Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota
1.Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Zhou, Z., Pan, J., Wang, F., Gu, J.-D. & Li, M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol. Rev. 42, 639–655 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
3.Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 1–9 (2016).Article
CAS
Google Scholar
4.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
5.Zhou, Z., Liu, Y., Li, M. & Gu, J.-D. Two or three domains: a new view of tree of life in the genomics era. Appl. Microbiol. Biotechnol. 102, 3049–3058 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
8.Jahn, U. et al. Nanoarchaeum equitans and Ignicoccus hospitalis: new Insights into a unique, intimate association of two archaea. J. Bacteriol. 190, 1743–1750 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Golyshina, O. V. et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat. Commun. 8, 60 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
10.Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
11.Beam, J. P. et al. Ancestral absence of electron transport chains in patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).PubMed
PubMed Central
Article
Google Scholar
12.Wang, H. et al. Different microbial distributions in the Yellow River delta. Desalination Water Treat. 75, 70–78 (2017).Article
Google Scholar
13.Lipsewers, Y. A., Hopmans, E. C., Sinninghe Damsté, J. S. & Villanueva, L. Potential recycling of thaumarchaeotal lipids by DPANN Archaea in seasonally hypoxic surface marine sediments. Org. Geochem. 119, 101–109 (2018).CAS
Article
Google Scholar
14.Ding, J. et al. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front. Microbiol. 8, 1012 (2017).PubMed
PubMed Central
Article
Google Scholar
15.Chen, Y., Liu, Y. & Wang, X. Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl. Microbiol. Biotechnol. 101, 3379–3391 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Liu, X. et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6, 102 (2018).PubMed
PubMed Central
Article
Google Scholar
19.Ortiz-Alvarez, R. & Casamayor, E. O. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ. Microbiol. Rep. 8, 210–217 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Schuchmann, K., Chowdhury, N. P. & Müller, V. Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Front. Microbiol. 9, 2911 (2018).PubMed
PubMed Central
Article
Google Scholar
22.Wittkamp, F., Senger, M., Stripp, S. T. & Apfel, U.-P. [FeFe]-Hydrogenases: recent developments and future perspectives. Chem. Commun. 54, 5934–5942 (2018).CAS
Article
Google Scholar
23.Westphal, L., Wiechmann, A., Baker, J., Minton, N. P. & Müller, V. The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J. Bacteriol. 200, 1 (2018).Article
Google Scholar
24.Buckel, W. & Thauer, R. K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front. Microbiol. 9, 401 (2018).PubMed
PubMed Central
Article
Google Scholar
25.Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).PubMed
PubMed Central
Article
Google Scholar
26.Martijn, J. et al. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat. Commun. 11, 5490 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
27.Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).28.Nyirabuhoro, P. et al. Seasonal variability of conditionally rare taxa in the water column bacterioplankton community of subtropical reservoirs in China. Microb. Ecol. 80, 14–26 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Logares, R. et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 1–7 (2017).Article
CAS
Google Scholar
31.Schröder, C., Selig, M. & Schönheit, P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161, 460–470 (1994).
Google Scholar
32.Chhabra, S. R. et al. Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J. Biol. Chem. 278, 7540–7552 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Weimer, P. J. & Zeikus, J. G. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33, 289–297 (1977).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
34.McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat. Commun. 11, 3939 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Zhang, C.-J. et al. Prokaryotic diversity in mangrove sediments across Southeastern China fundamentally differs from that in other biomes. mSystems 4, 29 (2019).
Google Scholar
41.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
42.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed
PubMed Central
Article
Google Scholar
43.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
44.Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinform. 36, 10.7.1–10.7.20 (2011).Article
Google Scholar
45.Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
46.Zou, D. et al. Genomic characteristics of a novel species of ammonia-oxidizing archaea from the Jiulong River Estuary. Appl. Environ. Microbiol. 86, 1 (2020).Article
Google Scholar
47.Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed
PubMed Central
Article
Google Scholar
48.Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed
PubMed Central
Article
Google Scholar
50.Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation, and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Benson, D. A. et al. GenBank. Nucleic Acids Res. 28, 15–18 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34, D344–D348 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article
CAS
Google Scholar
58.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inf. Int. Conf. Genome Inf. 23, 205–211 (2009).
Google Scholar
66.Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
67.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates, and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Saier, M. H., Reddy, V. S., Tamang, D. G. & Västermark, A. The transporter classification database. Nucleic Acids Res. 42, D251–D258 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article
CAS
Google Scholar
71.Altenhoff, A. M. et al. OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res. 29, 1152–1163 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).PubMed
Article
PubMed Central
Google Scholar
73.Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Zendo https://doi.org/10.5281/zenodo.3672835 (2020).74.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
76.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
77.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
78.Huang, W.-C. et al. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota. figshare https://doi.org/10.6084/m9.figshare.14459535 (2021).79.Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
80.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
82.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed
PubMed Central
Article
Google Scholar
83.Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
84.Steenwyk, J. L., Iii, T. J. B., Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Sheridan, P. O. et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat. Commun. 11, 5494 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
86.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS
Article
Google Scholar
88.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
89.Zulkower, V. & Rosser, S. DNA features viewer: a sequence annotation formatting and plotting library for Python. Bioinformatics 36, 4350–4352 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
90.Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
91.Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol. Biol. Evol. 36, 435–446 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
92.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
93.Seemann, T. barrnap 0.9: rapid ribosomal RNA prediction https://github.com/tseemann/barrnap (2013).94.Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
95.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
96.Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
97.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More