More stories

  • in

    Widespread woody plant use of water stored in bedrock

    1.Schwinning, S. The ecohydrology of roots in rocks. Ecohydrology 3, 238–245 (2010).
    Google Scholar 
    2.Rose, K., Graham, R. & Parker, D. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134, 46–54 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    3.Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    4.Schwinning, S. A critical question for the critical zone: how do plants use rock water? Plant Soil 454, 49–56 (2020).Article 
    CAS 

    Google Scholar 
    5.Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling. Wat. Resour. Res. 55, 1737–1772 (2019).Article 
    ADS 

    Google Scholar 
    6.Brantley, S. L. et al. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14, 5115–5142 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Chaney, N. W. et al. POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States. Wat. Resour. Res. 55, 2916–2938 (2019).Article 
    ADS 

    Google Scholar 
    8.Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L. & Blanckenburg, F. V. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14, 3111–3128 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    9.Wald, J. A., Graham, R. C. & Schoeneberger, P. J. Distribution and properties of soft weathered bedrock at 1 m depth in the contiguous United States. Earth Surf. Process. Landf. 38, 614–626 (2013).Article 
    ADS 

    Google Scholar 
    10.Nimmo, J. R., Creasey, K. M., Perkins, K. S. & Mirus, B. B. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone. Hydrogeol. J. 25, 421–444 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Leshem, B. Resting roots of Pinus halepensis: structure, function, and reaction to water stress. Bot. Gaz. 131, 99–104 (1970).Article 

    Google Scholar 
    12.Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 
    ADS 

    Google Scholar 
    13.Hahm, W. J. et al. Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Wat. Resour. Res. 55, 3028–3055 (2019).Article 
    ADS 

    Google Scholar 
    14.Eggemeyer, K. D. & Schwinning, S. Biogeography of woody encroachment: why is mesquite excluded from shallow soils? Ecohydrology 2, 81–87 (2009).CAS 
    Article 

    Google Scholar 
    15.Madakumbura, G. D. et al. Recent California tree mortality portends future increase in drought-driven forest die-off. Environ. Res. Lett. 15, 124040 (2020).Article 
    ADS 

    Google Scholar 
    16.McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    17.McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R. & Abatzoglou, J. T. Projected changes in reference evapotranspiration in California and Nevada: implications for drought and wildland fire danger. Earths Future 8, e2020EF001736 (2020).Article 
    ADS 

    Google Scholar 
    18.Hauwert, N. M. & Sharp, J. M. Measuring autogenic recharge over a karst aquifer utilizing eddy covariance evapotranspiration. J. Water Resour. Prot. 6, 869–879 (2014).Article 

    Google Scholar 
    19.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 
    Article 

    Google Scholar 
    21.Hahm, W. J. et al. Oak transpiration drawn from the weathered bedrock vadose zone in the summer dry season. Wat. Resour. Res. 56, e2020WR027419 (2020).Article 
    ADS 

    Google Scholar 
    22.Cannon, W. A. The Root Habits of Desert Plants 131 (Carnegie Institute of Washington, 1911).23.Daily reservoir storage summary. California Department of Water Resources https://info.water.ca.gov/cgi-progs/reservoirs/RES (2020).24.USGS water use data for California. United States Geological Society https://waterdata.usgs.gov/ca/nwis/water_use/ (2020).25.David, T., Ferreira, M., Cohen, S., Pereira, J. & David, J. Constraints on transpiration from an evergreen oak tree in southern Portugal. Agric. For. Meteorol. 122, 193–205 (2004).Article 
    ADS 

    Google Scholar 
    26.Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jimenez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).PubMed 
    Article 
    ADS 

    Google Scholar 
    27.Carrière, S. D. et al. The role of deep vadose zone water in tree transpiration during drought periods in karst settings—insights from isotopic tracing and leaf water potential. Sci. Total Environ. 699, 134332 (2020).Article 
    CAS 

    Google Scholar 
    28.Rambal, S. Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub. Oecologia 62, 18–25 (1984).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    29.Montaldo, N. et al. Rock water as a key resource for patchy ecosystems on shallow soils: digging deep tree clumps subsidize surrounding surficial grass. Earths Future 9, e2020EF001870 (2021).Article 
    ADS 

    Google Scholar 
    30.Corona, R. & Montaldo, N. On the transpiration of wild olives under water-limited conditions in a heterogeneous ecosystem with shallow soil over fractured rock. J. Hydrol. Hydromech. 68, 338–350 (2020).Article 

    Google Scholar 
    31.Nardini, A. et al. Water ‘on the rocks’: a summer drink for thirsty trees? New Phytol. 229, 199–212 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ruiz, L. et al. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): regolith matric storage buffers the groundwater recharge process. J. Hydrol. 380, 460–472 (2010).Article 
    ADS 

    Google Scholar 
    33.Ding, Y., Nie, Y., Chen, H., Wang, K. & Querejeta, J. I. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol. 229, 1339–1353 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Dawson, T. E., Hahm, W. J. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol. 226, 666–671 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Salve, R., Rempe, D. M. & Dietrich, W. E. Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Wat. Resour. Res. 48, W11528 (2012).Article 
    ADS 

    Google Scholar 
    36.Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Kapnick, S. & Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn. 38, 1885–1899 (2012).Article 

    Google Scholar 
    38.Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J. Geophys. Res. Biogeosci. 125, e2020JG005795 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    39.Hasenmueller, E. A. et al. Weathering of rock to regolith: the activity of deep roots in bedrock fractures. Geoderma 300, 11–31 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    40.Yang, L. et al. A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).41.Soil Survey Staff Gridded National Soil Survey Geographic (gNATSGO) Database for the Conterminous United States (USDA, 2019); https://nrcs.app.box.com/v/soils42.QGIS Development Team QGIS Geographic Information System (Open Source Geospatial Foundation, 2019); http://qgis.org43.O’Geen, A. T. et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone J. 17, 180081 (2018).Article 
    CAS 

    Google Scholar 
    44.Anderson, M. A., Graham, R. C., Alyanakian, G. J. & Martynn, D. Z. Late summer water status of soils and weathered bedrock in a giant sequoia grove. Soil Sci. 160, 415–422 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    45.Hubbert, K. R., Graham, R. C. & Anderson, M. A. Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Sci. Soc. Am. J. 65, 1255–1262 (2001).CAS 
    Article 
    ADS 

    Google Scholar 
    46.Bornyasz, M., Graham, R. & Allen, M. Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126, 141–160 (2005).Article 
    ADS 

    Google Scholar 
    47.Sternberg, P., Anderson, M., Graham, R., Beyers, J. & Tice, K. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72, 89–98 (1996).Article 
    ADS 

    Google Scholar 
    48.Graham, R. C., Sternberg, P. D. & Tice, K. R. Morphology, porosity, and hydraulic conductivity of weathered granitic bedrock and overlying soils. Soil Sci. Soc. Am. J. 61, 516–522 (1997).CAS 
    Article 
    ADS 

    Google Scholar 
    49.McCole, A. A. & Stern, L. A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. 342, 238–248 (2007).Article 
    ADS 

    Google Scholar 
    50.Schwinning, S. The water relations of two evergreen tree species in a karst savanna. Oecologia 158, 373–383 (2008).PubMed 
    Article 
    ADS 

    Google Scholar 
    51.McCormick, E. L. et al. Dataset for “Evidence for widespread woody plant use of water stored in bedrock”. Hydroshare https://doi.org/10.4211/hs.a2f0d5fd10f14cd189a3465f72cba6f3 (2021).52.Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    53.Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).Article 

    Google Scholar 
    54.Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).Article 

    Google Scholar 
    55.Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    56.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).Article 

    Google Scholar 
    57.Daly, C., Smith, J. I. & Olson, K. V. Mapping atmospheric moisture climatologies across the conterminous United States. PLoS ONE 10, e0141140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).Article 
    ADS 

    Google Scholar 
    59.Gan, R. et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 11, e1974 (2018).Article 

    Google Scholar 
    60.Dralle, D. N., Hahm, W. J., Chadwick, K. D., McCormick, E. L. & Rempe, D. M. Technical note: accounting for snow in the estimation of root-zone water storage capacity from precipitation and evapotranspiration fluxes. Hydrol. Earth Syst. Sci. 25, 2861–2867 (2021).Article 
    ADS 

    Google Scholar 
    61.Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 
    ADS 

    Google Scholar 
    62.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    63.Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockstrom, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest savanna transitions. Environ. Res. Lett. 15, 124021 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Hall, D., Riggs, G. & Salomonson, V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6 [Data set] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016).65.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).66.Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).ADS 

    Google Scholar 
    67.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    68.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Niemeyer, R. J. et al. Spatiotemporal soil and saprolite moisture dynamics across a semi-arid woody plant gradient. J. Hydrol. 544, 21–35 (2017).Article 
    ADS 

    Google Scholar 
    70.Pedrazas, M. A. et al. The relationship between topography bedrock weathering and water storage across a sequence of ridges and valleys. J. Geophys. Res. Earth Surf. 126, e2020JF005848 (2021).ADS 

    Google Scholar 
    71.Arkley, R. J. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci. Soc. Am. J. 45, 423–427 (1981).Article 
    ADS 

    Google Scholar 
    72.Zwieniecki, M. A. & Newton, M. Water-holding characteristics of metasedimentary rock in selected forest ecosystems in southwestern Oregon. Soil Sci. Soc. Am. J. 60, 1578–1582 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    73.Hellmers, H., Horton, J. S., Juhren, G. & O’Keefe, J. Root systems of some chaparral plants in southern California. Ecology 36, 667–678 (1955).Article 

    Google Scholar 
    74.Cardella Dammeyer, H., Schwinning, S., Schwartz, B. F. & Moore, G. W. Effects of juniper removal and rainfall variation on tree transpiration in a semi-arid karst: evidence of complex water storage dynamics. Hydrol. Process. 30, 4568–4581 (2016).Article 
    ADS 

    Google Scholar 
    75.Twidwell, D. et al. Drought-induced woody plant mortality in an encroached semi-arid savanna depends on topoedaphic factors and land management. Appl. Veg. Sci. 17, 42–52 (2013).Article 

    Google Scholar 
    76.Davis, E. A. Root system of shrub live oak in relation to water yield by chaparral. Proceedings of the 1977 Meetings of the Arizona Section of the American Water Resources Association and the Hydrology Section of the Arizona Academy of Sciences. Hydrol. Water Resour. Ariz. Southwest 7, 241–248 (1977).
    Google Scholar 
    77.West, A. G., Hultine, K. R., Burtch, K. G., & Ehleringer, J. R. Seasonal variations in moisture use in a piñon–juniper woodland. Oecologia 153, 787–798 (2007).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    78.Seyfried, M. S. & Wilcox, B. P. Soil water storage and rooting depth: key factors controlling recharge on rangelands. Hydrol. Process. 20, 3261–3275 (2006).Article 
    ADS 

    Google Scholar 
    79.Dietrich, W. E. & Dunne, T. Sediment budget for a small catchment in mountainous terrain. Zeitschrift Für Geomorphologie 29, 191–206 (1978).
    Google Scholar 
    80.Litvak, M. E., Schwinning, S. & Heilman, J. L. in Ecosystem Function in Savannas (eds Hill, M. J. & Hanan, N. P.) 117–134 (2010). More

  • in

    Pollinators contribute to the maintenance of flowering plant diversity

    1.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).2.Wills, C. et al. Nonrandom processes maintain diversity in tropical forests. Science 311, 527–531 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    4.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).Article 

    Google Scholar 
    5.Vamosi, J. C. et al. Pollination decays in biodiversity hotspots. Proc. Natl Acad. Sci. USA 103, 956–961 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    8.Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    10.Rodger, J. G. et al. 2021 Widespread vulnerability of plant seed production to pollinator decline. Sci. Adv. (in the press).11.Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).Article 

    Google Scholar 
    12.Sargent, R. D. & Ackerly, D. D. Plant–pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).PubMed 
    Article 

    Google Scholar 
    13.Benadi, G. & Pauw, A. Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. J. Ecol. 106, 1892–1901 (2018).Article 

    Google Scholar 
    14.Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    15.Benadi, G., Bluthgen, N., Hovestadt, T. & Poethke, H. J. Population dynamics of plant and pollinator communities: stability reconsidered. Am. Nat. 179, 157–168 (2012).PubMed 
    Article 

    Google Scholar 
    16.Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).Article 

    Google Scholar 
    17.Bergamo, P. J., Susin Streher, N., Traveset, A., Wolowski, M. & Sazima, M. Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol. Lett. 23, 129–139 (2020).PubMed 
    Article 

    Google Scholar 
    18.Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).PubMed 
    Article 

    Google Scholar 
    20.Moreira-Hernández, J. I. & Muchhala, N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annu. Rev. Ecol. Evol. Syst. 50, 191–217 (2019).Article 

    Google Scholar 
    21.Ashman, T. L. et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    22.Tur, C., Saez, A., Traveset, A. & Aizen, M. A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19, 576–586 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Levin, D. A. & Anderson, W. W. Competition for pollinators between simultaneously flowering species. Am. Nat. 104, 455–467 (1970).Article 

    Google Scholar 
    24.Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gómez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Ann. Bot. 125, 1003–1012 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113, 67–79 (1979).MathSciNet 
    Article 

    Google Scholar 
    26.Sargent, R. D. & Otto, S. P. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am. Nat. 167, 67–80 (2006).PubMed 
    Article 

    Google Scholar 
    27.Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 
    Article 

    Google Scholar 
    28.Armbruster, W. S. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88–100 (2017).Article 

    Google Scholar 
    29.Minnaar, C., Anderson, B., de Jager, M. L. & Karron, J. D. Plant–pollinator interactions along the pathway to paternity. Ann. Bot. 123, 225–245 (2019).PubMed 
    Article 

    Google Scholar 
    30.Kantsa, A. et al. Disentangling the role of floral sensory stimuli in pollination networks. Nat. Commun. 9, 1041 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Fang, Q. & Huang, S. Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176–1185 (2013).PubMed 
    Article 

    Google Scholar 
    32.Baldwin, B. G. Origins of plant diversity in the California floristic province. Annu. Rev. Ecol. Evol. Syst. 45, 347–369 (2014).Article 

    Google Scholar 
    33.Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Thomson, J. D., Fung, H. F. & Ogilvie, J. E. Effects of spatial patterning of co-flowering plant species on pollination quantity and purity. Ann. Bot. 123, 303–310 (2019).PubMed 
    Article 

    Google Scholar 
    35.Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Song, C. L., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).PubMed 
    Article 

    Google Scholar 
    37.Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).PubMed 
    Article 

    Google Scholar 
    38.Ohlemuller, R. et al. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Arceo-Gómez, G., Kaczorowski, R. L. & Ashman, T.-L. A network approach to understanding patterns of coflowering in diverse communities. Int. J. Plant Sci. 179, 569–582 (2018).Article 

    Google Scholar 
    40.Koski, M. H. et al. Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod Plant Interact. 9, 9–21 (2015).Article 

    Google Scholar 
    41.Arceo-Gómez, G. et al. Patterns of among- and within-species variation in heterospecific pollen receipt: the importance of ecological generalization. Am. J. Bot. 103, 396–407 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    43.R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).44.Arceo-Gómez, G., Alonso, C., Ashman, T.-L. & Parra-Tabla, V. Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. Am. J. Bot. 105, 1601–1608 (2018).PubMed 
    Article 

    Google Scholar 
    45.Hayes, R. A., Cullen N., Kaczorowski R. L., O’Neill E. M. & Ashman T-L. A community-wide description and key of pollen from co-flowering plants of the serpentine seeps of Mclaughlin Reserve. Madrono (in the press).46.Dafni, A. Pollination Ecology: a Practical Approach (Oxford Univ. Press, 1992).47.McMurdie, P. J. & Holmes, S. Waste NOT, want not: why rarefying microbiome data is inadmissible. PLoS Comp. Biol. 10, e1003531 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    48.Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).Article 

    Google Scholar 
    49.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    53.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    54.Le, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    55.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    56.Feinsinger, P., Spears, E. E. & Poole, R. W. A simple measure of niche breadth. Ecology 62, 27–32 (1981).Article 

    Google Scholar 
    57.Horn, H. S. Measurement of “overlap” in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    58.Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article 

    Google Scholar 
    59.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).
    Google Scholar 
    60.Patefield, W. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).MATH 
    Article 

    Google Scholar 
    61.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5, https://CRAN.R-project.org/package=vegan (2019).62.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).63.Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Presented at the Third international AAAI Conference on Weblogs and Social Media (2009).64.Arceo-Gómez, G., Kaczorowski, R. L., Patel, C. & Ashman, T. L. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia 189, 1041–1047 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    65.Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1, https://CRAN.R-project.org/package=caper (2018).67.Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Fort, H., Vazquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).PubMed 
    Article 

    Google Scholar 
    69.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-143, https://CRAN.R-project.org/package=nlme (2019).70.Lefcheck, J. S. & Freckleton, R. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).Article 

    Google Scholar 
    71.Fox, J. & Weisberg, S. An R companion to Applied Regression, 3rd edition (Sage, 2019).72.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).PubMed 
    Article 

    Google Scholar 
    74.van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Pollination advantage of rare plants unveiled

    NEWS AND VIEWS
    08 September 2021

    Pollination advantage of rare plants unveiled

    An analysis of plant–pollinator interactions reveals that the presence of abundant plant species favours the pollination of rare species. Such asymmetric facilitation might promote the coexistence of species in diverse plant communities.

    Marcelo A. Aizen

     ORCID: http://orcid.org/0000-0001-9079-9749

    0

    Marcelo A. Aizen

    Marcelo A. Aizen is at the Research Institute for Biodiversity and the Environment (INIBIOMA), National University of Comahue – CONICET, 8400 San Carlos de Bariloche, Río Negro, Argentina, and at the Institute for Advanced Study, Berlin, Germany.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Species diversification results from the balance between the formation of new species (speciation) and the loss of existing ones (extinction). The tremendous proliferation of different life forms on Earth can be attributed to both high rates of speciation and low rates of extinction. Flowering plants — a group called angiosperms — are one of the most diverse groups of non-mobile organism. There are approximately 352,000 plant species, nearly 90% of which depend, to various extents, on insects and other animals for pollination and seed production1. These animal pollinators have been key to the unstoppable diversification of the angiosperms, starting at least 120 million years ago, with pollinators promoting speciation by acting as potent selection agents for a plethora of flower traits2,3. Pollinators also aid species persistence by enabling pollen transfer between relatively distant individuals in sparse plant populations4. Writing in Nature, Wei et al.5 report that, for plant species that flower at the same time, pollinators mediate interactions that might facilitate species coexistence in diverse plant communities.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02375-z

    References1.Ollerton, J., Winfree, R. & Tarrant, S. Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    2.Hernández-Hernández, T. & Wiens, J. J. Am. Nat. 195, 948–963 (2020).PubMed 
    Article 

    Google Scholar 
    3.van der Niet, T. & Johnson, S. D. Trends Ecol. Evol. 27, 353–361 (2012).PubMed 
    Article 

    Google Scholar 
    4.Bawa, K. S. Trends Ecol. Evol. 10, 311–312 (1995).PubMed 
    Article 

    Google Scholar 
    5.Wei, N. et al. Nature https://doi.org/10.1038/s41586-021-03890-9 (2021).Article 

    Google Scholar 
    6.Hegland, S. J., Grytnes, J.-A. & Totland, Ø. Ecol. Res. 24, 929–936 (2009).Article 

    Google Scholar 
    7.Sargent, R. D. & Ackerly, D. D. Trends Ecol. Evol. 23, 123–130 (2008).PubMed 
    Article 

    Google Scholar 
    8.Ghazoul, J. J. Ecol. 94, 295–304 (2006).Article 

    Google Scholar 
    9.Tur, C., Sáez, A., Traveset, A. & Aizen, M. A. Ecol. Lett. 19, 576–586 (2016).PubMed 
    Article 

    Google Scholar 
    10.Bergamo, P. J., Streher, N. S., Traveset, A., Wolowski, M. & Sazima, M. Ecol. Lett. 23, 129–139 (2020).PubMed 
    Article 

    Google Scholar 
    11.Morales, C. L. & Traveset, A. Crit. Rev. Plant Sci. 27, 221–238 (2008).Article 

    Google Scholar 
    12.Silvertown, J., Franco, M., Pisanty, I. & Mendoza, A. J. Ecol. 81, 465–476 (1993).Article 

    Google Scholar 
    13.IPBES. The Assessment Report on Pollinators, Pollination and Food Production of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2016).
    Google Scholar 
    14.Knight, T. M. et al. Annu. Rev. Ecol. Syst. 36, 467–497 (2005).Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Pollinators contribute to the maintenance of flowering plant diversity

    A cocktail of pesticides, parasites and hunger leaves bees down and out

    Differences can hold populations together

    See all News & Views

    Subjects

    Ecology

    Evolution

    Conservation biology

    Latest on:

    Ecology

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Widespread woody plant use of water stored in bedrock
    Article 08 SEP 21

    Policy, drought and fires combine to affect biodiversity in the Amazon basin
    News & Views 01 SEP 21

    Evolution

    Multiple hominin dispersals into Southwest Asia over the past 400,000 years
    Article 01 SEP 21

    Structure of Geobacter pili reveals secretory rather than nanowire behaviour
    Article 01 SEP 21

    A plundered pterosaur reveals the extinct flyer’s extreme headgear
    Research Highlight 25 AUG 21

    Jobs

    Postdoctoral Training Fellow – Genome Function Laboratory

    Francis Crick Institute
    London, United Kingdom

    Doctoral Position (gn) to study the effects of medicinal plant extracts on bacterium-host interaction in uropathogenic Escherichia coli

    University Hospital of Muenster (UKM), WWU
    Münster, Germany

    Research Scientist (f/m/d) – Bioinformatics

    Evotec AG
    Munich, Germany

    wiss. Mitarbeiter/in / Postdoc

    Technische Universität Dresden (TU Dresden)
    Dresden, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms

    1.Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05×10(12) structures for a reducing hexasaccharide – the isomer-barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4:759–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Myklestad SM. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ. 1995;165:155–64.CAS 
    Article 

    Google Scholar 
    5.Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Wetz MS, Wheeler PA. Release of dissolved organic matter by coastal diatoms. Limnol Oceanogr. 2007;52:798–807.CAS 
    Article 

    Google Scholar 
    7.Reintjes G, Fuchs BM, Scharfe M, Wiltshire KH, Amann R, Arnosti C. Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environ Microbiol. 2020;22:1884–900.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. P Natl Acad Sci USA. 2020;117:6599–607.CAS 
    Article 

    Google Scholar 
    10.Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature. 2004;428:929–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Aluwihare LI, Repeta DJ, Chen RF. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature. 1997;387:166–9.CAS 
    Article 

    Google Scholar 
    12.Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson M, Wakeham SG. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature. 2001;409:801–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Meador TB, Aluwihare LI. Production of dissolved organic carbon enriched in deoxy sugars representing an additional sink for biological C drawdown in the Amazon River plume. Glob Biogeochem Cycles. 2014;28:1149–61.CAS 
    Article 

    Google Scholar 
    14.Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PS, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE. 2012;7:e35314.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C, Steen AD, et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl Environ Microbiol. 2014;80:3749–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Spring S, Bunk B, Sproer C, Schumann P, Rohde M, Tindall BJ, et al. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J. 2016;10:2801–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-Valera F. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front Microbiol. 2017;8:2131.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.He S, Stevens SL, Chan L-K, Bertilsson S, del Rio TG, Tringe SG, et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. mSphere. 2017;2:e00277–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, et al. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol. 2018;20:2568–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sizikov S, Burgsdorf I, Handley KM, Lahyani M, Haber M, Steindler L. Characterization of sponge‐associated Verrucomicrobia: microcompartment‐based sugar utilization and enhanced toxin–antitoxin modules as features of host‐associated Opitutales. Environ Microbiol. 2020;22:4669–88.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Francis TB, Kruger K, Fuchs BM, Teeling H, Amann RI. Candidatus Prosiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae. Syst Appl Microbiol. 2019;42:41–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Kruger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.CAS 
    Article 

    Google Scholar 
    27.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2010;27:431–2.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    34.Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Orellana LH, Ben Francis T, Kruger K, Teeling H, Muller MC, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Orellana LH, Rodriguez RL, Konstantinidis KT. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 2017;45:e14.PubMed 
    PubMed Central 

    Google Scholar 
    39.Rodriguez RL, Tsementzi D, Luo C, Konstantinidis KT. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol. 2020;22:3394–412.Article 
    CAS 

    Google Scholar 
    40.Delmont TO, Quince C, Shaiber A, Esen OC, Lee ST, Rappe MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5. W1CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. Database issueCAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Pruesse E, Peplies J, Glockner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93. D1CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, Nelson WC, et al. TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res. 2007;35:D260–4. Database issueCAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32. D1CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D32. D1CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    52.Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9. D1CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. Database issueCAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51. Web Server issueCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101. W1CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Thiele S, Fuchs B, Amann R. Identification of microorganisms using the ribosomal RNA approach and fluorescence in situ hybridization. In: Wilderer PA, editor. Treatise on Water Science. Elsevier Science; Oxford, United Kingdom; 2011. p. 171–89.60.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Zverlov VV, Hertel C, Bronnenmeier K, Hroch A, Kellermann J, Schwarz WH. The thermostable alpha-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial alpha-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol. 2000;35:173–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Miyata T, Kashige N, Satho T, Yamaguchi T, Aso Y, Miake F. Cloning, sequence analysis, and expression of the gene encoding Sphingomonas paucimobilis FP2001 alpha-L -rhamnosidase. Curr Microbiol. 2005;51:105–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gray J, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544:65–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules. 2008;13:1671–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9:2106–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, et al. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol. 2004;186:4885–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, Kato R. Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282:18497–509.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Anderson KL, Salyers AA. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol. 1989;171:3192–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Grondin JM, Tamura K, Dejean G, Abbott DW, Brumer H. Polysaccharide Utilization Loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Barbeyron T, Brillet-Gueguen L, Carre W, Carriere C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: Creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE 2016;11:e0164846.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Silchenko AS, Rasin AB, Zueva AO, Kusaykin MI, Zvyagintseva TN, Kalinovsky AI, et al. Fucoidan sulfatases from marine bacterium Wenyingzhuangia fucanilytica CZ1127(T). Biomolecules. 2018;8:98.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Reisky L, Prechoux A, Zuhlke MK, Baumgen M, Robb CS, Gerlach N, et al. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol. 2019;15:803–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Hettle AG, Vickers C, Robb CS, Liu F, Withers SG, Hehemann JH, et al. The molecular basis of polysaccharide sulfatase activity and a nomenclature for catalytic subsites in this class of enzyme. Structure. 2018;26:747–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Erbilgin O, McDonald KL, Kerfeld CA. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol. 2014;80:2193–205.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol. 2014;10:e1003898.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Sutter M, Melnicki MR, Schulz F, Woyke T, Kerfeld CA. A catalog of the diversity and ubiquity of bacterial microcompartments. Nat Commun. 2021;12:3809.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Engel A, Goldthwait S, Passow U, Alldredge A. Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnol Oceanogr. 2002;47:753–61.CAS 
    Article 

    Google Scholar 
    79.Yew WS, Fedorov AA, Fedorov EV, Rakus JF, Pierce RW, Almo SC, et al. Evolution of enzymatic activities in the enolase superfamily: L-fuconate dehydratase from Xanthomonas campestris. Biochemistry. 2006;45:14582–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Arredondo-Alonso S, Willems RJ, van Schaik W, Schurch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Micro Genom. 2017;3:e000128.
    Google Scholar 
    81.Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kampfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Konstantinidis KT, Rossello-Mora R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Alejandre-Colomo C, Harder J, Fuchs BM, Rossello-Mora R, Amann R. High-throughput cultivation of heterotrophic bacteria during a spring phytoplankton bloom in the North Sea. Syst Appl Microbiol. 2020;43:126066.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Capturing coastal wetland root dynamics with underground time-lapse

    Coastal wetlands, including mangrove forests and saltmarshes, are among the most carbon-dense ecosystems worldwide. In their undisturbed state, coastal wetlands act as important carbon sinks. A large portion of the carbon captured by coastal wetlands is allocated to fine roots and stored in the soil as organic carbon. Fine roots ( More

  • in

    Translating area-based conservation pledges into efficient biodiversity protection outcomes

    All analysis was undertaken in Great Britain and associated islands over 20 km2. All prioritisations were undertaken at a 10 × 10 km landscape-scale on cells with greater than half land coverage. We considered designations ‘protected for biodiversity’ to be Sites of Special Scientific Interest (SSSI) and National Nature Reserves (NNR); and landscape protection designations to include National Parks (NP), Areas of Outstanding Natural Beauty (AONB), and Scottish National Scenic Areas (NSA). Different cell protection ‘cutoffs’ were tested at 30, 40, 50, 60, and 70% (Supplementary Table 1). Hence cells were considered to be ‘protected for biodiversity’ at the landscape-scale if SSSI/NNR coverage was above the percentage land cutoff, e.g. at least 40% IUCN IV protection (Fig. 1: black cells). ‘Protected landscapes’ were 10 × 10 km cells with total coverage from all of the designations above the cutoff, e.g. at least 40% IUCN V (or greater) protection, but under 40% level IV protection (Fig. 1b: grey cells). Results were qualitatively similar for all cutoffs (Supplementary Tables 2 and 3). The joint proportion of cells protected for biodiversity and protected landscapes were most similar to the actual coverage at the 40% ‘cutoff’ (27.80% of 10 × 10 km cells ‘protected’ compared to 26.71% actual area coverage), and this is presented in the main text. All designation data used is publicly available from the respective national spatial data repositories for England21 (SSSI/NNR/NP/AONB), Scotland22 (SSSI/NNR/NP/NSA), and Wales23 (SSSI/NNR/NP/AONB).We used the recorded distributions of 445 priority species listed under the Section 41 (Natural Environment and Rural Communities Act, 2006), provided by Butterfly Conservation (BC), Biological Records Centre (BRC); and breeding bird atlas data from British Trust for Ornithology (BTO)24. BTO bird atlas data are only available at the 10 × 10 km scale, which limited the spatial resolution of the analysis. We used all priority species that we were able to acquire from the above recording bodies between 2000 and 2014 (Supplementary Data 1). We used the raw distribution records for 156 species that were very localised (10 or fewer presence records) and for a further 77 species which could not be modelled (most of which were also very rare, and for which models did not converge). For the remaining 212 species with over 10 presence records, we interpolated their range using Integrated Nested Laplace Approximations (INLA) in the inlabru R package25. We used a joint model predicting distribution while accounting for recording effort, including biologically relevant covariates: seasonality, growing degree days, water availability, winter cold26, and soil pH from the Countryside Survey 2007 dataset27. These covariates were calculated from monthly means of weather data (mean temperature, sunshine and rainfall) for the decade to 2014 provided by the Met Office28. We also included soil moisture in the calculation of water availability29. We used raw data records from all 445 species, along with broad habitat layers extracted from the Land Cover Map 201530, in a Frescalo analysis31 to estimate recorder effort. See Supplementary Methods for further details of modelling.We carried out a spatial prioritisation using Core Area Zonation32, whereby cells are removed iteratively, first removing those that contribute the smallest cell value: the maximum proportion of species distributions within the remaining cells. In this way cells remaining longer within the solution complement species representation of other cells to a greater extent, and hence contribute most to underrepresented species’ distributions. However, priorities were constrained by masking or ‘locking in’ different relevant areas to each scenario such that all other cells must be removed first; reducing overall solution optimality but ensuring complementarity to masked areas. Scenario 1 only masked cells protected for biodiversity and didn’t consider other designations beyond that. Scenario 2 also masked cells protected for biodiversity but, corresponding to the 30by30 pledge, additionally masked protected landscapes.We undertook a parallel analysis additionally incorporating opportunity costs calculated from agricultural land classification and urban areas33,34,35 (Supplementary Fig. 2, Supplementary Table 4). Although urban areas are often excluded from SCP analyses, it is important to consider species complementarity of all landscapes (the government 30% target applies to the entire land surface). Since some urban/near-urban areas contain nationally rare species, we include urban areas, albeit imposing the maximum opportunity cost in these cells. In this analysis, cell value was calculated as the maximum proportion of species distributions within the remaining cells divided by the mean opportunity cost of the cell (Supplementary Fig. 3, Supplementary Tables 2 and 3).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Studying the distribution patterns, dynamics and influencing factors of city functional components by gradient analysis

    Data collectionSelection of the case cities and city functional componentsTo make the research results more universal, we set the criteria for the selection of case cities as follows. (1) Large cities: cities in which the built-up area exceeded 1000 km2. We chose Beijing, Shanghai, and Tianjin. Beijing is China’s capital and political centre, Shanghai is China’s largest economic centre, and Tianjin is one of China’s four municipalities directly governed by the Central Government; (2) medium cities: cities in which the built-up area varied between 400 and 1000 km2. We chose two provincial capital cities in central China, Wuhan and Hefei, and an economically developed coastal city, Ningbo; (3) small cities: cities in which the built-up area was smaller than 400 km2. Small cities need to have a complete urban form and functions. We selected three economically developed small cities Changzhou, Nantong and Jiaxing.The selection of city functional component types should cover typical city functional components related to the coupling between humans and the city in urban systems, including production, processing, circulation, decomposition and other functions: Kentucky Fried Chicken (KFC) and McDonald’s (McD), two of the most popular western fast-food restaurants in China; Lanzhou Noodles (LZN) and Shaxian Snacks (SXS), two of the most popular Chinese fast-food restaurants in China; Agricultural Bank of China (ABC), one of the four most widely distributed banks in China; swimming pool (SP), a type of indoor sports venue popular in recent years; Shunfeng (SF) and Shentong (STO) express outlets, two of the most commonly used express service components in China; China National Petroleum Corporation (CNPC) and China Petroleum and Chemical Corporation (Sinopec) gas stations, two gas station enterprises accounting for more than half of the total number of gas stations in China; WTP, a type of waste treatment component; GH, a type of primary biological production component; and DF, a type of secondary biological processing component.Acquisition of city functional component dataLatitude and longitude data of the above city functional components were obtained through electronic maps and remote sensing images and verified through field investigation. AutoNavi and Baidu electronic maps are the two most widely used map suppliers in China due to their high accuracy and practicality46. In particular, the location of service city functional components can be accurately obtained through electronic maps. WTPs have detailed lists and location data on the government websites, and GHs can be accurately identified in Google Earth images due to their unique appearance31. Therefore, these three types of raw data are listed as the main sources of location data for functional components.Latitude and longitude data of the KFC, McD, ABC, SP, LZN, SXS, SF, STO, CNPC, Sinopec and DF locations were retrieved from AutoNavi and Baidu historical electronic maps through Python 3.5 software (https://www.python.org/). The 2012 and 2015 historical electronic map data originated from the East China Normal University Humanities and Social Sciences Big Data Platform47, and the 2018 historical electronic map data originated from the Peking University Open Research Data Platform48. Based on AutoNavi and Baidu, each individual component was strictly filtered by name and type. Please refer to the Supplementary Table S3 for a summary of the detailed filtering conditions.Accurate WTP latitude and longitude data were obtained by using the WTP name and address to query the AutoNavi map coordinate picking system [the WTP name and address were acquired from the Ministry of Ecology and Environment of the People’s Republic of China (www.mee.gov.cn), China Environment Network (www.cenews.com.cn) and Beijing Municipal Ecology and Environment Bureau (sthjj.beijing.gov.cn)]. GH latitude and longitude data were determined via a method commonly used in community ecology, which has previously been reported31. Briefly, ArcGIS 10.3 software was employed to generate grids covering the entire city (the size of each grid was 0.5 × 0.5 km), and these grids were then converted into the keyhole markup language (KML) format and imported into Google Earth for GH visual interpretation. The GHs were characterized as (a) bright white or bluish-white, (b) rectangular-shaped objects, (c) oriented in rows or separated by paths or bare areas. If a GH occurred in a specific grid, the centre of the grid was marked with the landmark tool to obtain the corresponding latitude and longitude data.Land price and housing price are affected by location factors such as population, employment, transportation, and amenities and are important indicators to determine whether a city is monocentric or polycentric49,50. Land price was also used as a determining indicator in our study. The concentric circle model was first established by Von Thünen51 to study the order of agricultural land use from urban to rural areas, and it is still an important method to explore research topics along the urban–rural gradient32,52.To obtain the land price distribution curve along the urban–rural gradient, all the standard land parcel information in each case city through the real-time land price query function provided by the China Land Price Information Service Platform (www.landvalue.com.cn), including land price, latitude and longitude, was obtained, and the parcel with highest land price was defined as the city centre. Concentric circles with an increasing radius of 1-km intervals were generated by adopting the city centre as the circle centre, and the average land price of all standard land parcels in each concentric ring was considered as the land price of the ring. We found that in all the case cities, the land price exhibited an obvious monotonous downward trend from the centre to the edge of the city (Supplementary Fig. S7). Therefore, we assumed a monocentric city model and used the concentric circles to define the urban–rural gradient.To acquire density distribution curves of the city functional components along urban–rural gradients, the latitude and longitude data of the KFC, McD, ABC, SP, LZN, SXS, SF, STO, CNPC, Sinopec, GH, WTP and DF components were applied for map labelling purposes. Concentric circles with the increasing radius of 1-km intervals were generated by adopting the city centre as the circle centre, and the number of each type of component in each concentric ring was counted. Since the overall number of WTPs and DFs was smaller, the concentric circle radius was increased at 5- and 10-km intervals, respectively, and the number of WTPs or DFs in each concentric ring was determined, while the component density in each ring was calculated by dividing the number by the area of the ring.To calculate the ecosystem services per unit area for each type of city functional component, the revenue of each component in the current year was determined. KFC and McD revenue data were retrieved from Yum China Holdings and Askci Corporation, respectively. ABC revenue data originated from the Agricultural Bank of China, Ltd., and SF and STO revenue data were acquired from SF Holding Corporation, Ltd., and STO Express Corporation, Ltd., respectively, while CNPC and Sinopec revenue data were retrieved from PetroChina Company, Ltd., and Sinopec Corporation, respectively. Moreover, LZN and SXS revenue data were obtained via field investigation. Environmental impact data of the KFC, McD, CNPC and Sinopec components originated from the Ministry of Ecology and Environment of the People’s Republic of China (www.mee.gov.cn), while LZN and SXS environmental impact data were obtained via field investigation. The costs of the KFC, McD, LZN, SXS, CNPC and Sinopec environmental impacts were converted according to the Environmental Protection Tax Law, 2018. The WTP ecosystem services were retrieved from Liu et al.53, and the GH ecosystem services originated from Chang et al.54, while the DF ecosystem services were obtained from Fan et al.55. The cultural services of all components were determined through field investigation.Data processingTo intuitively describe the density changes of city functional components along the urban–rural gradient, the density of the components in the above concentric rings were adopted as the ordinate, the distance from the city centre to the edge of the ring was adopted as the abscissa, and scatter plots were created. To compare the characteristic values of the density distribution of each type of component more clearly, a distribution model was used to fit the scatter plots35,36.Fitting of the density distribution curve of the city functional componentsThrough the nonlinear fitting function in OriginPro 2019 software (https://www.originlab.com/), the Gumbel model56,57 was considered to fit the above scatter plots to generate density distribution curves of all city functional components. The goodness-of-fit (choosing the 13 types of components in Beijing as examples) is shown in the Supplementary Fig. S2.The component density (P, individual components km−2) at a given distance from the city centre (d, km) along the urban–rural gradient is calculated as follows:$${P} = {P_{max}} {cdot} {{e^{-{e}}}^{-frac{{{d}}-{d^{*}}}{{w}} , – , frac{{{d}}-{d^{*}}}{{w}} , + , {1}}}$$
    (1)
    where Pmax (individual components km−2) is the peak value of the curve, d* (km) is the peak position of the curve, and w (km) is a parameter controlling the width of the curve.Calculation of the niche width of the density distribution curve of the city functional componentsTo intuitively compare the distance spanned by the density distribution curve of the city functional components, the difference in the abscissa between a density value of 10% of the Pmax value on the density distribution curve was adopted as the niche width W (km).Calculation of the skewness and kurtosis of the density distribution curve of the city functional componentsThe skewness and kurtosis are calculated according to the following equation58:$$text{skewness } = frac{frac{1}{{{n}}}{sum }_{{{i}}= {1}}^{{n}} ,{left({{x}}_{{i}}-{bar{x}}right)}^{3}}{{left(frac{1}{{{n}}}{sum}_{{{i}}= {1} }^{{n}} ,{left({{x}}_{{i}}-{bar{x}}right)}^{2}right)}^{frac{3}{{2}}}}$$
    (2)
    $$text{kurtosis } = frac{frac{1}{{{n}}}{sum }_{{{i}}= {1}}^{{n}} ,{left({{x}}_{{i}}-{bar{x}}right)}^{4}}{left(frac{1}{n}sumnolimits_{i=1}^{n} ,{left({{x}}_{{i}}-{bar{x}}right)}^{2}right)^2}-3$$
    (3)

    where xi (km) is the distance from each individual type of component to the city centre, and ‾x (km) is the average of the distances from all individual types of components to the city centre.Correlation analysis between the characteristic values of the density distribution curveLinear and nonlinear regression analyses in Microsoft Excel 2019 were implemented to study the relationship between the characteristic values of the density distribution curve, and the regression form with the best R2 value was selected.Correlation analysis between the characteristic values of the density distribution curve and the city sizeLinear and nonlinear regression analyses in Microsoft Excel 2019 were implemented to study the relationship between the characteristic values of the density distribution curve and the city size, and the regression form with the best R2 value was selected.Framework for ecosystem service assessment of the city functional componentsAccording to the classification of the Millennium Ecosystem Assessment (MA), ecosystem services include provisioning, regulating, cultural and supporting services59. In this study, the ecosystem services (goods and services) provided by the city functional components (artificial ecosystems) were divided into target and accompanied services (Supplementary Fig. S6), both of which may include provisioning, regulating and cultural services.In this study, the target services of the KFC, McD, LZN, SXS, CNPC, Sinopec, GH, and DF components were provisioning services, the target services of the ABC, SF, STO, and WTP components were regulating services, and the target services of component SP were cultural services. According to the guidance of Liu et al.53, the above regulating and cultural services were divided into positive and negative services (dis-services).The net service (NES, USD m−2 yr−1) is the sum of the positive services (target services + positive regulating services + positive cultural services) and dis-services (negative regulating services + negative cultural services):$${NES} = sum_{{i} = 1}^{n}{ES}_{i}$$
    (4)

    where ESi (USD m−2 yr−1) is the value of a given type of ecosystem service involved in this study, and n is the number of ecosystem service types involved in this study.The ecological index (γ) is calculated as follows:$${gamma } = {TGS}/ |EDS|$$
    (5)

    where TGS (USD m−2 yr−1) denotes the target services of the city functional components, and EDS (USD m−2 yr−1) denotes the dis-services of the city functional components.Calculation of the ecosystem services of the city functional componentsThe calculation methods are provided in the supplementary materials. More

  • in

    DNA-based taxonomy of a mangrove-associated community of fishes in Southeast Asia

    1.Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451 (2001).CAS 
    Article 

    Google Scholar 
    2.Sarathchandra, C. et al. Significance of mangrove biodiversity conservation in fishery production and living conditions of coastal communities in Sri Lanka. Diversity 10, 20 (2018).Article 

    Google Scholar 
    3.Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    4.Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 84–254 (2001).
    Google Scholar 
    5.De La Morinière, E. C., Pollux, B., Nagelkerken, I. & Van der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).ADS 
    Article 

    Google Scholar 
    6.Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Delineating priority areas for marine biodiversity conservation in the Coral Triangle. Biol. Conserv. 222, 198–211 (2018).Article 

    Google Scholar 
    7.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Chong, V. C., Lee, P. K. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066. https://doi.org/10.1111/j.1095-8649.2010.02685.x (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Wong, S. L. Matang Mangroves: A Century of Sustainable Management (Sasyaz Holdings Private Ltd., Forestry Department Peninsular Malaysia, 2004).
    Google Scholar 
    10.Ong, J. et al. Hutan paya laut Merbok, Kedah: Pengurusan hutan, persekitaran fizikal dan kepelbagaian flora. In Siri Kepelbagaian Biologi Hutan Vol. 23 (eds Ku-Aman, K. A. et al.) 21–33 (Jabatan Perhutanan Semenanjung Malaysia, 2015).
    Google Scholar 
    11.Jamaluddin, J. A. F. et al. DNA barcoding of shrimps from a mangrove biodiversity hotspot. Mitochondrial DNA Part A 30, 618–625. https://doi.org/10.1080/24701394.2019.1597073 (2019).CAS 
    Article 

    Google Scholar 
    12.Mansor, M., Mohammad-Zafrizal, M., Nur-Fadhilah, M., Khairun, Y. & Wan-Maznah, W. Temporal and spatial variations in fish assemblage structures in relation to the physicochemical parameters of the Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 110–127 (2012).
    Google Scholar 
    13.Hookham, B., Shau-Hwai, A. T., Dayrat, B. & Hintz, W. A baseline measure of tree and gastropod biodiversity in replanted and natural mangrove stands in Malaysia: Langkawi Island and Sungai Merbok. Trop. Life Sci. Res. 25, 1 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    14.Mansor, M., Najamuddin, A., Mohammad-Zafrizal, M., Khairun, Y. & Siti-Azizah, M. Length-weight relationships of some important estuarine fish species from Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 8–19 (2012).
    Google Scholar 
    15.Zainal Abidin, D. H. et al. Ichthyofauna of Sungai Merbok Mangrove Forest Reserve, northwest Peninsular Malaysia, and its adjacent marine waters. Check List 17, 601–631 (2021).Article 

    Google Scholar 
    16.Lim, H. C., Zainal Abidin, M., Pulungan, C. P., de Bruyn, M. & Mohd Nor, S. A. DNA barcoding reveals high cryptic diversity of the freshwater halfbeak genus Hemirhamphodon from Sundaland. PLoS ONE 11, e0163596 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Mennesson, M. I., Bonillo, C., Feunteun, E. & Keith, P. Phylogeography of Eleotris fusca (Teleostei: Gobioidei: Eleotridae) in the Indo-Pacific area reveals a cryptic species in the Indian Ocean. Conserv. Genet. 19, 1025–1038 (2018).Article 

    Google Scholar 
    18.Gomes, L. C., Pessali, T. C., Sales, N. G., Pompeu, P. S. & Carvalho, D. C. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143, 581–588 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Iyiola, O. A. et al. DNA barcoding of economically important freshwater fish species from north-central Nigeria uncovers cryptic diversity. Ecol. Evol. 8, 6932–6951 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Stern, N., Rinkevich, B. & Goren, M. Integrative approach revises the frequently misidentified species of Sardinella (Clupeidae) of the Indo-West Pacific Ocean. J. Fish Biol. 89, 2282–2305 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, S96–S99 (2003).CAS 

    Google Scholar 
    22.Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1847–1857 (2005).CAS 
    Article 

    Google Scholar 
    23.Xu, L. et al. Assessment of fish diversity in the South China Sea using DNA taxonomy. Fish. Res. 233, 105771 (2020).Article 

    Google Scholar 
    24.Lakra, W. et al. DNA barcoding Indian marine fishes. Mol. Ecol. Resour. 11, 60–71 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hubert, N. et al. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE 7, e28987 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Adibah, A. & Darlina, M. Is there a cryptic species of the golden snapper (Lutjanus johnii)?. Genet. Mol. Res. 13, 8094–8104 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bakar, A. A. et al. DNA barcoding of Malaysian commercial snapper reveals an unrecognized species of the yellow-lined Lutjanus (Pisces: Lutjanidae). PLoS ONE 13, e0202945 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Farhana, S. N. et al. Exploring hidden diversity in Southeast Asia’s Dermogenys spp. (Beloniformes: Zenarchopteridae) through DNA barcoding. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    29.Jaafar, T. N. A. M., Taylor, M. I., Nor, S. A. M., de Bruyn, M. & Carvalho, G. R. DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay Carangidae (Teleosteii: Perciformes). PLoS ONE 7, e49623 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    30.Azmir, I., Esa, Y., Amin, S., Salwany, M. & Zuraina, M. DNA barcoding analysis of larval fishes in Peninsular Malaysia. J. Environ. Biol. 41, 1295–1308 (2020).CAS 
    Article 

    Google Scholar 
    31.Chu, C. et al. Using DNA barcodes to aid the identification of larval fishes in tropical estuarine waters (Malacca Straits, Malaysia). Zool. Stud. 58, e30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Hubert, N., Delrieu-Trottin, E., Irisson, J.-O., Meyer, C. & Planes, S. Identifying coral reef fish larvae through DNA barcoding: A test case with the families Acanthuridae and Holocentridae. Mol. Phylogenet. Evol. 55, 1195–1203 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Ko, H.-L. et al. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS ONE 8, e53451 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Chin, T. C., Adibah, A., Hariz, Z. D. & Azizah, M. S. Detection of mislabelled seafood products in Malaysia by DNA barcoding: Improving transparency in food market. Food Control 64, 247–256 (2016).Article 
    CAS 

    Google Scholar 
    35.Hubert, N. et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3, e2490 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Landi, M. et al. DNA barcoding for species assignment: The case of Mediterranean marine fishes. PLoS ONE 9, e106135 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Russell, D., Thuesen, P. & Thomson, F. A review of the biology, ecology, distribution and control of Mozambique tilapia, Oreochromis mossambicus (Peters 1852) (Pisces: Cichlidae) with particular emphasis on invasive Australian populations. Rev. Fish Biol. Fish. 22, 533–554 (2012).Article 

    Google Scholar 
    38.Hebert, P. D., Cywinska, A. & Ball, S. L. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    39.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Meier, R., Zhang, G. & Ali, F. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol. 57, 809–813 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ortiz, D. & Francke, O. F. Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae). Mol. Phylogenet. Evol. 101, 176–193 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hajibabaei, M., Singer, G. A., Hebert, P. D. & Hickey, D. A. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Mecklenburg, C. W., Møller, P. R. & Steinke, D. Biodiversity of arctic marine fishes: taxonomy and zoogeography. Mar. Biodivers. 41, 109–140 (2011).Article 

    Google Scholar 
    44.Puckridge, M., Andreakis, N., Appleyard, S. A. & Ward, R. D. Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Mol. Ecol. Resour. 13, 32–42 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Thirumaraiselvi, R. & Thangaraj, M. Genetic diversity analysis of Indian Salmon, Eleutheronema tetradactylum from South Asian countries based on mitochondrial COI gene sequences. Not. Sci. Biol. 7, 417–422 (2015).CAS 
    Article 

    Google Scholar 
    46.Delrieu-Trottin, E. et al. Biodiversity inventory of the grey mullets (Actinopterygii: Mugilidae) of the Indo-Australian Archipelago through the iterative use of DNA-based species delimitation and specimen assignment methods. Evol. Appl. 13, 1451–1467 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Durand, J.-D., Hubert, N., Shen, K.-N. & Borsa, P. DNA barcoding grey mullets. Rev. Fish Biol. Fish. 27, 233–243 (2017).Article 

    Google Scholar 
    48.Alavi-Yeganeh, M. S., Khajavi, M. & Kimura, S. A new ponyfish, Deveximentum mekranensis (Teleostei: Leiognathidae), from the Gulf of Oman. Ichthyol. Res. 68, 437–444. https://doi.org/10.1007/s10228-020-00794-y (2021).Article 

    Google Scholar 
    49.Carpenter, K. E. & Niem, V. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Bony Fishes Part 4 (Labridae to Latimeriidae), Estuarine Crocodiles, Sea Turtles, Sea Snakes and Marine Mammals Vol. 6 (FAO Library, 2001).
    Google Scholar 
    50.Chen, W., Ma, X., Shen, Y., Mao, Y. & He, S. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Sci. Rep. 5, 1–12 (2015).
    Google Scholar 
    51.Guimarães-Costa, A. J. et al. Fish diversity of the largest deltaic formation in the Americas-a description of the fish fauna of the Parnaíba Delta using DNA Barcoding. Sci. Rep. 9, 1–8 (2019).Article 
    CAS 

    Google Scholar 
    52.Hupało, K. et al. An urban Blitz with a twist: Rapid biodiversity assessment using aquatic environmental DNA. Environ. DNA 3, 200–213 (2020).Article 

    Google Scholar 
    53.Zainal Abidin, D. H. & Noor Adelyna, M. A. Universities as Living Labs for Sustainable Development 211–225 (Springer, 2020).
    Google Scholar 
    54.Ratnasingham, S. & Hebert, P. D. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Mansor, M. I. et al. Field Guide to Important Commercial Marine Fishes of the South China Sea (SEAFDEC/MFRDMD, 1998).
    Google Scholar 
    57.Nuruddin, A. A. & Isa, S. M. Trawl Fisheries in Malaysia-Issues, Challenges and Mitigating Measures (Fisheries Research Institute, Department of Fisheries Malaysia, 2013).
    Google Scholar 
    58.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377 (2021).Article 

    Google Scholar 
    62.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Miller, M. A., Pfeiffer, W. & Schwartz, T. In Proceedings of the 2011 TeraGrid Conference: Extreme digital discovery 1–8 (2011).64.Rambaut, A. FigTree v1.4.4. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (2018).65.Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Glez-Pena, D., Gomez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F. & Posada, D. ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 38, W14–W18 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Team, R. RStudio: integrated development for R (RStudio Inc., 2015).
    Google Scholar 
    69.Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More