More stories

  • in

    Exploring soil bacterial diversity in different micro-vegetational habitats of Dachigam National Park in North-western Himalaya

    Hatton, P. J., Castanha, C., Torn, M. S. & Bird, J. A. Litter type control on soil C and N stabilization dynamics in a temperate forest. Glob. Change Biol. 21(3), 1358–1367. https://doi.org/10.1111/gcb.12786 (2015).Article 
    ADS 

    Google Scholar 
    Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81(2), e00063–16. https://doi.org/10.1128/mmbr.00063-16 (2017).Article 
    CAS 

    Google Scholar 
    Ranjard, L. & Richaume, A. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 152(8), 707–716. https://doi.org/10.1016/S0923-2508(01)01251-7 (2001).Article 
    CAS 

    Google Scholar 
    Nannipieri, P., Badalucco, L., Benbi, D. K., & Nieder, R. Handbook of processes and modelling in the soil-plant system. Biological Processes, 57–82 (2003).Wixon, D. L. & Balser, T. C. Complexity, climate change and soil carbon: A systems approach to microbial temperature response. Syst. Res. Behav. Sci. 26(5), 601–620. https://doi.org/10.1002/sres.995 (2009).Article 

    Google Scholar 
    Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11(3), 296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x (2008).Article 

    Google Scholar 
    Tisdall, J. M. Possible role of soil microorganisms in aggregation in soils. Plant Soil 159, 115–121. https://doi.org/10.1007/BF00000100 (1994).Article 

    Google Scholar 
    Ingham, E. R. Soil biology primer, Chapter 4: Soil fungus. Soil and Water Conservation 22–23 (Soil and Water Conservation Society, 2009).
    Google Scholar 
    Stevens, W. B., Sainju, U. M., Caesar, A. J., West, M. & Gaskin, J. F. Soil-aggregating bacterial community as affected by irrigation, tillage, and cropping system in the northern great plains. Soil Sci. 179(1), 11–20 (2014).Article 
    ADS 

    Google Scholar 
    Islam, K. R. Lecture on Soil Physics, Personal Collection of K. Islam (Ohio State University, 2008).
    Google Scholar 
    López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K. & Baldrian, P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6(1), 25279. https://doi.org/10.1038/srep25279 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320(5876), 629–629. https://doi.org/10.1126/science.1154960 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Shelobolina, E., Roden, E., Benzine, J. & Xiong, M. Y. Using phyllosilicate-Fe (II)-oxidizing soil bacteria to improve Fe and K plant nutrition. U.S. Patent Application 14/924,397 (Wisconsin Alumni Research Foundation, 2016).
    Google Scholar 
    Kumar, A., & Verma, J. P. The role of microbes to improve crop productivity and soil health. In Ecological Wisdom Inspired Restoration Engineering 249–265. https://doi.org/10.1007/978-981-13-0149-0_14 (2019).Dick, W. Lecture on Biochemistry Process in Soil Microbiology, Personal Collection of W. Dick (The Ohio State University School of Environment and Natural Resources, 2009).
    Google Scholar 
    Reed, S. C., Cleveland, C. C. & Townsend, A. R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42, 489–512. https://doi.org/10.1146/annurev-ecolsys-102710-145034 (2011).Article 

    Google Scholar 
    Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G. & Zuberer, D. A. Principles and Applications of Soil Microbiology (No. QR111 S674 2005) 2nd edn. (Prentice Hall, 2005).
    Google Scholar 
    Torsvik, V., Daae, F. L., Sandaa, R. A. & Øvreås, L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64(1), 53–62. https://doi.org/10.1016/s0168-1656(98)00103-5 (1998).Article 
    CAS 

    Google Scholar 
    Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1(4), 283–290. https://doi.org/10.1038/ismej.2007.53 (2007).Article 
    CAS 

    Google Scholar 
    Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42(3), 516–520. https://doi.org/10.1016/j.soilbio.2009.11.026 (2010).Article 
    CAS 

    Google Scholar 
    Brockett, B. F., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44(1), 9–20. https://doi.org/10.1016/j.soilbio.2011.09.003 (2012).Article 
    CAS 

    Google Scholar 
    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).Article 
    CAS 

    Google Scholar 
    Binkley, D. & Vitousek, P. M. Soil nutrient availability. In Plant Physiological, Field Methods and Instrumentation (eds Pearey, R. W. et al.) 75–96 (Champan and Hall, 1989).Chapter 

    Google Scholar 
    Ruess, J. O. & Innis, G. S. A grassland nitrogen flow simulation mode. Ecology 58, 348–429. https://doi.org/10.2307/1935612 (1977).Article 

    Google Scholar 
    Kumar, M., Sharma, C. M. & Rajwar, G. S. Physico-chemical properties of forest soil along altitudinal gradient in Garhwal Himalaya. J. Hill Res. 17(2), 60–64 (2004).
    Google Scholar 
    Smit, E. et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67(5), 2284–2291. https://doi.org/10.1128/AEM.67.5.2284-2291.2001 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Qazi, P. H. Bioprospecting Himalayan microbial diversity. ENVIS Newsletter on Himalayan Ecology 12(4). http://gbpihedenvis.nic.in/ENVIS%20Newsletter/vol%2012(4).pdf (2015).Pradhan, S. et al. Bacterial biodiversity from Roopkund glacier, Himalayan Mountain ranges, India. Extremophiles 14, 377–395. https://doi.org/10.1007/s00792-010-0318-3 (2010).Article 
    CAS 

    Google Scholar 
    Shivaji, S. et al. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan Mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15, 1–22. https://doi.org/10.1007/s00792-010-0333-4 (2011).Article 
    CAS 

    Google Scholar 
    Das, J. & Dangar, T. K. Microbial population dynamics, especially stress tolerant Bacillus thuringiensis, in partially anaerobic rice field soils during post-harvest period of the Himalayan, island, brackish water and coastal habitats of India. World J. Microbiol. Biotechnol. 24, 1403–1410. https://doi.org/10.1007/s11274-007-9620-3 (2008).Article 

    Google Scholar 
    Lyngwi, N. A., Koijam, K., Sharma, D. & Joshi, S. R. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev. Biol. Trop. 61(1), 467–490. https://doi.org/10.15517/rbt.v61i1.11141 (2013).Article 

    Google Scholar 
    Pandey, S., Singh, S., Yadav, A. N., Nain, L. & Saxena, A. K. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci. Biotechnol. Biochem. 77(7), 1474–1480. https://doi.org/10.1271/bbb.130121 (2013).Article 
    CAS 

    Google Scholar 
    Venkatachalam, S., Gowdaman, V. & Prabagaran, S. R. Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan Mountain ranges of India and Nepal. Microb. Ecol. 69, 472–491. https://doi.org/10.1007/s00248-014-0476-4 (2015).Article 
    CAS 

    Google Scholar 
    Saxena, A. K., Yadav, A. N., Kaushik, R., Tyagi, S. P., & Shukla, L. Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In International Conference on Low Temperature Science and Biotechnological Advances, Vol. 104 (Society of Low Temperature Biology, 2015).Singh, R. N. et al. First high-quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand. Genom. Sci. 11, 1–9. https://doi.org/10.1186/s40793-016-0176-4 (2016).Article 
    CAS 

    Google Scholar 
    Mushtaq, H. et al. Biochemical characterization and functional analysis of heat stable high potential protease of Bacillus amyloliquefaciens strain HM48 from soils of Dachigam National Park in Kashmir Himalaya. Biomolecules 11(1), 117. https://doi.org/10.3390/biom11010117 (2021).Article 
    CAS 

    Google Scholar 
    Maharana, A. K. & Ray, P. Isolation and screening of cold active extracellular enzymes producing psychrotrophic bacteria from soil of Jammu City. Biosci. Biotechnol. Res. Asia 10(1), 267–273. https://doi.org/10.13005/bbra/1120 (2013).Article 

    Google Scholar 
    Rehakova, K., Chlumska, Z. & Dolezal, J. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb. Ecol. 62, 337–346. https://doi.org/10.1007/s00248-011-9878-8 (2011).Article 
    CAS 

    Google Scholar 
    Rehakova, K. et al. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front. Microbiol. 6, 304. https://doi.org/10.3389/fmicb.2015.00304 (2015).Article 

    Google Scholar 
    Gupta, P. & Vakhlu, J. Culturable bacterial diversity and hydrolytic enzymes from Drass, a cold desert in India. Afr. J. Microbiol. Res. 9, 1866–1876. https://doi.org/10.5897/AJMR2015.7424 (2015).Article 

    Google Scholar 
    Yadav, A. N. et al. Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J. Microbiol. Biotechnol. 31, 95–108. https://doi.org/10.1007/s11274-014-1768-z (2015).Article 
    CAS 

    Google Scholar 
    Farooq, S., Nazir, R., Ganai, B. A., Mushtaq, H. & Dar, G. J. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia 77, 203–213. https://doi.org/10.1007/s11756-021-00915-6 (2022).Article 
    CAS 

    Google Scholar 
    Ahmad, N., Johri, S., Abdin, M. Z. & Qazi, G. N. Molecular characterization of bacterial population in the forest soil of Kashmir, India. World J. Microbiol. Biotechnol. 25, 107–113. https://doi.org/10.1007/s11274-008-9868-2 (2009).Article 
    CAS 

    Google Scholar 
    Thakur, D., Yadav, A., Gogoi, B. K. & Bora, T. C. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J. Mycol. Méd. 17(4), 242–249. https://doi.org/10.1016/j.mycmed.2007.08.001 (2007).Article 

    Google Scholar 
    Rina, K., Hiral, P., Payal, P., Dharaiya, N. & Patel, R. K. Study on microbial diversity of Wild Ass Sanctuary, Little Rann of Kutch, Gujarat, India. ICFAI Univ. J. Life Sci. 3(1), 34–41 (2009).
    Google Scholar 
    Das, S., Saikia, P., Baruah, P. P. & Chakraborty, A. Isolation and identification of soil bacteria collected from Dibru-Saikhowa, the National Park and Biosphere Reserve Forest of Assam, India. Int. J. Sci. Res. (IJSR), 1937–1940 (2016).De Mandal, S., Lalremsanga, H. T. & Kumar, N. S. Bacterial diversity of Murlen National Park located in Indo-Burman Biodiversity hotspot region: A metagenomic approach. Genom. Data 5, 25–26. https://doi.org/10.1016/j.gdata.2015.04.025 (2015).Article 

    Google Scholar 
    Megha, B., Sejal, P., Puja, P. & Jasrai, Y. T. Isolation and identification of soil microflora of national parks of Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 4(3), 421–429 (2015).
    Google Scholar 
    Kumar, A., Singh, R. D., Patra, A. K., Sahu, S. K. & Singh, M. Impact of oak and pine canopy cover on soil biochemical and microbial indicators of Binsar Wildlife Sanctuary in the Western Himalaya, India. J. Pure Appl. Microbiol. 11(3), 1599–1607. https://doi.org/10.22207/JPAM.11.3.47 (2017).Article 
    CAS 

    Google Scholar 
    Dhiman, P., Mehta, J. P., Singh, P. & andSharesthBaldotra, S. S.,. Effect of prescribe fire on bacterial abundance and their enzymatic activity in burnt and unburnt soil of Chilla Forest, Raja Ji National Park, Uttarakhand, India. Plant Arch. 18(1), 1125–1128 (2018).
    Google Scholar 
    Behera, P. et al. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. Environ. Sci. Pollut. Res. 26, 3893–3908 (2019).Article 
    CAS 

    Google Scholar 
    Sharma, P. & Thakur, D. Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci. Rep. 10(1), 1–18. https://doi.org/10.1038/s41598-020-60968-6 (2020).Article 
    CAS 

    Google Scholar 
    Dar, G. H., Bhagat, R. C. & Khan, M. A. Biodiversity of the Kashmir Himalaya (Valley Book House, 2002).
    Google Scholar 
    Shameem, S. A., Kangroo, N. I. & Bhat, G. A. Comparative assessment of edaphic features and herbaceous diversity in lower Dachigam national park, Kashmir, Himalaya. J. Ecol. Nat. Environ. 3(6), 196–204 (2011).
    Google Scholar 
    Thakur, M., Sharma, L. K., Charoo, S. A. & Sathyakumar, S. Conflict bear translocation: Investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India. PLoS One 10, e0132005. https://doi.org/10.1371/journal.pone.0132005 (2015).Article 
    CAS 

    Google Scholar 
    Ahmad, K., Qureshi, Q., Agoramoorthy, G. & Nigam, P. Habitat use patterns and food habits of the Kashmir red deer or Hangul (Cervus elaphus hanglu) in Dachigam National Park, Kashmir, India. Ethol. Ecol. Evol. 28(1), 85–101. https://doi.org/10.1080/03949370.2015.1018955 (2016).Article 

    Google Scholar 
    Jammu and Kashmir Forest Department (JKFD). Handbook of Forest Statistics (Jammu and Kashmir Forest Department, 2011).
    Google Scholar 
    Anderson, J. M. & Ingram, J. S. I. A Handbook of Methods 62–65 (CAB International, 1993).
    Google Scholar 
    Joshi, S. R., Chauhan, M. A. N. J. U., Sharma, G. D. & Mishra, R. R. Effect of deforestation on microbes, VAM fungi and their enzymatic activity in Eastern Himalaya. In Studies in Himalayan Ecobiology 141–152 (Today and Tommorows Publication, 1991).
    Google Scholar 
    Jackson, M. L. Soil Chemical Analysis 151–154 (Prentice-Hall, 1958). https://doi.org/10.1002/jpln.19590850311.Book 

    Google Scholar 
    Gardner, W. H. Water content. Methods of soil analysis: Part 1. Phys. Mineral. Methods 5, 493–544 (1986).
    Google Scholar 
    Walkley, A. & Black, I. A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).Article 
    ADS 
    CAS 

    Google Scholar 
    Bremner, J. M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55(1), 1–23 (1960).Article 

    Google Scholar 
    Coursey, D. G. & Eggins, H. O. W. Microorganismes responsables de l’altération de l’huile de palme pendant le stockage. Oléagineux 16, 227–233 (1961).CAS 

    Google Scholar 
    Kumar, R., Acharya, C. & Joshi, S. R. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U (VI) bioadsorption. J. Microbiol. 49, 568–574. https://doi.org/10.1007/s12275-011-0366-0 (2011).Article 
    CAS 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. https://www.R-project.org (R Foundation for Statistical Computing, 2017).Bergey, D. H. & Holt, J. G. Bergey’s Manual of Determinative Bacteriology (Lippincott Williams & Wilkins, 1994).
    Google Scholar 
    Gürtler, V. & Stanisich, V. A. New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142(1), 3–16 (1996).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34 (1948).
    Google Scholar 
    Muhumuza, M. & Balkwill, K. Factors affecting the success of conserving biodiversity in national parks: A review of case studies from Africa. Int. J. Biodivers. https://doi.org/10.1155/2013/798101 (2013).Article 

    Google Scholar 
    Yaqoob, A., Yunus, M., Bhat, G. A. & Singh, D. P. Phytodiversity and seasonal variations in the soil characteristics of shrublands of Dachigam National Park, Jammu and Kashmir, India. Clim. Change Environ. Sustain. 3(2), 137–143. https://doi.org/10.5958/2320-642X.2015.00015.0 (2015).Article 

    Google Scholar 
    Mir, Z. R., Noor, A., Habib, B. & Veeraswami, G. G. Seasonal population density and winter survival strategies of endangered Kashmir gray langur (Semnopithecus ajax) in Dachigam National Park, Kashmir, India. Springer Plus 4, 1–8. https://doi.org/10.1186/s40064-015-1366-z (2015).Article 
    CAS 

    Google Scholar 
    Buchan, G. D. Soil temperature regime. In Soil and Environmental Analysis: Physical Methods (eds Smith, K. A. & Mullins, C.) 539–594 (Marcel Dekker, 2001).
    Google Scholar 
    Buchan, G. D. Temperature effects in soil. In Encyclopedia of Agrophysics, Encyclopedia of Earth Sciences Series (Springer, 2011).
    Google Scholar 
    Chiemeka, I. U. Soil temperature profile at Uturu, Nigeria. Pac. J. Sci. Technol. 11(1), 478–482 (2010).
    Google Scholar 
    Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci. Soc. Am. J. 67(4), 1234–1242. https://doi.org/10.2136/sssaj2003.1234 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Abu-Hamdeh, N. H. & Reeder, R. C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 64(4), 1285–1290. https://doi.org/10.2136/sssaj2000.6441285x (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Lu, S., Ren, T., Gong, Y. & Horton, R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71(1), 8–14. https://doi.org/10.2136/sssaj2006.0041 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Elizbarashvili, E. S., Urushadze, T. F., Elizbarashvili, M. E., Elizbarashvili, S. E. & Schaefer, M. K. Temperature regime of some soil types in Georgia. Eurasian Soil Sci. 43(4), 427–435. https://doi.org/10.1134/S1064229310040083 (2010).Article 
    ADS 

    Google Scholar 
    Walter, H. & Burnett, J. H. Ecology of Tropical and Subtropical Vegetation Vol. 539, xviii+-539 (Oliver and Boyd, 1971).
    Google Scholar 
    Callaway, R. M. Positive interactions and interdependence in plant communities. Springer Science Business Media https://doi.org/10.1007/978-1-4020-6224-7 (2007).Article 

    Google Scholar 
    Song, Y. et al. Effects of vegetation height and density on soil temperature variations. Chin. Sci. Bull. 58(8), 907–912. https://doi.org/10.1007/s11434-012-5596-y (2013).Article 

    Google Scholar 
    Dimri, B. M., Singh, S. B., Baneriee, S. K. & Singh, B. Relation of age and dominance of tree species with soil chemical attributes in Kalimpong and Kurseong District of West Bengal. Indian For. 113(4), 307–311 (1987).
    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. 94(14), 7362–7366. https://doi.org/10.1073/pnas.94.14.7362 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Wilson, S. D. Competition between grasses and woody plants. In Population Biology of Grasses (ed. Cheplick, G. P.) 231–254 (Cambridge University Press, 1998).Chapter 

    Google Scholar 
    Reth, S., Reichstein, M. & Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—A modified model. Plant Soil 268, 21–33. https://doi.org/10.1007/s11104-005-0175-5 (2005).Article 
    CAS 

    Google Scholar 
    Zinke, P. J. The pattern of influence of individual forest trees on soil properties. Ecology 43(1), 130–133 (1962).Article 

    Google Scholar 
    Patric, J. H. Forest management and nutrient cycling in eastern hardwoods Vol. 324 (Forest Service, US Department of Agriculture, Northeastern Forest Experiment Station, 1975).
    Google Scholar 
    Mroz, G. D., Jurgensen, M. F. & Frederick, D. J. Soil nutrient changes following whole tree harvesting on three northern hardwood sites. Soil Sci. Soc. Am. J. 49(6), 1552–1557. https://doi.org/10.2136/sssaj1985.03615995004900060044x (1985).Article 
    ADS 

    Google Scholar 
    Maggs, J. & Hewett, B. Organic C and nutrients in surface soils from some primary rainforests, derived grasslands and secondary rainforests on the Atherton Tableland in North East Queensland. Soil Res. 31(3), 343–350 (1993).Article 
    CAS 

    Google Scholar 
    Hart, S. C. & Perry, D. A. Transferring soils from high-to low-elevation forests increases nitrogen cycling rates: Climate change implications. Glob. Change Biol. 5(1), 23–32 (1999).Article 
    ADS 

    Google Scholar 
    Atlas, R. M. Diversity of microbial communities. Adv. Microb. Ecol., 1–47 (1984).Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573. https://doi.org/10.1007/s00248-009-9590-0 (2010).Article 

    Google Scholar 
    Bele, S. S. Soil Testing and Soil Microbiology 79–108 (Satyam Publishers and Distributors, 2014). https://doi.org/10.1007/s11356-018-3927-5.Book 

    Google Scholar 
    Cattelan, A. J., Hartel, P. G. & Fuhrmann, J. J. Bacterial composition in the rhizosphere of nodulating and non-nodulating soybean. Soil Sci. Soc. Am. J. 62(6), 1549–1555. https://doi.org/10.2136/sssaj1998.03615995006200060011x (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Silva, P. D. & Nahas, E. Bacterial diversity in soil in response to different plans, phosphate fertilizers and liming. Braz. J. Microbiol. 33, 304–310 (2002).Article 

    Google Scholar 
    Begum, K. et al. Isolation and characterization of bacteria with biochemical and pharmacological importance from soil samples of Dhaka City. Dhaka Univ. J. Pharm. Sci. 16(1), 129–136. https://doi.org/10.3329/dujps.v16i1.33390 (2017).Article 

    Google Scholar 
    Liu, D., Liu, Y., Fang, S. & Tian, Y. Tree species composition influenced microbial diversity and nitrogen availability in rhizosphere soil. Plant Soil Environ. 61(10), 438–443. https://doi.org/10.17221/94/2015-PSE (2015).Article 
    CAS 

    Google Scholar 
    Chodak, M., Klimek, B., Azarbad, H. & Jaźwa, M. Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia 58(2–3), 81–88 (2015).Article 

    Google Scholar 
    Gartzia-Bengoetxea, N., Kandeler, E., de Arano, I. M. & Arias-González, A. Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Appl. Soil. Ecol. 100, 57–64 (2016).Article 

    Google Scholar 
    Shameem, S. A., Mushtaq, H., Wani, A. A., Ahmad, N. & Hai, A. Phytodiversity of herbaceous vegetation in disturbed and undisturbed forest ecosystems of Pahalgam valley, Kashmir Himalaya, India. Br. J. Environ. Clim. Change 7(3), 148–167 (2017).Article 

    Google Scholar 
    Felske, A., Wolterink, A., Van Lis, R. & Akkermans, A. D. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 64(3), 871–879. https://doi.org/10.1128/aem.64.3.871-879.1998 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637. https://doi.org/10.1007/s13213-014-1002-0 (2015).Article 
    CAS 

    Google Scholar 
    Lugo, M. A. et al. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 55, 705–713. https://doi.org/10.1007/s00248-007-9313-3 (2008).Article 
    CAS 

    Google Scholar 
    Wang, Q., Wang, S., Fan, B. & Yu, X. Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: Effect of planting conifers with broadleaved species. Plant Soil 297, 201–211. https://doi.org/10.1007/s11104-007-9333-2 (2007).Article 
    CAS 

    Google Scholar 
    Nüsslein, K. & Tiedje, J. M. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65(8), 3622–3626. https://doi.org/10.1128/aem.65.8.3622-3626.1999 (1999).Article 
    ADS 

    Google Scholar 
    Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L. & Sessitsch, A. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 70(9), 5057–5065. https://doi.org/10.1128/AEM.70.9.5057-5065.2004 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chan, C. et al. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiol. Ecol. 64(3), 449–458. https://doi.org/10.1111/j.1574-6941.2008.00488.x (2008).Article 
    CAS 

    Google Scholar 
    Adamczyk, B., Kitunen, V. & Smolander, A. Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biol. Fertil. Soils 45(1), 55–64. https://doi.org/10.1007/s00374-008-0308-0 (2008).Article 
    CAS 

    Google Scholar 
    Kanerva, S., Kitunen, V., Loponen, J. & Smolander, A. Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine. Biol. Fertil. Soils 44(4), 547–556. https://doi.org/10.1007/s00374-007-0234-6 (2008).Article 
    CAS 

    Google Scholar 
    Ushio, M., Balser, T. C. & Kitayama, K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant Soil 365(1), 157–170. https://www.jstor.org/stable/42952341 (2013).Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10(1), 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).Article 

    Google Scholar 
    Thomson, B. C. et al. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microb. Ecol. 59(2), 335–343. https://doi.org/10.1007/s00248-009-9575-z (2010).Article 

    Google Scholar 
    May, R. M. Patterns of species abundance and diversity. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard University, 1975).
    Google Scholar 
    Kapur, M. & Jain, R. K. Microbial diversity: Exploring the unexplored. World Federation of Culture Collection Newsletter 39, 12–16 (2004).
    Google Scholar 
    Bryant, J. A. et al. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. 105(Suppl 1), 11505–11511 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Fierer, N. et al. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92(4), 797–804. https://doi.org/10.1890/10-1170.1 (2011).Article 

    Google Scholar  More

  • in

    Experimental evidence of parasite-induced behavioural alterations modulated by food availability in wild capuchin monkeys

    Moore, J. An overview of parasite-induced behavioral alterations – and some lessons from bats. J. Exp. Biol. 216, 11–17 (2012).Article 

    Google Scholar 
    Nunn, C. L. & Altizer, S. Infectious Diseases in Primates: Behavior, Ecology and Evolution (Oxford University Press, 2006).Book 

    Google Scholar 
    Hutchings, M. R., Athanasiadou, S., Kyriazakis, I. & Gordon, I. J. Nutrition and Behaviour Group Symposium on ‘Exploitation of medicinal properties of plants by animals and man through food intake and foraging behaviour’: Can animals use foraging behaviour to combat parasites?. Proc. Nutr. Soc. 62, 361–370 (2003).Article 

    Google Scholar 
    Hawley, D. M., Etienne, R. S., Ezenwa, V. O. & Jolles, A. E. Does animal behavior underlie covariation between hosts’ exposure to infectious agents and susceptibility to infection? Implications for disease dynamics. Integr. Comp. Biol. 51, 528–539 (2011).Article 

    Google Scholar 
    Rimbach, R. et al. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140110 (2015).Article 

    Google Scholar 
    Friant, S., Ziegler, T. E. & Goldberg, T. L. Changes in physiological stress and behaviour in semi-free-ranging red-capped mangabeys (Cercocebus torquatus) following antiparasitic treatment. Proc. R. Soc. B Biol. Sci. 283, 20161201 (2016).Article 

    Google Scholar 
    Hudson, P. J. & Dobson, A. P. Macroparasites: Observed patterns in naturally fluctuating animal populations. In Ecology of infectious diseases in natural populations (eds Grenfell, B. T. & Dobson, A. P.) 144–176 (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511629396.006.Chapter 

    Google Scholar 
    Murray, D. L., Lloyd, B. K. & Cary, J. R. Do parasitism and nutritional status interact to affect production in snowshoe hares?. Ecology 79, 1209–1222 (1998).Article 

    Google Scholar 
    Coop, R. L. & Holmes, P. H. Nutrition and parasite interaction. Int. J. Parasitol. 26, 951–962 (1996).Article 
    CAS 

    Google Scholar 
    Møller, A. P., de Lope, F., Moreno, J., González, G. & Pérez, J. J. Ectoparasites and host energetics: House martin bugs and house martin nestlings. Oecologia 98, 263–268 (1994).Article 
    ADS 

    Google Scholar 
    Munger, J. C. & Karasov, W. H. Sublethal parasites and host energy budgets: Tapeworm infection in white-footed mice. Ecology 70, 904–921 (1989).Article 

    Google Scholar 
    Hicks, O. et al. The energetic cost of parasitism in a wild population. Proc. R. Soc. B Biol. Sci. 285, 20180489 (2018).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: A review and meta-analysis. Ecol. Lett. 21, 1869–1884 (2018).Article 

    Google Scholar 
    Kyriazakis, I., Tolkamp, B. J. & Hutchings, M. R. Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim. Behav. 56, 265–274 (1998).Article 
    CAS 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).Article 
    CAS 

    Google Scholar 
    Lopes, P. C., Block, P. & König, B. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pelletier, F. & Festa-Bianchet, M. Effects of body mass, age, dominance and parasite load on foraging time of bighorn rams. Ovis canadensis. Behav. Ecol. Sociobiol. 56, 546–551 (2004).Article 

    Google Scholar 
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).Article 

    Google Scholar 
    Hart, B. L. The behavior of sick animals. Vet. Clin. North Am. Small Anim. Pract. 21, 225–237 (1991).Article 
    CAS 

    Google Scholar 
    Poulin, R. Meta-analysis of parasite-induced behavioural changes. Anim. Behav. 48, 137–146 (1994).Article 

    Google Scholar 
    Janson, C. H. Toward an experiemental socioecology of primates. Examples from Argentine brown capuchin monkeys (Cebus apella nigritus). In Adaptive Radiations of Neotropical Primates (eds Janson, C. H. et al.) 309–325 (Plenum Press, 1996).Chapter 

    Google Scholar 
    Robinson, J. G. Seasonal variation in use of time and space by the wedge-capped capuchin monkey, Cebus olivaceus: Implications for foraging theory. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.431 (1986).Article 

    Google Scholar 
    Saj, T., Sicotte, P. & Paterson, J. D. Influence of human food consumption on the time budget of vervets. Int. J. Primatol. 20, 977–994 (1999).Article 

    Google Scholar 
    Ghai, R. R., Fugère, V., Chapman, C. A., Goldberg, T. L. & Davies, T. J. Sickness behaviour associated with non-lethal infections in wild primates. Proc. Biol. Sci. 282, 20151436 (2015).
    Google Scholar 
    Blersch, R. et al. Sick and tired: Sickness behaviour, polyparasitism and food stress in a gregarious mammal. Behav. Ecol. Sociobiol. 75, 169 (2021).Article 

    Google Scholar 
    Müller-Klein, N. et al. Physiological and social consequences of gastrointestinal nematode infection in a nonhuman primate. Behav. Ecol. 30, 322–335 (2019).Article 

    Google Scholar 
    Chapman, C. A. et al. Social behaviours and networks of vervet monkeys are influenced by gastrointestinal parasites. PLoS ONE 11, e0161113 (2016).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: characterization and seasonal variation. J. Ornithol. 148, 583–591 (2007).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). J. Exp. Biol. 209, 3062–3070 (2006).Article 

    Google Scholar 
    Janson, C. H. & Di Bitetti, M. S. Experimental analysis of food detection in capuchin monkeys: Effects of distance, travel speed, and resource size. Behav. Ecol. Sociobiol. 41, 17–24 (1997).Article 

    Google Scholar 
    Di Bitetti, M. S. Food-associated calls in the tufted capuchin monkey (Cebus apella). PhD Thesis. (Stony Brook University, New York, 2001).Di Bitetti, M. S. & Janson, C. H. Reproductive socioecology of tufted capuchins (Cebus apella nigritus) in Norteastern Argentina. Int. J. Primatol. 22, 127–142 (2001).Article 

    Google Scholar 
    Janson, C., Baldovino, M. C. & Di Bitetti, M. The group life cycle and demography of brown capuchin monkeys (Cebus [apella] nigritus) in Iguazú National Park, Argentina. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 185–212 (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-22514-7_9.Chapter 

    Google Scholar 
    Robinson, J. C. & Galán Saúco, V. Bananas and plantains. (Crop production science in horticulture series N. 19, CAB International, 2010). https://doi.org/10.1079/9781845936587.0000Tiddi, B., Pfoh, R. & Agostini, I. The impact of food provisioning on parasite infection in wild black capuchin monkeys: A network approach. Primates 60, 297–306 (2019).Article 

    Google Scholar 
    Agostini, I., Vanderhoeven, E., Di Bitetti, M. S. & Beldomenico, P. M. Experimental testing of reciprocal effects of nutrition and parasitism in wild black capuchin monkeys. Sci. Rep. 7, 1–11 (2017).Article 

    Google Scholar 
    de Vries, H., Netto, W. J. & Hanegraaf, P. L. H. Matman: a program for the analysis of sociometric matrices and behavioural transition matrices. Behaviour 125, 157–175 (1993).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993). https://doi.org/10.1017/cbo9780511810893.Book 

    Google Scholar 
    Cox, D. D. & Todd, A. C. Survey of gastrointestinal parasitism in Wisconsin dairy cattle. J. Am. Vet. Med. Assoc. 141, 706–709 (1962).CAS 

    Google Scholar 
    Ballweber, L. R., Beugnet, F., Marchiondo, A. A. & Payne, P. A. American association of veterinary parasitologists’ review of veterinary fecal flotation methods and factors influencing their accuracy and use—Is there really one best technique?. Vet. Parasitol. 204, 73–80 (2014).Article 
    CAS 

    Google Scholar 
    Godfrey, S. S. Networks and the ecology of parasite transmission: a framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).Article 

    Google Scholar 
    Sosa, S., Sueur, C. & Puga-Gonzalez, I. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol. 2020, 1–12 (2020).
    Google Scholar 
    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: The Animal Network Toolkit Software (ANTs) R package. Sci. Rep. 10, 12507 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).Article 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling (Springer, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. 63 (2016). citeulike:11961261Carlton, E. D., Demas, G. E. & French, S. S. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm. Behav. 62, 272–279 (2012).Article 
    CAS 

    Google Scholar 
    Tizard, I. Sickness behavior, its mechanisms and significance. Anim. Health Res. Rev. 9, 87–99 (2008).Article 

    Google Scholar 
    Inoue, W. & Luheshi, G. N. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1709-19 (2010).Article 

    Google Scholar 
    Macdonald, L., Radler, M., Paolini, A. G. & Kent, S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an antiinflammatory bias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, 172–184 (2011).Article 

    Google Scholar 
    Wisse, B. E. et al. Physiological regulation of hypothalamic IL-1β gene expression by leptin and glucocorticoids: implications for energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 287, R1107–R1113 (2004).Article 

    Google Scholar 
    Pohl, J., Woodside, B. & Luheshi, G. N. Changes in hypothalamically mediated acute-phase inflammatory responses to lipopolysaccharide in diet-induced obese rats. Endocrinology 150, 4901–4910 (2009).Article 
    CAS 

    Google Scholar 
    Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: classical observations must not be ignored. Front. Immunol. 10, 1–7 (2019).Article 

    Google Scholar 
    Poppi, D. P., Sykes, A. R. & Dynes, R. A. The effect of endoparasitism on host nutrition – the implications for nutrient manipulation. Proc. New Zeal. Soc. Anim. Prod. 50, 237–243 (1990).
    Google Scholar 
    Coulson, G., Cripps, J. K., Garnick, S., Bristow, V. & Beveridge, I. Parasite insight: assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Philos. Trans. R. Soc. B Biol. Sci. 373, 197 (2018).Article 

    Google Scholar 
    Worsley-Tonks, K. E. L. & Ezenwa, V. O. Anthelmintic treatment affects behavioural time allocation in a free-ranging ungulate. Anim. Behav. 108, 47–54 (2015).Article 

    Google Scholar 
    Jones, O. R., Anderson, R. M. & Pilkington, J. G. Parasite-induced anorexia in a free-ranging mammalian herbivore: An experimental test using Soay sheep. Can. J. Zool. 84, 685–692 (2006).Article 

    Google Scholar 
    Cripps, J. K., Martin, J. K. & Coulson, G. Anthelmintic treatment does not change foraging strategies of female eastern grey kangaroos, Macropus giganteus. PLoS ONE 11, e0147384 (2016).Article 

    Google Scholar 
    Giles, N. Predation risk and reduced foraging activity in fish: experiments with parasitized and non-parasitized three-spined sticklebacks, Gasterosteus aculeatus L.. J. Fish Biol. 31, 37–44 (1987).Article 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Wu, Q. C., Ortega, C. N. & Rohr, J. R. Host resistance and tolerance of parasitic gut worms depend on resource availability. Oecologia 183, 1031–1040 (2017).Article 
    ADS 

    Google Scholar 
    Lopes, P. C., French, S. S., Woodhams, D. C. & Binning, S. A. Metabolic response of dolphins to short-term fasting reveals physiological changes that differ from the traditional fasting model. J. Exp. Biol. 224, jeb225847 (2021).Article 

    Google Scholar 
    Behringer, D. C., Butler, M. J. & Shields, J. D. Ecology: Avoidance of disease by social lobsters. Nature 441, 421 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Poirotte, C. et al. Mandrills use olfaction to socially avoid parasitized conspecifics. Sci. Adv. 3, e1601721 (2017).Article 
    ADS 

    Google Scholar  More

  • in

    Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria

    Strains belonging to the same species display distinct growth dynamics on the marine polysaccharide alginateWe first quantified the growth dynamics of the 12 Vibrionaceae strains (Supplementary Table 1) on alginate in well-mixed batch cultures. Growth of populations was initiated at approximately the same inoculum density (105 colony forming units (c.f.u.) ml−1). We tracked the growth dynamics by measuring the optical density at 600 nm and compared the maximum population size reached over the course of 36 h (Fig. 1 and S1). We found significant differences in the maximal optical density achieved by different strains within each species (Fig. 1 and S1). In V. splendidus, strains 12B01 and FF6 reached a lower maximum population size compared to strains 1S124 and 13B01 (Fig. 1 and S1A). In V. cyclitrophicus, strain ZF270 reached a lower maximum population size compared to strains 1F175, 1F111, and ZF28 (Fig. 1 and S1A). Similarly, in V. sp. F13, strain 9ZC77 reached a lower maximum population size than strains 9CS106, 9ZC13, and ZF57 (Fig. 1 and S1A). These findings suggest that some strains are limited in their growth abilities in well-mixed environments, perhaps as a consequence of differences in the amount and activity of enzymes they release (Supplementary Table 1).Fig. 1: Vibrionaceae strains differ in their growth dynamics on the marine polysaccharide alginate under well-mixed conditions.Maximum optical density (measured at 600 nm) achieved by populations of strains belonging to Vibrio splendidus, Vibrio cyclitrophicus, and Vibrio sp. F13 during the course of a 36 h growth cycle on the same concentration (0.1% weight/volume) of the polysaccharide alginate. Points and error bars indicate the mean of measurements across populations within each ecotype (npopulations = 3) and the 95% confidence interval (CI), respectively. Different letters indicate statistically significant differences between strains within one species (One-way ANOVA and Dunnett’s post-hoc test; V. splendidus: p  More

  • in

    Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination

    Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).Article 

    Google Scholar 
    Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Brittain, C., Kremen, C. & Klein, A. M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19, 540–547 (2013).Article 
    ADS 

    Google Scholar 
    Rader, R., Reilly, J., Bartomeus, I. & Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19, 3103–3110 (2013).Article 
    ADS 

    Google Scholar 
    Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).Article 
    ADS 

    Google Scholar 
    Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 6, 1–10 (2015).Article 

    Google Scholar 
    Knop, E. et al. Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers. 11, 267–275 (2018).Article 

    Google Scholar 
    Goodwin, E. K., Rader, R., Encinas-Viso, F. & Saunders, M. E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian Alpine zone. Environ. Entomol. 50, 348–358 (2021).Article 

    Google Scholar 
    Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. Biol. Sci. 288, 20210547 (2021).
    Google Scholar 
    Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Chang. Biol. 21, 4021–4030 (2015).Article 
    ADS 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608. https://doi.org/10.1126/science.1230200 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).Article 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 386, 1964–1972 (2015).Article 

    Google Scholar 
    González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).Article 

    Google Scholar 
    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).Article 
    ADS 

    Google Scholar 
    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).Article 
    ADS 

    Google Scholar 
    Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).Article 

    Google Scholar 
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2242 (2018).Article 

    Google Scholar 
    Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. 276, 229–237 (2009).Article 

    Google Scholar 
    Jauker, F., Diekoetter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).Article 

    Google Scholar 
    Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 95, 466–474 (2014).Article 

    Google Scholar 
    Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N. & Ricketts, T. H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 280, 53–67 (2019).Article 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).Article 

    Google Scholar 
    Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).Article 

    Google Scholar 
    Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 279, 4845–4852 (2012).Article 

    Google Scholar 
    Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).Article 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).Article 

    Google Scholar 
    Miñarro, M. & Twizell, K. W. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie 46, 276–285 (2015).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kuehn, I., Frenzel, M. & Schweiger, O. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landsc. Ecol. 32, 581–593 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kühn, I., Frenzel, M. & Schweiger, O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol. 54, 527–536 (2017).Article 

    Google Scholar 
    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).Article 

    Google Scholar 
    Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 1–3 (2016).Article 

    Google Scholar 
    Taki, H., Okabe, K., Makino, S. I., Yamaura, Y. & Sueyoshi, M. Contribution of small insects to pollination of common buckwheat, a distylous crop. Ann. Appl. Biol. 155, 121–129 (2009).Article 

    Google Scholar 
    Krkošková, B. & Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 38, 561–568 (2005).Article 

    Google Scholar 
    Campbell, J. W., Irvin, A., Irvin, H., Stanley-Stahr, C. & Ellis, J. D. Insect visitors to flowering buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), in north-central Florida. Fla. Entomol. 99, 264–268 (2016).Article 

    Google Scholar 
    Hadley, N. F. Water Relations of Terrestrial Arthropods (CUP Archive, 1994).
    Google Scholar 
    Sgolastra, F. et al. Temporal activity patterns in a flower visitor community of Dictamnus albus in relation to some biotic and abiotic factors. Bull. Insectol. 69, 291–300 (2016).
    Google Scholar 
    Vicens, N. & Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420 (2000).Article 

    Google Scholar 
    Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R. & Cianciaruso, M. V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28, 1372–1383 (2020).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. (2013).Defra. (ed Food and Rural Affairs Department for Environment) (2019).Agency, J. M. Amedas, https://tenki.jp/past/2019/09/amedas/ (2019).Jacquemart, A.-L., Gillet, C. & Cawoy, V. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotechnol. 82, 104–108 (2007).Article 

    Google Scholar 
    Taki, H. et al. Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic Appl. Ecol. 11, 594–602 (2010).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Dray S, et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial. (2022).Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).Article 

    Google Scholar 
    Földesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75 (2016).Article 

    Google Scholar 
    Oksanen J, et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (2022)Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman and Hall/CRC, 1995).Book 
    MATH 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (2019).Sasaki, H. & Wagatsuma, T. Bumblebees (Apidae: Hymenoptera) are the main pollinators of common buckwheat, Fogopyrum esculentum, in Hokkaido, Japan. Appl. Entomol. Zool. 42, 659–661 (2007).Article 

    Google Scholar 
    Nagano, Y., Miyashita, T., Taki, H. & Yokoi, T. Diversity of co-flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecol. Res. 36, 882–891 (2021).Article 

    Google Scholar 
    Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions?. Gcb Bioenergy 6, 756–767 (2014).Article 

    Google Scholar 
    Sugiura, N., Miyazaki, S. & Nagaishi, S. A supplementary contribution of ants in the pollination of an orchid, Epipactis thunbergii, usually pollinated by hover flies. Plant Syst. Evol. 258, 17–26 (2006).Article 

    Google Scholar 
    Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).Article 

    Google Scholar 
    Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 49, 1373–1383 (2012).Article 

    Google Scholar 
    Michiyama, H., Arikuni, M. & Hirano, T. Effect of air temperature on the growth, flowering and ripening in common buckwheat. In The Procceeding of the 8th ISB (2001)Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-U196. https://doi.org/10.1038/nature10282 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).Article 

    Google Scholar 
    Choi, S.-W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Feldmeier, S. et al. Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Divers. Distrib. 24, 1047–1060 (2018).Article 

    Google Scholar  More

  • in

    Temperature, species identity and morphological traits predict carbonate excretion and mineralogy in tropical reef fishes

    Animal collection and holding for this project was conducted under Marine Research Permit RE-19–28 issued by the Ministry of Natural Resources, Environment, and Tourism of the Republic of Palau (10.03.2019), Marine Research/Collection Permit and Agreement 62 issued by the Koror State Government (08.10.2019), Queensland Government GBRMPA Marine Parks Permit G14/36689.1, Queensland Government DNPRSR Marine Parks Permits QS2014/MAN247 and QS2014/MAN247a, Queensland Government General Fisheries Permit 168991, Queensland Government DAFF Animal Ethics approval CA2013/11/733, approval by The Bahamas Department of Marine Resources, approval by the Animal Care Officer of both the University of Bremen and the Leibniz Centre for Tropical Marine Research (ZMT), and in accordance with UK and Germany animal care guidelines.Sample collectionWe collected fish carbonate samples at four study locations across three tropical and subtropical regions: Eleuthera (24°50’N, 76°20’W), The Bahamas, between 2009 and 201127,37; Heron Reef (23°27’S, 151°55’E) and Moreton Bay (27°29’S, 153°24’E) in Queensland, Australia, in 2014 and 201528; and Koror (7°20’N, 134°28’E), Palau, during November and December 2019. These are located within four distinct marine biogeographic provinces and three realms (Tropical Atlantic, Central Indo-Pacific, and Temperate Australasia)43. At each location fish were collected using barrier nets, dip nets, clove oil or hook and line, and immediately transferred to aquaria facilities at the Cape Eleuthera Institute, Heron Island and Moreton Bay Research Stations, and the Palau International Coral Reef Center. Fish were held in a range of tanks (60, 400, or 1400 L in the Bahamas, 10, 60, 100, 120, or 400 L in Heron Island and Moreton Bay, and 8, 80, 280, or 400 L in Palau) of suitable dimensions for different fish sizes ( 5). Each sample was titrated with 0.01–0.5 N HCl (with continuous aeration with CO2-free air) until the end point (grey-lavender; pH~4.80) was reached and stable for at least 10 min. If the sample was over-titrated (pink), 0.01–0.1 N NaOH was added to titrate back to the end point and the amount of base used was subtracted from the amount of acid. Acid and base were added using an electronic multi-dispenser pipette (Eppendorf Repeater ®E3X, Eppendorf, Hamburg, Germany) with a precision of  ± 1 ({{{{{rm{mu }}}}}})L. Additionally, the pH of several samples was monitored using a pH microelectrode (Mettler Toledo InLab Micro) to ascertain the correctness of the colorimetric end point. The amount of carbonate in the sample was then calculated using Eq. (1). The method was validated using certified reference material (Alkalinity Standard Solution, 25,000 mg/L as CaCO3, HACH) and the accuracy in the determination of solid samples was verified using certified CaCO3 powder (Suprapur, ≥ 99.95% purity, Merck) samples (60–500 ({{{{{rm{mu }}}}}})g) and resulted in 96.53 ± 1.94% accuracy (mean ± SE; n = 8).To compare values obtained with the two titration methods we further analysed 12 samples collected at Lizard Island, Australia, in February 2016. Samples were collected at 24 h intervals from one individual of Lethrinus atkinsoni (f. Lethrinidae, body mass: 245 g), a group of five Lutjanus fulvus (f. Lutjanidae, mean body mass: 21 g), and an individual of Cephalopholis cyanostigma (f. Serranidae, body mass: 295 g), following the procedures described above. During sample collection water temperature ranged from 29.1 °C during the night to 32.6 °C during the day, with an average of ~31 °C, mean salinity was 35.4, and pHNBS ranged from 8.13 to 8.21. To compare the amount of carbonate measured by the two methods we added carbonate samples to 20 ml ultrapure water and disaggregated crystals via sonication. We then used a Metrohm Titrando autotitrator and Metrohm Aquatrode pH electrode to measure initial pH of the suspension of carbonates, then titrated each sample of carbonate in two stages. Firstly, they were titrated down to pH 4.80 using 0.1 M HCl, adding 20 µl increments of acid until this was sufficient to keep pH below 4.80 for 10 min whilst bubbling with CO2-free air. This first stage was comparable to the single end point titration used for samples collected in Palau. Secondly, whilst continuing to bubble with CO2-free air, further acid was added to the sample until it reached pH 3.89 and was stable for 1 min. Then 0.1 M NaOH was added to the samples to return them to the initial pH. For all samples the first end point titration (to pH 4.80) yielded slightly higher values for carbonate content than the second double titration. The ratio between the two methods (single end point/double titration) was 1.08 ± 0.01 (mean ± SE; range: 1.04–1.14; Supplementary Table 2). As we found a small but consistent difference between the two methods, all following analyses were initially performed on the actual data obtained with the double titration for samples from Australia and The Bahamas, and the single end point titration for samples from Palau. Then, to assess the robustness of the results, we repeated the analyses after applying a correction factor of 1.08 to the excretion rates of Palauan fishes (that used the single end point titration method). All results were consistent and robust to the measured difference between the titration methods (Supplementary Figs. 8, 9).Finally, measurements of multiple samples from each individual collected over periods of 18–169 h (median: 64 h) were combined to produce an average individual excretion rate in ({{{{{rm{mu }}}}}})mol h−1. For fish held in groups, carbonate excretion rates per individual (of average biomass) were obtained by averaging the total excretion rate of the group across the sampling period and dividing it by the number of individuals in the tank. Excretion rates obtained from fish groups thus evened the intraspecific variability within tanks, and are therefore more robust than those directly obtained from fish held individually. This aspect was considered in our models by fitting weighted regressions (see the “Statistical modelling” section). In total, we measured the carbonate excretion rates of 382 individual fishes arranged in 192 groups (i.e., independent observations), representing 85 species from 35 families across three tropical regions (180 individuals from 29 species in Australia, 90 individuals from 10 species in the Bahamas, and 112 individuals from 46 species in Palau; Supplementary Table 1).We assume that during the sampling of carbonates fishes were close to their resting metabolic rate and that their carbonate excretion rates are representative of fish at rest. Although the ratio of tank volume to fish volume in our study (median ~660; inter-quartile range ~180–1700) typically greatly exceeds the guideline ideal range for measuring resting metabolic rate (20–50)85, fishes were fasted prior to and throughout sampling, and in most instances their movement was somewhat constrained by tank volume. Fasting reduces metabolic rate in all animals, including fish, as they do not undergo energy-intensive digestive processes and use energy reserves to support vital processes, triggering metabolic changes in many tissues and reducing activity levels86,87. Additionally, other than the carbonate syphoning ( More

  • in

    Rethinking river water temperature in a changing, human-dominated world

    Ouellet, V. et al. Sci. Total Environ. 736, 139679 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sutadian, A. D., Muttil, N., Yilmaz, A. G. & Perera, B. J. C. Environ. Monit. Assess. 188, 58 (2016).Article 
    PubMed 

    Google Scholar 
    Murdoch, P. S., Baron, J. S. & Miller, T. L. J. Am. Water Resour. Assoc. 36, 347–366 (2000).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. & Garner, G. Prog Phys Geogr. 39, 68–92 (2015).Article 

    Google Scholar 
    Abbott, B. W. et al. Nat. Geosci. 12, 533–540 (2019).Article 
    CAS 

    Google Scholar 
    Grill, G. et al. Nature 569, 215–221 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hermanson, L. et al. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).Article 

    Google Scholar 
    Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E. & Nobilis, F. Hydrol. Process. 22, 902–918 (2008).Article 

    Google Scholar 
    Hester, E. T. & Doyle, M. W. J. Am. Water Resour. Assoc. 47, 571–587 (2011).Article 

    Google Scholar 
    Schliemann, S. A., Grevstad, N. & Brazeau, R. H. Hydrol. Process 35, e14001 (2021).Article 

    Google Scholar 
    Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P. & Malcolm, I. A. Sci. Total Environ. 612, 1543–1558 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Sullivan, A. M., Devito, K. J. & Curry, R. A. Catena 177, 70–83 (2019).Article 

    Google Scholar 
    Chang, H. & Psaris, M. Sci. Total Environ. 461, 587–600 (2013).Article 
    PubMed 

    Google Scholar 
    Hester, E. T. & Bauman, K. S. J. Am. Water Resour. Assoc. 49, 328–342 (2013).Article 

    Google Scholar 
    Croghan, D., Van Loon, A. F., Sadler, J. P., Bradley, C. & Hannah, D. M. Hydrol. Process. 33, 144–159 (2018).Article 

    Google Scholar 
    Levia, D. F. et al. Nat. Geosci. 13, 656–658 (2020).Article 
    CAS 

    Google Scholar 
    Nelson, K. C. & Palmer, M. A. J. Am. Water Resour. Assoc 43, 440–452 (2007).Article 

    Google Scholar 
    Heggenes, J. et al. River Res. Appl. 37, 743–765 (2021).Article 

    Google Scholar 
    Menberg, K., Blum, P., Kurylyk, B. L. & Bayer, P. Hydrol. Earth Syst. Sci. 18, 4453–4466 (2014).Article 

    Google Scholar 
    Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Environ. Res. Lett. 14, 104012 (2019).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 36, e14525 (2022).Article 

    Google Scholar 
    Carothers, C. et al. Ecol. Soc. https://doi.org/10.5751/ES-11972-260116 (2021).Dugdale, S. J., Hannah, D. M. & Malcolm, I. A. Earth Sci. Rev. 175, 97–113 (2017).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Tavares, M. H. et al. Remote Sens. Environ. 241, 11172 (2020).Article 

    Google Scholar 
    Dugdale, S. J., Klaus, J. & Hannah, D. M. Water Resour. Res. 58, e2021WR031168 (2022).Article 

    Google Scholar 
    Mao, F. et al. Environ. Sci. Technol. 54, 9145–9158 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 25, 1191–1200 (2011).Article 

    Google Scholar 
    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. Earth Syst. Sci. Data 10, 765–785 (2018).Article 

    Google Scholar  More

  • in

    Ostreopsis Schmidt and Coolia Meunier (Dinophyceae, Gonyaulacales) from Cook Islands and Niue (South Pacific Ocean), including description of Ostreopsis tairoto sp. nov.

    Verma, A. et al. The genetic basis of toxin biosynthesis in dinofagellates. Microorganisms 7, 222 (2019).Article 
    CAS 

    Google Scholar 
    Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge1. J. Phycol. 46, 220–235 (2010).Article 
    CAS 

    Google Scholar 
    Hoppenrath, M., Murray, S., Chomérat, N., Horiguchi, T. Marine Benthic Dinoflagellates – Unveiling Their Worldwide Biodiversity (Kleine Senckenberg-reihe 54). E. Schweizerbart’sche Verlagbuchhandlung (2014).Luo, Z. et al. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 66, 88–96 (2017).Article 

    Google Scholar 
    Litaker, R. W. et al. Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia 48, 344–390 (2009).Article 

    Google Scholar 
    Hoppenrath, M. et al. Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae)—A proposal and review. Harmful Algae 27, 1–28 (2013).Article 

    Google Scholar 
    Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632 (2020).Article 

    Google Scholar 
    Rhodes, L. World-wide occurrence of the toxic dinoflagellate genus Ostreopsis Schmidt. Toxicon 57, 400–407 (2011).Article 
    CAS 

    Google Scholar 
    Parsons, M. L. et al. Gambierdiscus and Ostreopsis: Reassessment of the state of knowledge of their taxonomy, geography, ecophysiology, and toxicology. Harmful Algae 14, 107–129 (2012).Article 
    CAS 

    Google Scholar 
    Schmidt, J. Preliminary report of the botanical results of the Danish expedition to Siam (1899–1900). Part IV Peridiniales. Bot. Tidsskr. 24, 212–221 (1901).
    Google Scholar 
    Accoroni, S. et al. Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the eastern Mediterranean Sea. J. Phycol. 52, 1064–1084 (2016).Article 
    CAS 

    Google Scholar 
    Verma, A., Hoppenrath, M., Dorantes-Aranda, J. J., Harwood, D. T. & Murray, S. A. Molecular and phylogenetic characterization of Ostreopsis (Dinophyceae) and the description of a new species, Ostreopsis rhodesae sp. nov., from a subtropical Australian lagoon. Harmful Algae 60, 116–130 (2016).Article 
    CAS 

    Google Scholar 
    Fukuyo, Y. Taxonomical study on benthic dinoflagellates collected in coral reefs. Nippon Suisan Gakk. 47, 967–978 (1981).Article 

    Google Scholar 
    Faust, M. A. Three new Ostreopsis species (Dinophyceae): O. marinus sp. nov., O. belizeanus sp. nov., and O. caribbeanus sp. nov.. Phycologia 38, 92–99 (1999).Article 

    Google Scholar 
    Faust, M. A. & Morton, S. L. Morphology and ecology of the marine dinoflagellate Ostreopsis labens sp. nov. (Dinophyceae). J. Phycol. 31, 456–463 (1995).Article 

    Google Scholar 
    Chomérat, N., Bilien, G., Couté, A. & Quod, J.-P. Reinvestigation of Ostreopsis mascarenensis Quod (Dinophyceae, Gonyaulacales) from Reunion Island (SW Indian Ocean): Molecular phylogeny and emended description. Phycologia 59, 140–153 (2020).Article 

    Google Scholar 
    Boisnoir, A., Bilien, G., Lemée, R. & Chomérat, N. First insights on the diversity of the genus Ostreopsis (Dinophyceae, Gonyaulacales) in Guadeloupe Island, with emphasis on the phylogenetic position of O. heptagona. Eur. J. Protistol. 83, 125875 (2022).Article 

    Google Scholar 
    Chomérat, N. et al. Ostreopsis lenticularis Y. Fukuyo (Dinophyceae, Gonyaulacales) from French Polynesia (South Pacific Ocean): A revisit of its morphology, molecular phylogeny and toxicity. Harmful Algae 84, 95–111 (2019).Article 

    Google Scholar 
    Nguyen-Ngoc, L. et al. Morphological and genetic analyses of Ostreopsis (Dinophyceae, Gonyaulacales, Ostreopsidaceae) species from Vietnamese waters with a re-description of the type species, O. siamensis 1. J. Phycol. 57, 1059–1083 (2021).Article 

    Google Scholar 
    Faust, M. A. Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J. Phycol. 31, 996–1003 (1995).Article 

    Google Scholar 
    David, H., Laza-Martínez, A., Miguel, I. & Orive, E. Broad distribution of Coolia monotis and restricted distribution of Coolia cf. canariensis (Dinophyceae) on the Atlantic coast of the Iberian Peninsula. Phycologia 53, 342–352 (2014).Article 

    Google Scholar 
    Rhodes, L. L. et al. Toxic dinoflagellates (Dinophyceae) from Rarotonga Cook Islands. Toxicon 56, 751–758 (2010).Article 
    CAS 

    Google Scholar 
    Meunier, A. Coolia monotis sp. nov. in Mémoires du Musée Royal d’Histoire Naturelle de Belgique. Microplankton Mer Flamande, Méme partie—Les Péridiniens 8, 68–69 (1919).
    Google Scholar 
    Rhodes, L. et al. Epiphytic dinoflagellates in sub-tropical New Zealand, in particular the genus Coolia Meunier. Harmful Algae 34, 36–41 (2014).Article 

    Google Scholar 
    Rhodes, L., Adamson, J., Suzuki, T., Briggs, L. & Garthwaite, I. Toxic marine epiphytic dinoflagellates, Ostreopsis siamensis and Coolia monotis (Dinophyceae), in New Zealand. N. Z. J. Mar. Freshw. Res. 34, 371–383 (2000).Article 

    Google Scholar 
    Fraga, S., Penna, A., Bianconi, I., Paz, B. & Zapata, M. Coolia canariensis sp. nov. (Dinophyceae), a new nontoxic epiuphytic benthic dinoflagellate from the Canary Islands 1. J. Phycol. 44, 1060–1070 (2008).Article 
    CAS 

    Google Scholar 
    Lindemann, E. Abteilung Peridineae (Dinoflagellate). In Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, 3–104 (1928).Biecheler, B. Recherches sur les Péridiniens. Bulletin biologique de France et de Belgique Supplement 36, 1–149 (1952).
    Google Scholar 
    Balech, E. Étude des dinoflagellés du sable de Roscoff. Revue Algologique, Nouvelle Serie 2, 29–52 (1956).

    Google Scholar 
    Mohammad-Noor, N. et al. Autecology and phylogeny of Coolia tropicalis and Coolia malayensis (Dinophyceae), with emphasis on taxonomy of C. tropicalis based on light microscopy, scanning electron microscopy and LSU r DNA 1. J. Phycol. 49, 536–545 (2013).Article 

    Google Scholar 
    Leaw, C. P., Lim, P. T., Cheng, K. W., Ng, B. K. & Usup, G. Morphology and molecular characterization of a new species of thecate benthic dinoflagellate, Coolia malayensis sp. nov. (Dinophyceae) 1. J. Phycol. 46, 162–171 (2010).Article 
    CAS 

    Google Scholar 
    Ten-Hage, L., Turquet, J., Quod, J. & Couté, A. Coolia areolata sp. nov. (Dinophyceae), a new sand-dwelling dinoflagellate from the southwestern Indian Ocean. Phycologia 39, 377–383 (2000).Article 

    Google Scholar 
    Karafas, S., York, R. & Tomas, C. Morphological and genetic analysis of the Coolia monotis species complex with the introduction of two new species, Coolia santacroce sp. nov. and Coolia palmyrensis sp. nov. (Dinophyceae). Harmful Algae 46, 18–33 (2015).Article 
    CAS 

    Google Scholar 
    David, H., Laza-Martínez, A., Rodríguez, F., Fraga, S. & Orive, E. Coolia guanchica sp. nov.(Dinophyceae) a new epibenthic dinoflagellate from the Canary Islands (NE Atlantic Ocean). Eur. J. Phycol. 55, 76–88 (2020).Article 
    CAS 

    Google Scholar 
    Sato, S. et al. Phylogeography of Ostreopsis along west Pacific coast, with special reference to a novel clade from Japan. PLoS One 6, e27983 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Penna, A. et al. Characterization of Ostreopsis and Coolia (Dinophyceae) isolates in the western Mediterranean Sea based on morphology, toxicity and internal transcribed spacer 5.8 S rDNA sequences. J. Phycol. 41, 212–225 (2005).Article 
    CAS 

    Google Scholar 
    Tawong, W. et al. Distribution and molecular phylogeny of the dinoflagellate genus Ostreopsis in Thailand. Harmful Algae 37, 160–171 (2014).Article 

    Google Scholar 
    Faimali, M. et al. Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Mar. Environ. Res. 76, 97–107 (2012).Article 
    CAS 

    Google Scholar 
    Tubaro, A. et al. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 57, 478–495 (2011).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Investigation of the toxin profile of Greek mussels Mytilus galloprovincialis by liquid chromatography mass spectrometry. Toxicon 47, 174–181 (2006).Article 
    CAS 

    Google Scholar 
    Giussani, V. et al. Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 44, 46–53 (2015).Article 
    CAS 

    Google Scholar 
    Usami, M. et al. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J. Am. Chem. Soc. 117, 5389–5390 (1995).Article 
    CAS 

    Google Scholar 
    Ukena, T. et al. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis. Biosci. Biotechnol. Biochem. 65, 2585–2588 (2001).Article 
    CAS 

    Google Scholar 
    Amzil, Z. et al. Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast. Mar. Drugs 10, 477–496 (2012).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MS n characterization of ovatoxin-f, a new palytoxin congener. Chem. Res. Toxicol. 25, 1243–1252 (2012).Article 
    CAS 

    Google Scholar 
    Laza-Martinez, A., Orive, E. & Miguel, I. Morphological and genetic characterization of benthic dinoflagellates of the genera Coolia, Ostreopsis and Prorocentrum from the south-eastern Bay of Biscay. Eur. J. Phycol. 46, 45–65 (2011).Article 

    Google Scholar 
    Holmes, M. J., Lewis, R. J., Jones, A. & Hoy, A. W. W. Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). Nat. Toxins 3, 355–362 (1995).Article 
    CAS 

    Google Scholar 
    Rhodes, L. L. & Thomas, A. E. Coolia monotis (Dinophyceae): A toxic epiphytic microalgal species found in New Zealand (Note). N. Z. J. Mar. Freshw. Res. 31, 139–141 (1997).Article 
    CAS 

    Google Scholar 
    Tibiriçá, C. EJd. A. et al. Diversity and toxicity of the genus Coolia Meunier in Brazil, and detection of 44-methyl Gambierone in Coolia tropicalis. Toxins 12, 327 (2020).Article 

    Google Scholar 
    Tillmann, U., Hoppenrath, M. & Gottschling, M. Reliable determination of Prorocentrum micans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality. Eur. J. Phycol 54, 417–431 (2019).Article 
    CAS 

    Google Scholar 
    Chomérat, N. et al. Taxonomy and toxicity of a bloom-forming Ostreopsis species (Dinophyceae, Gonyaulacales) in Tahiti island (South Pacific Ocean): One step further towards resolving the identity of O. siamensis. Harmful Algae 98, 101888 (2020).Article 

    Google Scholar 
    Rhodes, L. L. et al. The dinoflagellate genera Gambierdiscus and Ostreopsis from subtropical Raoul Island and North Meyer Island, Kermadec Islands. N. Z. J. Mar. Freshw. Res. 51, 490–504 (2017).Article 
    CAS 

    Google Scholar 
    Penna, A. et al. A phylogeographical study of the toxic benthic dinoflagellate genus Ostreopsis Schmidt. J. Biogeogr. 37, 830–841 (2010).Article 

    Google Scholar 
    Zhang, H. et al. Morphology and molecular phylogeny of Ostreopsis cf. ovata and O. lenticularis (Dinophyceae) from Hainan Island South China Sea. Phycol. Res. 66, 3–14 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Carnicer, O., García-Altares, M., Andree, K. B., Diogène, J. & Fernández-Tejedor, M. First evidence of Ostreopsis cf. ovata in the eastern tropical Pacific Ocean Ecuadorian coast. Bot. Mar. 59, 267–274 (2016).
    Google Scholar 
    Nascimento, S. M. et al. Ostreopsis cf. ovata (Dinophyceae) molecular phylogeny, morphology, and detection of ovatoxins in strains and field samples from Brazil. Toxins 12, 70 (2020).Article 
    CAS 

    Google Scholar 
    Caron, D. A. et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl. Environ. Microbiol. 75, 5797–5808 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    McManus, G. B. & Katz, L. A. Molecular and morphological methods for identifying plankton: What makes a successful marriage?. J. Plankton Res. 31, 1119–1129 (2009).Article 
    CAS 

    Google Scholar 
    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).Article 

    Google Scholar 
    Hallegraeff, G. Harmful algal blooms: A global overview. Man. Harmful Mar. Microalgae 33, 1–22 (2003).
    Google Scholar 
    Penna, A., Casabianca, S., Guerra, A. F., Vernesi, C. & Scardi, M. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Mar. Genom. 36, 49–55 (2017).Article 

    Google Scholar 
    Zarauz, L. & Irigoien, X. Effects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method. J. Plankton Res. 30, 1297–1303 (2008).Article 

    Google Scholar 
    De Luca, D., Piredda, R., Sarno, D. & Kooistra, W. H. Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets. ISME J. 15, 1931–1942 (2021).Article 

    Google Scholar 
    Wang, Z. et al. Phytoplankton community and HAB species in the South China Sea detected by morphological and metabarcoding approaches. Harmful Algae 118, 102297 (2022).Article 
    CAS 

    Google Scholar 
    Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).Article 

    Google Scholar 
    Hoppenrath, M. Dinoflagellate taxonomy—A review and proposal of a revised classification. Mar. Biodivers. 47, 381–403 (2017).Article 

    Google Scholar 
    Boenigk, J., Ereshefsky, M., Hoef-Emden, K., Mallet, J. & Bass, D. Concepts in protistology: Species definitions and boundaries. Eur. J. Protistol. 48, 96–102 (2012).Article 

    Google Scholar 
    David, H., Laza-Martínez, A., Miguel, I. & Orive, E. Ostreopsis cf. siamensis and Ostreopsis cf. ovata from the Atlantic Iberian Peninsula: Morphological and phylogenetic characterization. Harmful Algae 30, 44–55 (2013).Article 
    CAS 

    Google Scholar 
    Aligizaki, K. & Nikolaidis, G. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea Greece. Harmful Algae 5, 717–730 (2006).Article 

    Google Scholar 
    Selina, M. S. & Orlova, T. Y. First occurrence of the genus Ostreopsis (Dinophyceae) in the Sea of Japan. Bot. Mar. 53, 243–249 (2010).Article 

    Google Scholar 
    Kang, N. S. et al. Morphology and molecular characterization of the epiphytic benthic dinoflagellate Ostreopsis cf. ovata in the temperate waters off Jeju Island Korea. Harmful Algae 27, 98–112 (2013).Article 
    CAS 

    Google Scholar 
    Momigliano, P., Sparrow, L., Blair, D. & Heimann, K. The diversity of Coolia spp. (Dinophyceae Ostreopsidaceae) in the central Great Barrier Reef region. PloS One 8, e79278 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nguyen, L. N. Morphology and distribution of the three epiphytic dinoflagellate species Coolia monotis, C. tropicalis, and C. canariensis (Ostreopsidaceae, Gonyaulacales, Dinophyceae) from Vietnamese coastal waters. Ocean Sci. 49, 211–221 (2014).Article 

    Google Scholar 
    Verma, A. et al. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol. Evol. 10, 6257–6273 (2020).Article 

    Google Scholar 
    Wayne Litaker, R. et al. Recognizing dinoflagellate species using ITS rDNA sequences 1. J. Phycol. 43, 344–355 (2007).Article 

    Google Scholar 
    Kremp, A. et al. Phylogenetic relationships, morphological variation, and toxin patterns in the Alexandrium ostenfeldii (D inophyceae) complex: Implications for species boundaries and identities. J. Phycol. 50, 81–100 (2014).Article 
    CAS 

    Google Scholar 
    Nascimento, S. M., da Silva, R. A., Oliveira, F., Fraga, S. & Salgueiro, F. Morphology and molecular phylogeny of Coolia tropicalis, Coolia malayensis and a new lineage of the Coolia canariensis species complex (Dinophyceae) isolated from Brazil. Eur. J. Phycol. 54, 484–496 (2019).Article 
    CAS 

    Google Scholar 
    Phua, Y. H., Roy, M. C., Lemer, S., Husnik, F. & Wakeman, K. C. Diversity and toxicity of Pacific strains of the benthic dinoflagellate Coolia (Dinophyceae), with a look at the Coolia canariensis species complex. Harmful Algae 109, 102120 (2021).Article 

    Google Scholar 
    Selwood, A. I. et al. A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation. Toxicon 60, 810–820 (2012).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. J. Am. Chem. Soc. 134, 1869–1875 (2012).Article 
    CAS 

    Google Scholar 
    Dell’Aversano, C. et al. Ostreopsis cf. ovata from the Mediterranean area. Variability in toxinprofiles and structural elucidation of unknowns through LC-HRMSn. In Proc. of the 16th International Conference on Harmful Algae, 70–73 (2014).Terajima, T., Uchida, H., Abe, N. & Yasumoto, T. Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Biosci. Biotechnol. Biochem. 83, 381–390 (2019).Article 
    CAS 

    Google Scholar 
    Tartaglione, L. et al. Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: Structural insights into four new ovatoxins by LC-HRMS/MS. Anal. Bioanal. Chem. 408, 915–932 (2016).Article 
    CAS 

    Google Scholar 
    Murray, J. S. et al. The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp. Harmful Algae 97, 101853 (2020).Article 
    CAS 

    Google Scholar 
    Nakajima, I., Oshima, Y. & Yasumoto, T. Toxicity of benthic dinoflagellates found in coral reef. Toxicity of benthic dinoflagellates in Okinawa. Nippon Suisan Gakk. 47, 1029–1033 (1981).Article 

    Google Scholar 
    Boente-Juncal, A. et al. Structure elucidation and biological evaluation of maitotoxin-3, a homologue of gambierone, from Gambierdiscus belizeanus. Toxins 11, 79 (2019).Article 
    CAS 

    Google Scholar 
    Stuart, J. et al. Geographical distribution, molecular and toxin diversity of the dinoflagellate species Gambierdiscus honu in the Pacific region. Harmful Algae 118, 102308 (2022).Article 
    CAS 

    Google Scholar 
    Smith, K. F. et al. A new Gambierdiscus species (Dinophyceae) from Rarotonga, Cook Islands: Gambierdiscus cheloniae sp. nov. Harmful Algae 60, 45–56 (2016).Article 
    CAS 

    Google Scholar 
    Guillard, R. R. L. Culture of Marine Invertebrates Animals 29–60 (Plenum Press, 1975).Book 

    Google Scholar 
    Chomérat, N., iti Gatti, C. M., Nézan, É. & Chinain, M. Studies on the benthic genus Sinophysis (Dinophysales, Dinophyceae) II. S. canaliculata from Rapa Island (French Polynesia). Phycologia 56, 193–203 (2017).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Verma, A. et al. Molecular phylogeny, morphology and toxigenicity of Ostreopsis cf. siamensis (Dinophyceae) from temperate south-east Australia. Phycol. Res. 64, 146–159 (2016).Article 
    CAS 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Posada, D. & Crandall, K. A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).Article 
    CAS 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).Article 
    CAS 

    Google Scholar 
    Murray, J. S. et al. Acute toxicity of gambierone and quantitative analysis of gambierones produced by cohabitating benthic dinoflagellates. Toxins 13, 333 (2021).Article 
    CAS 

    Google Scholar 
    Murray, J. S., Boundy, M. J., Selwood, A. I. & Harwood, D. T. Development of an LC-MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae 80, 80–87 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus)

    Ilker, E. & Hinczewski, M. Modeling the growth of organisms validates a general relation between metabolic costs and natural selection. Phys. Rev. Lett. 122, 238101 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boltaña, S. et al. Influences of thermal environment on fish growth. Ecol. Evol. 7, 6814–6825 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenfeld, J., Richards, J., Allen, D., Van Leeuwen, T. & Monnet, G. Adaptive trade-offs in fish energetics and physiology: Insights from adaptive differentiation among juvenile salmonids. Can. J. Fish. Aquat. Sci. 77, 1243–1255 (2020).Article 

    Google Scholar 
    Robertson, D. R. & Collin, R. Inter- and intra-specific variation in egg size among reef fishes across the isthmus of Panama. Front. Ecol. Evol. 2, 84 (2015).Article 

    Google Scholar 
    Zueva, K. J., Lumme, J., Veselov, A. E., Kent, M. P. & Primmer, C. R. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar. Genom. 39, 26–38 (2018).Article 

    Google Scholar 
    Rajkov, J., El Taher, A., Böhne, A., Salzburger, W. & Egger, B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol. Ecol. 30, 274–296 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Verhille, C. E. et al. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail. Conserv. Physiol. 4, 1–12 (2016).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (version Feb 2018). In: Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist (Roskov Y. et al.). (2018). www.catalogueoflife.org/annual-checklist/2019. ISSN 2405–884X.Karås, P. & Klingsheim, V. Effects of temperature and salinity on embryonic development of turbot (Scophthalmus maximus L.) from the North Sea, and comparisons with Baltic populations. Helgolander Meeresuntersuchungen 51, 241–247 (1997).Article 
    ADS 

    Google Scholar 
    Barbut, L. et al. How larval traits of six flatfish species impact connectivity. Limnol. Oceanogr. 64, 1150–1171 (2019).Article 
    ADS 

    Google Scholar 
    Bouza, C., Presa, P., Castro, J., Sánchez, L. & Martínez, P. Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus maximus) in comparison with other Pleuronectiformes. Can. J. Fish. Aquat. Sci. 59, 1460–1473 (2002).Article 
    CAS 

    Google Scholar 
    Nielsen, E. E., Nielsen, P. H., Meldrup, D. & Hansen, M. M. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 13, 585–595 (2004).Article 
    PubMed 

    Google Scholar 
    Vandamme, S. G. et al. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus). Mol. Ecol. 23, 618–636 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vilas, R. et al. A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus). Mar. Genom. 23, 77–86 (2015).Article 

    Google Scholar 
    Turan, C. et al. Genetics structure analysis of turbot (Scophthalmus maximus, Linnaeus, 1758) in the Black and Mediterranean Seas for application of innovative Management Strategies. Front. Mar. Sci. 6, 740 (2019).Article 

    Google Scholar 
    Ivanova, P. et al. Genetic diversity and morphological characterisation of three turbot (Scophthalmus maximus L., 1758) populations along the Bulgarian Black Sea coast. Nat. Conserv. 43, 123–146 (2021).Article 

    Google Scholar 
    do Prado, F. D. et al. Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus). Evol. Appl. 11, 1322–1341 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    do Prado, F. D. et al. Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquac. Environ. Interact. 10, 447–463 (2018).Article 

    Google Scholar 
    Robledo, D. et al. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comp. Biochem. Physiol. Part D Genom. Proteom. 21, 41–55 (2017).CAS 

    Google Scholar 
    Sánchez-Molano, E. et al. Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics 12, 473 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ramilo, S. T. et al. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genom. 12, 541 (2011).Article 

    Google Scholar 
    Robledo, D. et al. Integrative transcriptome, genome and quantitative trait loci resources identify single nucleotide polymorphisms in candidate genes for growth traits in turbot. Int. J. Mol. Sci. 17, 243 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sciara, A. A. et al. Validation of growth-related quantitative trait loci markers in turbot (Scophthalmus maximus) families as a step toward marker assisted selection. Aquaculture 495, 602–610 (2018).Article 

    Google Scholar 
    Ma, A., Huang, Z., Wang, X. & Xu, Y. & Guo, X.,. Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci. Rep. 11, 1–12 (2021).Article 

    Google Scholar 
    Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183, 1443–1452 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, P. et al. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus). Genomics 113, 1705–1718 (2021).Article 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Turbot (Scophthalmus maximus) genomic resources:application for boosting aquaculture production. Genomics in Aquaculture (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-801418-9.00006-8.Saura, M. et al. Disentangling genetic variation for resistance and endurance to scuticociliatosis in turbot using pedigree and genomic information. Front. Genet. 10, 539 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramburu, O. et al. Genomic signatures after five generations of intensive selective breeding: Runs of homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Front. Genet. 11, 1–14 (2020).Article 

    Google Scholar 
    Aramburu, O., Blanco, A., Bouza, C. & Martínez, P. Integration of host-pathogen functional genomics data into the chromosome-level genome assembly of turbot (Scophthalmus maximus). Aquaculture 564, 739067 (2023).Article 
    CAS 

    Google Scholar 
    Saul, M. C., Philip, V. M., Reinholdt, L. G. & Chesler, E. J. High-diversity mouse populations for complex traits. Trends Genet. 35, 501–514 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, T. et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200, 1313–1326 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pavelin, J. et al. The nedd-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics 113, 3842–3850 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405–408 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J. et al. Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun. Biol. 4, 795 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imsland, A. K., Brix, O., Nævdal, G. & Samuelsen, E. N. Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comp. Biochem. Physiol. A Physiol. 116, 157–165 (1997).Article 

    Google Scholar 
    Imsland, A. K., Foss, A., Stefansson, S. O. & Nævdal, G. Hemoglobin genotypes of turbot (Scophthalmus maximus): Consequences for growth and variations in optimal temperature for growth. Fish Physiol. Biochem. 23, 75–81 (2000).Article 
    CAS 

    Google Scholar 
    Andersen, Ø., Rubiolo, J. A., De Rosa, M. C. & Martinez, P. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. Fish Physiol. Biochem. 46, 2367–2376 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torrisi, M., Pollastri, G. & Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    AlQuraishi, M. Machine learning in protein structure prediction. Curr. Opin. Chem. Biol. 65, 1–8 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Powder, K. E., Cousin, H., McLinden, G. P. & Craig Albertson, R. A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol. Biol. Evol. 31, 3113–3124 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gupta, A. M., Chakrabarti, J. & Mandal, S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 22, 598–607 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verde, C. et al. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochem. J. 389, 297–306 (2005).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearce, R. & Zhang, Y. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 297, 100870 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 40 (2008).Article 

    Google Scholar 
    Pirolli, D. et al. Insights from molecular dynamics simulations: Structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS ONE 9, e103866 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, J., Freddolino, P. L. & Zhang, Y. From Protein Structure to Function with Bioinformatics. In From Protein Structure to Function with Bioinformatics: Second Edition (ed. Rigden, D. J.) (2017). https://doi.org/10.1007/978-94-024-1069-3Baek, M. et al. Accurate prediction of protein structures and interactions using a 3-track neural network. Science 373, 871–876 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, J. et al. Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture 242, 119–135 (2004).Article 
    CAS 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv ID 1303.3997v2 00, 1–3 (2013).Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vera, M. et al. Development and validation of single nucleotide polymorphisms (SNPs) markers from two transcriptome 454-runs of turbot (Scophthalmus maximus) using high-throughput genotyping. Int. J. Mol. Sci. 14, 5694–5711 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J. A. & Ong, B. The MassARRAY® system for targeted SNP genotyping. Methods in molecular biology vol. 1492 (2017).Choi, Y. & Chan, A. P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).Article 
    PubMed 

    Google Scholar 
    Blanchet, S., Rey, O. & Loot, G. Evidence for host variation in parasite tolerance in a wild fish population. Evol. Ecol. 24, 1129–1139 (2010).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article 
    PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A bayesian perspective. Genetics 993, 977–993 (2008).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).Article 
    PubMed 

    Google Scholar 
    Narum, S. R. & Hess, J. E. Comparison of FST outlier tests for SNP loci under selection. Mol. Ecol. Resour. 11, 184–194 (2011).Article 
    PubMed 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romero, P. et al. Sequence complexity of disordered protein. Prot. Struct. Funct. Genet. 42, 38–48 (2001).Article 
    CAS 

    Google Scholar 
    Jones, D. T. & Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mészáros, B., Erdös, G. & Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucl. Acids Res. 46, W329–W337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishida, T. & Kinoshita, K. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucl. Acids Res. 35, W460-464 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ito, N., Komiyama, N. H. & Fermi, G. Structure of deoxyhaemoglobin of the Anctartic fish Pagothenia bernacchi and structural basis of the root effect. J. Mol. Biol. https://doi.org/10.2210/pdb1hbh/pdb (1995).Article 
    PubMed 

    Google Scholar 
    Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).Article 
    PubMed 

    Google Scholar 
    Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24, 1308–1315 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, J. M., Sella, G., Davis, J. C. & Petrov, D. A. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177, 2083–2099 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Howe, D. G. et al. ZFIN, the Zebrafish model organism database: Increased support for mutants and transgenics. Nucl. Acids Res. 41, 854–860 (2013).Article 

    Google Scholar 
    Huber, C. D., Kim, B. Y., Marsden, C. D. & Lohmueller, K. E. Determining the factors driving selective effects of new nonsynonymous mutations. Proc. Natl. Acad. Sci. USA 114, 4465–4470 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenson, P. D. et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139, 1197–1207 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naruse, K., Hori, H., Shimizu, N., Kohara, Y. & Takeda, H. Medaka genomics: A bridge between mutant phenotype and gene function. Mech. Dev. 121, 619–628 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chintalapati, M. & Moorjani, P. Evolution of the mutation rate across primates. Curr. Opin. Genet. Dev. 62, 58–64 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rodin, R. E. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Thermal adaptation rather than demographic history drives genetic structure inferred by copy number variants in a marine fish. Mol. Ecol. 30, 1624–1641 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kess, T. et al. A putative structural variant and environmental variation associated with genomic divergence across the Northwest Atlantic in Atlantic Halibut. ICES J. Mar. Sci. 78, 2371–2384 (2021).Article 

    Google Scholar 
    Le Moan, A., Bekkevold, D. & Hemmer-Hansen, J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity (Edinb). 126, 668–683 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruigrok, M. et al. The relative power of structural genomic variation versus SNPs in explaining the quantitative trait growth in the marine teleost Chrysophrys auratus. Genes (Basel). 13, 1129 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Herran, R. et al. A chromosome-level genome assembly enables the identification of the follicle stimulating hormone receptor as the master sex determining gene in Solea senegalensis. Mol. Ecol. Resour. 00, 1–19 (2023).
    Google Scholar 
    Harrison, P. W. et al. The FAANG data portal: Global, open-access, “FAIR”, and richly validated genotype to phenotype data for high-quality functional annotation of animal genomes. Front. Genet. 12, 639238 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figueras, A. et al. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): A fish adapted to demersal life. DNA Res. 23, 181–192 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. S. et al. Conservation genomics of anadromous Atlantic salmon across its North American range: Outlier loci identify the same patterns of population structure as neutral loci. Mol. Ecol. 23, 5680–5697 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barrio, A. M. et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. Elife 5, e12081 (2016).Article 

    Google Scholar 
    Pettersson, M. E. et al. A chromosome-level assembly of the Atlantic herring genome-detection of a supergene and other signals of selection. Genome Res. 29, 1919–1928 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bo, J. et al. Opah (Lampris megalopsis) genome sheds light on the evolution of aquatic endothermy. Zool. Res. 43, 26–29 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments. Sci. Rep. 11, 5064 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meng, Z., Hu, P., Lei, J. & Jia, Y. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus). Gen. Comp. Endocrinol. 235, 11–17 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ren, H. & Gao, S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen. Comp. Endocrinol. 167, 344–351 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ding, J., Li, Q., Tsai, W. & Pozios, K. Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proc. Natl. Acad. Sci. USA 96, 15274–15279 (1999).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Furqon, A., Gunawan, A., Ulupi, N., Suryati, T. & Sumantri, C. A Polymorphism of Insulin-like growth factor binding protein 2 gene associated with growth and body composition traits in Kampong Chickens. J. Vet. 19, 183 (2018).
    Google Scholar 
    Kibbey, M. M., Jameson, M. J., Eaton, E. M. & Rosenzweig, S. A. Insulin-like growth factor binding protein-2: Contributions of the C-terminal domain to insulin-like growth factor-1 binding. Mol. Pharmacol. 69, 833–845 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Coughlan, J. P. et al. Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: A preliminary study. J. Fish Biol. 52, 916–922 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, H. et al. Characterization and Identification of Single Nucleotide Polymorphism within the IGF-1R gene associated with growth traits of Odontobutis potamophila. J. World Aquac. Soc. 49, 366–379 (2018).Article 
    CAS 

    Google Scholar 
    Guo, L., Yang, S., Li, M. M., Meng, Z. N. & Lin, H. R. 2016) Divergence and polymorphism analysis of IGF1Ra and IGF1Rb from orange-spotted grouper, Epinephelus coioides (Hamilton). Genet. Mol. Res. 15, 1. https://doi.org/10.4238/gmr15048768 (2016).Article 
    CAS 

    Google Scholar 
    Yu, X. et al. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 22, 426 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harano, T. et al. Hemoglobin Kawachi [α44 (CE2) Pro → Arg]: A new hemoglobin variant of high oxygen affinity with amino acid substitution at α1β2 contact. Hemoglobin 6, 43–49 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alharby, E. et al. A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin. Genet. 92, 579–586 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ceinos, R. M. et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus. PLoS ONE 14, e0219153 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishiwaki-Ohkawa, T. & Yoshimura, T. Molecular basis for regulating seasonal reproduction in vertebrates. J. Endocrinol. 229, R117–R127 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, S. H. et al. Circadian clock mechanism driving mammalian photoperiodism. Nat. Commun. 11, 4291 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piovesan, D. et al. DisProt 7.0: A major update of the database of disordered proteins. Nucl. Acids Res. 45, 219–227 (2017).Article 

    Google Scholar 
    Pajkos, M. & Dosztányi, Z. Chapter Two – Functions of intrinsically disordered proteins through evolutionary lenses. in Dancing Protein Clouds: Intrinsically Disordered Proteins in the Norm and Pathology, Part C (ed. Uversky, V. N. B. T.-P. in M. B. and T. S.) vol. 183 45–74 (Academic Press, 2021).Malagrinò, F. et al. Understanding the binding induced folding of intrinsically disordered proteins by protein engineering: Caveats and pitfalls. Int. J. Mol. Sci. 21, 3484 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, A., Cowan, M. E., Migaud, H., Wright, P. J. & Davie, A. Neuroendocrine regulation of reproduction in Atlantic cod (Gadus morhua): Evidence of Eya3 as an integrator of photoperiodic cues and nutritional regulation to initiate sexual maturation. Comput. Biochem. Physiol. -Part A Mol. Integr. Physiol. 260, 111000 (2021).Silver, S. J., Davies, E. L., Doyon, L. & Rebay, I. Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol. Cell. Biol. 23, 5989–5999 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin, M. & Mardon, G. Distinct biochemical activities of eyes absent during drosophila eye development. Sci. Rep. 6, 23228 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGowan, K. L., Passow, C. N., Arias-Rodriguez, L., Tobler, M. & Kelley, J. L. Expression analyses of cave mollies (Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biol. Lett. 15, 20190554 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, W. et al. Transcriptomic analysis reveals putative osmoregulation mechanisms in the kidney of euryhaline turbot Scophthalmus maximus responded to hypo-saline seawater. J. Oceanol. Limnol. 38, 467–479 (2020).Article 
    CAS 

    Google Scholar 
    Mármol-Sánchez, E., Quintanilla, R., Cardoso, T. F., Jordana Vidal, J. & Amills, M. Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Sci. Rep. 9, 9025 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takvam, M., Wood, C. M., Kryvi, H. & Nilsen, T. O. Ion transporters and osmoregulation in the didney of teleost fishes as a function of salinity. Front. Physiol. 12, 664588 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engelund, M. B. & Madsen, S. S. The role of aquaporins in the kidney of euryhaline teleosts. Front. Physiol. 2, 51 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nam, B. H. et al. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet. Immunol. Immunopathol. 127, 249–258 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paladini, F. et al. Age-dependent association of idiopathic achalasia with vasoactive intestinal peptide receptor 1 gene. Neurogastroenterol. Motil. 21, 597–602 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hosseinpour, L., Nikbin, S., Hedayat-Evrigh, N. & Elyasi-Zarringhabaie, G. Association of polymorphisms of vasoactive intestinal peptide and its receptor with reproductive traits of turkey hens. South Afr. J. Anim. Sci. 50, 345–352 (2020).Article 
    CAS 

    Google Scholar 
    Pereiro, P., Figueras, A. & Novoa, B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol. 32, 879–889 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, J., Yu, L., Ping, L., Fei, M. & Sun, L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol. 38, 127–134 (2014).Article 
    PubMed 

    Google Scholar  More