More stories

  • in

    Emergent transcriptional adaption facilitates convergent succession within a synthetic community

    Convergence is a common feature of evolution and has great effect on the succession of microbial communities. For natural microbial communities such as the microbiome of gut [1], soil [2], sediment [3], rhizosphere [4], and phyllosphere [5], convergence generally means that different communities converge towards a similar species composition, which is accompanied by species loss and acquisition. Such a convergence can be reproduced in simplified synthetic communities [6,7,8], or even in single-species populations, in which convergence can still be achieved at sub-species level [9, 10]. Unlike the convergence of natural microbial community, those experiments carried out in a sterile laboratory environment only involves the loss of species. Specifically, the main manifestation of convergence in the synthetic community containing stably coexisting species lies in that the relative proportion of species tend to become consistent [7, 8]. Nonetheless, synthetic community opens a window for us to investigate the ecological mechanism. Previous studies of synthetic communities have revealed that the convergence of bacterial community can be regulated by pH [11], mortality [12], and particularly nutrient availability [13, 14]. Most existing studies focus on the changes in species proportions, but there is a lack of in-depth understanding of the gene expression changes driven by the community species interaction.In this study, we constructed a synthetic community with two model microorganisms, Escherichia coli K-12 (EC) and Pseudomonas putida KT2440 (PP), and reproduced a convergent community assembly in closed broth-culture system. In monocultures, the growth curves of both E. coli and P. putida fitted well with the bacterial growth model, and fell into a logarithmic phase at the first 4 h of bacterium culture and a stationary phase at subsequent 20 h (after the first 4 h) (Fig. 1a). When same quantities of bacteria were grown in cocultures, their quantities were basically similar to those in monocultures, particularly in the logarithmic phase (Fig. 1b–d). By contrast, the quantities of minority species in cocultures continued to increase, and they were close to the quantities in monocultures at 24 h post co-cultivation (Fig. 1b–d). Besides, statistical analysis showed that the quantities of P. putida in all three cocultures were overall greater than that in monoculture, while E. coli quantities were no more than its monoculture (Fig. 1b–d), suggesting that P. putida has a negative effect on the growth of E. coli, but E. coli promotes that of P. putida.Fig. 1: Convergence of community structure and gene expression.a–d Growth curves of E. coli and P. putida in monoculture (a) and the “1:1000”, “1:1”, “1000:1” cocultures (b–d). In b–d subplots, the growth curves of monocultures were placed on the background layer (dashed lines), and the significant differences in cell quantity between coculture and corresponding monoculture were shown (ns, non-significant; *p  More

  • in

    Ozone trade-offs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Policy, drought and fires combine to affect biodiversity in the Amazon basin

    NEWS AND VIEWS
    01 September 2021

    Policy, drought and fires combine to affect biodiversity in the Amazon basin

    Analysis of the ranges of nearly 15,000 plant and vertebrate species in the Amazon basin reveals that, from 2001 to 2019, a majority were affected by fire. Drought and forest policy were the best predictors of fire outcomes.

    Thomas W. Gillespie

    0

    Thomas W. Gillespie

    Thomas W. Gillespie is in the Department of Geography and at the Institute of the Environment and Sustainability at the University of California, Los Angeles, Los Angeles, California 90095, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    The Amazon basin contains the largest continuous area of tropical rainforests in the world, and has a crucial role in regulating Earth’s climate1. Rates of tropical-rainforest deforestation and the impacts of fire and drought there are well established2,3. Less is known, however, about how these factors might interact to affect biodiversity, and about the role that forest policy and its enforcement have had over time. Writing in Nature, Feng et al.4 address these issues.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02320-0

    References1.Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M. & Nobre, C. A. Theor. Appl. Climatol. 107, 73–85 (2012).Article 

    Google Scholar 
    2.Nepstad, D. C. et al. Nature 398, 505–508 (1999).Article 

    Google Scholar 
    3.Davidson, E. A. et al. Nature 481, 321–328 (2012).PubMed 
    Article 

    Google Scholar 
    4.Feng, X. et al. Nature https://doi.org/10.1038/s41586-021-03876-7 (2021).Article 

    Google Scholar 
    5.Nepstad, D. Science 344, 1118–1123 (2014).PubMed 
    Article 

    Google Scholar 
    6.Hansen, M. C. et al. Science 342, 850–853 (2013).PubMed 
    Article 

    Google Scholar 
    7.Libonati, R. et al. Sci. Rep. 11, 4400 (2021).PubMed 
    Article 

    Google Scholar 
    8.Hopkins, M. J. G. J. Biogeogr. 34, 1400–1411 (2007).Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: How deregulation, drought and increasing fire impact Amazonian biodiversity

    Prioritizing where to restore Earth’s ecosystems

    Southeast Amazonia is no longer a carbon sink

    See all News & Views

    Subjects

    Ecology

    Conservation biology

    Climate change

    Latest on:

    Ecology

    The contribution of insects to global forest deadwood decomposition
    Article 01 SEP 21

    How deregulation, drought and increasing fire impact Amazonian biodiversity
    Article 01 SEP 21

    Boost for Africa’s research must protect its biodiversity
    Correspondence 31 AUG 21

    Climate change

    The contribution of insects to global forest deadwood decomposition
    Article 01 SEP 21

    The world’s scientific panel on biodiversity needs a bigger role
    Editorial 31 AUG 21

    Climate change implicated in Germany’s deadly floods
    News 26 AUG 21

    Jobs

    Postdoctoral Research Fellow

    Harvard Medical School (HMS)
    Boston, MA, United States

    Postdoctoral Scientist

    The Pirbright Institute
    Pirbright, United Kingdom

    Clinician Scientist Group Leader

    Francis Crick Institute
    London, United Kingdom

    PostDoc Position “Sea ice geometry (IceScan project)” (m/f/d)

    Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI)
    Bremerhaven, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Information Services

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Plants under pressure

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Dead trees play an under-appreciated role in climate change

    NATURE PODCAST
    01 September 2021

    Dead trees play an under-appreciated role in climate change

    How insects help release carbon stored in forests, and the upcoming biodiversity summit COP 15.

    Shamini Bundell

    &

    Nick Petrić Howe

    Shamini Bundell

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Nick Petrić Howe

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Subscribe
    iTunesGoogle PodcastacastRSS

    Hear the latest science news, with Shamini Bundell and Nick Petrić Howe.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:44 Fungi, insects, dead trees and the carbon cycleAcross the world forests play a huge role in the carbon cycle, removing enormous amounts of carbon dioxide from the atmosphere. But when those trees die, some of that carbon goes back into the air. A new project studies how fast dead wood breaks down in different conditions, and the important role played by insects.Research Article: Seibold et al.09:37 Research HighlightsMassive stars make bigger planets, and melting ice moves continents.Research Highlight: Why gassy planets are bigger around more-massive starsResearch Highlight: So much ice is melting that Earth’s crust is moving12:04 The UN’s Convention on Biological DiversityAfter several delays, the fifteenth Conference of the Parties (COP 15) to the United Nations Convention on Biological Diversity, is now slated to take place next year. Even communicating the issues surrounding biodiversity loss has been a challenge, and reaching the targets due to be set at the upcoming meeting will be an even bigger one.Editorial: The scientific panel on biodiversity needs a bigger role 19:32 Briefing ChatWe discuss some highlights from the Nature Briefing. This time, cannibal cane toads and a pterosaur fossil rescued from smugglers.News: Australia’s cane toads evolved as cannibals with frightening speedResearch Highlight: A plundered pterosaur reveals the extinct flyer’s extreme headgearNational Geographic: Stunning fossil seized in police raid reveals prehistoric flying reptile’s secretsSubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed.

    doi: https://doi.org/10.1038/d41586-021-02391-z

    Related Articles

    Read the paper: The contribution of insects to global forest deadwood decomposition

    The world’s scientific panel on biodiversity needs a bigger role

    Subjects

    Environmental sciences

    Biodiversity

    Latest on:

    Environmental sciences

    Australian bush fires and fuel loads
    Correspondence 31 AUG 21

    Boost for Africa’s research must protect its biodiversity
    Correspondence 31 AUG 21

    The world’s scientific panel on biodiversity needs a bigger role
    Editorial 31 AUG 21

    Biodiversity

    How deregulation, drought and increasing fire impact Amazonian biodiversity
    Article 01 SEP 21

    The contribution of insects to global forest deadwood decomposition
    Article 01 SEP 21

    Boost for Africa’s research must protect its biodiversity
    Correspondence 31 AUG 21

    Jobs

    Postdoctoral Research Fellow

    Harvard Medical School (HMS)
    Boston, MA, United States

    Postdoctoral Scientist

    The Pirbright Institute
    Pirbright, United Kingdom

    Clinician Scientist Group Leader

    Francis Crick Institute
    London, United Kingdom

    PostDoc Position “Sea ice geometry (IceScan project)” (m/f/d)

    Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI)
    Bremerhaven, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Selecting when to bloom

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    The contribution of insects to global forest deadwood decomposition

    1.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 

    Google Scholar 
    2.Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).ADS 
    CAS 

    Google Scholar 
    3.Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).ADS 
    CAS 

    Google Scholar 
    4.González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008).
    Google Scholar 
    5.Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).6.Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016).
    Google Scholar 
    8.Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).ADS 
    CAS 

    Google Scholar 
    9.Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).ADS 

    Google Scholar 
    11.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 

    Google Scholar 
    12.Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016).ADS 
    CAS 

    Google Scholar 
    13.Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    14.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).ADS 
    CAS 

    Google Scholar 
    15.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).ADS 
    CAS 

    Google Scholar 
    16.Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).17.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    18.Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020).
    Google Scholar 
    19.Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).21.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 

    Google Scholar 
    22.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    23.Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).ADS 

    Google Scholar 
    24.Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
    Google Scholar 
    25.Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020).
    Google Scholar 
    26.Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021).
    Google Scholar 
    27.Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 

    Google Scholar 
    29.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 

    Google Scholar 
    30.Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

    Google Scholar 
    31.A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014).
    Google Scholar 
    32.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).33.Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011).
    Google Scholar 
    34.Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).
    Google Scholar 
    35.Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).CAS 

    Google Scholar 
    36.Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).37.Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 

    Google Scholar 
    38.Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).39.Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002).ADS 

    Google Scholar 
    40.Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017).
    Google Scholar 
    41.Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).ADS 

    Google Scholar 
    42.van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014).ADS 

    Google Scholar 
    43.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 

    Google Scholar 
    44.Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
    Google Scholar 
    45.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).
    Google Scholar 
    46.Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).47.Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).48.Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009).
    Google Scholar 
    49.Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).50.Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).51.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).52.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    53.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    54.Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).55.Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).57.Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).58.Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005).
    Google Scholar 
    59.Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017).
    Google Scholar 
    60.Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).61.Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020).
    Google Scholar 
    62.Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019).CAS 

    Google Scholar 
    63.Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010).ADS 

    Google Scholar 
    64.Thünen-Institut für Waldökosysteme. Der Wald in Deutschland – Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).65.Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019).
    Google Scholar 
    66.Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009).
    Google Scholar 
    67.Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015).
    Google Scholar 
    68.Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017).
    Google Scholar 
    69.Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).70.Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001). More