More stories

  • in

    Sand fly population dynamics in areas of American cutaneous leishmaniasis, Municipality of Paraty, Rio de Janeiro, Brazil

    Owing to drastic changes in the environment caused by human interference, wild mammals that are reservoirs of Leishmania have invaded residential areas where species of sand flies with eclectic feeding habits are found, and established a transmission cycle that eventually reaches humans23,24,25. In the study area, it was observed that the largest frequency of specimens over the years was captured in the residential environment, which are represented by residential and peridomicile areas. The lowest frequency was captured in the borders of the forest.The municipality of Paraty, located on the southern coast in the state of Rio de Janeiro, where the study was conducted, has many preserved areas of the Atlantic Forest and its climate is wet with no dry season13, which was confirmed during the three years of the present study, where the relative air humidity stayed high every month. The highest average rainfalls occur in summer and fall (autumn). The average temperature during the hottest months of the year was between approximately 25 °C and 26 °C, with a maximum of 31 °C, and in the coldest months, the temperature averaged between 20 and 21 °C, with a minimum of 16 °C, exhibiting an ideal environment for the activity of sand flies throughout the year.Barretto26 noted that atmospheric conditions, such as relative humidity, rainfall, and temperature directly influence the activity of these sand fly species. Migonemyia migonei and Ny. whitmani had lower activity at temperatures below 15 °C, Pi. fischeri below 10 °C, and Ny. intermedia at temperatures below 9.5 °C. The author also reported that heavy rains prevent sand flies from leaving their shelters; however, this can increase their density within residences, especially for species located next to residential areas. Light rain will not impede their activity, but in these conditions, they are not as frequently observed as they usually are. However, during rain periods, especially in the hot and humid summer period, the density of sand flies increases considerably.In the present study, four key vector species of Leishmania braziliensis Vianna, 1911, the etiologic agent of tegumentary leishmaniasis, were captured throughout the year. The most frequent was Ny. intermedia, followed by Pi. fischeri, Mg. migonei, and Ny. whitmani. Carvalho et al.27, in the State of Pernambuco, northeast region of Brazil, reported having found Mg. migonei infected with Leishmania infantum Nicolle, 1908, the etiologic agent of visceral leishmaniasis.According to Forattini28, there are sand fly species that are essentially resistant to climate changes throughout the seasons. Several are found, albeit in lower densities, during the cooler, dry months, while others disappear during this period. However, other factors also influence the incidence of sand flies in the same location, even under the same temperature and humidity conditions. Thus, to study the seasonality of sand fly species, it is important to perform systematized captures, for a period exceeding two years, to minimize the effects of these additional factors, for example, atypical years with a longer period of drought or humidity, more or less high temperatures, months with higher than expected rainfall or control measures applied by the municipality.In studies carried out in the Northeast region of Brazil, in a study carried out in the municipality of Codó, in the State of Maranhão, an inversely proportional correlation of the captured sandflies was observed in relation to relative air humidity, a direct correlation in relation to temperature and precipitation, a correlation directly proportional29. In the municipality of Sobral, State of Ceará, in the first year of the study, observed a negative correlation with temperature and a high positive correlation with humidity and precipitation, however, in the following year, there was no correlation between the density of captured sandflies and climatic variables30. The same occurred in this study, in the municipality of Paraty, in relation to relative air humidity and precipitation, but in relation to temperature, a strong positive correlation was obtained.In the studied area Ny. intermedia occurred in greater numbers in every month of the year, except in June and July, when it was less frequent than Pi. fischeri. The same pattern was observed for these two species, i.e., a gradual increase in abundance beginning in August, peak abundance in summer (January), followed by a decrease until winter (July). Brito et al.31, when researching the northern coast of the state of São Paulo, municipality of São Sebastião, noted the opposite, that Ny. intermedia had the highest abundance peaks during the driest and coldest period of the year, i.e., from May to August. However, the authors also emphasized the presence of this species throughout the year, mainly in the residential environment, and they stressed the importance of seasonal analyses for periods longer than a year.In the São Francisco River region, in the state of Minas Gerais, on the banks of the Rio Velhas, Saraiva et al.32, in a study over a two-year period, observed a different pattern. In the first year of study, after the rainy season from February to May, with high humidity and high temperature, Ny. intermedia was captured in greater numbers than during other months of the year. In the second year, peaks occurred in October, March, and June, with the highest peak in March, when there was elevated rainfall, high humidity, and high temperatures.In the state of Rio de Janeiro, in Serra dos Órgãos National Park, Aguiar and Soucasaux33 analyzed the monthly frequency in human bait and observed that Ny. fischeri was captured in every month except November. In the hot and humid period, from December to February, there was a gradual increase in the average abundances of this species, and then a slight decrease began in March and continued into April. During the cold and dry period of May and June, abundances started to increase, then decreased in July, and peaked in August. During August, Pi. fischeri was the dominant species of wildlife, and in September, abundances began to decline again.Mayo et al.34, studying the southeastern region of the state of São Paulo, observed that there was a seasonal trend in the abundance for species Mg. migonei, Ny. whitmani, Ny. intermedia, and Pi. fischeri, with abundance peaks recorded during the cooler, drier season (April to September) and low abundances during the warmer, wetter season (October to March). The authors revealed that the occurrence of intense fires in the study area in October, which caused severe environmental change, possibly interfered with the population dynamics of the species. In the present study, the opposite trend of seasonality was shown for the four key species, Ny. intermedia, Pi. fischeri, Mg. migonei, and Ny. whitmani, then what was observed by the above authors, the highest abundances occurred during the hottest period, increasing gradually until a maximum peak in January, and lowest abundances were seen during the coldest period, in July for the first three species, and in June for Ny. whitmani.In the neighboring municipality of this study in Angra dos Reis, in the Ilha Grande, Carvalho et al.35 reinforced the epidemiological importance of Ny. intermedia in the State of Rio de Janeiro and highlighted the role of Mg. migonei in the transmission of cutaneous leishmaniasis with its high rate of infection natural by Leishmania. Still in the same region, along the southern coast of the State of Rio de Janeiro, Aguiar et al.8 conducted systematic catches for two years, with the aim being to analyze the monthly frequency of sand flies in residential and forest environments. The authors discovered results like what occurred in this study in Paraty, that the four most important species caught, Ny. intermedia, Pi. fischeri, Mg. migonei, and Ny. whitmani, had higher average numbers during the hot and humid period of the year, i.e., between October and January, with a maximum peak in December for Ny. intermedia and Pi. fischeri, and January for Mg. migonei. The prevalence of Ny. intermedia was evident in every month, both inside the residence and around the residential area. In the colder and drier season, from May to August, there was a balance with Pi. fischeri, but from August, inside the residence, and from September, around the residence, the frequency increased until it reached its peak in December. There was a gradual increase in the frequency of this species in the warmer and wetter period (between October and January), with average temperatures ranging from 26 to 29 °C and relative air humidity between 84 and 87%.Condino et al.36, when studying the southwestern region of the state of São Paulo, observed that Ny. intermedia and Ny. whitmani had the highest frequencies during the months of May, September, and December with temperatures ranging from 21 to 25.7 °C and rainfall between 66.7 and 195.1 mm. In June, the lowest frequency of sand flies was observed, which then increased until a maximum peak in September. Temperature data and rainfall index were not correlated with the density of specimens, especially as the study was carried out over only one year. In this study, the opposite was observed for Ny. intermedia and Ny. whitmani in the month of May, one of the months with the lowest density.In the city of Petrópolis, state of Rio de Janeiro, Souza et al.24 observed a prevalence of Ny. intermedia and Ny. whitmani, with the latter species prevailing around the residence. Migonemyia migonei and Pi. fischeri were also present but to a lesser extent. In the forest, Ny. whitmani was more abundant, followed by Pi. fischeri, while Ny. intermedia was found at lower abundances. However, Ny. intermedia and Pi. fischeri were present during every month of the year. The authors also found a significant correlation between the number of sand flies and environmental changes such as temperature, relative humidity, and rainfall. The same was observed, in this study, in the forest with Ny. intermedia, however, in this environment the number of Pi. fischeri specimens was higher than that of Ny. whitmani.In the north of Espírito Santo, Virgens et al.37 observed that Ny. intermedia was present in almost every month of the study period, with peaks in the warmer and wetter months. The authors highlighted that the low numbers of this species were recorded during and after high rainfall periods, suggesting that heavy rain is unfavorable for the development of immature forms, as breeding sites in altered habitats suffered a greater impact because of extreme weather conditions.In a study carried out by Guimarães et al.38 to observe the competence of Mg. Migonei to Leishmania infantum, concluded that this species is highly susceptible to the development of this parasite and that in addition to its anthropophilia and abundance in areas with an active focus of visceral leishmaniasis, it can act as a vector of this disease in Latin America.In the studied area, Ny. intermedia, one of the main vectors of the etiological agent of tegumentary leishmaniasis in the region2, was present in significant numbers in the home environment throughout all months of the year. The species Pi. fischeri was present over the months in expressive numbers in all types and locations of capture, that is, both in the environment altered by human activity and in the natural environment where leishmaniasis occurs in its natural enzootic cycle. Migonemyia migonei, present throughout the year in the peridomestic environment, showed its association with the dog, where it was prevalent throughout the year in the kennel, being an important vector of the etiological agent of tegumentary leishmaniasis, as well as being suspected in areas of visceral leishmaniasis transmission, where the main vector of this disease is not found. And Ny. whitmani present in the peridomicile, mainly in the hottest months of the year, in addition to the forest and forest margins, it was observed that in this study region the species is emerging through a selective process of adaptation in environments that were negatively affected by the increase of human activity. Thus, despite observing a period of greater frequency of sand flies in the hottest months of the year, a period with high rainfall, the high relative humidity is observed throughout the year, as well as the presence of species of epidemiological importance Ny. intermedia, Pi. fischeri, Mg. migonei and Ny. whitmani, who are involved in the propagation of the etiological agent of tegumentary leishmaniasis to humans and animals, causing greater contact between the region’s inhabitants with these dipterans and thus, a greater risk of contracting the disease. More

  • in

    Integrating multiple plant functional traits to predict ecosystem productivity

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv.3, e1602244 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapin, F. S. III Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann. Bot. 91, 455–463 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chu, C. et al. Does climate directly influence NPP globally? Global Chan. Biol. 22, 12–24 (2016).Article 

    Google Scholar 
    Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Chan. Biol. 24, 184–196 (2018).Article 

    Google Scholar 
    Fang, J., Lutz, J. A., Wang, L., Shugart, H. H. & Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Global Chan. Biol. 26, 6974–6988 (2020).Article 

    Google Scholar 
    Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Global Chan. Biol. 26, 7067–7078 (2020).Article 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. 111, 13697–13702 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).Article 
    PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Fun. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research 52 (eds Samraat P, Guy W, & Anthony I. D) 249–318 (Academic Press, 2015).Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol. Biogeogr. 26, 1357–1373 (2017).Article 

    Google Scholar 
    Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20, 730–740 (2017).Article 
    PubMed 

    Google Scholar 
    Van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).Article 
    PubMed 

    Google Scholar 
    Ali, A., Yan, E.-R., Chang, S. X., Cheng, J.-Y. & Liu, X.-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci. Total Environ. 574, 654–662 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yang, J., Cao, M. & Swenson, N. G. Why Functional Traits Do Not Predict Tree Demographic Rates. Trend Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    Šímová, I. et al. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. J. Ecol. 107, 2278–2290 (2019).Article 

    Google Scholar 
    Li, Y. et al. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol. Lett. 23, 1003–1013 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, N. et al. Ecosystem Traits Linking Functional Traits to Macroecology. Trend. Ecol. Evol. 34, 200–210 (2019).Article 

    Google Scholar 
    Rubio, V. E., Zambrano, J., Iida, Y., Umaña, M. N. & Swenson, N. G. Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. J. Ecol. 109, 1331–1343 (2021).Article 

    Google Scholar 
    Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).Article 
    PubMed 

    Google Scholar 
    Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. Plant growth: the What, the How, and the Why. New Phytol. 232, 25–41 (2021).Article 
    PubMed 

    Google Scholar 
    Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. 112, 2788–2793 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Chan. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Liu, C., Li, Y., Yan, P. & He, N. How to Improve the Predictions of Plant Functional Traits on Ecosystem Functioning? Front. Plant Sci. 12, 622260 (2021).Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. of Sci. 94, 13730–13734 (1997).Article 
    CAS 

    Google Scholar 
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    Monteith, J. L. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B. Biol. Sci. 281, 277–294 (1977).
    Google Scholar 
    Garnier, E. Resource capture, biomass allocation and growth in herbaceous plants. Trend. Ecol. Evol. 6, 126–131 (1991).Article 
    CAS 

    Google Scholar 
    Farnsworth, K. D., Albantakis, L. & Caruso, T. Unifying concepts of biological function from molecules to ecosystems. Oikos 126, 1367–1376 (2017).Article 

    Google Scholar 
    Zhang, R. et al. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta-analysis. Global Ecol. Biogeogr. 31, 155–167 (2022).Article 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).Article 

    Google Scholar 
    Jing, X. et al. The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecol. Biogeogr. 31, 486–500 (2022).Article 

    Google Scholar 
    Jing, X. et al. Above-and belowground complementarity rather than selection drives tree diversity-productivity relationships in European forests. Funct Ecol. 35, 1756–1767 (2021).He, N. et al. Predicting ecosystem productivity based on plant community traits. Trend. Plant Sci. 28, 43–53 (2023).Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 1–12 (2022).Article 

    Google Scholar 
    Michaletz, S. T., Kerkhoff, A. J. & Enquist, B. J. Drivers of terrestrial plant production across broad geographical gradients. Global Ecol. Biogeogr. 27, 166–174 (2018).Article 

    Google Scholar 
    Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 20, 565–574 (2006).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).Article 

    Google Scholar 
    McGill, B. J. Matters of Scale. Science 328, 575 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communi. Biol. 3, 1–11 (2020).
    Google Scholar 
    Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl. Acad. Sci. 114, 10160–10165 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).Article 
    PubMed 

    Google Scholar 
    Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).Article 
    CAS 

    Google Scholar 
    Zhao, N. et al. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecol. Biogeogr. 25, 359–367 (2016).Article 

    Google Scholar 
    Zhang, J. et al. C: N: P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Dirk Nikolaus, K. et al. Climatologies at high resolution for the earth’s land surface areas. EnviDat. https://doi.org/10.16904/envidat.332 (2021).Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol. Biogeogr. 14, 585–598 (2005).Article 

    Google Scholar 
    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data 4, 170165 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016).Article 

    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Method Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Bürkner, P.-C. Advanced bayesian multilevel modeling with the R Package brms. R J. 10, 395–411 (2018).Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Software 80, 1–28 (2017).Article 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2, 1003 (2019).
    Google Scholar 
    Gabry, J. & Mahr, T. bayesplot: Plotting for Bayesian models. R package version 1 (2017).Mac Nally, R. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659 (2004).Article 

    Google Scholar 
    Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).Article 
    PubMed 

    Google Scholar 
    Yan, P., He, N., Yu, K., Xu, L. & Van Meerbeek, K. Integrating multiple functional traits to predict ecosystem productivity. figshare (2023). Dataset. https://doi.org/10.6084/m9.figshare.22081634.v1. More

  • in

    Pablo Escobar’s ‘cocaine hippos’ spark conservation row

    A hippo swims in Colombia’s Magdalena River, near where Pablo Escobar’s compound was located.Credit: Fernando Vergara/AP/Shutterstock

    Colombian environment minister Susana Muhamad has triggered fear among researchers that she will protect, rather than reduce, a growing population of invasive hippos that threaten the country’s natural ecosystems and biodiversity. Although she did not directly mention the hippos — a contentious issue in Colombia — Muhamad said during a speech in late January that her ministry would create policies that prioritize animal well-being, including the creation of a new division of animal protection.
    Landmark Colombian bird study repeated to right colonial-era wrongs
    The hippos escaped from drug-cartel leader Pablo Escobar’s estate after he died in 1993. Left alone, the male and three females that Escobar had illegally imported from a US zoo established themselves in Colombia’s Magdalena River and some small lakes nearby — part of the country’s main watershed. After years of breeding, the ‘cocaine hippos’ have multiplied to about 150 individuals, scientists estimate.Given that the hippos (Hippopotamus amphibius) — considered the largest invasive animal in the world — have no natural predators in Colombia and have been mating at a steady rate, their population could reach 1,500 in 16 years, according to a modelling study published in 20211. “I do not understand what the government is waiting for to act,” says Nataly Castelblanco Martínez, a Colombian conservation biologist at the Autonomous University of Quintana Roo in Chetumal, Mexico, and co-author of the study. “If we don’t do anything, 20 years from now the problem will have no solution.”Researchers have called for a strict management plan that would eventually reduce the wild population to zero, through a combination of culling some animals and capturing others, then relocating them to facilities such as zoos. But the subject of what to do with the hippos has polarized the country, with some enamoured by the animals’ charisma and value as a tourist attraction and others concerned about the threat they pose to the environment and local fishing communities.‘A bit surreal’Several studies and observations suggest how destructive it could be to allow the Colombian hippo population to explode. A 2019 paper2, for example, showed that, compared with lakes without hippos, those where the animals have taken up residence contain more nutrients and organic matter that favour the growth of cyanobacteria — aquatic microbes associated with toxic algal blooms. These blooms can reduce water quality and cause mass fish deaths, affecting local fishing communities.

    A sign near Doradal, Colombia, warns passersby of the danger of invasive hippos.Credit: Juancho Torres/Anadolu Agency via Getty

    Other scientists have predicted that the hippos could displace endangered species that are native to the Magdalena River, such as the Antillean manatee (Trichechus manatus manatus), by outcompeting them for food and space. They caution that traffic accidents and attacks on people caused by the hippos will become more common. And they warn that wildlife traffickers are already taking advantage of the situation by illegally selling baby hippos — a trend that could intensify.“It’s a bit surreal,” says Jorge Moreno Bernal, a vertebrate palaeontologist at the University of the North in Barranquilla, Colombia. “This is just a taste of what may come.”When Colombian authorities first recognized the speed at which the hippo population was growing, during the 2000s, they acted to reduce their numbers. But in 2009, when photos appeared online after soldiers gunned down Pepe, Escobar’s fugitive male hippo, the outcry from animal-rights activists and others plunged the environment ministry into an “institutional paralysis”, says Sebastián Restrepo Calle, an ecologist at Javeriana University in Bogotá.Researchers say that the hippos don’t belong in Colombia — they are native to sub-Saharan Africa. Simulations run by Castelblanco Martínez and her colleagues suggest that to reduce the population to zero by 2033, about 30 hippos would need to be removed from the wild population per year1. No other course of action, including sterilization or castration, would eradicate them, according to the modelling of various management scenarios, says Castelblanco Martínez.The cost of inactionThe worry now is that, instead of basing decisions on evidence and expertise in conservation, the government is listening to popular opinion, says Restrepo Calle. Neither Muhamad nor representatives of the environment ministry replied to Nature’s requests for comment.
    Ancient stone tools suggest early humans dined on hippo
    “Why prioritize one species over our own ecosystems?” — especially a species that isn’t native, asks Alejandra Echeverri, a Colombian conservation scientist at Stanford University in California. Along with her colleagues, Echeverri published a study last month showing that Colombia has few policies governing invasive species compared with its overall number of biodiversity policies3.Animals-rights advocates, meanwhile, argue that they aren’t ignoring environmental concerns. Luis Domingo Gómez Maldonado, an animal-rights activist and specialist in animal law at Saint Thomas University in Bogotá, says “It’s not about saving the hippos on a whim,” but rather about solving the issue while also giving the hippos justice. “My indisputable position is: let’s save as many individuals as possible, let’s do it ethically.”Researchers, too, say they have the animals’ best interests at heart. “Even if [advocates] don’t see it, we care about the hippos,” Castelblanco Martínez says. “The more time that passes, the more hippos will either have to be culled, castrated or captured.”The question is whether environmental authorities will act swiftly to draft and enforce a management plan that is both ethical and effective. Should they sit on the issue for too long, Castelblanco Martínez warns, rural communities that are most affected by the hippos might take matters into their own hands.If the government doesn’t cull them, she says, people will use shotguns to do it. More

  • in

    Drosophilids with darker cuticle have higher body temperature under light

    Massey, J. H. & Wittkopp, P. J. The genetic basis of pigmentation differences within and between Drosophila species. Curr. Top. Dev. Biol. 119, 27–61 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yassin, A. et al. The pdm3 locus is a hotspot for recurrent evolution of female-limited color dimorphism in Drosophila. Curr. Biol. 26, 2412–2422 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, T. M. et al. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134, 610–623 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastide, H. et al. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS Genet. 9, e1003534 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pool, J. E. & Aquadro, C. F. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol. Ecol. 16, 2844–2851 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittkopp, P. J. et al. Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326, 540–544 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jeong, S. et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132, 783–793 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rajpurohit, S. et al. Pigmentation and fitness trade-offs through the lens of artificial selection. Biol. Lett. 12, (2016).Massey, J. H. et al. Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster. Front. Physiol. 10, 518 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkash, R., Rajpurohit, S. & Ramniwas, S. Impact of darker, intermediate and lighter phenotypes of body melanization on desiccation resistance in Drosophila melanogaster. J. Insect Sci. 9, 1–10 (2009).Article 
    PubMed 

    Google Scholar 
    Dombeck, I. & Jaenike, J. Ecological genetics of abdominal pigmentation in Drosophila falleni: A pleiotropic link to nematode parasitism. Evolution 58, 587–596 (2004).PubMed 

    Google Scholar 
    Kutch, I. C., Sevgili, H., Wittman, T. & Fedorka, K. M. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J. Exp. Biol. 217, 3664–3669 (2014).PubMed 

    Google Scholar 
    Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bastide, H., Yassin, A., Johanning, E. J. & Pool, J. E. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol. Biol. 14, 179 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).Article 

    Google Scholar 
    Gibert, P., Moreteau, B. & David, J. R. Developmental constraints on an adaptive plasticity: Reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol. Dev. 2, 249–260 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parkash, R., Rajpurohit, S. & Ramniwas, S. Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. J. Insect Physiol. 54, 1050–1056 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Telonis-Scott, M., Hoffmann, A. A. & Sgro, C. M. The molecular genetics of clinal variation: A case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol. Ecol. 20, 2100–2110 (2011).Article 
    PubMed 

    Google Scholar 
    Munjal, A. K. et al. Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations. Genet. Sel. Evol. 29, 601–610 (1997).Article 
    PubMed Central 

    Google Scholar 
    David, J. R., Capy, P., Payant, V. & Tsakas, S. Thoracic trident pigmentation in Drosophila melanogaster: Differentiation of geographical populations. Genet. Sel. Evol. 17, 211–224 (1985).Article 
    CAS 

    Google Scholar 
    Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).Cordero, R. J. B. et al. Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr. Biol. 28, 2657-2664.e3 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sibilia, C. D. et al. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). J. Insect Sci. 18, (2018).Jong, P., Gussekloo, S. & Brakefield, P. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J. Exp. Biol. 199, 2655–2666 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zverev, V., Kozlov, M. V., Forsman, A. & Zvereva, E. L. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J. Therm. Biol 74, 100–109 (2018).Article 
    PubMed 

    Google Scholar 
    Watt, W. B. Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. Proc. Natl. Acad. Sci. USA 63, 767–74 (1969).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kuyucu, A. C., Sahin, M. K. & Caglar, S. S. The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J. Therm. Biol. 71, 212–220 (2018).Article 
    PubMed 

    Google Scholar 
    Köhler, G. & Schielzeth, H. Green-brown polymorphism in alpine grasshoppers affects body temperature. Ecol. Evol. 10, 441–450 (2020).Article 
    PubMed 

    Google Scholar 
    Willmer, P. G. & Unwin, D. M. Field analyses of insect heat budgets: Reflectance, size and heating rates. Oecologia 50, 250–255 (1981).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pecsenye, K., Bokor, K., Lefkovitch, L. P., Giles, B. E. & Saura, A. Enzymatic responses of Drosophila melanogaster to long- and short-term exposures to ethanol. Mol. Gen. Genet. 255, 258–268 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E. & Gibert, J.-M. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet. 14, e1007573 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooley, A. M., Shefner, L., McLaughlin, W. N., Stewart, E. E. & Wittkopp, P. J. The ontogeny of color: Developmental origins of divergent pigmentation in Drosophila americana and D. novamexicana. Evol. Dev. 14, 317–25 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    John, A. V., Sramkoski, L. L., Walker, E. A., Cooley, A. M. & Wittkopp, P. J. Sensitivity of allelic divergence to genomic position: Lessons from the Drosophila tan Gene. G3 (Bethesda) (2016) doi:https://doi.org/10.1534/g3.116.032029.Liu, Y. et al. Changes throughout a genetic network mask the contribution of hox gene evolution. Curr. Biol. 29, 2157-2166.e6 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    David, J. R. et al. Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol. Evol. 12, e8821 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849–1858 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davis, J. S. & Moyle, L. C. Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evol. Biol. 19, 204 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagy, O. et al. Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change. Curr. Biol. 28, 3450-3457.e13 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lachaise, D. et al. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc. Biol. Sci. 267, 1487–1495 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Gen. 12, 101–109 (1922).Article 

    Google Scholar 
    Turissini, D. A. & Matute, D. R. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLoS Genet. 13, e1006971 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, A. A. Physiological climatic limits in Drosophila: Patterns and implications. J. Exp. Biol. 213, 870–880 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunaga, S., Akiyama, N., Miyagi, R. & Takahashi, A. Factors underlying natural variation in body pigmentation of Drosophila melanogaster. Genes Genet. Syst. 91, 127–137 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rajpurohit, S. & Schmidt, P. S. Latitudinal pigmentation variation contradicts ultraviolet radiation exposure: A case study in Tropical Indian Drosophila melanogaster. Front. Physiol. 10, 84 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).Fabian, D. K. et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol. Ecol. 21, 4748–4769 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brakefield, P. M. & de Jong, P. W. A steep cline in ladybird melanism has decayed over 25 years: A genetic response to climate change?. Heredity (Edinb) 107, 574–578 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zvereva, E. L., Hunter, M. D., Zverev, V., Kruglova, O. Y. & Kozlov, M. V. Climate warming leads to decline in frequencies of melanic individuals in subarctic leaf beetle populations. Sci. Total Environ. 673, 237–244 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).Article 
    ADS 
    PubMed 

    Google Scholar  More

  • in

    Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution

    Terraces are a land type that is defined by its shape. They have a distinct morphological structure and edge features that distinguish them from other land types. In this study, we define terraces as agricultural land with strip or wavy sections built on slopes greater than 2° along the contour direction. Figure 1 depicts Google Maps satellite images of terraces in the Loess Plateau region. Terraces can be distinguished from other features in remote sensing images based on their colour, morphology, texture, and structure. Terraces can be distinguished from construction land, water, glaciers, and deserts by their colours. Figure 1b–d shows terraces that are primarily green and yellow. Furthermore, terraces are generally distributed along the contour direction, and can therefore be identified based on their morphology. Terraced field ridges curve downward and resemble strips in Fig. 1b,d or circles or ovals in Fig. 1c rather than a neat grid-like distribution. These features differ in morphology from the flat land shown in Fig. 1h. Based on texture and structure, the field area of terraces can be identified based on their strong edge features, as shown in Fig. 1b–d. The edges of terraces have dark stripes caused by oblique illumination received from the sun, and the field ridge of terraces often intercepts part of the sunlight due to their height. Sloping cultivated land, as shown in Fig. 1g, has no evident terraced wall. The outline of sloping cultivated land in the high-resolution image is curved, with no prominent edge features. These findings are critical differences distinguishing terraces and sloping land in high-resolution images.Fig. 1The spatial location of the Loess Plateau and images of various types of cultivated land. (a) The spatial location of the Loess Plateau and Spatial distribution of various cultivated land types images, (b) wide strip-mounted terraces in Longxi, (c) circular wide terraces in central Yulin, (d) high resolution image of Zhuanglang County in July 2019, (e) Zhuanglang County in February 2020, (f) narrow terraces in Shangbao, Chongyi, Jiangxi Province, (g) sloping cropland in Zhenjiang Town, Laibin, Guangxi, and (h) horizontal cropland in the North China Plain.Full size imageDeep learning-based terrace extraction modelThe DLTEM is a terrace extraction model that uses deep learning algorithms and other supplementary information. Initially, a preliminary terrace distribution map was obtained using a deep learning algorithm. It was then combined with the spectral and digital elevation model (DEM) elevation information to fine-tune the results. The final spatial distribution of the terraces was produced by manual correction (Fig. 2). Traditional land classification models or methods typically superimpose spectral, elevation, and morphological texture information from remote sensing images together for training, such as random forest, which is easily ignored in training since morphological texture information accounts for a relatively small amount of the total information. This leads to significant errors while identifying land classes with textural characteristics. In contrast, the DLTEM focuses on morphological texture information from remote sensing images and classifies it into land classes, followed by auxiliary correction through additional information. Thus, this method is more suitable to extract terraces enriched with texture structure information.Fig. 2Flow chart of the deep learning-based terrace extraction model.Full size imageThe UNet++ network is a classic deep learning algorithm that is uniquely unrivaled in extracting colour, morphology, texture, and structure features from images and applying them for classification. In comparison with other Convolutional Neural Network (CNN) classification models (e.g., Fully Convolutional Networks (FCN)), it has high classification accuracy, fast computation speed, strong robustness, and provides variable importance metrics. Therefore, in this study, the UNet++ network was adopted as the network framework for deep learning; the primary data source used was high-resolution satellite imagery from 2019. DEM (SRTM v4.1) data were used to obtain the elevation information and GlobeLand30 data were used to obtain the spectral information. The results were corrected to construct the final map of the distribution of terraces in the Loess Plateau.Study areaThe Loess Plateau, one of China’s four major plateaus, is located in northern central China (34°–40° N and 103°–114° E) (Fig. 1). It is covered by a thick loess layer that ranges in thickness from 50 to 80 m, and is the world’s largest loess deposition area, covering 648,700 km2. The altitude of the Loess Plateau ranges from 800 to 3,000 m, its average annual temperature is 6–14 °C, and its average annual precipitation is 200–700 mm. Since ancient times, the Loess Plateau has been used for agriculture because of its fine grains, fluffy soil texture, and rich soluble mineral nutrients, all of which are conducive to crop cultivation. However, long-term unsustainable land use caused the degradation of the vegetation cover in the Loess Plateau. Moreover, the land is degrading due to considerable nutrient loss caused by long-term water erosion in conjunction with natural conditions, such as arid climate, loose soil, concentrated and heavy rainfall. The fragmented ground in the region has made it susceptible to soil erosion. It has also become the primary source of Yellow River sediment as a result of the massive flow of eroded sediment into the Yellow River, posing a serious threat to the economic and social development of the lower Yellow River basin.Terracing is one of the main measures used to enhance crop yield and conserve soil and water in the region. Since the 1980s, the Chinese government has implemented many large-scale slope-to-terrace projects in the Loess Plateau. Especially in recent years, the outline of the comprehensive management plan for the Loess Plateau area (2010–2030) has been promulgated with a planned area of 2.608 million hectares for slope to terrace conversion, making it the core area of slope to terrace conversion projects in the country.Data preparationAlthough high-resolution satellite images can be an important data source for the spatial distribution of terraces on the Loess Plateau, they are not ideal for terraces classification. On the one hand, a higher resolution image requires more storage space. On the other hand, it reduces the efficiency, prolongs the interpretation time, and increases the noise in the image, affecting the interpretation accuracy. Most of the terraces on the Loess Plateau are wider than 7 m (Fig. 1b–d). These are wide terraces in comparison with the narrow terraces of southern China (Fig. 1f), which are less than 2 m wide. Furthermore, it is also easy to mistake the fish-scale pits constructed for soil and water conservation for terraces because of their similarity in form. However, as the width of their field surface is less than 1.5 m, remote sensing images with a 2 m resolution can effectively prevent the false extraction of such features. Based on the actual situation of this study area, we chose a high-resolution image with a spatial resolution of 1.89 m from Google Maps 16 level as the data source. The colour, texture, and morphological features of terraces in the images show seasonal variations. In autumn and winter, the weather is dry, and the vegetation is less shaded in the Loess Plateau. During this time, even the edge features become more visible and easier to identify. As a result, we selected images from October 2018 to February 2019 whenever possible (Fig. 1c,d).Deep learning network selectionLand classification is the extraction of land types from remote sensing images using image segmentation techniques. As the key technology of image segmentation, the Fully Convolutional Network (FCN) classifies images at the pixel level. FCN follows the network structure pattern of encoding and decoding, which adopts AlexNet as the encoder of the network and then employs transposed convolution to up-sample the feature map output from the final convolutional layer of the encoder to the resolution of the input image to achieve pixel-level image segmentation. However, due to the large error in image pixel boundary localization, Ronneberger et al.29 improved the FCN structure in 2015 by expanding the capacity of the network decoder by adding a contracting path to the encoding and decoding modules to achieve more accurate pixel boundary localisation29. The U-Net network is commonly used in medical image processing because it requires a small number of training samples and is effective in classifying objects with a fixed structure and limited semantic information. This network is comparable to natural image semantic segmentation such as Deeplab v3+, which has a smaller number of model parameters and the same effect.Since the texture and morphological features of terraces and human organs have certain similarities, they are primarily manifested by simple semantic information contained within the terrace images themselves. Thus, high-level semantic information and low-level features of such images become more important. However, high-resolution images are more complicated and variable than medical image patterns, and errors in terrace extraction edge identification using the U-Net network, such as boundary segmentation of terraces and flatlands, still occur. To fully utilize the semantic information of the network, we adopted a nested U-Net architecture, namely the UNet++ network proposed by Zhou et al.28. The network integrates long-connected and short-connected architectures to capture features at different levels by adding a shallower U-Net structure and integrates them via feature superposition to make the scale difference of feature maps smaller when fused to enhance the correct rate of image segmentation edges. However, because the U-Net++ network increases the number of model parameters, this study adopted the sparse matrix approach to accelerate model training and decrease the number of parameters.Data pre-processingData pre-processing is a prerequisite for UNet++ network training, that is, valid input according to the standard format annotation before training can be performed. Since the UNet++ network proposed by Zhou et al.28. is primarily used for medical images, which have characteristics such as fixed image structure, no spatial information, and less pattern variation, labelling medical images is comparatively easier using this method. In contrast, high-resolution remote sensing images have a large number of rasters, many pattern changes, irregular image structure, and spatial information. Therefore, determining how to better annotate high-resolution remote sensing images and reduce the annotation workload becomes critical. First, we vectorized the training sample area and generated the terrace vector dataset using ArcGIS with a high-resolution remote sensing image as the primitive map. Second, we converted the terrace vector dataset into raster data. The information of the raster had to be identical to that of the primitive map, including the size of the raster, its processing range, and its coordinate system. The output was converted to TIFF format to complete the image annotation. Since the raster size input to UNet++ network training is a fixed size, it is much smaller than the original image. To simplify the process of inputting the original image and its annotation information, we added an image import module to DLTEM, which was a sliding window of 400*400, and read the image automatically by setting the corresponding judgement conditions. Finally, the entire high-resolution image was processed automatically into the model in accordance with the established rules for training.The goal of the data enhancement was to improve the universality and robustness of the UNet++ network training results. As mentioned above, the high-resolution images taken simultaneously often included clouds or other anomalies in some areas, as the images were stitched together using multiple sources of data fusion. This can easily form evident stitching traces (Fig. 1c,d) due to the different shooting times and image quality of various data sources, i.e., brightness, saturation, and colour contrast of the images. Thus, the model trained on the original image data has strong limitations, and in many scenes, there are notable matrix-type misclassification regions due to image differences, making extraction work challenging. Therefore, in this study, we first adjusted the brightness, grayscale, and contrast of the training data after input to enhance its colour feature recognition ability. We then altered the scaling of the image, and rotated and transformed the training image from 0° to 360° to enhance morphological feature recognition and the accuracy of the training network in terrace extraction.Parameter settingThe network parameter setting is the most critical hyperparameter for UNet++ network training. They are mainly divided into input image size, batch size, learning rate, number of iterations, objective function, gradient descent strategy, momentum, decay rate, and activation function. Among them, we set the image size to 400*400 pixels based on the actual situation of the terraced area, where the UNet++ network has four scaling times, and the image size must be a multiple of 16. The batch size primarily affects the convergence of the model. If the batch limit is set to one, the model is easily affected by the random perturbation phenomenon and cannot converge to find the optimal solution. Since the batch size is determined by the size of the video memory, the value of the batch is limited by equipment constraints. The model in this study used a 2080Ti video card with 11 GB of video memory, and the batch was set to 8. The learning rate, gradient descent strategy, and objective function play a role in whether the network can find the best classification model better and faster. The learning rate was set to 0.001 for the first 500 generations, with the goal of achieving fast convergence to the target region. The learning rate was then set to 0.0001 for 500–1,000 generations, and the model was fine-tuned by choosing a smaller learning rate to find the model with the highest classification accuracy. Adam was chosen for the gradient descent strategy. The momentum and adaptive learning rate were used to increase the convergence rate. The cross-entropy classification loss function was chosen as the objective function to improve the differentiation between terraced and non-terraced areas. Momentum, decay rate, and activation function were all adopted from the previous default settings of the UNet++ network.Data correctionIn this study, we primarily used high-resolution images from Google Earth as the data source to extract the distribution of terraces on the Loess Plateau. Because this image source only contains a large amount of texture structure information and no vegetation information, it is easy to misjudge and misclassify features with the same morphological structure and edge features, such as permanent snow and ice, water bodies, bare land, and artificial surfaces. Vegetation information was generally processed based on waveband data from multispectral/hyperspectral images. It requires topographic correction, atmospheric correction, radiometric calibration, de-clouding, and other operational processes, which are extremely sophisticated30.GlobeLand30 is a 30 m spatial resolution global surface coverage dataset developed by the National Geomatics Center of China. The most recent GlobeLand30 dataset (v2020) has been updated with data sources from 2017 to the present. Its extensive data sources enable effective reduction of the impacts of cloud cover, with an overall accuracy of 85.72%. The classification accuracy of permanent snow and ice, water bodies, bare land, and artificial surfaces of this dataset is as high as 75.79%, 84.70%, 81.76%, and 86.70%, respectively. Since the update time of v2020 data is similar to that of high-resolution images, it can be used as correction data for vegetation information31.Since the training image data are two-dimensional planar data with no elevation or slope information (Fig. 1g), certain flat fields with visible field bumps are easily misclassified as terraces. The Space Shuttle Radar Topography Mission (SRTM v4.1) DEM has a spatial resolution of 30 m and ranges from 60° N to 56° S, completely covering the Loess Plateau32,33. In this study, these data were treated as terrain correction data. The amendment standard corrects the areas that have been extracted as terraces below 2° to non-terraced areas according to the requirements of the Ministry of Natural Resources of China.The spatial resolution of our extracted terraces is 1.89 m, whereas the spatial resolution of GlobeLand30 and DEM as correction data sources is 30 m, which is difficult to meet the requirements of data processing. Hence, we up-sample the two correction data sources, and then used multi-source data fusion. First, we extracted and up-sampled the terraced areas of glaciers, rivers, and deserts from GlobeLand30 to a spatial resolution of 1.89 m. Secondly, we up-sampled the DEM to 1.89 m using spatial interpolation for its raster centre as the true value of the region and performed a slope calculation for the up-sampled DEM. Further, the spatial distribution maps of glaciers, rivers, deserts, and slope maps of the Loess Plateau with the same resolution as the spatial distribution maps of terraces were available. Finally, we superimposed these images, used the terrace range in the TDMLP as a mask, and assessed the pixels in the mask area one by one. If a pixel belonged to permanent snow and ice, a water body, bare land, or an artificial surface, or had a slope less than 2°, it was modified to the background value. Otherwise, the original value was retained.We made artificial corrections to the data based on the extracted results for the arid areas of the Loess Plateau as well as for the flatter basins, given that these areas do not feature terraces.Training and validation dataFor supervised classification, the selection of sample areas and sample features is crucial. The focus and core of any land classification work is representative and effective training sample selection. To obtain a better sample area selection, we considered the selection of sample areas from three perspectives, i.e., colour texture features, topographic features, and spatial distance of the training samples. First, the terraces in this study are in agricultural land, including cultivated land, woodland, grassland, and other types of land; thus, different types of land will present different texture details. At the same time, high-resolution images from Google Earth are mosaicked. Because of the different acquisition times, the same region and land type will have visible colour differences and stitching traces, which is more common in the Loess Plateau region. Therefore, these factors should be considered in the selection of training samples as much as possible to improve the generability of the model and the correct rate of its extraction. Second, the state of the terraces varies according to topographic features. Among them, gradient, direction, altitude, and climate are the most significant factors. Terraces can be categorised as shallow-slope or steep-slope terraces. Based on slope aspect, altitude, and climate characteristics, they can also be categorised as either easy to identify or hard to identify. Thus, the sample should be inclusive of these types of terraces. According to the first law of geography, terraces in different spatial locations have different morphologies. Therefore, the spatial location of the samples should also be at a certain distance.In summary, we selected one county in each region based on the geomorphic zoning characteristics of the Loess Plateau. In addition, we added one more in the area where the density of terraces may be higher. Finally, we selected the whole area of seven counties (Fig. 3) as the training sample area distribution, covering 2.18% of the overall Loess Plateau area. The colour morphological features, topographic features, spatial location, and imaging quality of terrace images in these regions are highly representative. This method was unique from other classification methods. Most of the traditional methods are based on the single-pixel information of feature layers such as random forests, which tend to ignore the neighbouring information around the point, and thus are subject to misclassification and under classification for land types with outstanding texture information. In our study, we adopted the visual interpretation of the whole domain, which can cover the neighbourhood information of each pixel point more comprehensively. To ensure the uniformity and correctness of visual interpretation, the terraces in the training area were visually interpreted by seven interpreters after uniform professional training. For the disputed and uncertain areas, the seven interpreters carried out interactive interpretation and scoring according to the interpretation results. Finally, two other interpretation experts made the final review and corrections. The interpretation results of the training area were re-examined and revised based on the results of the later interpretations.Fig. 3Distribution of training sample areas and validation sites in terraces on the Loess Plateau.Full size imageTo better assess and compare the validity and correctness of the terraced agricultural area datasets on the Loess Plateau in quantitatively, the validation dataset was divided into two parts: a per-pixel point-based validation set and a field validation dataset of terraces with location information. The extracted datasets were comprehensively evaluated in terms of both pixel scale and field validation.We constructed a single-pixel validation point that evaluates the TDMLP. We applied the Icosahedral Snyder Equal Area Discrete Global Grid created by ArcGIS. Based on this strategy, the study area was partitioned into 972 regions (Fig. 3). To better validate the terrace classification results (excluding non-terrace classes), we placed more validation points within the grid where the terrace distribution is more concentrated. First, we calculated the proportion of terraces in each hexagonal grid to the total area of the hexagonal grid. Second, we separated the terraces into four levels according to the proportion of terraces to the whole grid area as 0–20%, 20–50%, 50–80%, and 80–100% and the number of validation points was 10, 20, 40, and 50, respectively.Since the proportion of the extracted terraced area to the total area was only 14%, direct random point deployment would have led to fewer terraced validation sets and thus would have affected the final data evaluation. Therefore, in the deployment strategy, we ensured that the validation points distributed in the extracted terraces in each grid account for at least one-fifth of the total number of validation points, but for the grid with a smaller proportion of terraces or even 0, this practice was meaningless. Hence, we stipulated that in the grid with a proportion of terraces ≤1%, direct random scattering was to be performed. The final scattered verification points in the terraced and non-terraced areas were 5,194 and 6,226, respectively, with a ratio close to 1:1 for easy verification. The spatial distribution is shown in Fig. 3.We validated the spatial distribution map of terraces on the Loess Plateau from 14 April 2021 to 1 May 2021 and constructed a field validation dataset of terraces with location information. Considering the longitudinal, latitudinal, and vertical heterogeneities of the Loess Plateau, the verification route was divided into two sections, north to south and east to west, to more comprehensively cover all regions of the Loess Plateau. The verification route started at Hohhot in the northeast of the Loess Plateau. It passed through the Datong Basin, followed the Yellow River to the south and the Weihe Plain, and then travelled westward through Mount Liupan to the westernmost part of the Loess Plateau. The route was through 54 counties/districts in 16 cities and six provinces on the Loess Plateau, with a total distance of 3,680 km, covering 15.8% of the counties on the Loess Plateau (total of 341 counties). We also surveyed and sampled the verification points approximately every 5 km along the route and collected data from a total of 815 sample points, covering various types of terraces on the Loess Plateau. The results are shown in Fig. 3. More

  • in

    Spatial ecology of the invasive Asian common toad in Madagascar and its implications for invasion dynamics

    Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford University Press, 2017).Book 
    MATH 

    Google Scholar 
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).Book 

    Google Scholar 
    Shigesada, N., Kawasaki, K. & Takeda, Y. Modeling stratified diffusion in biological invasions. Am. Nat. 146, 229–251 (1995).Article 

    Google Scholar 
    Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article 
    ADS 

    Google Scholar 
    Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 36 (2020).Article 

    Google Scholar 
    Measey, G. J. et al. A global assessment of alien amphibian impacts in a formal framework. Divers. Distrib. 22, 970–981 (2016).Article 

    Google Scholar 
    Antonelli, A., Smith, R. J., Perrigo, A. L. & Crottini, A. Madagascar’s extraordinary biodiversity: Evolution, distribution, and use. Science 378, eabf0869 (2022).
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, B. M. et al. Widespread vulnerability of Malagasy predators to the toxins of an introduced toad. Curr. Biol. 28, R654–R655 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Licata, F. et al. Toad invasion of Malagasy forests triggers severe mortality of a predatory snake. Biol. Inv. 24, 1189–1198 (2022).Article 

    Google Scholar 
    Licata, F. et al. Abundance, distribution and spread of the invasive Asian toad Duttaphrynus melanostictus in eastern Madagascar. Biol. Inv. 21, 1615–1626 (2019).Article 

    Google Scholar 
    McClelland, P., Reardon, J. T., Kraus, F., Raxworthy, C. J. & Randrianantoandro, C. Asian toad eradication feasibility report for Madagascar (Te Anau, 2015).Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    Shine, R. et al. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci. Rep. 11, 23574 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).Article 

    Google Scholar 
    Van Petegem, K. H. P. et al. Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol. Ecol. 29, 299–310 (2015).Article 

    Google Scholar 
    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Licata, F., Andreone, F., Crottini, A., Harison, R. F. & Ficetola, G. F. Does spatial sorting occur in the invasive Asian toad in Madagascar? Insights into the invasion unveiled by morphological analyses. JZSER 2021, 1–9 (2021).
    Google Scholar 
    Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).Article 

    Google Scholar 
    Brown, G. P., Kelehear, C. & Shine, R. Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet–dry tropics. Funct. Ecol. 25, 1339–1347 (2011).Article 

    Google Scholar 
    Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).Book 

    Google Scholar 
    Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010). https://doi.org/10.7208/9780226893334.Book 

    Google Scholar 
    Shaw, A. K., Kokko, H. & Neubert, M. G. Sex difference and Allee effects shape the dynamics of sex-structured invasions. J. Anim. Ecol. 87, 36–46 (2018).Article 
    PubMed 

    Google Scholar 
    Schwarzkopf, L. & Alford, R. A. Desiccation and shelter-site use in a tropical amphibian: Comparing toads with physical models. Funct. Ecol. 10, 193–200 (1996).Article 

    Google Scholar 
    Wogan, G. O. U., Stuart, B. L., Iskandar, D. T. & McGuire, J. A. Deep genetic structure and ecological divergence in a widespread human commensal toad. Biol. Lett. 12, 20150807 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Licata, F. Exploring the invasion dynamics and impacts of the invasive Asian common toad in Madagascar (University of Porto, 2022).
    Google Scholar 
    Reilly, S. B. et al. Toxic toad invasion of Wallacea: A biodiversity hotspot characterized by extraordinary endemism. Glob. Change Biol. 23, 5029–5031 (2017).Article 
    ADS 

    Google Scholar 
    Jørgensen, C. B., Shakuntala, K. & Vijayakumar, S. Body size, reproduction and growth in a tropical toad, Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans. Oikos 46, 379 (1986).Article 

    Google Scholar 
    Vences, M. et al. Tracing a toad invasion: Lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar. Amphib. Reptilia 38, 197–207 (2017).Article 

    Google Scholar 
    Ngo, B. V. & Ngo, C. D. Reproductive activity and advertisement calls of the Asian common toad Duttaphrynus melanostictus (Amphibia, Anura, Bufonidae) from Bach Ma National Park, Vietnam. Zool. Stud. 52, 12 (2013).Article 

    Google Scholar 
    Licata, F. et al. The Asian toad (Duttaphrynus melanostictus) in Madagascar: A report of an ongoing invasion. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions (eds Angelici, F. M. & Rossi, L.) 617–638 (Springer, 2020). https://doi.org/10.1007/978-3-030-42335-3_21.Chapter 

    Google Scholar 
    Moore, M., Solofo Niaina Fidy, J. F. & Edmonds, D. The new toad in town: Distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop. Conserv. Sci. 8, 440–455 (2015).Article 

    Google Scholar 
    Licata, F. et al. Using public surveys to rapidly profile biological invasions in hard-to-monitor areas. Anim. Conserv. https://doi.org/10.1111/acv.12835 (2023).Article 

    Google Scholar 
    Zhang, M. et al. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sensing 12, 3663 (2020).Article 
    ADS 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473 (2007).
    Google Scholar 
    Merkel, A. Toamasina Climate (Madagascar). Accessed 20 July 2022. https://en.climate-data.org/africa/madagascar/toamasina/toamasina-4029/
    (2021).Gordon, A. Secondary sexual characters of Bufo melanostictus schneider. Copeia 1933, 204–207 (1933).Article 

    Google Scholar 
    Alford, R. & Rowley, J. Techniques for tracking amphibians: The effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphib. Reptilia 28, 367–376 (2007).Article 

    Google Scholar 
    Lassueur, T., Joost, S. & Randin, C. F. Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecol. Modell. 198, 139–153 (2006).Article 

    Google Scholar 
    Abrams, M., Crippen, R. & Fujisada, H. ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing 12, 1156 (2020).Article 
    ADS 

    Google Scholar 
    Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2021).Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article 

    Google Scholar 
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).Article 

    Google Scholar 
    Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the australian semi-desert. PLoS ONE 6, e25979 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, S. J., Sinsch, U. & Alford, R. A. Radio Tracking. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds Heyer, R. et al.) 155–158 (Smithsonian Institution, 1994).
    Google Scholar 
    Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S. & Bishop, P. J. Methods in amphibian biotelemetry: Two decades in review. Austral. Ecol. 47, 1382–1395 (2022).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1007/978-1-4757-2917-7_3.Book 
    MATH 

    Google Scholar 
    Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. (2022).Hodges, C. W., Marshall, B. M., Hill, J. G. & Strine, C. T. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. bioRxiv https://doi.org/10.1101/2021.09.08.459477 (2021).Article 

    Google Scholar 
    Muller, B. J., Cade, B. S. & Schwarzkopf, L. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts. Ecosphere 9, e02067 (2018).Article 

    Google Scholar 
    Linsenmair, K. E. & Spieler, M. Migration patterns and diurnal use of shelter in a ranid frog of a West African savannah: A telemetric study. Amphib. Reptilia 19, 43–64 (1998).Article 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).Article 
    PubMed 

    Google Scholar 
    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane yoads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, W.-S., Lin, J.-Y. & Yu, J.Y.-L. Male reproductive cycle of the toad Bufo melanostictus in Taiwan. Zool. Sci. 14, 497–503 (1997).Article 

    Google Scholar 
    Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).Article 
    PubMed 

    Google Scholar 
    Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).Article 
    PubMed 

    Google Scholar 
    Kot, M., Lewis, M. A. & van den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996).Article 

    Google Scholar 
    Deguise, I. & Richardson, J. S. Movement behaviour of adult western toads in a fragmented, forest landscape. Can. J. Zool. 87, 1184–1194 (2009).Article 

    Google Scholar 
    Mitrovich, M. J., Gallegos, E. A., Lyren, L. M., Lovich, R. E. & Fisher, R. N. Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California. J. Herpetol. 45, 319–328 (2011).Article 

    Google Scholar 
    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).Article 
    PubMed 

    Google Scholar 
    Enriquez-Urzelai, U., Montori, A., Llorente, G. A. & Kaliontzopoulou, A. Locomotor mode and the evolution of the hindlimb in western mediterranean anurans. Evol. Biol. 42, 199–209 (2015).Article 

    Google Scholar 
    Junior, B. T. & Gomes, F. R. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS ONE 10, e0140761 (2015).Article 

    Google Scholar 
    Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).Article 
    ADS 

    Google Scholar 
    Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Lévy flight. PNAS 108, 8704–8707 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. PNAS 110, 13452–13456 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, R. et al. New weapons in the toad toolkit: A review of methods to control and mitigate the biodiversity impacts of invasive Cane toads (Rhinella marina). Q. Rev. Biol. 92, 123–149 (2017).Article 
    PubMed 

    Google Scholar 
    Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article 

    Google Scholar 
    DeVore, J. L., Crossland, M. R., Shine, R. & Ducatez, S. The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc. Natl. Acad. Sci. 118, e2100765118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muller, B. J. & Schwarzkopf, L. Relative effectiveness of trapping and hand-capture for controlling invasive cane toads (Rhinella marina). Int. J. Pest Manag. 64, 185–192 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Photodegradation of a bacterial pigment and resulting hydrogen peroxide release enable coral settlement

    Knowlton, N. The future of coral reefs. Proc. Natl. Acad. Sci. 98, 5419–5425 (2001).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 1979(301), 929–933 (2003).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 1979(318), 1737–1742 (2007).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. et al. Monitoring coral reefs from space. Oceanography 23, 118–133 (2010).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).Article 

    Google Scholar 
    Byler, K. A., Carmi-Veal, M., Fine, M. & Goulet, T. L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One 8, e59596 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cumbo, V., van Oppen, M. & Baird, A. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar. Ecol. Prog. Ser. 587, 117–127 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar Biol. Ecol. 223, 235–255 (1998).Article 

    Google Scholar 
    Gleason, D. F., Edmunds, P. J. & Gates, R. D. Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar. Biol. 148, 503–512 (2006).Article 

    Google Scholar 
    Yusuf, S., Zamani, N. P., Jompa, J. & Junior, M. Z. Larvae of the coral Acropora tenuis (Dana 1846) settle under controlled light intensity. IOP Conf. Ser. Earth Environ. Sci. 253, 012023 (2019).Article 

    Google Scholar 
    Vermeij, M. J. A., Marhaver, K. L., Huijbers, C. M., Nagelkerken, I. & Simpson, S. D. Coral larvae move toward reef sounds. PLoS One 5, e10660 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).Article 
    ADS 

    Google Scholar 
    Negri, A., Webster, N., Hill, R. & Heyward, A. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).Article 
    ADS 

    Google Scholar 
    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erwin, P. M., Song, B. & Szmant, A. M. Settlement behavior of Acropora palmata planulae: effects of biofilm age and crustose coralline algal cover. In Proceedings of 11th International Coral Reef Symposium 24, (2008).Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).Article 

    Google Scholar 
    Petersen, L.-E. et al. Mono- and multispecies biofilms from a crustose coralline alga induce settlement in the scleractinian coral Leptastrea purpurea. Coral Reefs 40, 381–394 (2021).Article 

    Google Scholar 
    Jorissen, H. et al. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci. Rep. 11, 14610 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a pseudoalteromonas bacterium. PLoS One 6, e19082 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tran, C. & Hadfield, M. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).Article 
    ADS 

    Google Scholar 
    Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).Article 

    Google Scholar 
    Petersen, L.-E., Kellermann, M. Y., Nietzer, S. & Schupp, P. J. Photosensitivity of the bacterial pigment cycloprodigiosin enables settlement in coral larvae—light as an understudied environmental factor. Front. Mar. Sci. 8, 749070 (2021).Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    Harrington, L., Fabricius, K., Death, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    Da-Anoy, J. P., Villanueva, R. D., Cabaitan, P. C. & Conaco, C. Effects of coral extracts on survivorship, swimming behavior, and settlement of Pocillopora damicornis larvae. J. Exp. Mar. Biol. Ecol. 486, 93–97 (2017).Article 

    Google Scholar 
    Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (Scleractinian Coral) larvae. Biol. Bull. 181, 104–122 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).Article 

    Google Scholar 
    Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maru, N. et al. Relative configuration of luminaolide. Tetrahedron Lett. 54, 4385–4387 (2013).Article 
    CAS 

    Google Scholar 
    Nietzer, S., Moeller, M., Kitamura, M. & Schupp, P. J. Coral larvae every day: Leptastrea purpurea, a brooding species that could accelerate coral research. Front. Mar. Sci. 5, 466 (2018).Article 

    Google Scholar 
    Moeller, M., Nietzer, S. & Schupp, P. J. Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Sci. Rep. 9, 2291 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen, L.-E., Kellermann, M. Y. & Schupp, P. J. Secondary metabolites of marine microbes: from natural products chemistry to chemical ecology. In YOUMARES 9 – The Oceans: Our Research, Our Future: Proceedings of the 2018 Conference for Young Marine Researcher in Oldenburg, Germany (eds Jungblut, S. et al.) 159–180 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-20389-4_8.Chapter 

    Google Scholar 
    Fiegel, L. J. et al. A detailed visualization of the early development stages of Leptastrea purpurea reveals distinct bio-optical features. Front. Mar. Sci. 10, 1–10 (2023).
    Google Scholar 
    Strader, M. E., Aglyamova, G. V. & Matz, M. V. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genom. 19, 17 (2018).Article 

    Google Scholar 
    Puisay, A. et al. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. Mar. Environ. Res. 163, 105200 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Perez-Tomas, R. & Vinas, M. New insights on the antitumoral properties of prodiginines. Curr. Med. Chem. 17, 2222–2231 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    You, Z. et al. Insights into the anti-infective properties of prodiginines. Appl. Microbiol. Biotechnol. 103, 2873–2887 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kellermann, M. Y., Yoshinaga, M. Y., Valentine, R. C., Wörmer, L. & Valentine, D. L. Important roles for membrane lipids in haloarchaeal bioenergetics. Biochim. Biophys. Acta (BBA) Biomembr. 1858, 2940–2956 (2016).Article 
    CAS 

    Google Scholar 
    Hirose, M., Yamamoto, H. & Nonaka, M. Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp.. Coral Reefs 27, 247–254 (2008).Article 
    ADS 

    Google Scholar 
    Bollati, E. et al. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. Elife 11, e73521 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS One 4, e7298 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. Elife 1, e00013 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woznica, A. et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc. Natl. Acad. Sci. 113, 7894–7899 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, J. et al. Bacterial nucleobases synergistically induce larval settlement and metamorphosis in the invasive mussel Mytilopsis sallei. Appl. Environ. Microbiol. 85, e01039 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, H., Rischer, M., Westermann, M. & Beemelmanns, C. Two distinct bacterial biofilm components trigger metamorphosis in the colonial hydrozoan Hydractinia echinata. MBio 12, e00401 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, C., Fogarty, N. D., Ritson-Williams, R. & Paul, V. J. Interspecific variation in coral settlement and fertilization success in response to hydrogen peroxide exposure. Biol. Bull. 233, 206–218 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boettcher, A. A., Dyer, C., Casey, J. & Targett, N. M. Hydrogen peroxide induced metamorphosis of queen conch, Strombus gigas: tests at the commercial scale. Aquaculture 148, 247–258 (1997).Article 
    CAS 

    Google Scholar 
    Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E. & Castro-Obregón, S. Function of reactive oxygen species during animal development: Passive or active?. Dev. Biol. 320, 1–11 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gauron, C. et al. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev. Biol. 414, 133–141 (2016).Article 
    CAS 
    PubMed 

    Google Scholar  More