More stories

  • in

    Author Correction: European primary forest database v2.0

    German Centre for Integrative Biodiversity Research (iDiv) – Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, GermanyFrancesco Maria SabatiniMartin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Am Kirchtor 1, 06108, Halle, GermanyFrancesco Maria SabatiniHumboldt-Universität zu Berlin, Geography Department, Unter den Linden 6, 10099, Berlin, GermanyHendrik BluhmFrankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316, Frankfurt, GermanyZoltan KunNGO “Transparent World”, Rossolimo str. 5/22, building 1, 119021, Moscow, RussiaDmitry AksenovEUROPARC-Spain/Fundación Fernando González Bernáldez. ICEI Edificio A. Campus de Somosaguas, E28224, Pozuelo de Alarcón, SpainJosé A. AtauriThe Danish Nature Agency, Gjøddinggård, Førstballevej 2, DK-7183, Randbøl, DenmarkErik BuchwaldSapienza University of Rome, Department of Environmental Biology, P.le Aldo Moro 5, 00185, Rome, ItalySabina BurrascanoRéserves Naturelles de France, La Bourdonnerie, Dijon cedex, 21000, FranceEugénie CateauPSEDA-ILIRIA. Forestry department, Tirana, 1000, AlbaniaAbdulla DikuCentre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349‐017, Lisbon, PortugalInês Marques DuarteParque Nacional de Garajonay. Avda. V Centenario, edif. Las Creces, local 1, portal 3, 38800 San Sebastian de La Gomera, Tenerife, SpainÁngel B. Fernández LópezUniversity of Torino, Department DISAFA L.go Paolo Braccini 2, Grugliasco, 10095, ItalyMatteo GarbarinoForest Research Institute, Vassilika, 57006, Thessaloniki, GreeceNikolaos GrigoriadisCentre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, 2163, Vácrátót, HungaryFerenc HorváthFaculty of Forestry, University of Agriculture in Krakow, aleja 29-Listopada 46, 31-415, Krakow, PolandSrđan KerenLatvian State Forest Research Institute “Silava”, Rigas street 111, Salaspils, LV-2169, LatviaMara KitenbergaInstitute for Nature Conservation of Vojvodina Province, Radnička 20a, Novi Sad, 21000, SerbiaAlen KišUniversity of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, EE-51014, Tartu, EstoniaAnn KrautCentre for Econics and Ecosystem Management, Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, GermanyPierre L. IbischUniversité de Toulouse, INRAE, UMR DYNAFOR, 24 Chemin de Borde-Rouge Auzeville CS 52627, Castanet-Tolosan, 31326, FranceLaurent LarrieuCRPF-Occitanie, antenne de Tarbes, place du foirail, 65000, Tarbes, FranceLaurent LarrieuMediterranean University of Reggio Calabria, Agraria Department, Loc. Feo di Vito, 89122, Reggio Calabria, ItalyFabio LombardiUniversity of Novi Sad, Institute of Lowland Forestry and Environment, Antona Cehova 13d, Novi Sad, 21102, SerbiaBratislav MatovicWorld Wide Fund for nature (CEE), Lunga street 190, Brasov, 500051, RomaniaRadu Nicolae MeluNorthwest German Forest Research Institute, Department Forest Nature Conservation, Professor-Oelkers-Straße 6, 34346, Hann. Münden, GermanyPeter MeyerAsplan Viak A.S.Kjörboveien 20, postboks 24, N-1300, Sandvika, NorwayRein MidtengUniversity of Zagreb, Faculty of Forestry, Svetosimunska cesta 25, 10000, Zagreb, CroatiaStjepan MikacCzech University of Life Sciences, Faculty of Forestry and Wood Sciences, Kamýcka cesta 1176, CZ-, 16521, Praha6-Suchdol, Czech RepublicMartin MikolášPRALES, Odtrnovie 563, SK-01322, Rosina, SlovakiaMartin MikolášVytautas Magnus University, K. Donelaičio g. 58, LT-44248, Kaunas, LithuaniaGintautas MozgerisUniversity of Forestry, Dendrology Department, bulevard “Sveti Kliment Ohridski” 10, 1756, Sofia, BulgariaMomchil PanayotovSlovenia Forest Service, Department for forest management planning, Vecna pot 2, 1000, Ljubljana, SloveniaRok PisekCentre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda 1349‐017, Lisbon, PortugalLeónia NunesGreensway AB, Ulls väg 24A, 756 51, Uppsala, SwedenAlejandro RueteFreelance forest expert and book author, Vienna, AustriaMatthias SchickhoferSs. Cyril and Methodius University in Skopje, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Department of Botany and Dendrology, P.O. Box 235, MK-1000, Skopje, North MacedoniaBojan SimovskiSwiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Forest Resources and Management, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandJonas StillhardUniversity of Novi Sad, Institute of Lowland Forestry and Environment, Antona Cehova 13d, Novi Sad, 21000, SerbiaDejan StojanovicDepartment of Forest Biodiversity, University of Agriculture, Kraków, PolandJerzy SzwagrzykUniversity of Eastern Finland, School of forest Sciences, Yliopistokatu 7, 80100, Joensuu, FinlandOlli-Pekka TikkanenAgricultural University of Tirana, Forestry Department, Kodër Kamëz, SH1, 1029, Tirana, AlbaniaElvin ToromaniWorld Wide Fund for nature (DCP) Ukraine, Mushaka 48, Lviv, 79011, UkraineRoman VolosyanchukEcosphera NGO, Kapushans’ka 82a, Uzhhorod, 88000, UkraineRoman VolosyanchukSilva Tarouca Research Institute, Department of Forest Ecology, Lidická 25/27, 602 00, Brno, Czech RepublicTomáš VrškaCentre for Econics and Ecosystem Management, Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, GermanyMarcus WaldherrInstitute of Experimental Botany of the National Academy of Sciences of Belarus, Laboratory of Productivity & Stability of Plant Communities, 220072, Academicheskaya St. 27, Minsk, BelarusMaxim YermokhinInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, BulgariaTzvetan ZlatanovSaint-Petersburg State University, Department of Vegetation Science, University Embankment, 7/9, St Petersburg, 199034, RussiaAsiya ZagidullinaHumboldt-Universität zu Berlin, Geography Department & Integrative Research Institute on Transformation in Human-Environment Systems, Unter den Linden 6, 10099, Berlin, GermanyTobias KuemmerleCorrespondence to
    Francesco Maria Sabatini. More

  • in

    Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist

    1.Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. 2000;289:1920–1.CAS 
    PubMed 

    Google Scholar 
    2.Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 2008;6:763–75.CAS 
    PubMed 

    Google Scholar 
    3.Raven JA, Lambers H, Smith SE, Westoby M. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. N Phytol. 2018;217:1420–7.CAS 

    Google Scholar 
    4.Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. N Phytol. 2018;220:996–1011.CAS 

    Google Scholar 
    5.Harrison MJ, Vanbuuren ML. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995;378:626–9.CAS 
    PubMed 

    Google Scholar 
    6.Smith SE, Jakobsen I, Gronlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 2018;12:23–51.
    Google Scholar 
    8.Zhang L, Xu MG, Liu Y, Zhang FS, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. N Phytol. 2016;210:1022–32.CAS 

    Google Scholar 
    9.Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. N Phytol. 2000;148:511–7.CAS 

    Google Scholar 
    10.Jiang FY, Zhang L, Zhou JC, George TS, Feng G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. N Phytol. 2021;230:304–15.CAS 

    Google Scholar 
    11.Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA. 2013;110:20117–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sanchez-Garcia M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 2020;11:5125.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Johansen A, Jakobsen I, Jensen ES. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fert Soils. 1993;16:66–70.CAS 

    Google Scholar 
    14.Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1127–42.CAS 

    Google Scholar 
    15.Johansen A, Jensen ES. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem. 1996;28:73–81.CAS 

    Google Scholar 
    16.Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 2001;413:297–9.CAS 
    PubMed 

    Google Scholar 
    17.Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH. Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol. 2000;88:150–64.
    Google Scholar 
    18.Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, et al. Utilization of organic nitrogen by arbuscular mycorrhizal fungi–is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 2018;28:465.PubMed 

    Google Scholar 
    19.Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol. 2016;6:4332–46.PubMed 
    PubMed Central 

    Google Scholar 
    20.Bukovská P, Rozmoš M, Kotianová M, Gančarčíková K, Dudáš M, Hršelová H, et al. Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front Microbiol. 2021;12:574060.PubMed 
    PubMed Central 

    Google Scholar 
    21.Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP. Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME J. 2019;13:1891–8.PubMed 
    PubMed Central 

    Google Scholar 
    22.Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol. 2013;15:1870–81.CAS 
    PubMed 

    Google Scholar 
    23.Herman DJ, Firestone MK, Nuccio E, Hodge A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol. 2012;80:236–47.CAS 
    PubMed 

    Google Scholar 
    24.Emmett BD, Lévesque-Tremblay V, Harrison MJ. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021;e-pub ahead of print 1 March 2021; https://doi.org/10.1038/s41396-021-00920-2.25.Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil. 2016;398:1–24.CAS 

    Google Scholar 
    26.Jansa J, Hodge A. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. N Phytol. 2021;230:14–6.
    Google Scholar 
    27.Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, de la Providencia I, et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. N Phytol. 2019;222:1584–98.CAS 

    Google Scholar 
    28.Gil-Cardeza ML, Calonne-Salmon M, Gomez E, Declerck S. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere. 2017;187:27–34.CAS 
    PubMed 

    Google Scholar 
    29.Voets L, Dupre de Boulois H, Renard L, Strullu DG, Declerck S. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett. 2005;248:111–8.CAS 
    PubMed 

    Google Scholar 
    30.Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.CAS 
    PubMed 

    Google Scholar 
    31.van’t Padje A, Galvez LO, Klein M, Hink MA, Postma M, Shimizu T, et al. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME J. 2021;15:435–49.PubMed 

    Google Scholar 
    32.Gryndler M, Šmilauer P, Püschel D, Bukovská P, Hršelová H, Hujslová M, et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza. 2018;28:435–50.PubMed 

    Google Scholar 
    33.Jansa J, Šmilauer P, Borovička J, Hršelová H, Forczek ST, Slámová K, et al. Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza. 2020;30:63–77.PubMed 

    Google Scholar 
    34.Bukovská P, Püschel D, Hršelová H, Jansa J, Gryndler M. Can inoculation with living soil standardize microbial communities in soilless potting substrates? Appl Soil Ecol. 2016;108:278–87.
    Google Scholar 
    35.Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck S. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA, (eds.). In vitro culture of mycorrhizas. Berlin: Springer; 2005. p. 341–75. pp
    Google Scholar 
    36.Ohno T, Zibilske LM. Determination of low concentrations of phosphorus is soil extracts using malachite green. Soil Sci Soc Am J. 1991;55:892–5.CAS 

    Google Scholar 
    37.Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front Plant Sci. 2017;8:390.PubMed 
    PubMed Central 

    Google Scholar 
    38.Phillips DL, Gregg JW. Uncertainty in source partitioning using stable isotopes. Oecologia 2001;127:171–9.PubMed 

    Google Scholar 
    39.Perez-Tienda J, Valderas A, Camanes G, Garcia-Agustin P, Ferrol N. Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza. 2012;22:485–91.CAS 
    PubMed 

    Google Scholar 
    40.He XX, Chen YQ, Liu SJ, Gunina A, Wang XL, Chen W, et al. Cooperation of earthworm and arbuscular mycorrhizae enhanced plant N uptake by balancing absorption and supply of ammonia. Soil Biol Biochem. 2018;116:351–9.CAS 

    Google Scholar 
    41.Hestrin R, Weber PK, Pett-Ridge J, Lehmann J. Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. New Phytol. 2021;e-pub ahead of print 2 June 2021; https://doi.org/10.1111/nph.1752742.Everett DH, Wynne-Jones WFK. The dissociation of the ammonium ion and the basic strength of ammonia in water. P R Soc Lond A Mat. 1938;169:190–204.CAS 

    Google Scholar 
    43.Bidondo LF, Colombo R, Bompadre J, Benavides M, Scorza V, Silvani V, et al. Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Appl Soil Ecol. 2016;105:86–90.
    Google Scholar 
    44.Cruz AF, Ishii T. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open. 2012;1:52–7.PubMed 

    Google Scholar 
    45.Scheublin TR, Sanders IR, Keel C, van der Meer JR. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J. 2010;4:752–63.PubMed 

    Google Scholar 
    46.Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett. 2006;254:34–40.CAS 
    PubMed 

    Google Scholar 
    47.Jaderlund L, Arthurson V, Granhall U, Jansson JK. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett. 2008;287:174–80.PubMed 

    Google Scholar 
    48.Larsen J, Jaramillo-Lopez P, Najera-Rincon M, Gonzalez-Esquivel CE. Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J Soil Sci Plant Nut. 2015;15:449–63.
    Google Scholar 
    49.Mansfeld-Giese K, Larsen J, Bodker L. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol. 2002;41:133–40.CAS 
    PubMed 

    Google Scholar 
    50.Hildebrandt U, Janetta K, Bothe H. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol. 2002;68:1919–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T. Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol. 2008;104:1711–7.CAS 
    PubMed 

    Google Scholar 
    52.Luthfiana N, Inamura N, Tantriani, Sato T, Saito K, Oikawa A, et al. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza. 2021;31:403–12.CAS 
    PubMed 

    Google Scholar 
    53.Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Averill C, Turner BL, Finzi AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505:543–5.CAS 
    PubMed 

    Google Scholar 
    55.Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science 2002;296:1694–7.PubMed 

    Google Scholar 
    56.Cavagnaro TR. Biologically regulated nutrient supply systems: compost and arbuscular mycorrhizas—a review. Adv Agron. 2015;129:293–321.
    Google Scholar  More

  • in

    Geolocated dataset of Chinese overseas development finance

    This dataset relies on two types of technical validation: ensuring the accuracy of (1) project attributes and, where applicable, (2) their geographic locations.Project attribute validation: the double-verification methodExisting sources for Chinese overseas development finance rely on a variety of verification standards. The present dataset extends the most stringent approach of the existing “double verification” methods pioneered by the China Africa Research Initiative at the Johns Hopkins University School of Advanced International Studies (SAIS-CARI) to create a harmonized, global standard.The double verification method is based on academic literature showing a tendency to overstate, rather than understate, finance commitments. For example, Ebeke and Ölçer49 show that major infrastructure projects are often timed for announcements to coincide with political campaigns. Regional case studies9,50 show patterns of planners avoiding the publication of projects’ environmental and social risks, but simultaneously maximizing the visibility of the projects and their financial commitments, often before they are finalized. For this reason, earlier datasets have struggled to correctly identify and exclude projects that have been publicized but never materialized, resulting in sometimes significant over-estimations51.The possibility remains of under-counting. As Horn, Reinhart, and Trebesch (2019)15 point out, in reference to “hidden” Chinese finance, many overseas Chinese loans are never fully disclosed. For this reason, we cast the widest possible net for financing commitments and then narrowing those findings by applying the standard of double-verification. It is for this reason also that we perform annual updates, and in each update include previous years’ data, in order to include any additional projects that may not have been disclosed until a much later date.Our aim is to provide the most evidence-based supported data in order to have a more empirical based understanding of Chinese overseas development finance. Erring on the side of caution then, double verification is admittedly a more conservative set of estimates but grants all scholars and stakeholders the confidence that every record in the dataset does indeed exist.Without public reporting by CDB and ExImBank of their lending operations, we are limited to reporting by government (and government-affiliated) sources, academic, civil society, and press reports. The system of double verification ensures accuracy in this context, requiring agreement on the core characteristics of each loan agreement between at least one Chinese source and at least one international source.For China-side verification, we rely on official and quasi-official sources associated with the Chinese government or Chinese Communist Party. We include the following sources:

    1.

    Chinese government and DFI websites (including CDB.com.cn, ExImBank.gov.cn, and any other source with a domain ending in .gov.cn)

    2.

    Websites of Chinese embassies abroad

    3.

    Chinese government or CCP-affiliated press sites:

    a.

    China Daily, http://www.chinadaily.com.cn

    b.

    China Global Television Network, https://www.cgtn.com

    c.

    China News, http://www.chinanews.com

    d.

    China Plus, http://chinaplus.cri.cn

    e.

    Guangming Daily, http://www.gmw.cn

    f.

    People, http://www.people.cn

    g.

    Xinhua, http://www.xinhuanet.com

    For international verification, we rely similarly on government reports, supplemented with academic, civil society, and private press reports. As mentioned above, when differences emerge among sources, we resolve these conflicts by giving government sources top priority, followed by academic sources, civil society sources, and private press sources. Government press sources, such as the Chinese sources listed above, are given the weight of government sources. This method coincides with that of other datasets with double verification7,8,21.Because of the stringency of the double-verification standard used here, we exclude the smallest finance agreements (those below $25 million USD). Excluding these low-level loans necessarily involves a small degree of under-counting. For example, Brautigam et al. (2020)8 show that loans of less than $25 million each comprise just $389 million in total commitments, out of a total of $148 billion in financing commitments by CDB and ExImBank between 2008 and 2018 in Africa: approximately 0.2% of the total. However, including these loans would introduce significant geographic bias toward countries with particularly transparent governments and open media environments. As the purpose of the present effort is to enable more reliable geospatial analysis, the inclusion of this additional activity was not deemed worthy of the cost to the reliability of analysis using it.It is worth comparing these results to those of other datasets for context. Among other independent datasets of Chinese lending, only AidData11,12 and Horn, Reinhart, and Trebesch15 have global coverage, and of those two, only AidData differentiates by lender, allowing a strict comparison. As Fig. 1 shows, AidData includes $463 billion in policy bank loans between 2008 and 2014 that would meet the standard for inclusion in the present dataset if they could be validated. However, in that same time period, our methodology found that only $271 billion of loans could pass the validation standards introduced here.This process of double-verification results in a dataset that excludes some countries that appear in other datasets. For example, in the case of four countries, this process resulted in the present dataset having no loans listed, even though CDB and/or ExImBank loans appear in AidData, the largest global dataset, with loans that would qualify for inclusion here if they could be validated. Those four are: Central African Republic (for which we were unable to find doubly verified validation for the Boali No. 3 hydropower plant project), Dominica (for which we were unable to double verify the source of the loan for rehabilitation of State College), Turkey (whose Turk Telecom was privatized before the loan listed in AidData), and Yemen (for which we were unable to find Chinese validation for the Bajal cement factory project). In addition to these four countries, three others are included in AidData but with no loans of $25 million or more: Burundi, Colombia, and Sierra Leone.As with other researchers in this space7,8,21 we understand that individual projects within such funds can be hidden from public view until the line of credit or framework agreement is renewed or laid down unused. Thus, we include such financing agreements when they are initially drawn up, but then withdraw them from subsequent updates if it comes to light that they were unused. If they are renewed, as lines of credit frequently are, such renewals do not represent new financing but simply a relaxation of the time period for use of the original commitment. For this reason, renewals are not considered separately.Finally, not all projects in this dataset have been completed as of this writing. We have removed all projects that have been publicly cancelled, but ongoing projects with active financing commitments remain, even if construction has not yet begun or has been suspended. For this reason, we refer to each observation as a commitment or agreement, rather than a loan. Funds may or may not have been disbursed as of this writing, but commitments have been made and remain valid. In all, this double-verification process resulted in a final dataset of 857 finance commitments in 93 countries from 2008 through 2019.Location validationOf the 857 finance commitments in the final dataset, 664 have a geographic footprint of some type. These projects – encompassing agriculture, extraction, manufacturing, utilities, infrastructure, and other installations – were located according to the following procedure.Several of the existing datasets listed above include the location of financed projects: AidData, CSIS, Dayant and Pryke, and the World Bank11,13,14,26. Among these datasets, CSIS’ Reconnecting Asia merits special mention, as it displays project locations through embedded Google Maps. For projects originating in this dataset, we queried CSIS for the coordinates in these maps (using code available in R as CSIS_to_coord_str.R on the project repository). For these observations, we used these reported locations as initial estimates, to be visually validated thereafter. For energy projects not listed in these project datasets, we used the following sources for initial estimates of project locations:

    Power plants: Global Power Plant Database52.

    Coal-fired power plants: Global Energy Monitor53

    Fossil fuel pipelines and related infrastructure: Global Fossil Infrastructure Tracker54

    For other observations, we developed an API to query Google Maps for the locations of each (available in R as GoogleMaps_OSM_API_query.R on the OSF project repository).For all observations – those included in previous geolocated datasets, those located through querying Google Maps and Open Street Maps, and those with no query response – we validated the locations visually through the use of Google Maps, Open Street Maps, and Open Route Services, as shown in Fig. 3 below.Fig. 3Examples of point, line, and polygon footprints. Left to right: Rehabilitation of Sam Lord’s Castle, Barbados; Soyo-Kapary Electrical Transmission and Transformation Project, Angola; Kirirom III hydropower plant (reservoir), Cambodia.Full size imageThis process represents a significant elevation of requirement needing to be met for projects to be reported as having a precise location, in comparison to previous geocoded datasets. For example, AidData allows projects to be reported at the most precise location category based on the precise boundaries of an area of uncertainty around a project—including populated places or the political seats of geographic areas—rather than the precise point or boundaries of the true project site(s). The resulting high-precision category includes 579 sovereign finance commitments by CDB and ExImBank identified by AidData during our period of study, of which only 105 geotags are associated with specific sites of projects. The remaining projects’ location are defined by the administrative division or the political seats thereof. This is in contrast to the more stringent precision classification scheme in our dataset. Projects marked with a precision code of “1” in the present dataset have all been visually located as site-specific project footprints. The introduction of this new level of precision allows for linear and polygonal projects to be represented with their complete footprints, rather than representative points, which enables a more thorough analysis of environmental risks and impacts, including for example, the impacts of the entire length of a highway or the entire area of a mine. Analysts using this dataset will be able to avoid the under-estimation of environmental impacts necessarily introduced by relying on representative points. Our first such analysis uses these precise footprints to compare location-based social and ecological risks of Chinese overseas development finance to World Bank projects, based on their proximity to the boundaries of national protected areas, possible critical habitats, and indigenous territories48. The dataset also supports holistic environmental analysis of interconnected networks of projects, based on their collective footprints. Yang et al (2021) use these collective footprints to examine the environmental and social sensitivity of Chinese overseas development finance locations, and find that the total footprint is significantly concentrated in more sensitive territory than World Bank projects during the same time period55.To accurately reflect the variety of types of footprints across various types of finance projects, we classified each geolocated observation as a point (or collection of points), line (or collection of discontinuous lines), or polygon (or collection of discontinuous polygons). Points are used for individual buildings or installations. Lines are used for linear infrastructure including roads, rails, power distribution, wired communications networks, and pipelines. Polygons show projects with footprints that are larger than single buildings or installations, with well-defined boundaries, including dam reservoirs, oil and gas fields, and clusters of buildings such as housing or stadium complexes. The distribution of projects among footprint types is listed in Table 4.Table 4 Footprint types.Full size tableA few examples merit further explanation regarding their classification of footprint type. First, wind farms are comprised of turbines along access roads; to accurately show the total geographic footprints, we show them as linear infrastructure comprised of their access roads. In addition, projects with lower levels of geographic precision (at the national level or first/second-level administrative division level) are shown as polygons that encompass these areas, showing the municipal, provincial, or national boundaries48. More

  • in

    Microsporidia MB is found predominantly associated with Anopheles gambiae s.s and Anopheles coluzzii in Ghana

    We make the first report of Microsporidia MB in An. gambiae s.s and An. coluzzii following identification of the symbiont in An. arabiensis. This does not only demonstrate the existence of the microsporidian in another predominant malaria vector species in Africa but also extends its incidence from East to West Africa. The prevalence of MB-positive mosquitoes was estimated to be 1.8%, which is within the rate of  More

  • in

    Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand

    Field measurementsWe used two sets of field measurements of soil moisture, VPD, and stomatal conductance of maize at the daily scale to illustrate a proof-of-concept for the co-regulation of soil moisture and VPD on stomatal conductance.The first set was measurements from greenhouse experiments of maize (seed: Dekalb hybrid DKC52-04) at Colorado State University during the 2013 growing season (planted on June 10, 2013)49. There were two treatments (well-watered, WW, and water-stressed, WS) with five plants per treatment. The soil of the greenhouse experiments was the air-dried soilless substrate (8.8 kg) consisting of a 1:1.3 by volume ratio of Greens GradeTM, Turface® Quick Dry® and Fafard 2SV in 26 L pots49. The soil moisture measurements came from soil moisture sensors (Decagon5TM sensors) installed in the middle of the pots (~6 inches from top). The greenhouse measurements of leaf-level stomatal conductance and soil moisture were performed in approximately 2-week intervals beginning in the vegetative stage and continuing until plant senescence (DOY 198–199, 210–211, 217–218, 233–234, 247), with 11 replicates for each plant under two treatments (WW and WS). The environmental variables, such as relative humidity and air temperature, were continuously measured in minutes. Other detailed experimental setups can be found in Miner and Bauerle (2017)49.The second set was eddy-covariance measurements of maize cropping systems (seed: Pioneer 33P67/33B51) from 2001 to 2012 at three AmeriFlux sites (US-Ne1, Ne2, and Ne3). US-Ne1 and Ne2 were irrigated sites, with a continuous maize cropping system during 2001–2012 for US-Ne1 and with a maize-soybean rotation cropping system during 2001-2009 and then a continuous maize cropping system during 2010-2012 for US-Ne2. US-Ne3 was rainfed with a maize-soybean rotation cropping system during 2001–2012. The soil at the three AmeriFlux sites was a deep silty clay loam consisting of four soil series: Yutan, Tomek, Filbert, and Filmore. There are three replicates with the soil moisture sensors (theta probes: ML2, Dynamax Inc.) installed horizontally with the profile of soil depth (10, 25, 50, and 100 cm) in the US-Ne1 and US-Ne2, and four replicates with soil moisture sensors (theta probes: ML2, Dynamax Inc.) installed horizontally with the profile of soil depth (10, 25, 50, and 100 cm) in the US-Ne3 (http://csp.unl.edu/public/G_moist.htm). The soil moisture data used here was from the top soil layer (10–25 cm). The canopy-level stomatal conductance (Gs) was derived by inverting the Penman-Monteith equation50 (Equations 1 and 2) from the eddy-covariance measurements at the hourly scale18,24,51, and the averaged value near midday (from 12:00 to 14:00) was applied as the daily canopy-level stomatal conductance to remove the diurnal cycle. This inversion was only conducted during peak growing season (July and August) to avoid the impact of LAI24. The impact of evaporation from canopy interception and of low incoming shortwave radiation was removed by data filtering24, i.e., excluding the data within 2 days following every precipitation and irrigation event, and periods of low incoming shortwave radiation conditions ( More

  • in

    Comprehensive mineralogical and physicochemical characterization of recent sapropels from Romanian saline lakes for potential use in pelotherapy

    Mineralogy and thermal propertiesThe bulk mineral composition of sapropels is detailed in Table 1. The XRD analysis indicates that Amara and Tekirghiol sapropels are enriched in silicates, i.e., quartz (30.8% and 29.1% respectively), plagioclase-albite (10.1% and 8.9%), carbonates, mainly calcite (6.8%) and aragonite (13.1%) in Amara, and calcite (8.7%) in Tekirghiol (Fig. 2). By contrast, Ursu sapropel contains lower concentrations of silicates, mainly quartz (15.4%), plagioclase (5.5% albite and 8% andesine), sulfides, i.e., pyrite (1.5%) and is enriched in halite (34.5%). The major clay components in the sapropels were 2:1 dioactahedral and 2:1 trioctahedral clays, representing 28.9%, 23.6% and 20.8% of clay minerals in Tekirghiol, Amara and Ursu samples, respectively. Muscovite was detected in similar concentrations in Tekirghiol (4.5%) and Amara (4.2%). Quantitative mineralogical clay composition of the fraction  90% in each sample), and kaolinite and chlorite as minor fractions (Table 2; Fig. 3).Table 1 Quantitative bulk mineralogical compositions of saline sapropels collected from Tekirghiol, Amara and Ursu lakes.Full size tableFigure 2X-ray diffraction patterns on the raw mud samples (upper image) collected from the three lakes. The main minerals that contribute to the most important reflections are indicated. Chl: Chlorite, M: Muscovite, K: Kaolinite Group minerals, Q: Quartz, A: Anatase, 2:1: 2:1 phyllosilicate (e.g., illite and smectite), Ca: Calcite, Pl: Plagioclase/Albite/Andesine, R: Rutile, P: Pyrite, Ar: Aragonite, H: Halite.Full size imageTable 2 Quantitative mineralogical clay composition of the fraction  More

  • in

    Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields

    1.Lobell, D. B. & Field, C. B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).ADS 
    Article 

    Google Scholar 
    2.Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 
    Article 

    Google Scholar 
    3.Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).ADS 
    Article 

    Google Scholar 
    6.Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).ADS 
    Article 

    Google Scholar 
    7.Urban, D. W., Sheffield, J. & Lobell, D. B. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 045003 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    8.Prasad, P. V. V. et al. in Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes (eds Ahuja, L. R. et al.) 301–356 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2008); https://doi.org/10.2134/advagricsystmodel1.c119.Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).ADS 
    Article 

    Google Scholar 
    10.Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).ADS 
    Article 

    Google Scholar 
    11.Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS ONE 12, e0178339 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Coffel, E. D. et al. Future hot and dry years worsen Nile Basin water scarcity despite projected precipitation increases. Earth’s Future 7, 967–977 (2019).ADS 
    Article 

    Google Scholar 
    13.Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    14.Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).16.Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 044012 (2017).17.Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16 055024 (2021).18.Berg, A. et al. Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J. Clim. 28, 1308–1328 (2015).ADS 
    Article 

    Google Scholar 
    19.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).21.Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, 1–4 (2005).Article 

    Google Scholar 
    22.Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).Article 

    Google Scholar 
    24.Berg, A. et al. Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Clim. 27, 7976–7993 (2014).ADS 
    Article 

    Google Scholar 
    25.Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).27.Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).28.Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).ADS 
    Article 

    Google Scholar 
    29.Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20, 408–417 (2014).ADS 
    Article 

    Google Scholar 
    30.Welch, J. R. et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl Acad. Sci. USA 107, 14562–14567 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zhang, T., Lin, X. & Sassenrath, G. F. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. Sci. Total Environ. 508, 331–342 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).Article 

    Google Scholar 
    34.Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    35.Gates, D. M. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 19, 211–238 (1968).Article 

    Google Scholar 
    36.Crafts-Brandner, S. J. & Salvucci, M. E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129, 1773–1780 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    38.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 
    Article 

    Google Scholar 
    40.Seth, A. et al. Monsoon responses to climate changes—connecting past, present and future. Curr. Clim. Change Rep. 5, 63–79 (2019).41.Orlowsky, B. & Seneviratne, S. I. Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. J. Clim. 23, 3918–3932 (2010).ADS 
    Article 

    Google Scholar 
    42.Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).ADS 
    Article 

    Google Scholar 
    43.Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).ADS 
    Article 

    Google Scholar 
    44.Mueller, B. et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 38, 1–7 (2011).
    Google Scholar 
    45.Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).ADS 
    Article 

    Google Scholar 
    46.Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).ADS 
    Article 

    Google Scholar 
    47.He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).48.Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).ADS 
    Article 

    Google Scholar 
    49.Deryng, D. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 6, 786–790 (2016).ADS 
    Article 

    Google Scholar 
    50.Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).ADS 
    Article 

    Google Scholar 
    51.Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    52.Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 20, 2301–2320 (2014).ADS 
    Article 

    Google Scholar 
    53.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).Article 

    Google Scholar 
    54.Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).ADS 
    Article 

    Google Scholar 
    55.Sacks, W. J., Deryng, D. & Foley, J. A. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
    Google Scholar 
    56.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).ADS 
    Article 

    Google Scholar 
    57.Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992).ADS 
    Article 

    Google Scholar  More

  • in

    Phenology of Oithona similis demonstrates that ecological flexibility may be a winning trait in the warming Arctic

    1.Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago–Svalbard, Norway. Glob. Change Biol. 23, 490–502 (2017).ADS 
    Article 

    Google Scholar 
    2.Yletyinen, J. Arctic climate resilience. Nat. Clim. Change 9, 805–806 (2019).ADS 
    Article 

    Google Scholar 
    3.Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: A trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).Article 

    Google Scholar 
    4.Möller, E. F. & Nielsen, T. G. Borealization of Arctic zooplankton—smaller and less fat zooplankton species in Disko Bay, Western Greenland. Limnol. Oceanogr. 65, 1175–1188 (2020).ADS 
    Article 

    Google Scholar 
    5.Dalpadado, P. et al. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 185, 102320. https://doi.org/10.1016/j.pocean.2020.102320 (2020).Article 

    Google Scholar 
    6.Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home – Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total. Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Bauerfeind, E., Nöthig, E. M., Pauls, B., Kraft, A. & Beszczynska-Möller, A. Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009. J. Mar. Syst. 132, 95–10 (2014).Article 

    Google Scholar 
    8.Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: Inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).ADS 
    Article 

    Google Scholar 
    9.Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar. Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    10.Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).ADS 
    Article 

    Google Scholar 
    11.Nielsen, T. G. & Andersen, C. Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar. Biol. 141, 707–724 (2002).Article 

    Google Scholar 
    12.Lischka, S. & Hagen, W. Life histories of the copepods Pseudocalanus minutus, P. acuspes, (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 28, 910–921 (2005).Article 

    Google Scholar 
    13.Arendt, K. E., Nielsen, T. G., Rysgaard, S. & Tönnesson, K. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49–62 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Trudnowska, E., Stemmann, L., Błachowiak-Samołyk, K. & Kwasniewski, S. Taxonomic and size structures of zooplankton communities in the fjords along the Atlantic water passage to the Arctic. J. Mar. Sys. 204, 103306. https://doi.org/10.1016/j.jmarsys.2020.103306 (2020).Article 

    Google Scholar 
    15.Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar. Res. 37, 1427409. https://doi.org/10.1080/17518369.2018.1427409 (2018).Article 

    Google Scholar 
    16.Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    17.Turner, J. T. Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay. Hydrobiologia 292(293), 405–413 (1994).Article 

    Google Scholar 
    18.Castellani, C., Robinson, C., Smith, T. & Lampitt, R. S. Temperature affects respiration rate of Oithona similis. Mar. Ecol. Prog. Ser. 285, 129–135 (2005).ADS 
    Article 

    Google Scholar 
    19.Turner, J. T., Levinsen, H., Nielsen, T. G. & Hansen, B. W. Zooplankton feeding ecology: Grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 221, 209–219 (2001).ADS 
    Article 

    Google Scholar 
    20.Boissonnot, L., Niehoff, B., Hagen, W., Søreide, J. E. & Graeve, M. Lipid turnover reflects life-cycle strategies of small-sized Arctic copepods. J. Plankton Res. 38, 1420–1432 (2016).CAS 

    Google Scholar 
    21.Błachowiak-Samołyk, K. et al. Winter Tales: The dark side of planktonic life. Polar Biol. 38, 23–36 (2015).Article 

    Google Scholar 
    22.Berge, J. et al. Zooplankton in the Polar Night in Polar Night Marine Ecology. In Advances in Polar Ecology Vol. 4 (eds Berge, J. et al.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-030-33208-2_5.Chapter 

    Google Scholar 
    23.Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: Availability of winter prey explains mid-winter and early-spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 744. https://doi.org/10.3389/fmars.2020.541564 (2020).Article 

    Google Scholar 
    24.Svensen, C., Seuthe, L., Vasilyeva, Y., Pasternak, A. & Hansen, E. Zooplankton distribution across Fram Strait in autumn: Are small copepods and protozooplankton important?. Prog. Oceanog. 91, 534–544 (2011).Article 

    Google Scholar 
    25.Węsławski, J. M., Kwasniewski, S. & Wiktor, J. Winter in Svalbard fjord ecosystem. Arctic 44, 115–123 (1991).Article 

    Google Scholar 
    26.Lischka, S., Giménez, L., Hagen, W. & Ueberschär, B. Seasonal changes in digestive enzyme (trypsin) activity of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 30, 1331–1341 (2007).Article 

    Google Scholar 
    27.Lischka, S. & Hagen, W. Seasonal dynamics of mesozooplankton in the Arctic Kongsfjord (Svalbard) during year-round observations from August 1998 to July 1999. Polar Biol. 39, 1859–1878 (2016).Article 

    Google Scholar 
    28.Weydmann-Zwolicka, A. et al. Zooplankton and sediment flux in two contrasting fjords reveal Atlantification of the Arctic. Sci. Total. Environ. 773, 145599. https://doi.org/10.1016/j.scitotenv.2021.145599 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Zamora-Terol, S., Nielsen, T. G. & Saiz, E. Plankton community structure and role of Oithona similis on the western coast of Greenland during the winter-spring transition. Mar. Ecol. Prog. Ser. 483, 85–102 (2013).ADS 
    Article 

    Google Scholar 
    30.Zamora-Terol, S., Kjellerup, S., Swalethorp, R., Saiz, E. & Nielsen, T. G. Population dynamics and production of the small copepod Oithona spp. in a subarctic fjord of West Greenland. Polar. Biol. 37, 953–965 (2014).Article 

    Google Scholar 
    31.Dvoretsky, V. G. & Dvoretsky, A. G. Life cycle of Oithona similis (Copepoda: Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol. 156, 1433–1446 (2009).Article 

    Google Scholar 
    32.Glad, P. Seasonal occurrence of Oithona similis (cyclopoida), Microsetella norvegica (harpacticoida) and Microcalanus spp. (calanoida), and productivity of O. similis, in three high-latitude Norwegian fjords. Master thesis (UiT The Arctic University of Norway, 2018).33.Kosobokova, K. & Hirche, H. J. Biomass of zooplankton in the eastern Arctic Ocean—a baseline study. Progr. Oceanogr. 82, 265–280 (2009).ADS 
    Article 

    Google Scholar 
    34.Bluhm, B., Kosobokova, K. & Carmack, E. A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean. Prog. Oceanog. 139, 89–121 (2015).Article 

    Google Scholar 
    35.Hop, H. et al. Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change in The Ecosystem of Kongsfjorden, Svalbard. In Advances in Polar Ecology Vol. 2 (eds Hop, H. & Wiencke, C.) 10.1007/978-3-319-46425–1_7 (Springer, New York, 2019).
    Google Scholar 
    36.Böttger-Schnack, R., Schnack, D. & Hagen, W. Microcopepod community structure in the Gulf of Aqaba and northern Red Sea, with special reference to Oncaeidae. J. Plankton Res. 30, 529–550 (2008).Article 

    Google Scholar 
    37.Cornwell, L. E. et al. Seasonality of Oithona similis and Calanus helgolandicus reproduction and abundance: Contrasting responses to environmental variation at a shelf site. J. Plankton Res. 40, 295–310 (2018).Article 

    Google Scholar 
    38.Kubiszyn, A. M. et al. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen). J. Mar. Syst. 169, 61–72 (2017).Article 

    Google Scholar 
    39.Kellogg, C. T. E., McClelland, J. W., Dunton, K. H. & Crump, B. C. Strong seasonality in Arctic estuarine microbial food webs. Front. Microbiol. 10, 2628. https://doi.org/10.3389/fmicb.2019.02628 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bhaskar, J. T., Parli, B. V. & Tripathy, S. C. Spatial and seasonal variations of dinoflagellates and ciliates in the Kongsfjorden. Svalbard. Mar. Ecol. 41, 1–12 (2020).Article 

    Google Scholar 
    41.Skogseth, R. et al. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation–An indicator for climate change in the European Arctic. Prog. Oceanog. 187, 102394. https://doi.org/10.1016/j.pocean.2020.102394 (2020).Article 

    Google Scholar 
    42.Ward, P. & Hirst, A. G. Oithona similis in a high latitude ecosystem: Abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. Mar. Biol. 151, 1099–1110 (2007).Article 

    Google Scholar 
    43.Nielsen, T. G. & Sabatini, M. Role of cyclopoid copepods Oithona spp. in North Sea plankton communities. Mar. Ecol. Prog. Ser. 139, 79–93 (1996).ADS 
    Article 

    Google Scholar 
    44.Nilsen, F., Cottier, F., Skogseth, R. & Mattsson, S. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 28, 1838–1853 (2008).ADS 
    Article 

    Google Scholar 
    45.Cohen, J. H., Berge, J., Moline, M. A., Johnsen, G. & Zolich, A. P. Light in the Polar Night. In Polar Night Marine Ecology Advances in Polar Ecology Vol. 4 (eds Berge, J. et al.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-030-33208-2_3.Chapter 

    Google Scholar 
    46.Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A. & Gabrielsen, T. M. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord—different from subarctic fjords?. J. Mar. Syst. 154, 192–205 (2015).Article 

    Google Scholar 
    47.Holm-Hansen, O. & Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 30, 438–447 (1978).CAS 
    Article 

    Google Scholar 
    48.Stübner, E. I., Søreide, J. E., Reigstad, M., Marquardt, M. & Blachowiak-Samolyk, K. Year-round meroplankton dynamics in high-Arctic Svalbard. J. Plankton Res. 38, 522–536 (2016).Article 

    Google Scholar 
    49.Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, West Spitsbergen). Appl. Environ. Microb. 82, 1868–1880 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Trantner, D. J. & Fraser, H. Zooplankton sampling. Monographs on Oceanographic Methodology 2. (UNESCO, 1968).51.Harris, R., Wiebe, L., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, Cambridge, 2000).
    Google Scholar 
    52.Espinasse, M. et al. Interannual phenological variability in two North-East Atlantic populations of Calanus finmarchicus. Mar. Biol. Res. 14, 752–767 (2018).Article 

    Google Scholar 
    53.Mackas, D. L., Batten, S. & Trudel, M. Effects on zooplankton of a warmer ocean: Recent evidence from the Northeast Pacific. Prog. Oceanogr. 75, 223–252 (2007).ADS 
    Article 

    Google Scholar 
    54.Head, E. J. H., Melle, W., Pepin, P., Bagøien, E. & Broms, C. On the ecology of Calanus finmarchicus in the Subarctic North Atlantic: A comparison of population dynamics and environmental conditions in areas of the Labrador Sea-Labrador/Newfoundland Shelf and Norwegian Sea Atlantic and Coastal Waters. Prog. Oceanog. 114, 46–63 (2013).Article 

    Google Scholar 
    55.Kwasniewski, S. et al. Interannual changes in zooplankton on theWest Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. J. Mar. Sci. 69, 890–901 (2012).
    Google Scholar 
    56.Kiorboe, T. Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecol. 148, 40–50 (2006).ADS 
    Article 

    Google Scholar 
    57.Thackeray, et al. Food web de-synchronization in England’s largest lake: An assessment based on multiple phenological metrics. Glob. Change Biol. 19, 3568–3580 (2013).ADS 
    Article 

    Google Scholar 
    58.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. (Primer-E Ltd., 2008).59.Clarke, K. R. & Gorley, R. N. Primer. (Primer-E Ltd., 2001).60.Anderson, M. J. & Braak, C. J. F. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 73, 85–113 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    61.Schlitzer, R. Ocean Data View; https://odv.awi.de, (2021).62.Walczowski, W., Piechura, J., Goszczko, I. & Wieczorek, P. Changes in Atlantic water properties: An important factor in the European Arctic marine climate. ICES J. Mar. Sci 69, 864–869 (2012).Article 

    Google Scholar 
    63.Wassman, P., Duarte, C. M., Agustí, S. & Sejr, M. L. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2010).ADS 
    Article 

    Google Scholar 
    64.Andrews, A. J. et al. Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland. Sci Rep 9, 5799 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Beaugrand, G., Ibanez, F. & Reid, P. C. Spatial seasonal and long term fluctuations of plankton in relation to hydroclimatic features in the English Channel, Celtic Sea and Bay of Biscay. Mar. Ecol. Prog. Ser. 200, 93–102 (2000).ADS 
    Article 

    Google Scholar 
    67.Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, A. & Edwards, M. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science 31, 1692–1694 (2002).ADS 
    Article 

    Google Scholar 
    68.Coyle, K. O. et al. Climate change in the southeastern Bering Sea: Impacts on pollock stocks and implications for the oscillating control hypothesis. Fisher. Oceanogr. 20, 139–156 (2011).Article 

    Google Scholar 
    69.Edwards, M. & Richardson, A. J. The impact of climate change on the phenology of the plankton community and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).Article 

    Google Scholar 
    71.Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B. 282, 20151546 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).Article 

    Google Scholar 
    73.Kwasniewski, S. A note on zooplankton of the Hornsund Fjord and its seasonal changes. Oceanografia 12, 7–27 (1990).
    Google Scholar 
    74.Piwosz, K. et al. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in midsummer 2002. Polar Biol. 32, 549–559 (2009).Article 

    Google Scholar 
    75.Trudnowska, E., Basedow, S. L. & Blachowiak-Samolyk, K. Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard). J. Mar. Syst. 137, 55–66 (2014).Article 

    Google Scholar 
    76.Castellani, C., Licandro, P., Fileman, E., di Capua, I. & Mazzocchi, M. G. Oithona similis likes it cool: Evidence from two long-term time series. J. Plankton Res. 38, 703–717 (2016).CAS 
    Article 

    Google Scholar 
    77.Cornwell, L. E. et al. Resilience of the copepod Oithona similis to climatic variability: Egg production, mortality, and vertical habitat partitioning. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00029 (2020).Article 

    Google Scholar 
    78.Eiane, K. & Ohman, M. D. Stage-specific mortality of Calanus finmarchicus, Pseudocalanus elongatus and Oithona similis on Fladen Ground, North Sea, during a spring bloom. Mar. Ecol. Prog. Ser. 268, 183–193 (2004).ADS 
    Article 

    Google Scholar 
    79.Thor, P. et al. Post-spring bloom community structure of pelagic copepods in the Disko Bay, Western Greenland. J. Plankton Res. 27, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    80.Dvoretsky, V. G. Seasonal mortality rates of Oithona similis (Cyclopoida) in a large Arctic fjord. Polar Sci. 6, 263–269 (2012).ADS 
    Article 

    Google Scholar 
    81.Ussing, H. H. The biology of some important plankton animals in the fjords of east Greenland. Medd Grønland 100–108 (1938).
    82.Lonsdale, D. J., Caron, D. A., Dennett, M. R. & Schaffner, R. Predation by Oithona spp on protozooplankton in the Ross Sea. Antarctica. Deep-Sea Res. II 47, 3273–3283 (2000).
    Google Scholar 
    83.Castellani, C., Irigoien, X., Harris, R. P. & Lampitt, R. S. Feeding and egg production of Oithona similis in the North Atlantic. Mar. Ecol. Prog. Ser. 288, 173–182 (2005).ADS 
    Article 

    Google Scholar 
    84.Barth-Jensen, C. et al. Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus. J. Plankton Res. 42, 564–580 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Falk-Petersen, S., Pedersen, G., Kwasniewski, S., Hegseth, E. N. & Hop, H. Spatial distribution and life-cycle timing of zooplankton in the marginal ice zone of the Barents Sea during the summer melt season in 1995. J. Plankton Res. 21, 1249–1264 (1999).Article 

    Google Scholar 
    86.Gluchowska, M. et al. Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J. Mar. Sci. 74, 1921–1936 (2017).Article 

    Google Scholar 
    87.Balazy, K., Trudnowska, E. & Błachowiak-Samołyk, K. Dynamics of Calanus copepodite structure during Little Auks’ breeding seasons in two different Svalbard locations. Water 11, 1405. https://doi.org/10.3390/w11071405 (2019).CAS 
    Article 

    Google Scholar 
    88.Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).Article 

    Google Scholar 
    89.Poje, A. The relationship between plankton and water mass properties in high Arctic (Svalbard) fjords. Clark Honors College Theses, (University of Oregon, 2016).90.Falk-Petersen, S., Mayzaud, P., Kattner, G. & Sargent, J. R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39 (2009).Article 

    Google Scholar 
    91.Svensen, C. et al. Zooplankton communities associated with new and regenerated primary production in the Atlantic inflow North of Svalbard. Front. Mar. Sci. 6, 293. https://doi.org/10.3389/fmars.2019.00293 (2019).Article 

    Google Scholar 
    92.González, H. E. & Smetacek, V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113, 233–246 (1994).ADS 
    Article 

    Google Scholar 
    93.Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Berge, J. et al. In the dark: A review of ecosystem processes during the Arctic polar night. Progr. Oceanog. 139, 258–271 (2015).ADS 
    Article 

    Google Scholar 
    95.Narcy, F. et al. Seasonal and individual variability of lipid reserves in Oithona similis (Cyclopoida) in an Arctic fjord. Polar Biol. 32, 233–242 (2009).Article 

    Google Scholar 
    96.Kattner, G. & Hagen, W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 257–280 (Springer, New York, 2009).Chapter 

    Google Scholar 
    97.Rokkan Iversen, K. & Seuthe, L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 34, 731–749 (2011).Article 

    Google Scholar 
    98.Auel, H. & Hagen, W. Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar. Biol. 140, 1013–1021 (2002).Article 

    Google Scholar 
    99.Madsen, S., Nielsen, T. & Hansen, B. Annual population development and production by small copepods in Disko Bay, western Greenland. Mar. Biol. 155, 63–77 (2008).Article 

    Google Scholar 
    100.Corkett, C. J. & McLaren, I. A. The biology of Pseudocalanus. In Advances in Marine Biology Vol. 15 (eds Russell, F. S. & Yonge, M.) 1–231 (Academic Press, Cambridge, 1978).
    Google Scholar 
    101.Kwasniewski, S., Hop, H., Falk-Petersen, S. & Pedersen, G. Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J. Plankton Res. 2003(25), 1–20 (2003).Article 

    Google Scholar 
    102.Willis, K., Cottier, F., Kwasniewski, S., Wold, A. & Falk-Petersen, S. The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst. 61, 39–54 (2006).Article 

    Google Scholar  More