Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification
1.Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).Article
CAS
Google Scholar
2.Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–588 (IPCC, 2019).3.Pörtner, H.-O. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 35–74 (IPCC, 2019).4.Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).CAS
Article
Google Scholar
5.Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).CAS
Article
Google Scholar
6.Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).CAS
Article
Google Scholar
7.Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article
Google Scholar
8.Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates, 1998).9.Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article
Google Scholar
10.Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS
Article
Google Scholar
11.Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).Article
Google Scholar
12.Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Change Biol. 24, 13–34 (2018).Article
Google Scholar
13.Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article
CAS
Google Scholar
14.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).15.Byrne, M. in Oceanography and Marine Biology: An Annual Review Vol. 49 (eds Gibson, R. N. et al.) Ch. 1 (CRC Press, 2011).16.Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271 (2011).CAS
Article
Google Scholar
17.Cripps, G., Lindeque, P. & Flynn, K. J. Have we been underestimating the effects of ocean acidification in zooplankton? Glob. Change Biol. 20, 3377–3385 (2014).Article
Google Scholar
18.Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article
Google Scholar
19.Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).
Google Scholar
20.Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).Article
CAS
Google Scholar
21.Gonzalez, A., Ophelie, R., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. Lond. B 368, 20120404 (2012).Article
Google Scholar
22.Bell, G. & Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12, 942–948 (2009).Article
Google Scholar
23.Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article
Google Scholar
24.Hardy, A. The Open Sea: The World of Plankton (Fontana Collins, 1970).25.Huys, R. & Boxshall, G. A. Copepod Evolution (The Ray Society, 1991).26.Beaugrand, G. & Reid, P. C. Long-term changes in phytoplankton, zooplankton and salmon related to climate. Glob. Change Biol. 9, 801–817 (2003).Article
Google Scholar
27.Möllmann, C., Müller-Karulis, B., Kornilovs, G. & St John, M. A. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J. Mar. Sci. 65, 302–310 (2008).Article
Google Scholar
28.Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).Article
Google Scholar
29.Mauchline, J. (ed.) The Biology of Calanoid Copepods (Academic Press, 1998).30.Turner, J. T. The Feeding Ecology of Some Zooplankters That Are Important Prey Items of Larval Fish. NOAA NMFS Technical Report (1984).31.Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coast 38, 13–23 (2015).Article
Google Scholar
32.Gobler, C. J. & Baumann, H. Hypoxia and acidification in marine ecosystems: coupled dynamics and effects on ocean life. Biol. Lett. 12, 20150976 (2016).Article
CAS
Google Scholar
33.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B 283, 20152592 (2016).
Google Scholar
34.Burt, A. Perspective: the evolution of fitness. Evolution 49, 1–8 (1995).
Google Scholar
35.Hendry, A. P. & Gonzalez, A. Whither adaptation? Biol. Philos. 23, 673–699 (2008).Article
Google Scholar
36.Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32 (2001).Article
Google Scholar
37.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).38.Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).Article
Google Scholar
39.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nat. Rev. Genet. 4, 981–994 (2003).CAS
Article
Google Scholar
40.Black, W. C. IV, Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441–469 (2001).CAS
Article
Google Scholar
41.Brennan, R. et al. Loss and recovery of transcriptional plasticity after long-term adaptation to global change conditions in a marine copepod. Preprint at bioRxiv https://doi.org/10.1101/2020.01.29.925396 (2020).42.Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).Article
Google Scholar
43.Crespi, B. J. & Bookstein, F. L. A path-analytic model for the measurement of selection on morphology. Evolution 43, 18–28 (1989).Article
Google Scholar
44.Pigliucci, M. & Kaplan, J. Making Sense of Evolution (Univ. Chicago Press, 2006); https://doi.org/10.7208/chicago/9780226668352.001.000145.Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).Article
Google Scholar
46.Riebesell, U. & Gattuso, J. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 2014–2016 (2015).Article
CAS
Google Scholar
47.Langer, J. A. F., Meunier, C. L., Ecker, U. & Horn, H. G. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).CAS
Article
Google Scholar
48.De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).Article
CAS
Google Scholar
49.Chakravarti, L. J. et al. Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evol. Appl. 9, 1133–1146 (2016).CAS
Article
Google Scholar
50.Carrier-Belleau, C., Drolet, D., McKindsey, C. W. & Archambault, P. Environmental stressors, complex interactions and marine benthic communities’ responses. Sci. Rep. 11, 4194 (2021).CAS
Article
Google Scholar
51.Dam, H. G. & Baumann, H. in Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis (eds Phillips, B. F. and Pérez-Ramírez, M.) 851–874 (Wiley, 2017).52.Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. Lond. B 368, 20120080 (2013).Article
Google Scholar
53.Falconer, D. S. Introduction to Quantitative Genetics (Longman Scientific and Technical, 1989).54.Angilletta, M. J. Jr Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).Article
Google Scholar
55.Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).Article
Google Scholar
56.Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006); https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a57.Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean (p_{{mathrm{CO}}_2}) calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).58.Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2 (g) = Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).CAS
Article
Google Scholar
59.Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).Article
Google Scholar
60.Murray, C. S. & Baumann, H. You better repeat it: complex CO2× temperature effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10, 69 (2018).CAS
Article
Google Scholar
61.Schank, J. C. & Koehnle, T. J. Pseudoreplication is a Pseudoproblem. J. Comp. Psychol. 123, 421–433 (2009).Article
Google Scholar
62.Oksanen, L. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94, 27–38 (2001).Article
Google Scholar
63.Therneau, T. A Package for Survival Analysis in R. R package 3.2-11 (2021); https://CRAN.R-project.org/package=survival64.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article
Google Scholar
65.Rosseel, Y. lvaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012).66.Epskamp, S., Stuber, S., Nak, J., Veenman, M. & Jorgensen, T. D. semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output. (2019); https://CRAN.R-project.org/package=semPlot67.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
Article
Google Scholar
68.Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. 11, 1440–1450 (2019).Article
CAS
Google Scholar
69.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).70.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article
CAS
Google Scholar
71.Kofler, R. et al. Popoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One 6, e15925 (2011).CAS
Article
Google Scholar
72.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020); https://www.R-project.org/73.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).Article
Google Scholar
74.Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).Article
Google Scholar
75.Dam, H. G. et al. Data and code repository for ‘Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification’. Zenodo https://doi.org/10.5281/zenodo.5115103 (2021). More