Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems
1.Living Planet Report 2020: Bending the Curve on Biodiversity Loss (WWF, 2020).2.Routledge Handbook of Agricultural Biodiversity (Routledge, 2017).3.Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).Article
Google Scholar
4.Jarvis, D. I. et al. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl Acad. Sci. USA 105, 5326–5331 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
5.The State of the World’s Biodiversity for Food and Agriculture (FAO Commission on Genetic Resources for Food and Agriculture, 2019); https://doi.org/10.4060/ca3129en6.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).PubMed
Article
PubMed Central
Google Scholar
8.Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).Article
Google Scholar
10.Altieri, M. A. & Nicholls, C. I. Biodiversity and Pest Management in Agroecosystems (Food Products, 2004).11.McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).CAS
PubMed
Article
Google Scholar
12.Beillouin, D., Ben-Ari, T. & Makowski, D. Evidence map of crop diversification strategies at the global scale. Environ. Res. Lett. 4, 123001 (2019).ADS
Article
CAS
Google Scholar
13.Stomph, T. J. et al. Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? Adv. Agron. 160, 1–50 (2020).Article
Google Scholar
14.Raseduzzaman, M. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).Article
Google Scholar
15.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
16.International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 1.1. Harvard Dataverse v.3 (Harvard Dataverse, 2019).17.You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article
Google Scholar
18.Tedesco, P. A. et al. Data Descriptor: a global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).PubMed
PubMed Central
Article
Google Scholar
19.Sibhatu, K. T., Krishna, V. V. & Qaim, M. Production diversity and dietary diversity in smallholder farm households. Proc. Natl Acad. Sci. USA 2015, 201510982 (2015).
Google Scholar
20.Allen, T., Prosperi, P., Cogill, B. & Flichman, G. Agricultural biodiversity, social–ecological systems and sustainable diets. Proc. Nutr. Soc. 73, 498–508 (2014).PubMed
Article
Google Scholar
21.Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).CAS
PubMed
Article
Google Scholar
22.Dwivedi, S. L. et al. Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends Plant Sci. 22, 842–856 (2017).CAS
PubMed
Article
Google Scholar
23.Frison, E. A. et al. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3, 238–253 (2011).Article
Google Scholar
24.Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).PubMed
Article
Google Scholar
25.Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Commission, Publications Office of the European Union, 2016); https://doi.org/10.2788/79918226.Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
Google Scholar
27.Khoury, C. K. et al. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019).Article
Google Scholar
28.Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).PubMed
Article
Google Scholar
29.A Global Database for the Distributions of Crop Wild Relatives v.1.12 (Centro Internacional de Agricultura Tropical, 2018); https://doi.org/10.15468/jyrthk30.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (Univ. of Illinois Press, 1949).31.Milla, R. Crop Origins and Phylo Food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).Article
Google Scholar
32.Hoelzel, A. R., Bruford, M. W. & Fleischer, R. C. Conservation of adaptive potential and functional diversity. Conserv. Genet. 20, 1–5 (2019).Article
Google Scholar
33.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS
PubMed
PubMed Central
Article
Google Scholar
34.Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).
Google Scholar
35.Shackelford, G. et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88, 1002–1021 (2013).PubMed
Article
Google Scholar
36.Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).PubMed
PubMed Central
Article
Google Scholar
37.Rader, R. et al. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J. Appl. Ecol. 51, 1544–1553 (2014).Article
Google Scholar
38.Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. & Grace, P. Conservation agriculture and ecosystem services: an overview. Agric. Ecosyst. Environ. 187, 87–105 (2014).Article
Google Scholar
39.Altieri, M. A. & Nicholls, C. I. Agroecology and the emergence of a post COVID-19 agriculture. Agric. Human Values 37, 525–526 (2020).Article
Google Scholar
40.Gemmill-Herren, B. Closing the circle: an agroecological response to COVID-19. Agric. Human Values 37, 613–614 (2020).Article
Google Scholar
41.Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).ADS
CAS
Article
Google Scholar
42.Swaminathan, M. S. in In Search of Biohappiness: Biodiversity and Food, Health and Livelihood Security (eds Sardar, D. & Yun, A.) Ch. 9 (World Scientific, 2015).43.Brown, C., Alexander, P., Arneth, A., Holman, I. & Rounsevell, M. Achievement of Paris climate goals unlikely due to time lags in the land system. Nat. Clim. Change 9, 203–208 (2019).ADS
Article
Google Scholar
44.Love, B. & Spaner, D. Agrobiodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J. Sustain. Agric. 31, 53–82 (2007).Article
Google Scholar
45.Zimmerer, K. S. et al. The biodiversity of food and agriculture (agrobiodiversity) in the Anthropocene: research advances and conceptual framework. Anthropocene 25, 100192 (2019).Article
Google Scholar
46.Béné, C. et al. Global map and indicators of food system sustainability. Sci. Data 6, 279 (2019).PubMed
PubMed Central
Article
Google Scholar
47.Béné, C. et al. Global drivers of food system (un)sustainability: a multi-country correlation analysis. PLoS ONE 15, e0231071 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
48.Hickey, G. M., Pouliot, M., Smith-Hall, C., Wunder, S. & Nielsen, M. R. Quantifying the economic contribution of wild food harvests to rural livelihoods: a global-comparative analysis. Food Policy 62, 122–132 (2016).Article
Google Scholar
49.Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (Bioversity International, 2017).50.The Agrobiodiversity Index Methodology Report Version 1.0 (Bioversity International, 2018).51.Guidelines for the Preparation of the Country Reports for the State of the World’s Biodiversity for Food and Agriculture (SOWBFA) (FAO, 2013); https://doi.org/10.5812/jjm.3480452.Juventia, S. D. et al. Text mining national commitments towards agrobiodiversity conservation and use. Sustainability 12, 715 (2020).Article
Google Scholar
53.Singh, R. K., Murty, H. R., Gupta, S. K. & Dikshit, A. K. An overview of sustainability assessment methodologies. Ecol. Indic. 9, 189–212 (2009).Article
Google Scholar
54.Gan, X. et al. When to use what: methods for weighting and aggregating sustainability indicators. Ecol. Indic. 81, 491–502 (2017).Article
Google Scholar
55.Gómez-Limón, J. A. & Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 69, 1062–1075 (2010).Article
Google Scholar
56.Nardo, M., Saisana, M., Saltelli, A. & Tarantola, S. Tools for Composite Indicators Building (Joint Research Centre of the European Commission, 2005).57.Wilson, M. C. & Wu, J. The problems of weak sustainability and associated indicators. Int. J. Sustain. Dev. World Ecol. 24, 44–51 (2017).Article
Google Scholar
58.Blaser, W. J. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. 1, 234–239 (2018).Article
Google Scholar
59.Standard Country or Area Codes for Statistical Use (M49) (United Nations Statistics Division, 2012); https://unstats.un.org/unsd/methodology/m49/60.De Mendiburu, F. Una Herramienta de Analisis Estadistico para la Investigacion Agricola (Universidad Nacional de Ingenieria (UNI-PERU), 2009).61.Dinno, A. dunn.test: Dunn’s test of multiple comparisons using rank sums. R package v.1.3.4 (CRAN, 2017).62.Warner, R. M. Applied Statistics: From Bivariate Through Multivariate Techniques (SAGE, 2008).63.R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018); https://www.r-project.org/64.Jones, S. K. et al. Agrobiodiversity Index Scores for 80+ Countries (Harvard Dataverse, 2020); https://doi.org/10.7910/DVN/SKZSQD65.Kennedy, G. et al. in Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (ed Bailey, A.) 23–52 (Bioversity International, 2017).66.Minimum Dietary Diversity for Women: A Guide for Measurement (FAO, FHI, 2016).67.Ojiewo, C., Tenkouano, C., Hughes, J. & Keatinge, J. D. H. in Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health (eds Fanzo, J. et al.) 291–302 (Routledge, 2013).68.Snyder, L. D., Gómez, M. I. & Power, A. G. Crop varietal mixtures as a strategy to support insect pest control, yield, economic, and nutritional services. Front. Sustain. Food Syst. 4, 60 (2020).Article
Google Scholar
69.Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. R. Soc. B 286, 20191189 (2019).PubMed
PubMed Central
Article
Google Scholar
70.Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 6187–6192 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Khumairoh, U., Lantinga, E. A., Schulte, R. P. O., Suprayogo, D. & Groot, J. C. J. Complex rice systems to improve rice yield and yield stability in the face of variable weather conditions. Sci. Rep. 8, 14746 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
72.Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).Article
Google Scholar
73.Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).PubMed
Article
PubMed Central
Google Scholar
74.Martin, A. R. & Isaac, M. E. Functional traits in agroecology: advancing description and prediction in agroecosystems. J. Appl. Ecol. 55, 5–11 (2018).Article
Google Scholar
75.Stark, J. C. & Thornton, M. in Potato Production Systems (eds Stark, J. et al.) 87–100 (Springer International, 2020).76.Taylor, M., Jaenicke, H., Hunter, D., McGregor, A. & Lyon, G. Diversity for sustaining livelihoods: examples, constraints and lessons learnt. Acta Hortic. 1101, 105–112 (2015).Article
Google Scholar
77.Mulumba, J. W. et al. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 157, 70–86 (2012).Article
Google Scholar
78.Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2014, e328 (2014).Article
Google Scholar
79.Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).Article
Google Scholar
80.Maxted, N., Dulloo, M. E. & Ford Lloyd, B. Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement (CABI, 2016).81.Li, Y. et al. Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front. Plant Sci. 9, 190 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
82.Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar More