Body size dependent dispersal influences stability in heterogeneous metacommunities
1.Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784 (1970).ADS
CAS
PubMed
Article
Google Scholar
2.May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS
CAS
PubMed
Article
Google Scholar
3.McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
4.Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure to Dynamics in Food Webs 27–86 (2006).5.Williams, R. J., Brose, U. & Martinez, N. D. Homage to Yodzis and Innes 1992: Scaling up feeding-based population dynamics to complex ecological networks. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems. 37–51 (Springer, 2007).6.Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Fahimipour, A. K., Anderson, K. E. & Williams, R. J. Compensation masks trophic cascades in complex food webs. Theor. Ecol. 10, 245–253 (2017).Article
Google Scholar
8.Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolut. 27, 40–46 (2012).Article
Google Scholar
9.Jacquet, C. et al. No complexity-stability relationship in empirical ecosystems. Nat. Commun. 7, 12573 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).PubMed
Article
PubMed Central
Google Scholar
11.Martinez, N. D. Allometric trophic networks from individuals to socio-ecosystems: Consumer-resource theory of the ecological elephant in the room. Front. Ecol. Evolut. 8, 92 (2020).Article
Google Scholar
12.Segel, L. A. & Levin, S. A. Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. in AIP Conference Proceedings, Vol. 27, 123–152 (American Institute of Physics, 1976).13.Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394 (1994).MATH
Article
Google Scholar
14.McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Fahimipour, A. K. & Hein, A. M. The dynamics of assembling food webs. Ecol. Lett. 17, 606–613 (2014).PubMed
Article
PubMed Central
Google Scholar
16.Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307 (2018).ADS
CAS
PubMed
Article
Google Scholar
17.Brechtel, A., Gross, T. & Drossel, B. Far-ranging generalist top predators enhance the stability of meta-foodwebs. Sci. Rep. 9, 1–15 (2019).CAS
Article
Google Scholar
18.Gross, T. & et. al. Modern models of trophic meta-communities. Phil. Trans. R. Soc. B (in press).19.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
21.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
22.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 67–78 (1993).23.Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. 105, 4191–4196 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory Vol. 20 (Springer, 2012).MATH
Google Scholar
25.Elton, C. S. Animal Ecology (University of Chicago Press, 2001).
Google Scholar
26.Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).Article
Google Scholar
27.Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).
Google Scholar
28.Riede, J. O. et al. Stepping in Elton’s footprints: A general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).29.Kalinkat, G. et al. Body masses, functional responses and predator-prey stability. Ecology letters 16, 1126–1134 (2013).PubMed
Article
PubMed Central
Google Scholar
30.Costa-Pereira, R., Araújo, M. S., Olivier, R. d. S., Souza, F. L. & Rudolf, V. H. Prey limitation drives variation in allometric scaling of predator-prey interactions. Am. Nat. 192, E139–E149 (2018).31.Guzman, L. M. & Srivastava, D. S. Prey body mass and richness underlie the persistence of a top predator. Proc. R. Soc. B 286, 20190622 (2019).PubMed
PubMed Central
Article
Google Scholar
32.Brose, U. et al. Consumer-resource body-size relationships in natural food webs. Ecology 87, 2411–2417 (2006).PubMed
Article
PubMed Central
Google Scholar
33.Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).PubMed
Article
PubMed Central
Google Scholar
34.Potapov, A. M., Brose, U., Scheu, S. & Tiunov, A. V. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194, 823–839 (2019).PubMed
Article
PubMed Central
Google Scholar
35.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, 2001).Book
Google Scholar
36.Simberloff, D. S. & Wilson, E. O. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296 (1969).Article
Google Scholar
37.Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).Article
Google Scholar
38.Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15, 237–240 (1969).
Google Scholar
39.Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138, 768–776 (1991).Article
Google Scholar
40.Crowley, P. H. Dispersal and the stability of predator-prey interactions. Am. Nat. 118, 673–701 (1981).MathSciNet
Article
Google Scholar
41.Reeve, J. D. Environmental variability, migration, and persistence in host-parasitoid systems. Am. Nat. 132, 810–836 (1988).Article
Google Scholar
42.Murdoch, W. W. Population regulation in theory and practice. Ecology 75, 271–287 (1994).Article
Google Scholar
43.Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid-host and predator-prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).PubMed
MATH
Article
PubMed Central
Google Scholar
44.Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 1–8 (2016).Article
CAS
Google Scholar
45.Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 24478 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
46.Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 131, 169–182 (2001).CAS
Article
Google Scholar
47.Hirt, M. R., Lauermann, T., Brose, U., Noldus, L. P. & Dell, A. I. The little things that run: a general scaling of invertebrate exploratory speed with body mass. Ecology 98, 2751–2757 (2017).PubMed
Article
PubMed Central
Google Scholar
48.Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evolut. 1, 1116–1122 (2017).Article
Google Scholar
49.Cloyed, C. S., Grady, J. M., Savage, V. M., Uyeda, J. C. & Dell, A. I. The allometry of locomotion. Ecology e03369 (2021).50.Reiss, M. Scaling of home range size: Body size, metabolic needs and ecology. Trends Ecol. Evolut. 3, 85–86 (1988).CAS
Article
Google Scholar
51.Minns, C. K. Allometry of home range size in lake and river fishes. Can. J. Fish. Aquat. Sci. 52, 1499–1508 (1995).Article
Google Scholar
52.Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
53.Hendriks, A. J., Willers, B. J., Lenders, H. R. & Leuven, R. S. Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography 32, 929–942 (2009).Article
Google Scholar
54.Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).PubMed
Article
PubMed Central
Google Scholar
55.Hartfelder, J. et al. The allometry of movement predicts the connectivity of communities. Proc. Natl. Acad. Sci. 117, 22274–22280 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Vander Zanden, M. J. & Vadeboncoeur, Y. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83, 2152–2161 (2002).Article
Google Scholar
57.Wolkovich, E. M. et al. Linking the green and brown worlds: The prevalence and effect of multichannel feeding in food webs. Ecology 95, 3376–3386 (2014).Article
Google Scholar
58.Lomolino, M. V. Immigrant selection, predation, and the distributions of Microtus pennsylvanicus and Blarina brevicauda on islands. Am. Nat. 123, 468–483 (1984).Article
Google Scholar
59.Beisner, B. E., Peres-Neto, P. R., Lindström, E. S., Barnett, A. & Longhi, M. L. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87, 2985–2991 (2006).PubMed
PubMed Central
Article
Google Scholar
60.De Bie, T. et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740–747 (2012).PubMed
Article
Google Scholar
61.Kareiva, P. Population dynamics in spatially complex environments: Theory and data. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 330, 175–190 (1990).ADS
Article
Google Scholar
62.Murray, J. Mathematical Biology II: Spatial Models and Biomedical Applications Vol. 3 (Springer, 2001).
Google Scholar
63.Rietkerk, M. & Van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).Article
Google Scholar
64.Pedersen, E. J., Marleau, J. N., Granados, M., Moeller, H. V. & Guichard, F. Nonhierarchical dispersal promotes stability and resilience in a tritrophic metacommunity. Am. Nat. 187, E116–E128 (2016).PubMed
Article
Google Scholar
65.Haegeman, B. & Loreau, M. General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecol. Lett. 17, 175–184 (2014).PubMed
Article
Google Scholar
66.Amarasekare, P. Spatial dynamics of foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500 (2008).Article
Google Scholar
67.Fronhofer, E. A., Klecka, J., Melián, C. J. & Altermatt, F. Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18, 954–963 (2015).PubMed
Article
PubMed Central
Google Scholar
68.Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).ADS
PubMed
Article
PubMed Central
Google Scholar
69.Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evolut. 2, 1859–1863 (2018).Article
Google Scholar
70.Gross, T. & Feudel, U. Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 73, 016205 (2006).ADS
Article
CAS
Google Scholar
71.Yeakel, J. D., Stiefs, D., Novak, M. & Gross, T. Generalized modeling of ecological population dynamics. Theor. Ecol. 4, 179–194 (2011).Article
Google Scholar
72.Hirt, M. R. et al. Bridging scales: Allometric random walks link movement and biodiversity research. Trends Ecol. Evolut. 33, 701–712 (2018).Article
Google Scholar
73.Othmer, H. G. & Scriven, L. Non-linear aspects of dynamic pattern in cellular networks. J. Theor. Biol. 43, 83–112 (1974).ADS
CAS
PubMed
Article
Google Scholar
74.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS
CAS
PubMed
Article
Google Scholar
75.Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS
CAS
PubMed
Article
Google Scholar
76.Post, D. M., Conners, M. E. & Goldberg, D. S. Prey preference by a top predator and the stability of linked food chains. Ecology 81, 8–14 (2000).Article
Google Scholar
77.Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS
CAS
PubMed
Article
Google Scholar
78.Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article
Google Scholar
79.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
80.Jenkins, D. G. et al. Does size matter for dispersal distance?. Glob. Ecol. Biogeogr. 16, 415–425 (2007).Article
Google Scholar
81.Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).PubMed
Article
PubMed Central
Google Scholar
82.Guzman, L. M. & Srivastava, D. S. Genomic variation among populations provides insight into the causes of metacommunity survival. Ecology 101, e03182 (2020).PubMed
Article
PubMed Central
Google Scholar
83.Leitch, K. J., Ponce, F. V., Dickson, W. B., van Breugel, F. & Dickinson, M. H. The long-distance flight behavior of drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc. Natl. Acad. Sci. 118 (2021).84.Bowman, J., Jaeger, J. A. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, 2049–2055 (2002).Article
Google Scholar
85.Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).Article
Google Scholar
86.Kartascheff, B., Heckmann, L., Drossel, B. & Guill, C. Why allometric scaling enhances stability in food web models. Theor. Ecol. 3, 195–208 (2010).Article
Google Scholar
87.Hudson, L. N. & Reuman, D. C. A cure for the plague of parameters: Constraining models of complex population dynamics with allometries. Proc. R. Soc. B: Biol. Sci. 280, 20131901 (2013).Article
Google Scholar
88.Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evolut. 3, 919–927 (2019).Article
Google Scholar
89.Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).Article
Google Scholar
90.Siegel, D. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. 105, 8974–8979 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
91.Pillai, P., Loreau, M. & Gonzalez, A. A patch-dynamic framework for food web metacommunities. Theor. Ecol. 3, 223–237 (2010).Article
Google Scholar
92.Pillai, P., Gonzalez, A. & Loreau, M. Metacommunity theory explains the emergence of food web complexity. Proc. Natl. Acad. Sci. 108, 19293–19298 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
93.Plitzko, S. J. & Drossel, B. The effect of dispersal between patches on the stability of large trophic food webs. Theor. Ecol. 8, 233–244 (2015).Article
Google Scholar
94.Guichard, F. Recent advances in metacommunities and meta-ecosystem theories. F1000Research 6 (2017).95.Hata, S., Nakao, H. & Mikhailov, A. S. Dispersal-induced destabilization of metapopulations and oscillatory turing patterns in ecological networks. Sci. Rep. 4, 3585 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
96.White, K. & Gilligan, C. Spatial heterogeneity in three species, plant-parasite-hyperparasite, systems. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 353, 543–557 (1998).Article
Google Scholar
97.Gibert, J. P. & Yeakel, J. D. Laplacian matrices and turing bifurcations: Revisiting levin 1974 and the consequences of spatial structure and movement for ecological dynamics. Theor. Ecol. 12, 265–281 (2019).Article
Google Scholar
98.Fox, J. W., Vasseur, D., Cotroneo, M., Guan, L. & Simon, F. Population extinctions can increase metapopulation persistence. Nat. Ecol. Evolut. 1, 1271–1278 (2017).Article
Google Scholar
99.Hastings, A. Food web theory and stability. Ecology 69, 1665–1668 (1988).Article
Google Scholar
100.Anderson, H., Hutson, V. & Law, R. On the conditions for permanence of species in ecological communities. Am. Nat. 139, 663–668 (1992).Article
Google Scholar
101.Haydon, D. Pivotal assumptions determining the relationship between stability and complexity: An analytical synthesis of the stability-complexity debate. Am. Nat. 144, 14–29 (1994).Article
Google Scholar
102.Chen, X. & Cohen, J. E. Global stability, local stability and permanence in model food webs. J. Theor. Biol. 212, 223–235 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
103.Bjørnstad, O. N., Ims, R. A. & Lambin, X. Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends Ecol. Evolut. 14, 427–432 (1999).Article
Google Scholar
104.Ims, R. A. & Andreassen, H. P. Spatial synchronization of vole population dynamics by predatory birds. Nature 408, 194–196 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
105.Sundell, J. et al. Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J. Anim. Ecol. 73, 167–178 (2004).Article
Google Scholar
106.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343 (2014).107.McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347 (2015).108.Parsons, T. The removal of marine predators by fisheries and the impact of trophic structure. Mar. Pollut. Bull. 25, 51–53 (1992).Article
Google Scholar
109.Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).PubMed
Article
PubMed Central
Google Scholar
110.Albert, C. H., Rayfield, B., Dumitru, M. & Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv. Biol. 31, 1383–1396 (2017).PubMed
Article
Google Scholar
111.Schiesari, L. et al. Towards an applied metaecology. Perspect. Ecol. Conserv. 17, 172–181 (2019).
Google Scholar
112.Vermaat, J. E., Dunne, J. A. & Gilbert, A. J. Major dimensions in food-web structure properties. Ecology 90, 278–282 (2009).PubMed
Article
Google Scholar
113.White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C. & White, C. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123, 385–388 (2014).Article
Google Scholar
114.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).115.Aufderheide, H., Rudolf, L., Gross, T. & Lafferty, K. D. How to predict community responses to perturbations in the face of imperfect knowledge and network complexity. Proc. R. Soc. B Biol. Sci. 280, 20132355 (2013).Article
Google Scholar More