, A. & Allen, J. I. Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. J. Plankton Res. 37, 519–529 (2015).CAS 
    Article 

    Google Scholar 
    28.Hamner, W. M., Hamner, P. P., Strand, S. W. & Gilmer, R. W. Behavior of Antarctic krill, Euphausia superba: Chemoreception, feeding, schooling, and molting. Science 220, 433–435 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.DeMott, W. R. in Behavioural Mechanisms of Food Selection (ed Hughes, R. N.) 569–594 (Springer, 1990).30.Le Fèvre, J., Legendre, L. & Rivkin, R. B. Fluxes of biogenic carbon in the Southern Ocean: Roles of large microphagous zooplankton. J. Mar. Syst. 17, 325–345 (1998).Article 

    Google Scholar 
    31.Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).Article 

    Google Scholar 
    32.Frischer, M. E. et al. Selective feeding and linkages to the microbial food web by the doliolid Dolioletta gegenbauri. Limnol. Oceanogr. 66, 1993–2010 (2021).Article 

    Google Scholar 
    33.Dadon-Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).Article 

    Google Scholar 
    34.Metfies, K., Nicolaus, A., von Harbou, L., Bathmann, U. & Peeken, I. Molecular analyses of gut contents: elucidating the feeding of co-occurring salps in the Lazarev Sea from a different perspective. Antarct. Sci. 26, 5545–5553 (2014).Article 

    Google Scholar 
    35.Cleary, A. C., Durbin, E. G. & Casas, M. C. Feeding by Antarctic krill Euphausia superba in the West Antarctic Peninsula: differences between fjords and open waters. Mar. Ecol. Prog. Ser. 595, 39–54 (2018).CAS 
    Article 

    Google Scholar 
    36.Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Passmore, A. J. et al. DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Mar. Biotechnol. 8, 686–696 (2006).CAS 
    Article 

    Google Scholar 
    38.von Harbou, L. et al. Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics. Mar. Biol. 158, 2009–2026 (2011).Article 

    Google Scholar 
    39.Vernet, M. et al. Primary production throughout austral fall, during a time of decreasing daylength in the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 452, 45–61 (2012).CAS 
    Article 

    Google Scholar 
    40.Moreau, S. et al. Variability of the microbial community in the western Antarctic Peninsula from late fall to spring during a low ice cover year. Polar Biol. 33, 1599–1614 (2010).Article 

    Google Scholar 
    41.Selz, V. et al. Distribution of Phaeocystis antarctica-dominated sea ice algal communities and their potential to seed phytoplankton across the western Antarctic Peninsula in spring. Mar. Ecol. Prog. Ser. 586, 91–112 (2018).CAS 
    Article 

    Google Scholar 
    42.Nichols, D. S., Nichols, P. D. & Sullivan, C. W. Fatty acid, sterol and hydrocarbon composition of Antarctic sea ice diatom communities during the spring bloom in McMurdo Sound. Antarct. Sci. 5, 271–278 (1993).Article 

    Google Scholar 
    43.Fahl, K. & Kattner, G. Lipid Content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol. 13, 405–409 (1993).Article 

    Google Scholar 
    44.Boyd, C. M., Heyraud, M. & Boyd, C. N. Feeding of the Antarctic krill Euphausia superba. J. Crust. Biol. 4, 123–141 (1984).Article 

    Google Scholar 
    45.Bone, Q., Carré, C. & Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. U. K. 83, 907–919 (2003).Article 

    Google Scholar 
    46.Nelson, M. M., Phleger, C. F., Mooney, B. D. & Nichols, P. D. Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids 35, 551–559 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Huntley, M. E., Sykes, P. F. & Marin, V. Biometry and trophodynamics of Salpa thompsoni Foxton (Tunicata: Thaliacea) near the Antarctic Peninsula in austral summer, 1983–1984. Polar Biol. 10, 59–70 (1989).Article 

    Google Scholar 
    48.Hopkins, T. L. Food web of an Antarctic midwater ecosystem. Mar. Biol. 89, 197–212 (1985).Article 

    Google Scholar 
    49.Paffenhöfer, G. A. & Köster, M. Digestion of diatoms by planktonic copepods and doliolids. Mar. Ecol. Prog. Ser. 297, 303–310 (2005).Article 

    Google Scholar 
    50.von Harbou, L. Trophodynamics of Salps in the Atlantic Southern Ocean. PhD thesis, University of Bremen (2009).51.Hargraves, P. E. The ebridian flagellates Ebria and Hermesinum. Plankton Biol. Ecol. 49, 9–16 (2002).
    Google Scholar 
    52.Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821–830 (2015).CAS 
    Article 

    Google Scholar 
    53.Smith, K. L. Jr. et al. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution. Limnol. Oceanogr. 59, 745–757 (2014).CAS 
    Article 

    Google Scholar 
    54.Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).
    Google Scholar 
    55.Ploug, H., Iversen, M. H., Koski, M. & Buitenhuis, E. T. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53, 469–476 (2008).CAS 
    Article 

    Google Scholar 
    56.Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. II 59-60, 147–158 (2012).CAS 
    Article 

    Google Scholar 
    57.Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36 (2014).Article 

    Google Scholar 
    58.Cripps, G. C., Watkins, J. L., Hill, H. J. & Atkinson, A. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181, 177–188 (1999).CAS 
    Article 

    Google Scholar 
    59.Schmidt, K., Atkinson, A., Petzke, K.-J., Voss, M. & Pond, D. W. Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol. Oceanogr. 51, 2409–2427 (2006).CAS 
    Article 

    Google Scholar 
    60.Hagen, W., Van Vleet, E. S. & Kattner, G. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Prog. Ser. 134, 85–89 (1996).CAS 
    Article 

    Google Scholar 
    61.Kawaguchi, S. & Takahashi, Y. Antarctic krill (Euphausia superba Dana) eat salps. Polar Biol. 16, 479–481 (1996).
    Google Scholar 
    62.Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Coats, D. W. & Park, M. G. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J. Phycol. 38, 520–528 (2002).Article 

    Google Scholar 
    64.Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. 107, 15129–15134 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Gómez-Gutiérrez, J. & Morales-Avila, J. R. in Biology and Ecology of Antarctic krill (ed Siegel, V.) 351–387 (Springer International Publishing, 2006).66.Cleary, A. C., Casas, M. C., Durbin, E. G. & Gómez-Gutiérrez, J. Parasites in Antarctic krill guts inferred from DNA sequences. Antarct. Sci. 31, 16–22 (2019).Article 

    Google Scholar 
    67.Zamora-Terol, S., Novotny, A. & Winder, M. Molecular evidence of host-parasite interactions between zooplankton and Syndiniales. Aquat. Ecol. 55, 125–134 (2021).CAS 
    Article 

    Google Scholar 
    68.Kawaguchi, S., Ichii, T. & Naganobu, M. Do krill and salps compete? Contrary evidence from the krill fisheries. CCAMLR Sci. 5, 205–216 (1998).
    Google Scholar 
    69.Fadeev, E. et al. Microbial communities in the east and west Fram Strait during sea ice melting season. Front. Mar. Sci. 5, 429 (2018).Article 

    Google Scholar 
    70.Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).73.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Callahan, B. DADA2 Pipeline Tutorial (1.16), available online: https://benjjneb.github.io/dada2/tutorial.html. Accessed: 3 Feb 2020.75.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 3 (2011).Article 

    Google Scholar 
    76.Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).Article 

    Google Scholar 
    78.Metfies, K. et al. Uncovering the intricacies of microbial community dynamics at Helgoland Roads at the end of a spring bloom using automated sampling and 18S meta-barcoding. PLoS ONE 15, e0233921 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Catlett, D. et al. Evaluation of accuracy and precision in an amplicon sequencing workflow for marine protist communities. Limnol. Oceanogr. Methods 18, 20–40 (2019).Article 

    Google Scholar 
    80.Kattner, G. & Fricke, H. S. G. Simple gas-liquid-chromatographic method for the simultaneous determination of fatty-acids and alcohols in wax esters of marine organisms. J. Chromatogr. 361, 263–268 (1986).CAS 
    Article 

    Google Scholar 
    81.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell. Lab. Syst. 143, 85–96 (2015).CAS 
    Article 

    Google Scholar 
    83.Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-Like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Bian, G. et al. The gut microbiota of healthy aged chinese is similar to that of the healthy young. mSphere 2, e00327–00317 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Borstein, S. R. dietr: An R package for calculating fractional trophic levels from quantitative and qualitative diet data. Hydrobiologia 847, 4285–4294 (2020).Article 

    Google Scholar 
    88.Lechowicz, M. J. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).PubMed 
    Article 

    Google Scholar 
    89.Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D. & Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).PubMed 
    Article 

    Google Scholar 
    90.Graeve, M., Kattner, G. & Hagen, W. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182, 97–110 (1994).CAS 
    Article 

    Google Scholar 
    91.Kharlamenko, V. I., Zhukova, N. V., Khotimchenko, S. V., Svetashev, V. I. & Kamenev, G. M. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Prog. Ser. 120, 231–241 (1995).CAS 
    Article 

    Google Scholar 
    92.Greenacre, M. Compositional Data Analysis in Practice (CRC Press, Taylor & Francis Group, 2018).93.Suh, H.-L. & Nemoto, T. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proc. NIPR Symp. Polar Biol. 1, 72–83 (1987).
    Google Scholar 
    94.Alldredge, A. L. & Madin, L. P. Pelagic tunicates: unique herbivores in the marine plankton. Bioscience 32, 655–663 (1982).Article 

    Google Scholar 
    95.Kelly, P. S. The Ecological Role of Salpa Thompsoni in the Kerguelen Plateau Region of the Southern Ocean: A First Comprehensive Evaluation. PhD thesis, University of Tasmania (2019).96.Ericson, J. A. et al. Seasonal and interannual variations in the fatty acid composition of adult Euphausia superba Dana, 1850 (Euphausiacea) samples derived from the Scotia Sea krill fishery. J. Crust. Biol. 38, 662–672 (2018).
    Google Scholar 
    97.Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).CAS 
    Article 

    Google Scholar 
    98.Matsuoka, K. et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ. Model. Softw. 140, 105015 (2021).Article 

    Google Scholar  More

  • in

    Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia

    We reviewed and mapped antimicrobial resistance in aquatic food animals in Asia during a period of substantial industry growth. Our findings indicate that between 2000 and 2018, antimicrobial resistance in bacteria from cultured aquatic food animals was stable (33%) while the resistance from wild-caught aquatic food animals decreased sharply (52% to 22%). These trends represent currently available evidence from point prevalence surveys, which serve as a surrogate in the absence of systematic surveillance and should be interpreted cautiously. Structured, systematic surveillance will be imperative to document trends in multi-drug resistance at the sub-national level in the future.Our results are consistent with an analysis of antimicrobial resistance in aquaculture-derived bacteria from forty countries, nearly half of which in Asia, which identified a global mean multi-antibiotic resistance index of .25, and a higher index ( >.35) in low-income and middle-income countries in Asia27. Although antimicrobial use in surveys from cultured animals was most frequently unspecified, in the limited surveys that recorded whether on-farm antimicrobials were either used or not used (n = 63; 11%), use was associated with higher multi-drug resistance than the absence of use (p  More