More stories

  • in

    Amazonian forest degradation must be incorporated into the COP26 agenda

    These authors contributed equally: Celso H. L. Silva Junior, Nathália S. Carvalho, Ana C. M. Pessôa.Tropical Ecosystems and Environmental Sciences Laboratory (TREES), São José dos Campos, São Paulo, BrazilCelso H. L. Silva Junior, Nathália S. Carvalho, Ana C. M. Pessôa, João B. C. Reis, Aline Pontes-Lopes, Juan Doblas, Wesley Campanharo, Henrique Cassol, Yosio E. Shimabukuro, Liana O. Anderson & Luiz E. O. C. AragãoInstituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, BrazilCelso H. L. Silva Junior, Nathália S. Carvalho, Ana C. M. Pessôa, Aline Pontes-Lopes, Juan Doblas, Wesley Campanharo, Henrique Cassol, Luciana Gatti, Ana P. Aguiar, Yosio E. Shimabukuro & Luiz E. O. C. AragãoUniversidade Estadual do Maranhão (UEMA), São Luís, Maranhão, BrazilCelso H. L. Silva JuniorCentro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN), São José dos Campos, São Paulo, BrazilJoão B. C. Reis & Liana O. AndersonUniversity of Bristol, Bristol, UKViola Heinrich & Joanna HouseInstituto de Pesquisa Ambiental da Amazônia (IPAM), Brasília, Distrito Federal, BrazilAne Alencar, Camila Silva & Paulo BrandoUniversidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, BrazilDavid M. LapolaEcología del Paisaje y Modelación de Ecosistemas (ECOLMOD), Universidad Nacional de Colombia (UNAL), Bogota, ColombiaDolors ArmenterasUniversidade de Brasília, Brasília, Distrito Federal, BrazilEraldo A. T. MatricardiUniversity of Oxford, Oxford, UKErika BerenguerLancaster University, Lancaster, UKCamila Silva, Erika Berenguer & Jos BarlowSouth Dakota State University, Brookings, SD, USAIzaya NumataEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Amazônia Oriental, Belém, Pará, BrazilJoice FerreiraUniversity of California, Irvine, CA, USAPaulo BrandoWoodwell Climate Research Center, Falmouth, MA, USAPaulo BrandoInstituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, BrazilPhilip M. FearnsideJet Propulsion Laboratory (JPL), Pasadena, CA, USASassan SaatchiUniversity of California, Los Angeles, CA, USASassan SaatchiUniversidade Federal do Acre (UFAC), Cruzeiro do Sul, Acre, BrazilSonaira SilvaUniversity of Exeter, Exeter, UKStephen Sitch & Luiz E. O. C. AragãoStockholm Resilience Centre, Stockholm University, Stockholm, SwedenAna P. AguiarSchool of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USACarlos A. SilvaEuropean Commission, Joint Research Centre (JRC), Ispra, VA, ItalyChristelle Vancutsem, Frédéric Achard & René BeuchleCenter for International Forestry Research (CIFOR), Bogor, IndonesiaChristelle Vancutsem More

  • in

    Comprehensive evaluation of soil quality in a desert steppe influenced by industrial activities in northern China

    1.Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1(1), 117–129. https://doi.org/10.5194/soil-1-117-2015 (2015).Article 

    Google Scholar 
    2.Liu, X. et al. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 244, 125360. https://doi.org/10.1016/j.chemosphere.2019.125360 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Imin, B., Abliz, A., Shi, Q., Liu, S. & Hao, L. Quantitatively assessing the risks and possible sources of toxic metals in soil from an arid, coal-dependent industrial region in NW China. J. Geochem. Explor. https://doi.org/10.1016/j.gexplo.2020.106505 (2020).Article 

    Google Scholar 
    4.Doran, J. W. & Parkin, T. B. Defining and assessing soil quality. Defin. Soil Qual. Sustain. Environ. 35, 1–21. https://doi.org/10.2136/sssaspecpub35.c1 (1994).Article 

    Google Scholar 
    5.Sun, H. et al. Effects of soil quality on effective ingredients of Astragalus mongholicus from the main cultivation regions in China. Ecol. Indic. 114, 106296. https://doi.org/10.1016/j.ecolind.2020.106296 (2020).CAS 
    Article 

    Google Scholar 
    6.Alloway, B. J. Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils 11–50 (Springer, 2013).Book 

    Google Scholar 
    7.Yang, Q. Q. et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Huang, Y., Kuang, X., Cao, Y. & Bai, Z. The soil chemical properties of reclaimed land in an arid grassland dump in an opencast mining area in China. RSC Adv. 8(72), 41499–41508. https://doi.org/10.1039/c8ra08002j (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Liu, Z. J. et al. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Till. Res. 140, 74–81. https://doi.org/10.1016/j.still.2014.02.010 (2014).Article 

    Google Scholar 
    10.Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K. & Robertson, G. P. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agr. Ecosyst. Environ. 140(3–4), 419–429. https://doi.org/10.1016/j.agee.2011.01.005 (2011).Article 

    Google Scholar 
    11.Mendham, D. S. et al. Soil analyses as indicators of phosphorus response in young eucalypt plantations. Soil Sci. Soc. Am. J. 66(3), 959–968. https://doi.org/10.2136/sssaj2002.9590 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Shukla, M. K., Lal, R. & Ebinger, M. Determining soil quality indicators by factor analysis. Soil Till. Res. 87(2), 194–204. https://doi.org/10.1016/j.still.2005.03.011 (2006).Article 

    Google Scholar 
    13.Vasu, D. et al. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau. India. Geoderma. 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Mishra, G. et al. Soil quality assessment under shifting cultivation and forests in Northeastern Himalaya of India. Arch. Agron. Soil Sci. 63(10), 1355–1368. https://doi.org/10.1080/03650340.2017.1281390 (2017).CAS 
    Article 

    Google Scholar 
    15.Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).CAS 
    Article 

    Google Scholar 
    16.Zhao, Q. Q. et al. Effects of freshwater inputs on soil quality in the Yellow River Delta. China. Ecol. Indic. 98, 619–626. https://doi.org/10.1016/j.ecolind.2018.11.041 (2019).CAS 
    Article 

    Google Scholar 
    17.Li, F. P., Liu, W., Lu, Z. B., Mao, L. C. & Xiao, Y. H. A multi-criteria evaluation system for arable land resource assessment. Environ. Monit. Assess. https://doi.org/10.1007/s10661-019-8023-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 75, 307–320. https://doi.org/10.1016/j.ecolind.2016.12.049 (2017).Article 

    Google Scholar 
    19.Zhou, Y. et al. Assessment of soil quality indexes for different land use types in typical steppe in the loess hilly area, China. Ecol. Indic. 118, 106743. https://doi.org/10.1016/j.ecolind.2020.106743 (2020).CAS 
    Article 

    Google Scholar 
    20.Cheng, W. et al. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 387, 121666. https://doi.org/10.1016/j.jhazmat.2019.121666 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Zhao, X., Tong, M., He, Y., Han, X. & Wang, L. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecol. Ind. 125, 107445. https://doi.org/10.1016/j.ecolind.2021.107445 (2021).CAS 
    Article 

    Google Scholar 
    22.Zhang, W. S. et al. Comprehensive assessment methodology of soil quality under different land use conditions. Trans. Chin. Soc. Agric. Eng. 26(12), 311–318. https://doi.org/10.3969/j.issn.1002-6819.2010.12.053 (2010).Article 

    Google Scholar 
    23.Batjargal, T., Otgonjargal, E., Baek, K. & Yang, J. S. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 184(1–3), 872–876. https://doi.org/10.1016/j.jhazmat.2010.08.106 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Ngole-Jeme, V. M. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks. Ambio 45(3), 374–386. https://doi.org/10.1007/s13280-015-0726-9 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.China Soil Census Office. China Soil Census Data[M] (China National Agricultural Press, Beijing, 1997).26.Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Wang, Y., Duan, X. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Bao, S. D. Soil Agrochemical Analysis 25–114 (China Agricultural Press, 2000).
    Google Scholar 
    29.Wang, M. E., Peng, C., & Chen, W. P. Impacts of industrial zone in arid area in Ningxia province on the accumulation of heavy metals in agricultural soils. Chin. J. Envir. Sci., 37(9), 3532–3539. https://doi.org/10.13227/j.hjkx.2016.09.035 (2016). Article 

    Google Scholar 
    30.Xu, Z. et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ. Sci. Pollut. Res. 27, 38835–38848. https://doi.org/10.1007/s11356-020-09877-9 (2020).CAS 
    Article 

    Google Scholar 
    31.Qi, Y. B. et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province. China. Geoderma. 149(3–4), 325–334. https://doi.org/10.1016/j.geoderma.2008.12.015 (2009).ADS 
    Article 

    Google Scholar 
    32.Hu, Q., Chen, W. F., Song, X. L., Dong, Y. J. & Liu, Z. Q. Effects of reclamation/cultivation on soil quality of Saline-alkali Soils in the yellow river delta. Acta Pedol. Sin. 57(4), 824–833. https://doi.org/10.11766/trxb201905050105 (2020).Article 

    Google Scholar 
    33.Qu, X. G., Sun, Y. X. & Fu, X. Y. Soil quality and stripping depth evaluation of tillage layer for construction of Qingdao new airport. Bull. Soil Water Conserv. 38(4), 202–206. https://doi.org/10.13961/j.cnki.stbctb.2018.04.033 (2018).Article 

    Google Scholar 
    34.Abd-Elwahed, M. S. Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Ann. Agric. Sci. 63(2), 191–199. https://doi.org/10.1016/j.aoas.2018.11.004 (2018).Article 

    Google Scholar 
    35.CNEMC (China National Environmental Monitoring Center). The Background Values of Elements in Chinese Soils. 330–493 (Environmental Science Press of China, 1990).36.Cheng, J. L., Shi, Z., Zhu, Y. W., Liu, C. & Li, H. Y. Differential characteristics and appraisal of heavy metals in agricultural soils of Zhejiang Province. J. Soil Water Conserv. 20(1), 103–107. https://doi.org/10.1016/S1872-2032(06)60052-8 (2006).Article 

    Google Scholar 
    37.Jin, G. Q. et al. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang. China. Ecotox. Environ. Safe. 184, 109495. https://doi.org/10.1016/j.ecoenv.2019.109495 (2019).CAS 
    Article 

    Google Scholar 
    38.Marzaioli, R., D’Ascoli, R., De Pascale, R. A. & Rutigliano, F. A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 44(3), 205–212. https://doi.org/10.1016/j.apsoil.2009.12.007 (2010).Article 

    Google Scholar 
    39.Zhao, N., Meng, P., Zhang, J. S., Lu, S. & Cheng, Z. Q. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China. Yingyong Shengtai Xuebao https://doi.org/10.13287/j.1001-9332.2014.0038 (2014).Article 
    PubMed 

    Google Scholar 
    40.Zheng, Q. et al. Comprehensive method for evaluating soil quality in cotton fields in Xinjiang. China. Chin. J. Appl. Ecol. 29(4), 1291–1301. https://doi.org/10.13287/j.1001-9332.201804.029 (2018).Article 

    Google Scholar 
    41.Turrión, M. B. et al. Soil phosphorus forms as quality indicators of soils under different vegetation covers. Sci. Total Environ. 378(1–2), 195–198. https://doi.org/10.1016/j.scitotenv.2007.01.037 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Barbosa, E. R. M. et al. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of Savanna tree species. PLoS ONE 9(3), e92619. https://doi.org/10.1371/journal.pone.0092619 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Marty, C., Houle, D., Gagnon, C. & Courchesne, F. The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. CATENA 152, 163–172. https://doi.org/10.1016/j.catena.2017.01.014 (2017).CAS 
    Article 

    Google Scholar 
    44.Chen, Z. F. et al. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework (SMAF). Trans. Chin. Soc. Agric. Eng. 35(03), 256–267. https://doi.org/10.11975/j.issn.1002-6819.2019.03.032 (2019).Article 

    Google Scholar 
    45.Ding, J. X. et al. Spatial distribution of the herbaceous layer and its relationship to soil physical–chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecol. Sin. 36(5), 327–332. https://doi.org/10.1016/j.chnaes.2016.06.006 (2016).Article 

    Google Scholar 
    46.Güntner, A., Seibert, J. & Uhlenbrook, S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resour. Res. https://doi.org/10.1029/2003wr002864 (2004).Article 

    Google Scholar 
    47.Yenilmez, F., Kuter, N., Emil, M. K. & Aksoy, A. Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int. J. Coal Geol. 86(1), 12–19. https://doi.org/10.1016/j.coal.2010.11.012 (2011).CAS 
    Article 

    Google Scholar 
    48.Kronbauer, M. A. et al. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2013.02.066 (2013).Article 
    PubMed 

    Google Scholar 
    49.Masto, R. E. et al. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid. Earth. 6(3), 811. https://doi.org/10.5194/se-6-811-2015 (2015).ADS 
    Article 

    Google Scholar 
    50.Han, Y. et al. Effects of opencast coal mining on soil properties and plant communities of grassland. Chin. J. Ecol. 38(11), 3425–3422. https://doi.org/10.13292/j.1000-4890.201911.011 (2019).Article 

    Google Scholar 
    51.Liu, J., Wu, L. C., Chen, D., Li, M. & Wei, C. J. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).ADS 
    Article 

    Google Scholar 
    52.Yu, P. J., Liu, S. W., Zhang, L., Li, Q. & Zhou, D. W. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 616–617, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Liu, Q. Q., Zhang, T., Wang, C. & Liu, J. H. Comparison of vegetation composition and soil fertility quality inside and outside the wind farm. J. Inner Mongolia Agric. Univ. (nat. Sci. Edn.) 41(02), 30–36. https://doi.org/10.16853/j.cnki.1009-3575.2020.02.006 (2020).CAS 
    Article 

    Google Scholar 
    54.Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosys. 66(2), 119–131. https://doi.org/10.1023/a:1023944131188 (2003).Article 

    Google Scholar 
    55.Kasahara, M., Fujii, S., Tanikawa, T. & Mori, A. S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. Forest Res. 135(5), 849–856. https://doi.org/10.1007/s10342-016-0978-3 (2016).Article 

    Google Scholar 
    56.Zhan, T. Y. et al. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Appl. Soil Ecol. 147, 103438. https://doi.org/10.1016/j.apsoil.2019.103438 (2020).Article 

    Google Scholar 
    57.Liu, X. Y., Bai, Z. K., Zhou, W., Cao, Y. G. & Zhang, G. J. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau. China. Ecol. Eng. 98, 228–239. https://doi.org/10.1016/j.ecoleng.2016.10.078 (2017).Article 

    Google Scholar 
    58.Sun, L. et al. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA 175, 101–109. https://doi.org/10.1016/j.catena.2018.12.014 (2019).CAS 
    Article 

    Google Scholar 
    59.Yang, S. L., Zhou, D. Q., Yu, H. Y., Wei, R. & Pan, B. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River. China. Environ. Pollut. 177, 64–70. https://doi.org/10.1016/j.envpol.2013.01.044 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 49(2), 750–759. https://doi.org/10.1021/es5047099 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Wang, Y. Z., Duan, X. J. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134953 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Nehrani, S. H. et al. Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecol. Indic. 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770 (2020).CAS 
    Article 

    Google Scholar 
    63.Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manage. 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Qu, C. S. et al. Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 205, 244–252. https://doi.org/10.1016/j.chemosphere.2018.04.119 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Charlesworth, S., Everett, M., McCarthy, R., Ordóñez, A. & de Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 29(5), 563–573. https://doi.org/10.1016/s0160-4120(03)00015-1 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Liang, J. et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 273, 101–110. https://doi.org/10.1016/j.cej.2015.03.069 (2015).CAS 
    Article 

    Google Scholar 
    67.Liang, J. et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan. China. Environ. Pollut. 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Chen, H., Lu, X. W., Li, L. Y., Gao, T. N. & Chang, Y. Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total. Environ. 484, 27–35. https://doi.org/10.1016/j.scitotenv.2014.03.026 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Adachi, K. & Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Garcia-Guinea, J. et al. Influence of accumulation of heaps of steel slag on the environment: Determination of heavy metals content in the soils. An. Acad. Bras. Cienc. 82(2), 267–277. https://doi.org/10.1590/S0001-37652010000200003 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Fan, X. G., Mi, W. B., Ma, Z. N. & Wang, T. Y. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan northwest China. Chin. J. Envir. Sci. 34(5), 1887–1894. https://doi.org/10.13227/j.hjkx.2013.05.033 (2013).Article 

    Google Scholar 
    72.Huang, T., Yue, X. J., Ge, X. Z. & Wang, X. D. Evaluation of soil quality on gully region of loess plateau based on principal component analysis. Agri. Res. Arid Areas. 28(03), 141–147. https://doi.org/10.1016/S1002-0160(10)60014-8 (2010).Article 

    Google Scholar 
    73.Jiang, L. B. et al. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresour. Technol. 166, 435–443. https://doi.org/10.1016/j.biortech.2014.05.077 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Oumenskou, H. et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geol. Ecol. Landsc. 3(2), 83–94 (2019).Article 

    Google Scholar 
    75.Liu, Y., Wang, L., Liu, B. H. & Henderson, M. Observed changes in shallow soil temperatures in Northeast China, 1960–2007. Clim. Res. 67(1), 31–42. https://doi.org/10.3354/cr01351 (2016).Article 

    Google Scholar 
    76.Jiang, Y. F. et al. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou. China. Ecotox. Environ. Safe. 126, 154–162. https://doi.org/10.1016/j.ecoenv.2015.12.037 (2016).CAS 
    Article 

    Google Scholar 
    77.Frohne, T. & Rinklebe, J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Poll. 224(6), 1591. https://doi.org/10.1007/s11270-013-1591-4 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M. & Woch, M. W. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere 240, 124922. https://doi.org/10.1016/j.chemosphere.2019.124922 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Ozone trade-offs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Policy, drought and fires combine to affect biodiversity in the Amazon basin

    NEWS AND VIEWS
    01 September 2021

    Policy, drought and fires combine to affect biodiversity in the Amazon basin

    Analysis of the ranges of nearly 15,000 plant and vertebrate species in the Amazon basin reveals that, from 2001 to 2019, a majority were affected by fire. Drought and forest policy were the best predictors of fire outcomes.

    Thomas W. Gillespie

    0

    Thomas W. Gillespie

    Thomas W. Gillespie is in the Department of Geography and at the Institute of the Environment and Sustainability at the University of California, Los Angeles, Los Angeles, California 90095, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    The Amazon basin contains the largest continuous area of tropical rainforests in the world, and has a crucial role in regulating Earth’s climate1. Rates of tropical-rainforest deforestation and the impacts of fire and drought there are well established2,3. Less is known, however, about how these factors might interact to affect biodiversity, and about the role that forest policy and its enforcement have had over time. Writing in Nature, Feng et al.4 address these issues.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02320-0

    References1.Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M. & Nobre, C. A. Theor. Appl. Climatol. 107, 73–85 (2012).Article 

    Google Scholar 
    2.Nepstad, D. C. et al. Nature 398, 505–508 (1999).Article 

    Google Scholar 
    3.Davidson, E. A. et al. Nature 481, 321–328 (2012).PubMed 
    Article 

    Google Scholar 
    4.Feng, X. et al. Nature https://doi.org/10.1038/s41586-021-03876-7 (2021).Article 

    Google Scholar 
    5.Nepstad, D. Science 344, 1118–1123 (2014).PubMed 
    Article 

    Google Scholar 
    6.Hansen, M. C. et al. Science 342, 850–853 (2013).PubMed 
    Article 

    Google Scholar 
    7.Libonati, R. et al. Sci. Rep. 11, 4400 (2021).PubMed 
    Article 

    Google Scholar 
    8.Hopkins, M. J. G. J. Biogeogr. 34, 1400–1411 (2007).Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: How deregulation, drought and increasing fire impact Amazonian biodiversity

    Prioritizing where to restore Earth’s ecosystems

    Southeast Amazonia is no longer a carbon sink

    See all News & Views

    Subjects

    Ecology

    Conservation biology

    Climate change

    Latest on:

    Ecology

    The contribution of insects to global forest deadwood decomposition
    Article 01 SEP 21

    How deregulation, drought and increasing fire impact Amazonian biodiversity
    Article 01 SEP 21

    Boost for Africa’s research must protect its biodiversity
    Correspondence 31 AUG 21

    Climate change

    The contribution of insects to global forest deadwood decomposition
    Article 01 SEP 21

    The world’s scientific panel on biodiversity needs a bigger role
    Editorial 31 AUG 21

    Climate change implicated in Germany’s deadly floods
    News 26 AUG 21

    Jobs

    Postdoctoral Research Fellow

    Harvard Medical School (HMS)
    Boston, MA, United States

    Postdoctoral Scientist

    The Pirbright Institute
    Pirbright, United Kingdom

    Clinician Scientist Group Leader

    Francis Crick Institute
    London, United Kingdom

    PostDoc Position “Sea ice geometry (IceScan project)” (m/f/d)

    Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI)
    Bremerhaven, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Information Services

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Plants under pressure

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Selecting when to bloom

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    The contribution of insects to global forest deadwood decomposition

    1.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 

    Google Scholar 
    2.Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).ADS 
    CAS 

    Google Scholar 
    3.Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).ADS 
    CAS 

    Google Scholar 
    4.González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008).
    Google Scholar 
    5.Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).6.Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016).
    Google Scholar 
    8.Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).ADS 
    CAS 

    Google Scholar 
    9.Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).ADS 

    Google Scholar 
    11.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 

    Google Scholar 
    12.Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016).ADS 
    CAS 

    Google Scholar 
    13.Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    14.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).ADS 
    CAS 

    Google Scholar 
    15.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).ADS 
    CAS 

    Google Scholar 
    16.Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).17.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    18.Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020).
    Google Scholar 
    19.Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).21.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 

    Google Scholar 
    22.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    23.Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).ADS 

    Google Scholar 
    24.Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
    Google Scholar 
    25.Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020).
    Google Scholar 
    26.Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021).
    Google Scholar 
    27.Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 

    Google Scholar 
    29.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 

    Google Scholar 
    30.Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

    Google Scholar 
    31.A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014).
    Google Scholar 
    32.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).33.Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011).
    Google Scholar 
    34.Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).
    Google Scholar 
    35.Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).CAS 

    Google Scholar 
    36.Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).37.Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 

    Google Scholar 
    38.Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).39.Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002).ADS 

    Google Scholar 
    40.Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017).
    Google Scholar 
    41.Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).ADS 

    Google Scholar 
    42.van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014).ADS 

    Google Scholar 
    43.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 

    Google Scholar 
    44.Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
    Google Scholar 
    45.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).
    Google Scholar 
    46.Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).47.Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).48.Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009).
    Google Scholar 
    49.Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).50.Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).51.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).52.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    53.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    54.Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).55.Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).57.Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).58.Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005).
    Google Scholar 
    59.Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017).
    Google Scholar 
    60.Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).61.Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020).
    Google Scholar 
    62.Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019).CAS 

    Google Scholar 
    63.Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010).ADS 

    Google Scholar 
    64.Thünen-Institut für Waldökosysteme. Der Wald in Deutschland – Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).65.Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019).
    Google Scholar 
    66.Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009).
    Google Scholar 
    67.Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015).
    Google Scholar 
    68.Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017).
    Google Scholar 
    69.Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).70.Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001). More