More stories

  • in

    Efficacy of cholecalciferol rodenticide to control wood rat, Rattus tiomanicus and its secondary poisoning impact towards barn owl, Tyto javanica javanica

    Bentley, E. W. A review of anticoagulant rodenticides in current use. Bull. Wid Htlh Org. 47, 275–280 (1972).CAS 

    Google Scholar 
    Ravindran, S., Mohd Noor, H. & Salim, H. Anticoagulant rodenticide use in oil palm plantations in Southeast Asia and hazard assessment to non-target animals. Ecotoxicology https://doi.org/10.1007/s10646-022-02559-x (2022).Article 
    PubMed 

    Google Scholar 
    Wood, B. J. & Chung, G. F. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 22, 445–454 (2003).Article 

    Google Scholar 
    Wood, B. J. & Chung, G. F. Warfarin resistance of Rattus tiomanicus in oil palms in Malaysia and the associated increase of Rattus diardii. In Proceedings of the Fourteenth Vertebrate Pest Conference 1990. vol. 81, 129–134 (1990).Buckle, A. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334−341 (2012).Article 
    PubMed 

    Google Scholar 
    Greaves, J. H. & Cullen-Ayres, P. B. Genetics of difenacoum resistance in the rat. In Current Advances in Vitamin K Research. 17th Steenbock Symposium (ed. Suttie, J. W.) 387–397 (Elsevier, 1988).
    Google Scholar 
    Marsh, R. E. Bromadiolone, a new anticoagulant rodenticide. EPPO. 7(2), 495–502 (1977).Article 
    CAS 

    Google Scholar 
    Ishizuka, M. et al. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. J. Toxicol. Sci. 33, 283–291 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kohn, M. H., Pelz, H.-J. & Wayne, R. K. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genet. Soc. Am. 164, 1055–1070 (2003).CAS 

    Google Scholar 
    Vein, J., Grandemange, A., Cosson, J. F., Benoit, E. & Berny, P. J. Are water vole resistant to anticoagulant rodenticides following field treatments?. Ecotoxicology 20, 1432–1441 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Salim, H. et al. Secondary poisoning of captive barn owls, Tyto alba javanica through feeding with rats poisoned with chlorophacinone and bromadiolone. J. Oil Palm Res. 26(1), 62–72 (2014).CAS 

    Google Scholar 
    Thomas, P. J. et al. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterization of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37(5), 914–920 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, E. F. Cholecalciferol: A unique toxicant for rodent control. In Proceedings, Eleventh Vertebrate Pest Conference (ed. Clark, D. O.) 95–98 (University of California, 1984).
    Google Scholar 
    Tobin, M. E., Matschke, C. H., Sugihara, R. T., McCann, C. R., Koehler, A. E. & Andrews, K. T. Laboratory efficacy of cholecalciferol against field rodents. DWRC Research Report No. 11–55–002. (U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 1993).Bull, J. O. Urban pest management, the past, the present, the future. Pest Manag. 2(3), 8–12 (1983).
    Google Scholar 
    Eason, C. T., Frampton, C. M., Henderson, R., Thomas, M. D. & Morgan, D. R. Sodium monofluoroacetate and alternative toxins for possum control. N. Z. J. Zool. 20, 329–334 (1993).Article 

    Google Scholar 
    Eason, C. T. et al. Toxicity of cholecalciferol to rats in a multi-species bait. N. Z. J. Ecol. 34(2), 233–236 (2010).
    Google Scholar 
    Pospischil, R. & Schnorbach, H. J. Racumin plus, a new promising rodenticide against rats and mice. In Proceedings of the 16th Vertebrate Pest Conference University of Nebraska, Lincoln, 180–187 (1994.Baldwin, R. A., Meinerz, R. & Witmer, G. W. Cholecalciferol plus diphacinone baits for vole control: A novel approach to a historic problem. J. Pestic. Sci. 89, 129–135 (2016).Article 

    Google Scholar 
    Eason, C. T., Wickstrom, M., Henderson, R., Milne, L. & Arthur, D. Non-target and secondary poisoning risks associated with cholecalciferol. N. Z. Plant Prot. 53, 299–304 (2000).CAS 

    Google Scholar 
    Baldwin, R. A., Meinerz, R. & Witmer, G. W. Are cholecalciferol plus anticoagulant rodenticides a viable option for field rodents? In Proceeding of 27th Vertebrate Pest Conference, 407–410 (University of California Davis, 2016).British Pest Control Association. BASF introduces new Cholecalciferol-based rodenticide bait in Europe. https://bpca.org.uk/News-and-Blog/basf-introduces-new-cholecalciferol-based-rodenticide (2020).Horst, R. L., Napoli, J. L. & Littledike, E. T. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J. 204, 185–189 (1982).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beasley, V. R., Dorman, D. C., Fikes, J. D., Diana, S. G. & Woshner, V. Cholecalciferol-based rodenticides and other vitamin d-containing products. In A Systems Affected Approach to Veterinary Toxicology 445–450 (University of Illinois Press, 1997).
    Google Scholar 
    Jolly, S. E., Eason, C. T. & Frampton, C. Serum calcium levels in response to cholecalciferol and calcium carbonate in the Australian brush-tailed possum. Pestic. Biochem. Physiol. 47, 159–164 (1993).Article 
    CAS 

    Google Scholar 
    Marsh, R. & Tunberg, A. Characteristics of cholecalciferol. Rodent control: Other options. Pest Control Technol. 14, 43–45 (1986).
    Google Scholar 
    Morgan, D. R. & Rhodes, A. T. Feracol® paste bait for possum control—a cage trial. N. Z. Plant Prot. 53, 305–309 (2000).CAS 

    Google Scholar 
    Zainal Abidin, C. M. R. et al. Comparison of effectiveness of introduced barn owls, Tyto javanica javanica, and rodenticide treatments on rat control in oil palm plantations. J. Pest. Sci. 95, 1009–1022. https://doi.org/10.1007/s10340-021-01423-x (2022).Article 
    CAS 

    Google Scholar 
    Erickson, W. & Urban, D. Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach (United States Environmental Protection Agency, Office of Pesticides Programs Environmental Fate and Effects Division, 2004).Khoo, K. C., Peter, A. C. O. & Ho, C. T. Crop Pests and Their Management in Malaysia (Tropical Press Sdn. Bhd, 1991).
    Google Scholar 
    Fisher, P., Eason, C., O’Connor, C., Lee, C. H. & Endepols, S. Coumatetralyl residues in rats and hazards to barn owls. In Rats, Mice and People: Rodent Biology and Management (eds Singleton, G. R. et al.) 457–461 (Australia Centre for International Agricultural Research, 2003).
    Google Scholar 
    Lee, C. H. Secondary Toxicity of Some Rodenticides to Barn Owls. In 4th International Conference of Plant Protection in the Tropics, 28–31 March, Kuala Lumpur, Malaysia 161–163 (1994).Mendenhall, V. M. & Pank, L. F. Secondary poisoning of owls by anticoagulant rodenticides. Wildl. Soc. Bull. 8, 311–315 (1980).
    Google Scholar 
    Saravanan, K. & Kanakasabai, R. Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J. Exp. Biol. 42, 1013–1016 (2004).CAS 
    PubMed 

    Google Scholar 
    Eason, C. T., Wright, G. R., Meikle, L. & Elder, P. The persistence and secondary poisoning risks of sodium monofluoroacetate (1080), brodifacoum, and cholecalciferol in possum. In Proc. 17th Vertebr. Pest Conf. 54–58 (1996).Malaysia Standard: MS1256. Household Insecticide Products-Rat Bait-Chemical, Physical and Biological Efficacy Requirements. (Department of Standard Malaysia, 2007).Swenson, J. & Bradley, G. A. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J. Avian Med. Surg. 27(2), 136–147 (2013).Article 
    PubMed 

    Google Scholar 
    PMEP (Pesticide Management Education Program). Chlorophacinone (Rozol) chemical profile 1/85. Pesticide Management Education Program, Cornell University. http://pmep.cce.cornell.edu/profiles/rodent/chlorophacinone/rodprofchlorophacinone.html (2001).Kaukeinen, D. E., Spragins, C. W. & Hobson, J. F. Risk-benefit considerations in evaluating commensal anticoagulant rodenticide impacts to wildlife. In Proceedings of the Nineteenth Vertebrate Pest Conference, USA (eds Salmon, T. P. & Crabb, A. C.) 245–256 (University of California, 2000).
    Google Scholar 
    Lund, M. The toxicity of chlorophacinone and warfarin to house mice (Mus musculus). J. Hyg. Camb. 69, 69 (1971).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hix, H. The Effectiveness of a Low Dose Cholecalciferol Bait at Killing Rats and Mice (2009).Wood, B. J. & Liau, S. S. Preliminary studies on the toxicity of anti-coagulants to rats of oil palms, with special reference to the prospect of resistance. In International Development in Oil Palm. The Proceedings of the Malaysian International Agricultural of Oil Palm Conference (eds. Earp, DA & Newall, Z). Kuala Lumpur, 14–17 June 1995. The Incorporated Society of Planters, 641–659 (1977).Lee, C. H. & Mustafa, M. D. D. Laboratory evaluation of 0.025% warfarin against Rattus tiomanicus. MARDI Res. 11(2), 132–135 (1983).
    Google Scholar 
    Hagan, E. C. & Radomski, J. L. The toxicity of 3-(acetonylbenzyl)-4-hydroxycoumarin (warfarin) to laboratory animals. J. Am. Pharm. Assoc. 42(379), 382 (1953).
    Google Scholar 
    Hafidzi, M. N; Zulkifli, A. & Kamaruddin, A. A. Barn owl as a biological control agent of rats in paddy fields. In Symposium on Biological Control in the Tropics, 85–88 (Mardi Training Centre, 1999).Lenton, G. M. The feeding and breeding ecology of Barn Owls Tyto alba in Peninsular Malaysia. Int. J. Avian Sci. 126(4), 551–575 (1984).
    Google Scholar 
    Eason, C. T. & Ogilvie, S. A re-evaluation of potential rodenticides for aerial control of rodents. Department of Conservation Research and Development Series 312, Wellington, New Zealand (2009).Gunther, R., Felice, L. J. & Nelson, R. K. Cholecalciferol rodenticide toxicity. J. Am. Vet. Med. Assoc. 193, 211–214 (1988).CAS 
    PubMed 

    Google Scholar 
    Gray, A., Eadsforth, C. V., Dutton, A. J. & Vaughan, J. A. Toxicity of three second generation rodenticides to barn owls. Pestic. Sci. 42, 179–184 (1994).Article 
    CAS 

    Google Scholar 
    Lutz, W. Study on the possible secondary-poisoning hazard to buzzards (Buteo buteo) by the rodenticide bromadiolone. Unpubl. Report for BBA, Forschungsstelle für Jagdkunde und Wildschadenverhütung. Bonn (DE) (in German) (1986).Grolleau, G., Lorgue, G. & Nahas, K. Toxicitd secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des pr6dateurs de rongeurs champétres: Buse variable (Buteo buteo) et hermine (Mustela erminea). OEPP/EPPO. 19, 633–648 (1989).Article 

    Google Scholar 
    Riedel, M., Riedel, B. & Schlegelmilch, H. Risk of secondary intoxication for birds of prey and owls following use of chlorophacinone baits against common voles. Unpubl. Report (in German) (1991.).Radvanyi, A., Weaver, P., Massari, C., Bird, D. & Broughton, E. Effects of chlorophacinone on captive kestrels. Environ. Contam. Toxicol. 41, 441–448 (1988).Article 
    CAS 

    Google Scholar 
    Rattner, B. A. et al. Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors. Ecotoxicology 24, 720–734. https://doi.org/10.1007/s10646-015-1418-8 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. & Johnston, J. J. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33(1), 8 (2014).Article 

    Google Scholar 
    Sánchez-Barbudo, I. S., Camarero, P. R. & Mateo, R. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420, 280–288 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Evans, J. & Ward, A. L. Secondary poisoning associated with anticoagulant-killed nutria. JAVMA 151, 856–861 (1967).CAS 
    PubMed 

    Google Scholar 
    Prier, M. S. & Derse, P. H. Evaluation of the hazard of secondary poisoning by warfarin poisoned rodents. JAVMA 140, 351–354 (1962).CAS 
    PubMed 

    Google Scholar 
    Townsend, M. G., Bunyan, P. J., Odam, E. M., Stanley, P. I. & Wardall, H. P. Assessment of secondary poisoning hazard of warfarin to least weasels. J. Wildl. Manag. 48, 628–632 (1984).Article 
    CAS 

    Google Scholar  More

  • in

    Identifying ways of producing pigs more sustainably: tradeoffs and co-benefits in land and antimicrobial use

    Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gerber, P. J. et al. Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Food Agric. Organ. U. N. (FAO) Rome https://doi.org/10.1016/j.anifeedsci.2011.04.074 (2013).Article 

    Google Scholar 
    Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2, 724–732 (2021).Article 
    CAS 

    Google Scholar 
    Landers, T. F., Cohen, B., Wittum, T. E. & Larson, E. L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127, 4–22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science (80-) 357, 1350–1352 (2017).Article 
    ADS 

    Google Scholar 
    Henchion, M., Moloney, A. P., Hyland, J., Zimmermann, J. & McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15, 100287 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mehrabi, Z., Gill, M., van Wijk, M., Herrero, M. & Ramankutty, N. Livestock policy for sustainable development. Nat. Food 1(3), 160–165 (2020).Article 

    Google Scholar 
    Godfray, C. J. H. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 
    PubMed 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science (80-) 360, 987–992 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Resare Sahlin, K., Röös, E. & Gordon, L. J. ‘Less but better’ meat is a sustainability message in need of clarity. Nat. Food 1(9), 520–522 (2020).Article 

    Google Scholar 
    van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 

    Google Scholar 
    Roos, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. Policy Dimens. 47, 1–12 (2017).Article 

    Google Scholar 
    Lipsitch, M., Singer, R. S. & Levin, B. R. Antibiotics in agriculture: When is it time to close the barn door?. Proc. Natl. Acad. Sci. USA 99, 5752–5754 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. Concentrating versus spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).Article 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ye, X. et al. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).Article 
    PubMed 

    Google Scholar 
    Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022).Article 
    CAS 

    Google Scholar 
    Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 99, 6434–6439 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albernaz-Gonçalves, R., Antillón, G. O. & Hötzel, M. J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 12, 1–21 (2022).Article 

    Google Scholar 
    Elliott, K. A., Kenny, C. & Madan, J. A global treaty to reduce antimicrobial use in livestock. Cent. Glob. Dev. 102, 27 (2017).
    Google Scholar 
    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. 112, 5649–5654 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalmar, L. et al. HAM-ART: An optimised culture-free Hi–C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet. 18, e1009776 (2021).Article 

    Google Scholar 
    Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435–3440 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 1–14 (2020).Article 

    Google Scholar 
    Rushton, J. et al. Antimicrobial resistance the use of antimicrobials in the livestock sector. https://doi.org/10.1787/5jxvl3dwk3f0-en (2014)Gonzalez-Mejia, A., Styles, D., Wilson, P. & Gibbons, J. Metrics and methods for characterizing dairy farm intensification using farm survey data. Plus One https://doi.org/10.1371/journal.pone.0195286 (2018).Article 

    Google Scholar 
    Struik, P. C. & Kuyper, T. W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 37, 1–15 (2017).Article 

    Google Scholar 
    Vissers, L. S. M., Saatkamp, H. W. & Oude Lansink, A. G. J. M. Analysis of synergies and trade-offs between animal welfare, ammonia emission, particulate matter emission and antibiotic use in Dutch broiler production systems. Agric. Syst. 189, 103070 (2021).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science (81-) 341, 33–34 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Bright-Ponte, S. J. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health 67, 1–5 (2020).Article 
    PubMed 

    Google Scholar 
    Price, L. B., Koch, B. J. & Hungate, B. A. Ominous projections for global antibiotic use in food-animal production. Proc. Natl. Acad. Sci. USA 112, 5554–5555 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    EMA. Categorisation of antibiotics in the European Union. Eur. Med. Agency 31, 73 (2019).
    Google Scholar 
    Vellinga, T. V et al. in Title Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. http://www.livestockresearch.wur.nl (2013).Benjamins, D. in Oxford Sandy & Black pigs as a method of weed control. When do they stop being an asset and start becoming a problem? (2002).Henney, J. in An evaluation of the use of pigs as a method of bracken control Dissertation. (2012).Espinosa, R., Tago, D. & Treich, N. Infectious diseases and meat production. Environ. Resour. Econ. 76, 1019–1044 (2020).Article 

    Google Scholar 
    Gilbert, W., Thomas, L. F., Coyne, L. & Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 15, 100123 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    DEFRA. Monthly UK statistics on cattle, sheep and pig slaughter and meat production—Statistics notice (data to March 2022)—GOV.UK. 2022 https://www.gov.uk/government/statistics/cattle-sheep-and-pig-slaughter/monthly-uk-statistics-on-cattle-sheep-and-pig-slaughter-and-meat-production-statistics-notice-data-to-february-2022.Driver, A. Highlighting the differences—How UK welfare standards compare with our competitors. PIGWORLD (2017).DEFRA. in Code of practice for the welfare of PIGS © National Pig Association. www.gov.uk/defra (2020).Red Tractor. Pigs Standards. 17–19 (2017).QMS. 2020 Pig Standards. www.gov.uk/animal-welfare-in-severe-weather%0A. https://assurance.redtractor.org.uk/contentfiles/Farmers-6801.pdf?_=636504999253492650 (2019).RSPCA. RSPCA Welfare Standards for Pigs. (2016).Soil Association. Soil Association organic standards farming and growing. Farming and Growing Organic Standards www.soilassociation.org/organicstandards (2016).Organic Food Federation. Organic food federation production standards. (2016).Moakes, S., Lampkin, N. & Gerrard, C. L. Organic farm incomes in England and Wales 2010/11 (OF 0373). (2012).Hossard, L. et al. A meta-analysis of maize and wheat yields in low-input vs. conventional and organic systems. Agron. J. 108, 1155–1167 (2016).Article 
    CAS 

    Google Scholar 
    De Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    FAOSTAT. http://www.fao.org/faostat/en/#home (2022).EMA. Principles on assignment of defined daily dose for animals (DDDvet) and defined course dose for animals (DCDvet). 44, 68 (2015).Ogle, D., Doll, J., Wheeler, P. & Dinno, A. Package ‘FSA’. (2022).Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. (2021).Mangiafico, S. Package ‘ rcompanion ’. (2022).Arnold, J. B. Package ‘ ggthemes ’. (2021).Pedersen, T. L. Patchwork: The Composer of Plots. Cran (2020).Wickham, H. et al. Package ‘ggplot2’. (2021). More

  • in

    Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles

    Ultra-small prokaryotes were prevalent across diverse aquifer lithologies and anoxic to oxic groundwatersWe used 16S rRNA gene amplicons to assess microbial community composition in 81 groundwater samples. Samples were collected from 59 wells over 10 aquifers in four geographic regions, separated by over a thousand kilometers, and encompassed wide-ranging aquifer chemistries and lithologies (Fig. 1a), comprising primarily shallow sandy-gravel aquifers, but also sand/silt, gravel/peat, volcanic (basalt, ignimbrite) and shell-bed aquifers (Table S1). A large portion of microbial community diversity comprised ultra-small groups of prokaryotes (Fig. 1b). Out of 52,553 OTUs, 21.8% (or 18.4% of 46,713 ASVs) were assigned to seven ultra-small microbial phyla (when considering CPR as the single Patescibacteria phylum). These comprised the bacterial phyla Patescibacteria and Dependentiae, and archaeal DPANN radiation. Altiarchaeota was included in DPANN as previously suggested [63, 64], although its taxonomic placement is uncertain due to genomic under-sampling [65, 66].Fig. 1: Distribution and abundance of ultra-small prokaryotes across groundwater sites.a Distribution of groundwater samples along DOC (0–26 g/m3), DO (0.37–7.5 g/m3) and nitrate-N (0.45–12.6 g/m3) concentrations scaled between 0 and 100. b Top plot: Richness of ultra-small prokaryote variants (rarefied ASVs) at each site. Middle plot: Proportion of ultra-small prokaryotes compared with the total microbial communities (black bars = OTUs, grey crosses = ASVs). Samples are ordered from least to most abundant. Lower plot: Phylum-level breakdown of amplicon based-relative abundance of Patescibacteria, Dependentiae and DPANN archaea (bottom). Symbol bars indicate aquifer lithology (top symbol bar), and oxygen content (lower symbol bar) with dark to light blue shading representing anoxic, suboxic, dysoxic to oxic groundwater. c Class-level rank abundance curve showing the average relative abundance of each genome across sites. The center line of each boxplot represents the median; the top and bottom lines are the first and third quartiles, respectively; and the whiskers show 1.5 times the interquartile range.Full size imageUltra-small prokaryotes were detected in all samples, regardless of lithology, chemistry or geography. They have also been reported from several aquifers and lithologies in the USA (sandy gravel, agriculturally-impacted river sediment, mixed marine sedimentary/metasedimentary rocks, plutonic rock, and sandstone [10, 18, 19, 22], and from a carbonate rock aquifer system in Germany [67, 68]. Collectively these findings demonstrate that ultra-small microorganisms are geographically widespread across diverse aquifer lithologies. Moreover, while ultra-small microorganisms have mostly been detected in anoxic environments [69,70,71,72] or cultivated under anoxic conditions [15, 25], we found representatives in all oxic groundwaters ( >3 mg/L DO) [73] (54/81 samples, Table S1). A few members of DPANN and Patescibacteria lineages have previously been detected in oxic environments [28, 67, 68, 74, 75], suggesting a degree of oxygen tolerance (genetic evidence presented below) or that these organisms are concentrated in anoxic niches within the aquifer substrate.The relative abundance of ultra-small microorganisms was highly variable across the studied aquifers, ranging from 0.04% to 22% of all bacterial and archaeal 16S rRNA gene sequences (7.2% average ±5.5% standard deviation; Fig. 1b). Samples with low relative abundances of ultra-small microorganisms (lower than the average) had overall lower alpha diversity (Shannon diversity indices and OTU or ASV richness) and were mostly from volcanic aquifer sites (Fig. 1b; Table S2). At the phylum level, Patescibacteria and Nanoarchaeota tended to dominate groundwater ultra-small communities (Fig. 1b). However, we found that ultra-small species level diversity overall was considerable with up to 1429 unique OTUs in a single groundwater sample (or up to 653 variants via the more conservative ASV method) (Table S2). Rarefaction curves show most variant diversity was captured across all samples, with curve slopes equaling zero (or approaching zero post rarefaction) (Fig. S1; Table S2). Finally, our results confirm the site specificity of ultra-small prokaryotes [10], with only 16 OTUs common across ≥50% of all 81 groundwater samples, or five ASVs across ≥20% of samples (three Parcubacteria, a Ca. Uhrbacteria, and a Woesearchaeales) (Table S2).High shared phylogenetic and genomic similarity to ultra-small prokaryotes from groundwaters elsewhereTo further assess the phylogeny and assess the genomic attributes and metabolic capacities of groundwater microbial communities, we reconstructed MAGs from 16 groundwater samples (eight wells over four sites and two aquifers). The dataset comprised 7,695 MAGs, including 539 unique MAGs ( >50% complete, 90% complete) (Table S3; Fig. S2). Based on phylogenetic analysis using GTDB [7, 76], MAGs represent 51 phyla, including five ultra-small microbial phyla (Table S3; Fig. S3). The ultra-small MAGs were found at all four sites and accounted for >1/3 of all unique MAGs (216 MAGs 50–100% complete, with 76 MAGs >90% complete). MAGs included 171 assigned to Patescibacteria, six to Dependentiae, and 39 to DPANN archaea (28 Nanoarchaeota, 10 Micrarchaeota, and one Altiarchaeota; Fig. 2a, b). The high representation of ultra-small prokaryotes in the MAG dataset further highlights the prevalence, diversity and abundance of these organisms in groundwater. Consistent with previous studies [6, 9, 77], genomes of ultra-small prokaryotes were small (1 ± 0.4 Mbp on average) with a tendency towards low GC contents (Figs. 3a, S2), and possessed limited metabolic capacities, which significantly differ between ultra-small bacterial and archaeal domains (results in Supplementary Materials; Figs. 3b, S2, S4).Fig. 2: Diversity of groundwater ultra-small microbial communities.Maximum likelihood phylogenetic trees of 177 unique ultra-small bacterial MAGs (a) and 39 unique ultra-small archaeal MAGs (b) recovered in this study. Outer rings indicate the site characteristics where MAGs were enriched. Enrichment factors were calculated as (average relative abundance in oxic and planktonic ultra-small microbial communities, respectively)/(average relative abundance in anoxic-to-dysoxic or sediment-enriched microbial communities, respectively). Trees are based on either 120 concatenated bacterial marker genes or 122 concatenated archaeal marker genes from GTDB-Tk, and were rooted to other groundwater bacterial and archaeal MAGs, respectively (Table S3). Scale bars indicate the number of substitutions per site. Branch background shading denotes Patescibacteria classes (clockwise): Gracilibacteria, Saccharimonadia, UBA1384, Dojkabacteria, Microgenomatia, Doudnabacteria, ABY1, Paceibacteria_A and Paceibacteria. c Proportion of ultra-small microbial OTUs (top) and MAGs (bottom) enriched in low and high oxygen groundwater, and in planktonic and sediment-enriched samples (Table S1). Enrichment factors were calculated as described above.Full size imageFig. 3: Estimated genome size, metabolic content and novelty of groundwater ultra-small prokaryotes.a Estimated genome size of groundwater MAGs calculated as (bin size – (bin size * contamination)) / (completeness), as described by Castelle et al. [9]. Genomes of ultra-small prokaryotes are colored by phylum-level. Other microbial genomes are shown in grey. b Principal Component Analysis (PCA) based on the composition of COG metabolic categories in recovered ultra-small MAGs. c (Right) Range of all pairwise AAI values (grey) and maximum AAI values (blue) between ultra-small prokaryote MAGs recovered in this study and GTDB representative genomes for a given phylum. Red dashed lines represent the AAI range defining the same family of organisms (45–65%) [74]. The number of genomes included in this analysis is indicated for each phylum in brackets. (Left) Proportion of ultra-small prokaryotic MAGs reconstructed in this study classified at each taxonomic level using GTDB-Tk.Full size imageCompared to reference genomes (GTDB species representatives), all recovered ultra-small MAGs are predicted to be novel species [78], and almost half were novel groundwater genera (Fig. 3c, results in Supplementary Materials). Most shared the highest affinity matches with other ultra-small genomes derived from aquifers elsewhere (e.g., in the USA), indicating niche adaptation within these lineages (although ultra-small MAGs from these groundwater ecosystems are over-represented in the GTDB database). Niche-specific phylogenetic conservation among geographically distant microorganisms in groundwater has likewise been reported among geographically distant anammox bacteria in groundwater [30].Ultra-small microbial communities were structured by geography, lithology, and dissolved oxygen concentrationsWhile ultra-small prokaryotes were ubiquitous in groundwater, and overall highly similar to those found in groundwater at different global locations, community compositions varied across sites. To investigate environmental factors (Table S1) influencing ultra-small community composition, we performed distance-based redundancy analysis (Fig. 4a). DO, pH, nitrate-N, sulfate, and DOC were significantly associated with differences in the distribution of 16S rRNA gene amplicon sequences annotated as Patescibacteria, Dependentiae and DPANN (permutation test, p  More

  • in

    Understanding microbial activity with isotope labelling of DNA

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887 (2009).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Shen, M. et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 633–651 (2022).Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).Article 

    Google Scholar 
    Park, H., Jeong, S.-J., Ho, C.-H., Park, C.-E. & Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 217, 191–202 (2018).Article 

    Google Scholar 
    IPCC. Summary for Policymakers (Cambridge Univ. Press, 2013).Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).Article 

    Google Scholar 
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Ye, W., van Dijk, A. I. J. M., Huete, A. & Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf. 94, 102238 (2021).
    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Shen, M. et al. Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agric. For. Meteorol. 313, 108759 (2022).Article 

    Google Scholar 
    Zhang, C., Li, S., Luo, F. & Huang, Z. The global warming hiatus has faded away: an analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 39, 4853–4868 (2019).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 29, 203–207 (2013).Article 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the northern hemisphere during 1982–2012. PLoS ONE 11, e0157134 (2016).Article 

    Google Scholar 
    Chen, L. et al. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Change Biol. 24, 3969–3975 (2018).Article 

    Google Scholar 
    Ren, S., Yi, S. Peichl, M. & Wang, X. Diverse responses of vegetation phenology to climate change in different grasslands in inner Mongolia during 2000–2016. Remote Sens. 10, 17 (2017).Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. USA 115, 1004–1008 (2018).Article 

    Google Scholar 
    Zhu, Z. et al. The accelerating land carbon sink of the 2000s may not be driven predominantly by the warming Hiatus. Geophys. Res. Lett. 45, 1402–1409 (2018).Article 

    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).Article 

    Google Scholar 
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845 (2020).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018). More

  • in

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Quantitative Biodiversity Dynamics, Ecology and Biodiversity, Utrecht University Botanic Gardens, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The NetherlandsEdwin PosNaturalis Biodiversity Center, PO Box 9517, Leiden, 2300 RA, The NetherlandsEdwin Pos, Olaf S. Bánki, Paul Maas, Tinde R. van Andel & Hans ter SteegeCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilLuiz de Souza Coelho, Diogenes de Andrade Lima Filho, Iêda Leão Amaral, Francisca Dionízia de Almeida Matos, Mariana Victória Irume, Maria Pires Martins, José Ferreira Ramos, Juan Carlos Montero, Charles Eugene Zartman, Henrique Eduardo Mendonça Nascimento, Juan David Cardenas Revilla, Flávia R. C. Costa, Juliana Schietti, Priscila Souza, Rogerio Gribel, Marcelo Petratti Pansonato, Edelcilio Marques Barbosa, Luiz Carlos de Matos Bonates, Ires Paula de Andrade Miranda & Cid FerreiraPrograma Professor Visitante Nacional Sênior Na Amazônia – CAPES, Universidade Federal Rural da Amazônia, Av. Perimetral, s/n, Belém, PA, BrazilRafael P. SalomãoCoordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA, 66040-170, BrazilRafael P. Salomão, Ima Célia Guimarães Vieira, Leandro Valle Ferreira & Dário Dantas do AmaralEMBRAPA – Centro de Pesquisa Agroflorestal de Roraima, BR 174, km 8 – Distrito Industrial, Boa Vista, RR, 69301-970, BrazilCarolina V. CastilhoSchool of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UKOliver L. Phillips, Euridice N. Honorio Coronado, Ted R. Feldpausch, Roel Brienen, Fernanda Coelho de Souza, Tim R. Baker, Aurora Levesley, Karina Melgaço & Georgia PickavanceGrupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de Las Américas, Campus Queri, Quito, EcuadorJuan Ernesto GuevaraKeller Science Action Center, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USAJuan Ernesto GuevaraDepartamento de Botânica, Instituto de Pesquisas Científicas e Tecnológicas do Amapá – IEPA, Rodovia JK, Km 10, Campus Do IEPA da Fazendinha, Amapá, 68901-025, BrazilMarcelo de Jesus Veiga Carim & José Renan da Silva GuimarãesHerbario Amazónico Colombiano, Instituto SINCHI, Calle 20 No 5-44, Bogotá, DC, ColombiaDairon Cárdenas López & Nicolás Castaño ArboledaCoordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilWilliam E. Magnusson, Alberto Vicentini, Thaise Emilio, Fernanda Antunes Carvalho & Fernanda Coelho de SouzaDepartment of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology – KIT, Josefstr.1, 76437, Rastatt, GermanyFlorian Wittmann & John Ethan HouseholderBiogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128, Mainz, GermanyFlorian WittmannAMAP, IRD, Cirad, CNRS, INRA, Université de Montpellier, 34398, Montpellier, FranceDaniel Sabatier, Jean-François Molino, Julien Engel & Émile FontyCoordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilMaria Teresa Fernandez Piedade, Jochen Schöngart, Layon O. Demarchi, Adriano Quaresma, Aline Lopes, Daniel Praia Portela de Aguiar, Bianca Weiss Albuquerque & Maira RochaScience and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USANigel C. A. Pitman & Corine VriesendorpJardín Botánico de Missouri, Oxapampa, Pasco, PeruAbel Monteagudo Mendoza, Rodolfo Vasquez & Luis Valenzuela GamarraApplied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UKJoseph E. HawesICNHS, Universidade Federal de Mato Grosso, Av. Alexandre Ferronato, 1200, Sinop, MT, 78557-267, BrazilEverton José Almeida, Luciane Ferreira Barbosa, Larissa Cavalheiro & Márcia Cléia Vilela dos SantosDepartamento de Ecologia, Universidade Estadual Paulista – UNESP – Instituto de Biociências – IB, Av. 24 A, 1515, Bela Vista, Rio Claro, SP, 13506-900, BrazilBruno Garcia LuizeDivisao de Sensoriamento Remoto – DSR, Instituto Nacional de Pesquisas Espaciais – INPE, Av. Dos Astronautas, 1758, Jardim da Granja, São José Dos Campos, SP, 12227-010, BrazilEvlyn Márcia Moraes de Leão NovoHerbario Vargas, Universidad Nacional de San Antonio Abad del Cusco, Avenida de La Cultura, Nro 733, Cusco, Cuzco, PeruPercy Núñez Vargas, Isau Huamantupa-Chuquimaco & William Farfan-RiosBiological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UKThiago Sanna Freire SilvaCentro de Biociências, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, Natal, RN, 59072-970, BrazilEduardo Martins VenticinqueDepartamento de Biologia, Universidade Federal de Rondônia, Rodovia BR 364 s/n Km 9, 5 – Sentido Acre, Unir, Porto Velho, RO, 76.824-027, BrazilAngelo Gilberto ManzattoPrograma de Pós- Graduação em Biodiversidade e Biotecnologia PPG- Bionorte, Universidade Federal de Rondônia, Campus Porto Velho Km 9, 5 Bairro Rural, Porto Velho, RO, 76.824-027, BrazilNeidiane Farias Costa Reis, Katia Regina Casula, Susamar Pansini & Adeilza Felipe SampaioDepartment of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USAJohn TerborghCentre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Cairns, QLD, 4870, AustraliaJohn Terborgh, William F. Laurance & Susan G. W. LauranceInstituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruEuridice N. Honorio CoronadoInstituto Boliviano de Investigacion Forestal, Av. 6 de Agosto #28, Km. 14, Doble via La Guardia, 6204, Santa Cruz, Santa Cruz, Casilla, BoliviaJuan Carlos Montero & Juan Carlos LiconaPrograma de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, BrazilBeatriz S. Marimon & Ben Hur Marimon-JuniorGeography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UKTed R. Feldpausch & Toby PenningtonDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Calle 64 X Cra 65, 1027, Medellín, Antioquia, ColombiaAlvaro Duque & Ligia Estela Urrego GiraldoInternational Center for Tropical Botany (ICTB) Department of Biological Sciences, Florida International University, 11200 SW 8Th Street, OE 243, Miami, FL, 33199, USAChris Baraloto, Julien Engel & Freddie DraperCirad UMR Ecofog, AgrosParisTech, CNRS, INRA, Univ Guyane, Campus Agronomique, 97379, Kourou Cedex, FrancePascal PetronelliAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenFacultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Santa Cruz, BoliviaBonifacio MostacedoNatural History Museum, University of Oslo, Postboks 1172, 0318, Oslo, NorwayRafael L. AssisCentro de Investigaciones Ecológicas de Guayana, Universidad Nacional Experimental de Guayana, Calle Chile, Urbaniz Chilemex, Puerto Ordaz, Bolivar, VenezuelaHernán Castellanos & Lionel HernandezPrédio da Botânica e Ecologia, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte, Brasilia, DF, 70770-917, BrazilMarcelo Brilhante de Medeiros & Marcelo Fragomeni SimonProjeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, BrazilAna Andrade & José Luís CamargoLaboratório de Ecologia de Doenças Transmissíveis da Amazônia (EDTA), Instituto Leônidas e Maria Deane, Fiocruz, Rua Terezina, 476, Adrianópolis, Manaus, AM, 69060-001, BrazilEmanuelle de Sousa FariasPrograma de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz – IOC/FIOCRUZ, Pav. Arthur Neiva – Térreo, Av. Brasil, 4365 – Manguinhos, Rio de Janeiro, RJ, 21040-360, BrazilEmanuelle de Sousa FariasInstituto de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilMaria Aparecida LopesPrograma de Pós-Graduação em Ecologia, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilJosé Leonardo Lima MagalhãesEmbrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro S/nº, Belém, PA, 66095-100, BrazilJosé Leonardo Lima Magalhães, Joice Ferreira & Ademir R. RuschelDiretoria Técnico-Científica, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, 2584, Tefé, AM, 69470-000, BrazilHelder Lima de QueirozPrograma de Ciencias del Agro y el Mar, Herbario Universitario (PORT), UNELLEZ-Guanare, Guanare, Portuguesa, 3350, VenezuelaGerardo A. C. AymardInstituto de Biociências – Department of Botanica, Universidade de Sao Paulo – USP, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, BrazilBruno Barçante Ladvocat CintraLaboratorio de Ecología de Bosques Tropicales y Primatología, Universidad de los Andes, Carrera 1 # 18a- 10, 111711, Bogotá, DC, ColombiaPablo R. Stevenson, Angela Cano, Diego F. Correa, Sasha Cárdenas & Luisa Fernanda CasasPrograma de Pós-Graduação Em Biologia (Botânica), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilYuri Oliveira FeitosaInstitute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam, 1098 XH, The NetherlandsJoost F. DuivenvoordenEndangered Species Coalition, 8530 Geren Rd., Silver Spring, MD, 20901, USAHugo F. MogollónInventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, VA, 22405, USAJames A. ComiskeyCenter for Conservation and Sustainability, Smithsonian Conservation Biology Institute, 1100 Jefferson Dr. SW, Suite 3123, Washington, DC, 20560-0705, USAJames A. Comiskey, Alfonso Alonso, Francisco Dallmeier & Reynaldo Linares-PalominoDepartment of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA, 94305, USAFreddie DraperUniversidade Federal do Amapá, Ciências Ambientais, Rod. Juscelino Kubitschek km2, Macapá, AP, 68902-280, BrazilJosé Julio de Toledo & Renato Richard HilárioDepartment of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USAGabriel Damasco, Paul V. A. Fine & Italo MesonesBiologia Vegetal, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, SP, 13.083-970, BrazilNállarett DávilaDepartment of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, NY, 14850, USARoosevelt García-VillacortaPeruvian Center for Biodiversity and Conservation (PCBC), Iquitos, PeruRoosevelt García-VillacortaDepartment of Ecology, University of Brasilia, Brasilia, DF, 70904-970, BrazilAline LopesICNHS, Federal University of Mato Grosso, Av. Alexandre Ferronato 1200, Setor Industrial, Sinop, MT, 78.557-267, BrazilJanaína Costa Noronha, Flávia Rodrigues Barbosa, Rainiellen de Sá Carpanedo & Domingos de Jesus RodriguesNatural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UKThaise Emilio & William MillikenPrograma de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilCarolina LevisForest Ecology and Forest Management Group, Wageningen University and Research, Droevendaalsesteeg 3, P.O. Box 47, Wageningen, 6700 AA, The NetherlandsCarolina Levis & Lourens PoorterEscola de Negócios Tecnologia e Inovação, Centro Universitário do Pará, Belém, PA, BrazilVitor H. F. GomesUniversidade Federal do Pará, Rua Augusto Corrêa 01, Belém, PA, 66075-110, BrazilVitor H. F. GomesFaculty of Natural Sciences, Department of Life Sciences, Imperial College London, South Kensington Campus, Silwood ParkLondon, SW7 2AZ, UKJon LloydEcosistemas, Biodiversidad y Conservación de Especies, Universidad Estatal Amazónica, Km. 2 1/2 Vía a Tena (Paso Lateral), Puyo, Pastaza, EcuadorDavid NeillMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565 Casilla Post Al 2489, Santa Cruz, Santa Cruz, BoliviaAlejandro Araujo-Murakami, Luzmila Arroyo & Daniel VillarroelDepartamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, 31270-901, BrazilFernanda Antunes CarvalhoDepartment of Biology, University of Miami, Coral Gables, FL, 33146, USAKenneth J. FeeleyFairchild Tropical Botanic Garden, Coral Gables, FL, 33156, USAKenneth J. FeeleyInstituto de Biociências – Dept. Ecologia, Universidade de Sao Paulo – USP, Rua do Matão, Trav. 14, No. 321, Cidade Universitária, São Paulo, SP, 05508-090, BrazilMarcelo Petratti Pansonato, Alexandre A. Oliveira & Cláudia BaiderLancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, Lancashire, UKJos Barlow & Erika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, OX1 3QY, Oxfordshire, UKErika BerenguerEmpresa Brasileira de Pesquisa Agropecuária, Embrapa Amapá, Rod. Juscelino Kubitschek Km 5, Macapá, Amapá, 68903-419, BrazilMarcelino Carneiro Guedes & Janaina Barbosa Pedrosa CostaGrupo de Ecología y Conservación de Fauna y Flora Silvestre, Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Amazonas, ColombiaEliana M. JimenezUniversidad Regional Amazónica IKIAM, Km 7 Via Muyuna, Tena, Napo, EcuadorMaria Cristina Peñuela MoraSchool of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UKCarlos A. PeresDireccíon de Evaluación Forestal y de Fauna Silvestre, Av. Javier Praod Oeste 693, Magdalena del Mar, PeruBoris Eduardo Villa ZegarraEscuela de Biología Herbario Alfredo Paredes, Universidad Central, Ap. Postal 17.01.2177, Quito, Pichincha, EcuadorCarlos CerónDepartment of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USATerry W. HenkelMuseu Universitário / Centro de Ciências Biológicas e da Natureza / Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, 69915-559, BrazilMarcos SilveiraInstitute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceio, AL, 57072-970, BrazilJuliana StroppIwokrama International Centre for Rain Forest Conservation and Development, Georgetown, GuyanaRaquel Thomas-CaesarNew York Botanical Garden, 2900 Southern Blvd, Bronx, New York, NY, 10458-5126, USADoug DalySchool of Geosciences, University of Edinburgh, 201 Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UKKyle G. DexterTropical Diversity Section, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, Scotland, UKKyle G. Dexter & Toby PenningtonServicios de Biodiversidad EIRL, Jr. Independencia 405, Iquitos, Loreto, 784, PeruMarcos Ríos Paredes, Hilda Paulette Dávila Doza, George Pepe Gallardo Gonzales & Linder Felipe Mozombite PintoHerbario Nacional de Bolivia, Universitario UMSA, Casilla 10077 Correo Central, La Paz, La Paz, BoliviaAlfredo FuentesCenter for Conservation and Sustainable Development, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO, 63166-0299, USAAlfredo Fuentes, J. Sebastián Tello & William Farfan-RiosUniversidad Nacional de Jaén, Carretera Jaén San Ignacio Km 23, Jaén, Cajamarca, 06801, PeruJosé Luis Marcelo PenaBiology Department and Center for Energy, Environment and Sustainability, Wake Forest University, 1834 Wake Forest Rd, Winston Salem, NC, 27106, USAMiles R. Silman & Karina Garcia-CabreraLaboratoire Evolution et Diversité Biologique, CNRS and Université Paul Sabatier, UMR 5174 EDB, 31000, Toulouse, FranceJerome ChaveAndes to Amazon Biodiversity Program, Madre de Dios, Madre de Dios, PeruFernando Cornejo ValverdeDepartment of Anthropology, University of Texas at Austin, SAC 5.150, 2201 Speedway Stop C3200, Austin, TX, 78712, USAAnthony Di FioreFundación Puerto Rastrojo, Cra 10 No. 24-76 Oficina 1201, Bogotá, DC, ColombiaJuan Fernando PhillipsColegio de Ciencias Biológicas y Ambientales-COCIBA and Galapagos Institute for the Arts and Sciences-GAIAS, Universidad San Francisco de Quito-USFQ, Quito, Pichincha, EcuadorGonzalo Rivas-TorresDepartment of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USAGonzalo Rivas-TorresBiosystematics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The NetherlandsTinde R. van AndelFundación Estación de Biología, Cra 10 No. 24-76 Oficina, 1201, Bogotá, DC, ColombiaPatricio von HildebrandDirection Régionale de la Guyane, ONF, Cayenne, 97300, French GuianaÉmile FontyPROTERRA, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruRicardo Zárate GómezACEER Foundation, Jirón Cusco N° 370, Puerto Maldonado, Madre de Dios, PeruTherany GonzalesDepartement EV, Muséum National d’histoire Naturelle de Paris, 16 Rue Buffon, Paris, 75005, FranceJean-Louis GuillaumetAmazon Conservation Team, Doekhieweg Oost #24, Paramaribo, SurinameBruce HoffmanInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, SpainAndré Braga JunqueiraEnvironmental Change Institute, Dyson Perrins Building, Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, England, UKYadvinder MalhiInstituto de Ciencias Naturales, Universidad Nacional de Colombia, 7945, Apartado, Bogotá, DC, ColombiaAdriana Prieto & Agustín RudasInstituto de Ciência Agrárias, Universidade Federal Rural da Amazônia, Av. Presidente Tancredo Neves 2501, Belém, PA, 66.077-830, BrazilNatalino SilvaEscuela Profesional de Ingeniería Forestal, Universidad Nacional de San Antonio Abad del Cusco, Jirón San Martín 451, Puerto Maldonado, Madre de Dios, PeruCésar I. A. VelaUniversidad Autónoma del Beni José Ballivián, Campus Universitario Final, Av. Ejercito, Riberalta, Beni, BoliviaVincent Antoine VosLaboratory of Human Ecology, Instituto Venezolano de Investigaciones Científicas – IVIC, Ado 20632, Caracas, 1020A, DC, VenezuelaEgleé L. Zent & Stanford ZentCambridge University Botanic Garden, 1 Brookside., Cambridge, CB2 1JE, UKAngela CanoSchool of Agriculture and Food Sciences – ARC Centre of Excellence for Environmental Decisions CEED, The University of Queensland, St. Lucia, QLD, 4072, AustraliaDiego F. CorreaPlant Biology Department, Rua Monteiro Lobato, University of Campinas, 255, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, CEP 13083-862, BrazilBernardo Monteiro FloresResource Ecology Group, Wageningen University and Research, Droevendaalsesteeg 3a, Lumen, Building Number 100, Wageningen, Gelderland, 6708 PB, The NetherlandsMilena HolmgrenLaboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos, Goyatacazes, RJ, 28013-620, BrazilMarcelo Trindade NascimentoInstituto de Investigaciones Para el Desarrollo Forestal (INDEFOR), Universidad de los Andes, Conjunto Forestal, Mérida, Mérida, 5101, VenezuelaHirma Ramirez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaDepartamento de Biologia, Universidade Federal do Amazonas – UFAM – Instituto de Ciências Biológicas – ICB1, Av General Rodrigo Octavio 6200, Manaus, AM, 69080-900, BrazilVeridiana Vizoni ScudellerGeoIS, el Día 369 y el Telégrafo, 3° Piso, Quito, Pichincha, EcuadorRodrigo Sierra & Milton TiradoDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USAMaria Natalia UmañaUniversity of Nottingham, University Park, Nottingham, NG7 2RD, UKGeertje van der HeijdenSchool of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195-2100, USAEmilio Vilanova TorreEnvironmental Science and Policy, Northern Arizona University, Flagstaff, AZ, 86011, USAOphelia WangGeography and the Environment, University of Texas at Austin, 305 E. 23Rd Street, CLA Building, Austin, TX, 78712, USAKenneth R. YoungMedio Ambiente, PLUSPRETOL, Iquitos, Loreto, PeruManuel Augusto Ahuite ReateguiThe Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, Reduit, 80835, MauritiusCláudia BaiderDepartment of Bioscience, Aarhus University, Building 1540 Ny Munkegade, 8000, Aarhus C, Aarhus, DenmarkHenrik BalslevLiving Earth Collaborative, Washington University in Saint Louis, St. Louis, MO, 63130, USAWilliam Farfan-RiosEscuela de Ciencias Forestales (ESFOR), Universidad Mayor de San Simon (UMSS), Sacta, Cochabamba, BoliviaCasimiro MendozaFOMABO, Manejo Forestal en Las Tierras Tropicales de Bolivia, Sacta, Cochabamba, BoliviaCasimiro MendozaTropenbos International, Lawickse Allee 11, PO Box 232, Wageningen, 6700 AE, The NetherlandsRoderick ZagtSchool of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UKMiguel N. AlexiadesHerbario Nacional del Ecuador, Universidad Técnica del Norte, Quito, Pichincha, EcuadorWalter Palacios CuencaInstituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará, Rua Vera Paz, Campus Tapajós, Santarém, PA, 68015-110, BrazilDaniela PaulettoFacultad de Biologia, Universidad Nacional de la Amazonia Peruana, Pevas 5Ta Cdra, Iquitos, Loreto, PeruFreddy Ramirez Arevalo & Elvis H. Valderrama SandovalDepartment of Biology, University of Missouri, St. Louis, MO, 63121, USAElvis H. Valderrama SandovalDepartment of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyGerhard BoenischFunctional Biogeography, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyJens KattgeDepartment of Ecology and Evolutionary Biology, UCLA, 621 Charles E. Young Drive South, Box 951606, Los Angeles, CA, 90095, USANathan KraftE.T.P. and H.T.S. designed the study. E.T.P. performed analyses and took the lead in writing the manuscript, H.T.S. supervised the writing and provided regular feedback both for the manuscript and the interpretation of the results. All other authors provided feedback on the manuscript and provided their data from the Amazon Tree Diversity Network or trait data. Authors E.T.P. to L.V.G. provided tree inventory data, authors G.B., J.K., N.K., A.L., K.M., G.P., L.P. provided data on functional traits, C.B., J.L., A.A.O. and H.T.S. provided both tree inventory and functional trait data. More

  • in

    Socio-ecological factors shape the distribution of a cultural keystone species in Malaysian Borneo

    Kays, R. et al. Does hunting or hiking affect wildlife communities in protected areas? J. Appl. Ecol. 54, 242–252 (2016).Article 

    Google Scholar 
    Heberlein, T. A. & Ericsson, G. Ties to the countryside: accounting for urbanites attitudes toward hunting, wolves, and wildlife. Hum. Dimens. Wildl. 10, 213–227 (2006).Article 

    Google Scholar 
    Wong, J. Z., Etoh, S. & Sujang, A. B. Towards sustainable community-based fishery resources management: the tagal system of Sabah. Malaysia. SEAFDEC 7, 18–23 (2009).
    Google Scholar 
    Riley, E. P. The importance of human-macaque folklore for conservation in Lore Lindu National Park, Sulawesi, Indonesia. Oryx 44, 235–240 (2010).Article 

    Google Scholar 
    Gaynor, K. M. et al. War and wildlife: linking armed conflict to conservation. Front. Ecol. Environ. 14, 533–542 (2016).Article 

    Google Scholar 
    Kurz, D. et al. Transformation and endurance of Indigenous hunting: Kadazandusun-Murut bearded pig hunting practices amidst oil palm expansion and urbanization in Sabah, Malaysia. People. Nat. 3, 1078–1092 (2021).Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Hines, J. E., Karanth, K. U. & Christensen, N. L. Patterns and determinants of mammal species occurrence in India. J. Appl. Ecol. 46, 1189–1200 (2009).Article 

    Google Scholar 
    Bettigole, C. A., Donovan, T. M., Manning, R., Austin, J. & Long, R. Acceptability of residential development in a regional landscape: potential effects on wildlife occupancy patterns. Biol. Conserv. 169, 401–409 (2014).Article 

    Google Scholar 
    Stahlecker, D. W., Wallace, Z. P., Mikesic, D. G. & Smith, C. S. Does Hopi religious harvest of eaglets affect golden eagle territory occupancy and reproduction on the Navajo Nation? J. Raptor Res. 51, 305–318 (2017).Article 

    Google Scholar 
    Deith, M. C. M. & Brodie, J. F. Predicting defaunation: accurately mapping bushmeat hunting pressure over large areas. Proc. Royal Soc. B. https://doi.org/10.1098/rspb.2019.2677 (2020).Article 

    Google Scholar 
    Lischka, S. A. et al. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 225, 80–87 (2018).Article 

    Google Scholar 
    Guerrero, A. M. et al. Achieving the promise of integration in social-ecological research: a review and prospectus. Ecol. Soc. https://doi.org/10.5751/ES-10232-230338 (2018).Article 

    Google Scholar 
    Behr, D. M., Ozgul, A. & Cozzi, G. Combining human acceptance and habitat suitability in a unified socio-ecological suitability model: a case study of the wolf in Switzerland. J. Appl. Ecol. 54, 1919–1929 (2017).Article 

    Google Scholar 
    Bennett, E. L., Nyaoi, A. J. & Sompud, J. In Hunting for Sustainability in Tropical Forests (eds. Robinson, J. G. & Bennett, E. L.) 305–324 (Columbia University Press, 2000).Chin, C. Pig in the pot: comments on Sus barbatus in the hunting lifestyle of the Penan in Sarawak (Borneo). Asian Wild Pig News. 1, 10–12 (2001).
    Google Scholar 
    Yi, M. C. K. & Mohd-Azlan, J. Wildlife hunting and utilization in Ulu Baleh, Sarawak, Malaysian Borneo. Ethnobiol. Lett. 11, 76–84 (2020).Article 

    Google Scholar 
    Janowski, M. Pigs and people in the Kelabit Highlands, Sarawak. Indones. Malay World. 42, 88–112 (2014).Article 

    Google Scholar 
    Department of Statistics Malaysia. Taburan penduduk dan ciri-ciri asas demografi. https://www.mycensus.gov/my/index.php/ms/produk-banci/penerbitan/banci-2010/664-taburan-penduduk-dan-ciri-ciri-asas-demografi-2010 (2011).Harrisson, T., Hooijer, D. A. & Medway, L. An extinct giant pangolin and associated mammals from Niah Cave, Sarawak. Nature 189, 166 (1961).Article 

    Google Scholar 
    Yusof, N. M. Study of social interaction among students of Vision Schools in Malaysia. Asian Ethn. 13, 47–73 (2012).Article 

    Google Scholar 
    Luskin, M. S., Ke, A., Linkie, M. & Meijaard, E. Sus barbatus. The IUCN Red List of Threatened Species: e.T41772A10559190. https://www.iucnredlist.org/species/41772/123793370 (2017).Medway, L. Post-Pleistocene changes in the mammalian fauna of Borneo: archaeological evidence from the Niah caves. Studies Speleology. 1, 33–37 (1964).
    Google Scholar 
    Love, K. et al. Bearded pig (Sus barbatus) utilisation of a fragmented forest-oil palm landscape in Sabah, Malaysian Borneo. Wildl. Res. 44, 603–612 (2018).Article 

    Google Scholar 
    Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).Article 

    Google Scholar 
    Luskin, M. S. & Ke, A. In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds. Melletti, M. & Meijaard, E.) 175–183 (Cambridge University Press, 2018).Granados, A., Bernard, H. & Brodie, J. F. The influence of logging on vertebrate responses to mast fruiting. J. Anim. Ecol. 88, 892–902 (2019).Article 

    Google Scholar 
    Kurz, D. J., Malim, P. & Goossens, B. In Wildlife Atlas of Sabah (ed. Davies, G.) 123–132. (WWF – Malaysia, 2022).Ke, A. & Luskin, M. S. Integrating disparate occurrence reports to map data-poor species ranges and occupancy: a case study of the Vulnerable bearded pig Sus barbatus. Oryx 53, 377–387 (2019).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. https://doi.org/10.1038/srep32017 (2016).Article 

    Google Scholar 
    Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. https://doi.org/10.1038/s41467-017-01920-7 (2017).Article 

    Google Scholar 
    Davison, C. W., Chapman, P. M., Wearn, O. R., Bernard, H. & Ewers, R. M. Shifts in the demographics and behavior of bearded pigs (Sus barbatus) across a land-use gradient. Biotropica 51, 938–948 (2019).Article 

    Google Scholar 
    Alberti, M. et al. Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. BioScience 53, 1169–1179 (2003).Article 

    Google Scholar 
    Kumar, N. et al. Habitat selection by an avian top predator in the tropical megacity of Delhi: human activities and socio-religious practices as prey-facilitating tools. Urban Ecosyst. 21, 339–349 (2018).
    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).Article 
    CAS 

    Google Scholar 
    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 

    Google Scholar 
    Van Houtan, K. S. Conservation as virtue: a scientific and social process for conservation ethics. Conserv. Biol. 20, 1367–1372 (2006).Article 

    Google Scholar 
    Hunt, K. M. & Ditton, R. B. Freshwater fishing participation patterns of racial and ethnic groups in Texas. N. Am. J. Fish. Manag. 22, 52–65 (2002).Article 

    Google Scholar 
    Brashares, J. S. et al. Wildlife decline and social conflict. Science 345, 376–378 (2014).Article 
    CAS 

    Google Scholar 
    Bolton, J. M., M. R. C. S., L. R. C. P., D. T. M. & H., D. Obst. R. C. O. G. Food taboos among the Orang Asli in West Malaysia: a potential nutritional hazard. Am. J. Clin. Nutr. 25, 789–799 (1972).Wadley, R. L., Colfer, C. J. P. & Hood, I. G. Hunting primates and managing forests: the case of Iban forest farmers in Indonesian Borneo. Hum. Ecol. 25, 243–271 (1997).Article 

    Google Scholar 
    Golden, C. D. & Comaroff, J. Effects of social change on wildlife consumption taboos in northeastern Madagascar. Ecol. Soc. https://doi.org/10.5751/ES-07589-200241 (2015).Article 

    Google Scholar 
    Pieroni, A. & Sõukand, R. Ethnic and religious affiliations affect traditional wild plant foraging in Central Azerbaijan. Genet. Resour. Crop Evol. 66, 1495–1513 (2019).Article 
    CAS 

    Google Scholar 
    Caldecott, J. O., Blouch, R. A. & Macdonald, A. A. In Pigs, Peccaries and Hippos: Status Survey and Conservation Action Plan. (ed. Oliver, W. L.) 136–145 (IUCN, 1993).Caldecott, J. & Caldecott, S. A horde of pork. New Sci. 110, 32–35 (1985).
    Google Scholar 
    Liu, J. et al. Prevalence of African Swine Fever in China, 2018-2019. J. Med. Virol. 92, 1023–1034 (2020).Article 
    CAS 

    Google Scholar 
    Food and Agriculture Organization of the United Nations. Agriculture and Consumer Protection Department. ASF situation in Asia & Pacific update. http://www.fao.org/ag/againfo/programmes/en/empres/ASF/situation_update.html (2021).Luskin, M. S. & Potts, M. D. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl. Ecol. 12, 540–551 (2011).Article 

    Google Scholar 
    Wong, S. T., Servheen, C., Ambu, L. & Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 21, 627–639 (2005).Article 

    Google Scholar 
    Corner, E. J. H. The complex of Ficus deltoidea; a recent invasion of the Sunda shelf. Philos. Trans. R. Soc. B: Biol. Sci. 256, 281–317 (1969).
    Google Scholar 
    Pothasin, P., Compton, S. G. & Wangpakapattanawong, P. Riparian Ficus tree communities: the distribution and abundance of riparian fig trees in Northern Thailand. PLoS ONE. https://doi.org/10.1371/journal.pone.0108945 (2014).Article 

    Google Scholar 
    Declaration on the Heart of Borneo Initiative. Brunei Darussalam, Indonesia, and Malaysia. https://wwf.panda.org/discover/knowledge_hub/where_we_work/borneo_forests/about_borneo_forests/declaration/ (2007).Keong, C. Y. & Onuma, A. Transboundary ecological conservation, environmental value, and environmental sustainability: lessons from the Heart of Borneo. Sustainability https://doi.org/10.3390/su13179727 (2021).Article 

    Google Scholar 
    Neumann, W. et al. Hunting as land use: understanding the spatial associations among hunting, agriculture, and forestry. Ecol. Soc. https://doi.org/10.5751/ES-12882-270102 (2022).Article 

    Google Scholar 
    Shaffer, C. A. et al. Integrating ethnography and hunting sustainability modeling for primate conservation in an Indigenous reserve in Guyana. Int. J. Primatol. 39, 945–968 (2018).Article 

    Google Scholar 
    Popp, J. N., Priadka, P. & Kozmik, C. The rise of moose co-management and integration of Indigenous knowledge. Hum. Dimens. of Wildl. 24, 159–167 (2019).Article 

    Google Scholar 
    Breton-Honeyman, K. Beluga whale stewardship and collaborative research practices among Indigenous peoples in the Arctic. Polar Res. https://doi.org/10.33265/polar.v40.5522 (2021).Article 

    Google Scholar 
    Wildlife Conservation Enactment 1997. No. 6 of 1997. State of Sabah. https://www.sabahlaw.com/WILDLIFE_ENACTMENT.pdf.Wild Life Protection Ordinance, 1998. Chapter 26. Laws of Sarawak. https://www.sarawakforestry.com/pdf/laws/wildlife_protection_ordinance98_chap26.pdf.Wilting, A., Fischer, F., Bakar, S. A. & Linsenmair, K. E. Clouded leopards, the secretive top carnivore of South-East Asian rainforests: their distribution, status and conservation needs in Sabah, Malaysia. BMC Ecol. https://doi.org/10.1186/1472-6785-6-16 (2006).Article 

    Google Scholar 
    Bernard, H. et al. Camera-trapping survey of mammals in and around Imbak Canyon Conservation Area in Sabah, Malaysian Borneo. Raffles Bull. Zool. 61, 861–870 (2013).
    Google Scholar 
    Mohd-Azlan, J., Yi, M. C. K., Lip, B. & Hon, J. Camera trapping of wildlife in the newly established Baleh National Park, Sarawak. J. Sustain. Sci. Manag. 14, 38–51 (2019).
    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).Article 

    Google Scholar 
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).Article 
    CAS 

    Google Scholar 
    Gaveau, D. L. A., Salim, M. & Arjasakusuma, S. Deforestation and industrial plantations development in Borneo. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/CIFOR/DATA.00049.UNEP-WCMC & IUCN. Protected planet: the world database on protected areas (WDPA). https://developers.google.com/earth-engine/datasets/catalog/WCMC_WDPA_current_polygons.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).Article 

    Google Scholar 
    Dimiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD44B.006 (2015).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. 574 (Springer, 2009).R Development Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2019).Fiske, I. & Chandler, R. unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23, (2011) http://www.jstatsoft.org/v43/i10/.Article 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).Article 

    Google Scholar 
    Petracca, L. S. et al. Robust inference on large-scale species habitat use with interview data: the status of jaguars outside protected areas in Central America. J. Appl. Ecol. 55, 723–734 (2018).Article 

    Google Scholar 
    Gould, M. J., Gould, W. R., Cain, J. W. III. & Roemer, G. W. Validating the performance of occupancy models for estimating habitat use and predicting the distribution of highly-mobile species: a case study using the American black bear. Biol. Conserv. 234, 28–36 (2019).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: an R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Bartoń, K. 2020. MuMIn: multi-model inference. R package version 1.43.17. https://cran.r-project.org/web/packages/MuMIn/index.html.Cobox, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. https://doi.org/10.7717/peerj.6281 (2019).Article 

    Google Scholar 
    Wickham, H. & Chang, W. Package ‘ggplot2’. https://cran.microsoft.com/snapshot/2015-01-06/web/packages/ggplot2/ggplot2.pdf (2014).Mazerolle, M. J. Model selection and multimodel inference using the AICcmodavg package. https://mirror.marwan.ma/cran/web/packages/AICcmodavg/vignettes/AICcmodavg.pdf (2020). More

  • in

    Climate-driven convergent evolution in riparian ecosystems on sky islands

    Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article 
    ADS 

    Google Scholar 
    Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant Environ. Int. 1, 166–180 (2020).Article 

    Google Scholar 
    Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. Eco-Evolutionary Dynamics (Princeton University Press, 2017).Book 

    Google Scholar 
    Anstett, D. N., Branch, H. A. & Angert, A. L. Regional differences in rapid evolution during severe drought. Evol. Lett. 5, 130–142 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. PNAS 118, e2015772118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokhorst, S., Bjerke, J. W., Street, L. E., Callaghan, T. V. & Phoenix, G. K. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Glob. Change Biol. 17, 2817–2830 (2011).Article 
    ADS 

    Google Scholar 
    Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186, S60–S73 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooliver, R., Tittes, S. B. & Sheth, S. N. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74, 1699–1710 (2020).Article 
    PubMed 

    Google Scholar 
    McCormack, J. E., Huang, H. & Knowles, L. L. Sky Islands. in Encyclopedia of Islands (eds. Gillespie, R. G. & Clague, D. A.) 839–843 (2009).Knowles, J. F., Scott, R. L., Minor, R. L. & Barron-Gafford, G. A. Ecosystem carbon and water cycling from a sky island montane forest. Agric. For. Meteorol. 281, 107835 (2020).Article 
    ADS 

    Google Scholar 
    Heald, W. Sky Islands (Van Nostrand, 1967).
    Google Scholar 
    DeBano, L. H. et al. Biodiversity and management of the Madrean Archipelago: The Sky Islands of southwestern United States and northwestern Mexico: 1994 September 19–23; Tucson, AZ. Gen Tech Rep RM-GTR-264. Fort Collins, CO: US Dep Agric For Serv, Rocky Mt For Range Exp Stn. 669 p. (1995).Pérez-Alquicira, J. et al. The role of historical factors and natural selection in the evolution of breeding systems of Oxalis alpina in the Sonoran desert ‘Sky Islands’. J. Evol. Biol. 23, 2163–2175 (2010).Article 
    PubMed 

    Google Scholar 
    Wiens, J. J. et al. Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol. Ecol. 28, 2610–2624 (2019).Article 
    PubMed 

    Google Scholar 
    Pielou, E. C. After the Ice Age. The return of Life to Glaciated North America (The University of Chicago Press, 1991).Book 

    Google Scholar 
    Hosner, P. A., Nyári, Á. S. & Moyle, R. G. Water barriers and intra-island isolation contribute to diversification in the insular Aethopyga sunbirds (Aves: Nectariniidae). J. Biogeogr. 40, 1094–1106 (2013).Article 

    Google Scholar 
    Favé, M.-J. et al. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. Bmc Evol. Biol. 15, 183 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanahan, A. D. & Moore, W. Impacts of 21st-century climate change on montane habitat in the Madrean Sky Island Archipelago. Divers. Distrib. 25, 1625–1638 (2019).Article 

    Google Scholar 
    Oline, D. K., Mitton, J. B. & Grant, M. C. Population and subspecific genetic differentiation in the Foxtail Pine (Pinus balfouriana). Evolution 54, 1813–1819 (2000).CAS 
    PubMed 

    Google Scholar 
    Barrowclough, G. F., Groth, J. G., Mertz, L. A. & Gutiérrez, R. J. Genetic structure of Mexican spotted owl (Strix Occidentalis Lucida) populations in a fragmented landscape. Auk 123, 1090–1102 (2006).
    Google Scholar 
    Atwood, T. C. et al. Modeling connectivity of black bears in a desert sky island archipelago. Biol. Conserv. 144, 2851–2862 (2011).Article 

    Google Scholar 
    Halbritter, D. A., Storer, C. G., Kawahara, A. Y. & Daniels, J. C. Phylogeography and population genetics of pine butterflies: Sky islands increase genetic divergence. Ecol. Evol. 9, 13389–13401 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeChaine, E. G. & Martin, A. P. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am. J. Bot. 92, 477–486 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baker, A. J. Islands in the sky: The impact of Pleistocene climate cycles on biodiversity. J. Biol. 7, 32 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robin, V. V., Sinha, A. & Ramakrishnan, U. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLoS ONE 5, e13321 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manthey, J. D. & Moyle, R. G. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: A landscape genomics approach. Mol. Ecol. 24, 3628–3638 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vásquez, D. L. A., Balslev, H., Hansen, M. M., Sklenář, P. & Romoleroux, K. Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot. 126, 135–142 (2016).Article 

    Google Scholar 
    Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Williamson, J. L. et al. Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int. J. Parasitol. 49, 437–448 (2019).Article 
    PubMed 

    Google Scholar 
    Knowles, L. L. & Richards, C. L. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14, 4023–4032 (2005).Article 
    PubMed 

    Google Scholar 
    Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).Article 
    PubMed 

    Google Scholar 
    Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article 

    Google Scholar 
    Kooyers, N. J., Greenlee, A. B., Colicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).Article 
    PubMed 

    Google Scholar 
    Price, E. A. C. & Marshall, C. Clonal plants and environmental heterogeneity—An introduction to the proceedings. Plant Ecol. 141, 3–7 (1999).Article 

    Google Scholar 
    Matsuo, A. et al. Female and male fitness consequences of clonal growth in a dwarf bamboo population with a high degree of clonal intermingling. Ann. Bot. Lond. 114, 1035–1041 (2014).Article 
    CAS 

    Google Scholar 
    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. PNAS 112, 8859–8866 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bittebiere, A.-K., Benot, M.-L. & Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Persp. Plant Ecol. Evol. Syst. 43, 125510 (2020).Article 

    Google Scholar 
    King, D. & Roughgarden, J. Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21, 194–204 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    LaDeau, S. L. & Clark, J. S. Rising CO2 levels and the fecundity of forest trees. Science 292, 95–98 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Qiu, T. et al. Is there tree senescence? The fecundity evidence. PNAS 118, e2106130118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oddou-Muratorio, S. et al. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann. Bot. Lond. 128, 193–204 (2021).Article 

    Google Scholar 
    Knops, J. M. H., Koenig, W. D. & Carmen, W. J. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. PNAS 104, 16982–16985 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakamura, I. et al. Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia 165, 809–818 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. Spatiotemporal Processes of Plant Phenology, Simulation and Prediction (Springer, 2017).Book 

    Google Scholar 
    Bradshaw, H. D. & Stettler, R. F. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139, 963–973 (1995).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rae, A. M. et al. QTL for yield in bioenergy Populus: Identifying G×E interactions from growth at three contrasting sites. Tree Genet. Genom. 4, 97–112 (2008).Article 

    Google Scholar 
    Rae, A. M., Street, N. R., Robinson, K. M., Harris, N. & Taylor, G. Five QTL hotspots for yield in short rotation coppice bioenergy poplar: The poplar biomass loci. Bmc Plant Biol. 9, 23 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allwright, M. R. et al. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels 9, 195 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badmi, R. et al. A new calmodulin-binding protein expresses in the context of secondary cell wall biosynthesis and impacts biomass properties in Populus. Front. Plant Sci. 9, 1669 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).Hughes, L., Hughes, L. & Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).Article 
    PubMed 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).Article 
    ADS 

    Google Scholar 
    Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. NY. Acad. Sci. 1162, 311–333 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bertel, C. et al. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127, 1355–1367 (2018).Article 

    Google Scholar 
    Knotek, A. et al. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11, 561526 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tusiime, F. M. et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio). PLoS ONE 15, e0228979 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. E. K. & Rood, S. B. Trees of the people: The growing science of poplars in Canada and worldwide. Botany 85, 1103–1110 (2007).
    Google Scholar 
    Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. 57–86 (1996).Schweitzer, J. A., Martinsen, G. D. & Whitham, T. G. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence?. Am. J. Bot. 89, 981–990 (2002).Article 
    PubMed 

    Google Scholar 
    Moore, W. et al. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands. Proc. RMRS 2013, 144–168 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).Article 

    Google Scholar 
    Tuskan, G. A. et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 34, 85–93 (2004).Article 
    CAS 

    Google Scholar 
    Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peakall, R. & Ssmouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Arxiv https://doi.org/10.48550/arxiv.1406.5823 (2014).Article 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 4, 14–24 (2013).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fox, J. et al. Package ‘car’: Companion to Applied Regression. R package version 3.0–10 (2020). More