More stories

  • in

    Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota

    1.Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Zhou, Z., Pan, J., Wang, F., Gu, J.-D. & Li, M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol. Rev. 42, 639–655 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    4.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Zhou, Z., Liu, Y., Li, M. & Gu, J.-D. Two or three domains: a new view of tree of life in the genomics era. Appl. Microbiol. Biotechnol. 102, 3049–3058 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Jahn, U. et al. Nanoarchaeum equitans and Ignicoccus hospitalis: new Insights into a unique, intimate association of two archaea. J. Bacteriol. 190, 1743–1750 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Golyshina, O. V. et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat. Commun. 8, 60 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Beam, J. P. et al. Ancestral absence of electron transport chains in patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wang, H. et al. Different microbial distributions in the Yellow River delta. Desalination Water Treat. 75, 70–78 (2017).Article 

    Google Scholar 
    13.Lipsewers, Y. A., Hopmans, E. C., Sinninghe Damsté, J. S. & Villanueva, L. Potential recycling of thaumarchaeotal lipids by DPANN Archaea in seasonally hypoxic surface marine sediments. Org. Geochem. 119, 101–109 (2018).CAS 
    Article 

    Google Scholar 
    14.Ding, J. et al. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front. Microbiol. 8, 1012 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Chen, Y., Liu, Y. & Wang, X. Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl. Microbiol. Biotechnol. 101, 3379–3391 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Liu, X. et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6, 102 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ortiz-Alvarez, R. & Casamayor, E. O. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ. Microbiol. Rep. 8, 210–217 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Schuchmann, K., Chowdhury, N. P. & Müller, V. Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Front. Microbiol. 9, 2911 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Wittkamp, F., Senger, M., Stripp, S. T. & Apfel, U.-P. [FeFe]-Hydrogenases: recent developments and future perspectives. Chem. Commun. 54, 5934–5942 (2018).CAS 
    Article 

    Google Scholar 
    23.Westphal, L., Wiechmann, A., Baker, J., Minton, N. P. & Müller, V. The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J. Bacteriol. 200, 1 (2018).Article 

    Google Scholar 
    24.Buckel, W. & Thauer, R. K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front. Microbiol. 9, 401 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Martijn, J. et al. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat. Commun. 11, 5490 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).28.Nyirabuhoro, P. et al. Seasonal variability of conditionally rare taxa in the water column bacterioplankton community of subtropical reservoirs in China. Microb. Ecol. 80, 14–26 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Logares, R. et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    31.Schröder, C., Selig, M. & Schönheit, P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161, 460–470 (1994).
    Google Scholar 
    32.Chhabra, S. R. et al. Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J. Biol. Chem. 278, 7540–7552 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Weimer, P. J. & Zeikus, J. G. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33, 289–297 (1977).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat. Commun. 11, 3939 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Zhang, C.-J. et al. Prokaryotic diversity in mangrove sediments across Southeastern China fundamentally differs from that in other biomes. mSystems 4, 29 (2019).
    Google Scholar 
    41.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinform. 36, 10.7.1–10.7.20 (2011).Article 

    Google Scholar 
    45.Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Zou, D. et al. Genomic characteristics of a novel species of ammonia-oxidizing archaea from the Jiulong River Estuary. Appl. Environ. Microbiol. 86, 1 (2020).Article 

    Google Scholar 
    47.Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation, and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Benson, D. A. et al. GenBank. Nucleic Acids Res. 28, 15–18 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34, D344–D348 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    58.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inf. Int. Conf. Genome Inf. 23, 205–211 (2009).
    Google Scholar 
    66.Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates, and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Saier, M. H., Reddy, V. S., Tamang, D. G. & Västermark, A. The transporter classification database. Nucleic Acids Res. 42, D251–D258 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    71.Altenhoff, A. M. et al. OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res. 29, 1152–1163 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Zendo https://doi.org/10.5281/zenodo.3672835 (2020).74.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Huang, W.-C. et al. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota. figshare https://doi.org/10.6084/m9.figshare.14459535 (2021).79.Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Steenwyk, J. L., Iii, T. J. B., Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Sheridan, P. O. et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat. Commun. 11, 5494 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    Article 

    Google Scholar 
    88.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Zulkower, V. & Rosser, S. DNA features viewer: a sequence annotation formatting and plotting library for Python. Bioinformatics 36, 4350–4352 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol. Biol. Evol. 36, 435–446 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Seemann, T. barrnap 0.9: rapid ribosomal RNA prediction https://github.com/tseemann/barrnap (2013).94.Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Proteomic traits vary across taxa in a coastal Antarctic phytoplankton bloom

    Field samplingWe collected samples once per week over four weeks at the Antarctic sea ice edge, in McMurdo Sound, Antarctica (December 28, 2014 “GOS-927”; January 6 “GOS-930”, 15 “GOS-933”, and 22 “GOS-935”, 2015; as previously described in [27]). Sea water (150–250 l) was pumped sequentially through three filters of decreasing size (3.0, 0.8, and 0.1 μm, 293 mm Supor filters). Separate filter sets were acquired for metagenomic, metatranscriptomic, and metaproteomic analyses, over the course of ∼3 h, each week (36 filters in total). Filters for nucleic acid analyses were preserved with a sucrose-based buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl, pH 8.0) with RNAlater (Life Technologies, Inc.). Filters for protein analysis were preserved in the same sucrose-based buffer but without RNAlater. Filters were flash frozen in liquid nitrogen in the field and subsequently stored at −80 °C until processed in the laboratory.Metagenomic and metatranscriptomic sequencingWe used metagenomics and metatranscriptomics to obtain reference databases of potential proteins for metaproteomics. We additionally used a database assembled from a similarly processed metatranscriptomic incubation experiment [28], conducted with source water from the January 15, 2015 time point (these samples were collected on a 0.2 μm Sterivex filter and processed as previously described).For samples from the GOS-927, GOS-930, GOS-933, and GOS-935 filters, RNA was purified from a DNA and RNA mixture [29]. In total, 2 µg of the DNA and RNA mixture was treated with 1 µl of DNase (2 U/µl; Turbo DNase, TURBO DNase, Thermo Fisher Scientific), followed by processing with an RNA Clean and Concentrator kit (Zymo Research). An Agilent TapeStation 2200 was used to observe and verify the quality of RNA. In total, 200 ng of total RNA was used as input for rRNA removal using Ribo-Zero (Illumina) with a mixture of plant, bacterial, and human/mouse/rat Removal Solution in a ratio of 2:1:1. An Agilent TapeStation 2200 was used to subsequently observe and verify the quality of rRNA removal from total RNA. rRNA-deplete total RNA was used for cDNA synthesis with the Ovation RNA-Seq System V2 (TECAN, Redwood City, USA). DNA was extracted for metagenomics from the field samples (GOS-927, GOS-930, GOS-933, and GOS-935) according to [29]. RNase digestion was performed with 10 µl of RNase A (20 mg/ml) and 6.8 μl of RNase T1 (1000 U/µl), which were added to 2 µg of genomic DNA and RNA mixture in a total volume of 100 µl, followed by 1 h incubation at 37 °C and subsequent ethanol precipitation in −20 °C overnight.Samples of double stranded cDNA and DNA were fragmented using a Covaries E210 system with the target size of 400 bp. In total, 100 ng of fragmented cDNA or DNA was used as input into the Ovation Ultralow System V2 (TECAN, Redwood City, USA), following the manufacturer’s protocol. Ampure XP beads (Beckman Coulter) were used for final library purification. Library quality was analyzed on a 2200 TapeStation System with Agilent High Sensitivity DNA 1000 ScreenTape System (Agilent Technologies, Santa Clara, CA, USA). Twelve DNA and 18 cDNA libraries were combined into two pools with concentration 4.93 and 4.85 ng/µl, respectively. Resulting library pools were subjected to one lane of 150 bp paired-end HiSeq 4000 sequencing (Illumina). Prior to sequencing, each library was spiked with 1% PhiX (Illumina) control library. Each lane of sequencing resulted in between 106,000 and 111,000 Mbp total and 6900–12,000 Mbp and 4800–6900 Mbp for individual DNA or cDNA libraries, respectively.Metagenomic and metatranscriptomic bioinformaticsMetagenomic and metatranscriptomic data were annotated with the same pipelines. Briefly, adapter and primer sequences were filtered out from the paired reads, and then reads were quality trimmed to Phred33. rRNA reads were identified and removed with riboPicker [30]. We then assembled reads into transcript contigs using CLC Assembly Cell, and then we used FragGeneScan to predict open reading frames (ORFs) [31]. ORFs were functionally annotated using Hidden Markov models and blastp against PhyloDB [32]. Annotations which had low mapping coverage were filtered out (less than 50 reads total over all samples), as were proteins with no blastp hits and no known domains. For each ORF, we assigned a taxonomic affiliation based on Lineage Probability Index taxonomy [32, 33]. Taxa were assigned using two different reference databases: NCBI nt and PhyloDB [32]. Unless otherwise specified, we used taxonomic assignments from PhyloDB, because of the good representation of diverse marine microbial taxa.ORFs were clustered by sequence similarity using Markov clustering (MCL) [34]. Sequences were assigned MCL clusters by first running blastp for all sequences against each other, where the query was the same as the database. The MCL algorithm was subsequently used with the input as the matrix of E-values from the blastp output, with default parameters for the MCL clustering. MCL clusters were then assigned consensus annotations based on KEGG, KO, KOG, KOG class, Pfam, TIGRFAM, EC, GO, annotation enrichment [28, 32, 35,36,37,38,39]. Proteins were assigned to coarse-grained protein pools (ribosomal and photosynthetic proteins) based on these annotations. For assignment, we used a greedy approach, such that a protein was assigned a coarse-grained pool if at least one of these annotation descriptions matched our search strings (we also manually examined the coarse grains to ensure there were no peptides that mapped to multiple coarse-grained pools). For photosynthetic proteins, we included light harvesting proteins, chlorophyll a-b binding proteins, photosystems, plastocyanin, and flavodoxin. For ribosomal proteins, we just included the term “ribosom*” (where the * represents a wildcard character), and excluded proteins responsible for ribosomal synthesis.Sample preparation and LC-MS/MSWe extracted proteins from the samples by first performing a buffer exchange from the sucrose-buffer to an SDS-based extraction buffer, after which proteins were extracted from each filter individually (as previously described) [27]. After extraction and acetone-based precipitation, we prepared samples for liquid chromatography tandem mass spectrometry (LC-MS/MS). Precipitated protein was first resuspended in urea (100 µl, 8 M), after which we measured the protein concentration in each sample (Pierce BCA Protein Assay Kit). We then reduced, alkylated, and enzymatically digested the proteins: first with 10 µl of 0.5 M dithiothreitol for reduction (incubated at 60 °C for 30 min), then with 20 µl of 0.7 M iodoacetamide (in the dark for 30 min), diluted with ammonium bicarbonate (50 mM), and finally digested with trypsin (1:50 trypsin:sample protein). Samples were then acidified and desalted using C-18 columns (described in detail in ref. [40]).To characterize each metaproteomic sample, we employed one-dimensional liquid chromatography coupled to the mass spectrometer (VelosPRO Orbitrap, Thermo Fisher Scientific, San Jose, California, USA; detailed in [40]). For each injection, protein concentrations were equivalent across sample weeks, but different across filter sizes. We had higher amounts of protein on the largest filter size (3.0 μm) and less on the smaller filters, so we performed three replicate injections per 3.0 µm filter sample, and two replicate filter injections for 0.8 and 0.1 µm filters. We used a non-linear LC gradient totaling 125 min. For separation, peptides eluted through a 75 µm by 30 cm column (New Objective, Woburn, MA), which was self-packed with 4 µm, 90 A, Proteo C18 material (Phenomenex, Torrance, CA), and the LC separation was conducted with a Dionex Ultimate 3000 UHPLC (Thermo Scientific, San Jose, CA).LC-MS/MS bioinformatics—database searching, configuration, and quantificationMetaproteomics requires a database of potential protein sequences to match observed mass spectra with known peptides. Because we had sample-specific metagenome and metatranscriptome sequencing for each metaproteomic sample, we assessed various database configurations, including those that we predict would be suboptimal, to examine potential options for future metaproteomics researchers. We used five different configurations, described below. In each case, we appended a database of common contaminants (Global Proteome Machine Organization common Repository of Adventitious Proteins). We evaluated the performance of different database configurations based on the number of peptides identified (using a peptide false discovery rate of 1%).In order to make these databases (Table 1), we performed three separate assemblies on (1) the metagenomic reads (from samples GOS-927, GOS-930, GOS-933, and GOS-935), (2) metatranscriptomic reads (from samples GOS-927, GOS-930, GOS-933, and GOS-935), and (3) metatranscriptomic reads from a concurrent metatranscriptomic experiment, started at the location where GOS-933 was taken [28]. Database configurations were created by subsetting from these assemblies. The first configuration was “one-sample database”, constructed to represent the scenario where only one sample was used for metagenomic and metatranscriptomic sequencing (we chose the first sampling week). Specifically, this was done by subsetting and including ORFs from the metagenomic and metatranscriptomic assemblies if reads from this time point were present in that sample (reads mapped as in [28]), and then removing redundant protein sequences (P. Wilmarth, fasta utilities). The second configuration was the “sample-specific database”, where each metaproteomic sample had one corresponding database (prepared from both metagenome and metatranscriptome sequencing completed at the same sampling site), also done by subsetting ORFs from the metagenomic and metatranscriptomic assemblies as described above. The third configuration was pooling databases across size fractions—such that all metagenomic and metatranscriptomic sequences across the same filter sizes (e.g., 3.0 µm) were combined. ORFs were subsetted from the metagenomic and metatranscriptomic assemblies as above. The fourth and fifth configurations are from the concurrent metatranscriptomic experiment [28]. The fourth configuration (“metatranscriptome experiment (T0)”) was the metatranscriptome of the in situ microbial community (i.e., at the beginning of the experiment). This database was created by subsetting from the “metatranscriptome experiment (all)” assembly. Finally, the fifth configuration was the metatranscriptome of all experimental treatments pooled together (two iron levels, three temperatures; “metatranscriptome experiment (all)”). The overlap between databases (potential tryptic peptides) in different samples is presented graphically in Supplementary Figs. S1–S3.Table 1 Characteristics of the five different database configurations we used for metaproteomic database searches.Full size tableAfter matching mass spectra with peptide sequences for each database configuration (MSGF + with OpenMS, with a 1% false discovery rate at the peptide level; [41, 42]), we used MS1 ion intensities to quantify peptides. Specifically, we used the FeatureFinderIdentification approach, which cross-maps identified peptides from one mass spectrometry experiment to unidentified features in another experiment—increasing the number of peptide quantifications [43]. This approach requires a set of experiments to be grouped together (i.e., which samples should use this cross-mapping?). We grouped samples based on their filter sizes (including those samples that are replicate injections). First, mass spectrometry runs within each group were aligned using MapAlignerIdentification [44], and then FeatureFinderIdentification was used for obtaining peptide quantities.After peptides have been identified and quantified, we mapped them to proteins or MCL clusters of proteins, which have corresponding functional annotations (KEGG, KO, KOG, Pfams, TIGRFAM; [28, 32, 35,36,37,38,39]). Functional annotations were used in three separate analyses. (1) Exploring the overall functional changes in microbial community metabolism, we mapped peptides to MCL clusters—groups of proteins with similar sequences. These clusters have consensus annotations based on the annotations of proteins found within the clusters (described in detail in [28]). For this section, we only used peptides that uniquely map to MCL clusters. (2) We restricted the second analysis to two protein groups: ribosomal and photosynthetic proteins. For this analysis, we mapped peptides to one of these protein groups if at least one annotation mapped to the protein group (via string matching with keywords). This approach is “greedy” because does not exclude peptides if they also correspond with other functional groupings, but this is necessary because of the difficulties in comparing various annotation formats. (3) The last analysis for functional annotations was for targeted proteins, and we only mapped functions to peptides where the peptides uniquely identify a specific protein (e.g., plastocyanin).Code for the database setup and configuration, database searching, and peptide quantification is open source (https://github.com/bertrand-lab/ross-sea-meta-omics).LC-MS/MS bioinformatics—normalizationNormalization is an important aspect of metaproteomics: it influences all inferred peptide abundances. Typically, the abundance of a peptide is normalized by the sum of all identified peptide abundances. We use the term normalization factor for the inferred sum of peptide abundances. Note that the apparent abundance of observed peptides is dependent on the database chosen. In theory, if fewer peptides are observed because of a poorly matching database, this will decrease the normalization factor, and those peptides that are observed will appear to increase in abundance. It is not known how much this influences peptide quantification in metaproteomics.For each database configuration, we separately calculated normalization factors. We then correlated the sum of observed peptide abundances with each other. To get a database-independent normalization factor, we used the sum of total ion current (TIC) for each mass spectrometry experiment (using pyopenms; [45]), and also examined the correlation with database-dependent normalization factors. If normalization factors are highly correlated with each other, that would indicate database choice does not impact peptide quantification. Using TIC for normalization may have drawbacks, particularly if there are differences in contamination, or amounts of non-peptide ions across samples.Defining proteomic mass fractionProtein abundance can be calculated in two ways: (1) the number of copies of a protein (independent of a proteins’ mass), or (2) the total mass of the protein copies (the sum of peptides). We refer to the latter as a proteomic mass fraction. For example, to calculate a diatom-specific, ribosomal mass fraction, we sum all peptide abundances that are diatom- and ribosome-specific, and divide by the sum of peptide abundances that are diatom-specific. Note that this is slightly different to other methods, like the normalized spectral abundance factor, which normalizes for total protein mass (via protein length; [46]).Combining estimates across filter sizesOrganisms should separate according to their sizes when using sequential filtration with decreasing filter pore sizes. In practise, however, organisms can break because of pressure during filtration, and protein is typically present for large phytoplankton on the smallest filter size and vice versa. We used a simple method for combining observations across filter sizes, weighted by the number of observations per filter. We begin with the abundance of a given peptide, which was only considered present if it was observed across all injections of the same sample. We calculated the sum of observed peptide intensities (i.e., the normalization factor), and divided all peptide abundances by this normalization factor. Normalized peptide abundances are then averaged across replicate injections. If we are estimating the ribosomal mass fraction of the diatom proteome, we first normalize the diatom-specific peptide intensities as a proportion of diatom biomass (i.e., divide all diatom-specific peptides by the sum of all diatom-specific peptides). We then summed all diatom-normalized peptides intensities that are unique to both diatoms and ribosomal proteins, which would give us the ribosomal proportion of the diatom proteome. Yet, we typically would obtain multiple estimates of, for example, ribosomal mass fraction of diatoms, on different filters. We combined the three values by multiplying each by a coefficient that represents a weight for each observation (specific to a filter size). These coefficients sum to one, and are calculated by summing the total number of peptides observed at a time point for a filter, and dividing by the total number of peptides observed across filters (but within each time point). For example, if we observed 100 peptides that are diatom- and ribosome-specific, and 90 of these peptides were on the 3.0 µm filter and only ten were on the 0.8 μm filter, we would multiply the 3.0 µm filter estimate by 0.9 and the 0.8 µm filter by 0.1. This method uses all available information about proteome composition across different filter sizes (similar to [47]).When we estimate the proteomic mass fraction of a given protein pool, we do not need to adjust for the total protein on each filter. This is because this measurement is independent of total protein. However, for merging estimates of total relative abundance of different organisms across filters, we needed to additionally weight the abundance estimate by the amount of protein on each filter. Therefore, in addition to the weighting scheme described above, we multiplied taxon abundance estimates by the total protein on each filter divided by the total protein across filters on a given day.LC-MS/MS simulationWe used simulations of metaproteomes and LC-MS/MS to (1) quantify biases associated with inferring coarse-grained proteomes from metaproteomes, and (2) to mitigate these biases in our inferences. Specifically, we asked the question: how does sequence diversity impact quantification of coarse-grained proteomes from metaproteomes? Consider a three organism microbial community. If two organisms are extremely similar, there will be very few peptides that can uniquely map to those organisms, resulting in underestimated abundance. The third organism would also be underestimated, but to a lesser degree, unless it had a completely unique set of peptides. A similar outcome is anticipated with differences in sequence diversity across protein groups, such that highly conserved protein groups will be underestimated.Our mass spectrometry simulations offer a unique perspective on this issue: we know the “true” metaproteome, and we can compare this with an “inferred” metaproteome. We simulated variable numbers of taxonomic groups, each with different protein pools of variable sequence diversity. From this simulated metaproteome, we then simulated LC-MS/MS-like sampling of peptides. Complete details of the mass spectrometry simulation are available in [48] and the Supplementary materials. The only difference between this model and that presented in [48] is here we include dynamic exclusion. The ultimate outcomes from these simulations were (1) identifying which circumstances lead to biased inferences about proteomic composition, and (2) determining the underpinnings of these biases.Cofragmentation bias scores for peptidesWe recently developed a computational model (“cobia”) that predicts a peptides’ risk for interference by sample complexity (more specifically, by cofragmentation of multiple peptides; [48]). This study showed that coarse-grained taxonomic and functional groupings are more robust to bias, and that this model can also be used to estimate bias. We ran cobia with the sample-specific databases, which produces a “cofragmentation score”—a measure of risk of being subject to cofragmentation bias. Specifically, the retention time prediction method used was RTPredict [49] with an “OLIGO” kernel for the support vector machine. The parameters for the model were: 0.008333 (maximum injection time); 3 (precursor selection window); 1.44 (ion peak width); and 5 (degree of sparse sampling). Code for running this analysis, as well as the corresponding input parameter file, is found at https://github.com/bertrand-lab/ross-sea-meta-omics.Description of previously published datasets analyzedWe leveraged several previously published datasets to compare our metaproteomic results. Specifically, we used proteomic data of phytoplankton cultures of Phaeocystis antarctica and Thalassiosira pseudonana [27, 50], and of cultures of Escherichia coli under 22 different culture conditions [51]. Coarse-grained proteomic estimates were also compared with previously published targeted metaproteomic data [27]. More

  • in

    Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon

    1.Lalli, C. & Parsons, T. R. Biological Oceanography: An Introduction (Elsevier, 1997).
    Google Scholar 
    2.Mackas, D. L., Denman, K. L. & Abbott, M. R. Plankton patchiness: Biology in the physical vernacular. Bull. Mar. Sci. 37, 652–674 (1985).
    Google Scholar 
    3.Kjerfve, B. & Magill, K. E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 88, 187–199 (1989).ADS 
    Article 

    Google Scholar 
    4.Kjerfve, B. Chapter 1, Coastal lagoons. In Elsevier Oceanography Series Vol. 60 (ed. Kjerfve, B.) 1–8 (Elsevier, 1994).
    Google Scholar 
    5.McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Carr, M.-E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep Sea Res. Part II 49, 59–80 (2001).ADS 
    Article 

    Google Scholar 
    7.Chavez, F. P. & Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 83, 80–96 (2009).ADS 
    Article 

    Google Scholar 
    8.Schubert, H. & Telesh, I. Estuaries and coastal lagoons. In Biological Oceanography of the Baltic Sea (eds Snoeijs-Leijonmalm, P. et al.) 483–509 (Springer Netherlands, 2017). https://doi.org/10.1007/978-94-007-0668-2_13.Chapter 

    Google Scholar 
    9.Pecqueur, D. et al. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673, 13–27 (2011).CAS 
    Article 

    Google Scholar 
    10.Deininger, A. et al. Simulated terrestrial runoff triggered a phytoplankton succession and changed seston stoichiometry in coastal lagoon mesocosms. Mar. Environ. Res. 119, 40–50 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuar. Coast. Shelf Sci. 57, 73–85 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Huang, J., Gao, J. & Hörmann, G. Hydrodynamic-phytoplankton model for short-term forecasts of phytoplankton in Lake Taihu, China. Limnologica 42, 7–18 (2012).CAS 
    Article 

    Google Scholar 
    13.Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).ADS 
    Article 

    Google Scholar 
    14.Dube, A., Jayaraman, G. & Rani, R. Modelling the effects of variable salinity on the temporal distribution of plankton in shallow coastal lagoons. J. Hydro-environ. Res. 4, 199–209 (2010).Article 

    Google Scholar 
    15.Pulina, S., Satta, C. T., Padedda, B. M., Sechi, N. & Lugliè, A. Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons. Estuar. Coast. Shelf Sci. 212, 95–104 (2018).ADS 
    Article 

    Google Scholar 
    16.Millet, B. & Cecchi, P. Wind-induced hydrodynamic control of the phytoplankton biomass in a lagoon ecosystem. Limnol. Oceanogr. 37, 140–146 (1992).ADS 
    Article 

    Google Scholar 
    17.Souchu, P. et al. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Mar. Ecol. Prog. Ser. 218, 141–152 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Paphitis, D. & Collins, M. B. Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Cont. Shelf Res. 25, 2350–2365 (2005).ADS 
    Article 

    Google Scholar 
    19.Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Trombetta, T., Vidussi, F., Roques, C., Scotti, M. & Mostajir, B. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11, 502336 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Hemraj, D. A., Hossain, A., Ye, Q., Qin, J. G. & Leterme, S. C. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation. Sci. Rep. 7, 44441 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bec, B., Husseini Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).CAS 
    Article 

    Google Scholar 
    26.Collos, Y. et al. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 61, 68–75 (2009).ADS 
    Article 

    Google Scholar 
    27.Collos, Y. et al. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550(1), 83–93 (2005).CAS 
    Article 

    Google Scholar 
    28.Gangnery, A. et al. Growth model of the Pacific oyster, Crassostrea gigas, cultured in Thau Lagoon (Méditerranée, France). Aquaculture 215, 267–290 (2003).Article 

    Google Scholar 
    29.Pernet, F. et al. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea Res. 68, 20–32 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).ADS 
    Article 

    Google Scholar 
    31.Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).Article 

    Google Scholar 
    32.Jones, K. J. & Gowen, R. J. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuar. Coast. Shelf Sci. 30, 557–567 (1990).ADS 
    Article 

    Google Scholar 
    33.Bosak, S., Godrijan, J. & Šilović, T. Dynamics of the marine planktonic diatom family Chaetocerotaceae in a Mediterranean coastal zone. Estuar. Coast. Shelf Sci. 180, 69–81 (2016).ADS 
    Article 

    Google Scholar 
    34.Wagner, C. & Adrian, R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: A matter of temporal scale. Freshw. Biol. 56, 1949–1961 (2011).Article 

    Google Scholar 
    35.Rynearson, T. A., Flickinger, S. A. & Fontaine, D. N. Metabarcoding reveals temporal patterns of community composition and realized thermal niches of Thalassiosira spp. (Bacillariophyceae) from the Narragansett Bay long-term plankton time series. Biology 9, 19 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    36.Delaney, M. P. Effects of temperature and turbulence on the predator–prey interactions between a heterotrophic flagellate and a marine bacterium. Microb. Ecol. 45, 218–225 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Peter, K. H. & Sommer, U. Phytoplankton cell size: Intra- and interspecific effects of warming and grazing. PLoS One 7, e49632 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.van Donk, E. & Kilham, S. S. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26, 40–50 (1990).Article 

    Google Scholar 
    39.Stelzer, C.-P. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? In Rotifera VIII: A Comparative Approach (eds Wurdak, E. et al.) 349–353 (Springer Netherlands, 1998).Chapter 

    Google Scholar 
    40.Arandia-Gorostidi, N., Weber, P. K., Alonso-Sáez, L., Morán, X. A. G. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME 11, 641–650 (2017).CAS 
    Article 

    Google Scholar 
    41.Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Sci. 503, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    42.Käse, L. et al. Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them?. PLoS One 16, e0244817 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M. & Shalapyonok, L. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res. Part II 47, 3249–3272 (2000).ADS 
    Article 

    Google Scholar 
    44.Vidussi, F. et al. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol. Oceanogr. 56, 206–218 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Balas, L. & Özhan, E. Three-dimensional modelling of stratified coastal waters. Estuar. Coast. Shelf Sci. 54, 75–87 (2002).ADS 
    Article 

    Google Scholar 
    46.Dalu, T., Richoux, N. B. & Froneman, P. W. Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables. S. Afr. J. Bot. 107, 31–38 (2016).Article 

    Google Scholar 
    47.Sommer, U., Peter, K. H., Genitsaris, S. & Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato?. Biol. Rev. 92, 1011–1026 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, 1994).Book 

    Google Scholar 
    49.Litchman, E., de TezanosPinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. Linking traits to species diversity and community structure in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems (eds Naselli-Flores, L. & Rossetti, G.) 15–28 (Springer Netherlands, 2010).Chapter 

    Google Scholar 
    50.Unrein, F., Gasol, J. M., Not, F., Forn, I. & Massana, R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME 8, 164–176 (2014).CAS 
    Article 

    Google Scholar 
    51.Polimene, L. et al. Modelling a light-driven phytoplankton succession. J. Plankton Res. 36, 214–229 (2014).CAS 
    Article 

    Google Scholar 
    52.Hatzaki, M. et al. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Clim. 27, 9272–9289 (2014).ADS 
    Article 

    Google Scholar 
    53.Mostajir, B. et al. Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol. Oceanogr. 44, 586–596 (1999).ADS 
    Article 

    Google Scholar 
    54.Lacuna, D. G. & Uye, S.-I. Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. J. Plankton Res. 23, 143–156 (2001).Article 

    Google Scholar 
    55.Halac, S. et al. An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J. Plankton Res. 19, 1671–1686 (1997).CAS 
    Article 

    Google Scholar 
    56.Souchu, P. et al. Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can. J. Fish. Aquat. Sci. 67, 743–753 (2010).CAS 
    Article 

    Google Scholar 
    57.Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).Article 

    Google Scholar 
    58.Reid, P. C., Lancelot, C., Gieskes, W. W. C., Hagmeier, E. & Weichart, G. Phytoplankton of the North Sea and its dynamics: A review. Neth. J. Sea Res. 26, 295–331 (1990).Article 

    Google Scholar 
    59.Derolez, V. et al. Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 241, 106810 (2020).Article 

    Google Scholar 
    60.Yool, A., Martin, A. P., Fernández, C. & Clark, D. R. The significance of nitrification for oceanic new production. Nature 447, 999–1002 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Constantin, S., Constantinescu, Ș & Doxaran, D. Long-term analysis of turbidity patterns in Danube Delta coastal area based on MODIS satellite data. J. Mar. Syst. 170, 10–21 (2017).Article 

    Google Scholar 
    62.de Jorge, V. N. & van Beusekom, J. E. E. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 40, 776–778 (1995).ADS 
    Article 

    Google Scholar 
    63.Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: Consequences for microphytobenthos resuspension phenomenon. PLoS One 7, e44155 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Madoni, P. Benthic ciliates in Adriatic Sea lagoons. Eur. J. Protistol. 42, 165–173 (2006).PubMed 
    Article 

    Google Scholar 
    65.Cruz, J. et al. Plankton community and copepod production in a temperate coastal lagoon: What is changing in a short temporal scale?. J. Sea Res. 157, 101858 (2020).Article 

    Google Scholar 
    66.Audouin, J. Hydrologie de l’étang de Thau. Rev. Trav. Inst. Pêches Marit. 26, 5–104 (1962).
    Google Scholar 
    67.Byun, D. S., Wang, X. H. & Holloway, P. E. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Estuar. Coast. Shelf Sci. 59, 185–196 (2004).ADS 
    Article 

    Google Scholar 
    68.Stefanidou, N., Genitsaris, S., Lopez-Bautista, J., Sommer, U. & Moustaka-Gouni, M. Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments. Front. Microbiol. 9, 2444 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xu, N. et al. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae 9, 13–17 (2010).Article 

    Google Scholar 
    70.Greenwald, G. M. & Hurlbert, S. H. Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. In Saline Lakes V (ed. Hurlbert, S. H.) 307–335 (Springer Netherlands, 1993).Chapter 

    Google Scholar 
    71.Fiandrino, A., Giraud, A., Robin, S. & Pinatel, C. Validation d’une méthode d’estimation des volumes d’eau échangés entre la mer et les lagunes et définition d’indicateurs hydrodynamiques associés (2012).72.Mostajir, B., Mas, S., Parin, D. & Vidussi, F. High-Frequency physical, biogeochemical and meteorological data of Coastal Mediterranean Thau Lagoon Observatory. SEANOE (2018).73.Données Publiques de Météo-France—Accueil. https://donneespubliques.meteofrance.fr/.74.Kraberg, A., Baumann, M. & Dürselen, C.-D. Coastal phytoplankton: Photo guide for Northern European seas (Univerza v Ljubljani, 2010).
    Google Scholar 
    75.Bérard-Therriault, L., Poulin, M. & Bossé, L. Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires Canadian Special Publication of Fisheries and Aquatic Sciences No. 128 (NRC Research Press, 1999).
    Google Scholar  More

  • in

    Raspberry ketone diet supplement reduces attraction of sterile male Queensland fruit fly to cuelure by altering expression of chemoreceptor genes

    1.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54. https://doi.org/10.1111/j.1744-7348.2010.00448.x (2011).Article 

    Google Scholar 
    2.Jessup, A. J. et al. in Area-Wide Control of Insect Pests: From Research to Field Implementation (eds M. J. B. Vreysen, A. S. Robinson, & J. Hendrichs) 685–697 (Springer Netherlands, 2007).3.HIA. Australian Horticulture Statistics Handbook 2019/20. Horticulture Innovation Australia Limited (2020).4.Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159. https://doi.org/10.1111/eea.12180 (2014)5.Knipling, E. F. Possibilities of Insect Control or Eradication Through the Use of Sexually Sterile Males. J. Econ. Entomol. 48, 459–462. https://doi.org/10.1093/jee/48.4.459 (1955).Article 

    Google Scholar 
    6.Shelly, T. & McInnis, D. Sterile Insect Technique and Control of Tephritid Fruit Flies: Do Species With Complex Courtship Require Higher Overflooding Ratios?. Ann. Entomol. Soc. Am. 109, 1–11. https://doi.org/10.1093/aesa/sav101 (2015).CAS 
    Article 

    Google Scholar 
    7.Hendrichs, J. & Robinson, A. in Encyclopedia of Insects (Second Edition) (eds Vincent H. Resh & Ring T. Cardé) 953–957 (Academic Press, 2009).8.Dominiak, B., Clifford, C. S. & Nielsen, S. G. Queensland fruit fly (Bactrocera tryoni Froggatt) attraction to and chemical analysis of male annihilation blocks using three concentratios of cuelure at Dubbo, NSW, Australia. Plant Prot. Q. 24, 157–160 (2009).9.Dominiak, B. C., Ekman, J. & Broughton, S. Mass trapping and other management option for mediterranean fruit fly and Queensland fruit fly in Australia. Gen. Appl. Entomol. 44, 1–8 (2016).
    Google Scholar 
    10.Khan, M. A. M. et al. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt). Sci. Rep. 7, 13366. https://doi.org/10.1038/s41598-017-13843-w (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Vargas, R. I., Shelly, T. E., Leblanc, L. & Piñero, J. C. in Vitamins & Hormones Vol. 83 (ed Gerald Litwack) Ch. 23, 575–595 (Academic Press, 2010).12.Benelli, G. et al. Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for Integrated Pest Management. J. Pest. Sci. 87, 385–405. https://doi.org/10.1007/s10340-014-0577-3 (2014).Article 

    Google Scholar 
    13.Shelly, T. E. Consumption of methyl eugenol by male Bactrocera dorsalis (Diptera: Tephritidae): low incidence of repeat feeding. Florida Entomologist 77, 201–208 (1994).CAS 
    Article 

    Google Scholar 
    14.Shelly, T. E. Trapping male oriental fruit flies (Diptera: Tephritidae): does feeding on a natural source of methyl eugenol reduce capture probability?. Florida Entomologist 83, 109–111 (2000).Article 

    Google Scholar 
    15.Tan, K. H., & Toong, Y. C. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination. J. Chem. Ecol. 28, 1161–1172 (2002).16.Shelly, T. E. Evaluation of a Genetic Sexing Strain of the Oriental Fruit Fly as a Candidate for Simultaneous Application of Male Annihilation and Sterile Insect Techniques (Diptera: Tephritidae). J. Econ. Entomol. 113, 1913–1921. https://doi.org/10.1093/jee/toaa099 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Joseph, R. M. & Carlson, J. R. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends in genetics : TIG 31, 683–695. https://doi.org/10.1016/j.tig.2015.09.005 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Venthur, H., & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 9, 1. https://doi.org/10.3389/fphys.2018.01163 (2018).19.Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev. Entomol. 58, 373–391. https://doi.org/10.1146/annurev-ento-120811-153635 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Zheng, W. et al. Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis. Int. J. Mol. Sci. 14, 14936 (2013).Article 

    Google Scholar 
    21.Siciliano, P. et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem. Mol. Biol. 48, 51–62. https://doi.org/10.1016/j.ibmb.2014.02.005 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Siciliano, P. et al. Sniffing Out Chemosensory Genes from the Mediterranean Fruit Fly, Ceratitis capitata. Plos One 9, e85523https://doi.org/10.1371/journal.pone.0085523 (2014)23.Campanini, E. B. & de Brito, R. A. Molecular evolution of Odorant-binding proteins gene family in two closely related Anastrepha fruit flies. BMC Evol. Biol. 16, 198–198. https://doi.org/10.1186/s12862-016-0775-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Park, K., et al. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila have different implications for their functions. Vol. 300 (2000).25.Shanbhag, S. R. et al. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc. Res. Tech. 55, 297–306. https://doi.org/10.1002/jemt.1179 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Wu, Z. et al. Discovery of chemosensory genes in the oriental fruit fly, Bactrocera dorsalis. PloS One 10, e0129794-e0129794.https://doi.org/10.1371/journal.pone.0129794 (2015)27.Liu, Z., Smagghe, G., Lei, Z. & Wang, J.-J. Identification of male- and female-specific olfaction genes in antennae of the Oriental Fruit Fly (Bactrocera dorsalis). PLoS ONE 11, e0147783–e0147783. https://doi.org/10.1371/journal.pone.0147783 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Zhang, J. et al. Identification and expression profiles of novel odorant binding proteins and functional analysis of OBP99a in Bactrocera dorsalis. Arch. Insect Biochem. Physiol. 98, e21452. https://doi.org/10.1002/arch.21452 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Cheng, J. et al. Identification and expression analysis of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax. PeerJ Preprints 6, e27297v1. https://doi.org/10.7287/peerj.preprints.27297v1 (2018).30.Kumaran, N., Prentis, P. J., Mangalam, K. P., Schutze, M. K. & Clarke, A. R. Sexual selection in true fruit flies (Diptera: Tephritidae): transcriptome and experimental evidences for phytochemicals increasing male competitive ability. Mol. Ecol. 23, 4645–4657. https://doi.org/10.1111/mec.12880 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Liu, H. et al. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci. Rep. 7, 15894. https://doi.org/10.1038/s41598-017-15893-6 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Kumaran, N. et al. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni. Genome biology and evolution 10, 94–107.https://doi.org/10.1093/gbe/evx257 (2017)33.Idrees, A. et al. Protein baits, volatile compounds and irradiation influence the expression profiles of odorant-binding protein genes in Bactrocera dorsalis (Diptera: Tephritidae). Appl. Ecol. Environ. Res. 15, 1883–1899 (2017).Article 

    Google Scholar 
    34.Pavlidi, N. et al. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci. Rep. 7, 42633. https://doi.org/10.1038/srep42633 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Arya, G. H. et al. The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 40, 233–243. https://doi.org/10.1093/chemse/bjv001 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Akter, H., Adnan, S., Morelli, R., Rempoulakis, P. & Taylor, P. W. Suppression of cuelure attraction in male Queensland fruit flies provided raspberry ketone supplements as immature adults. PLoS ONE 12, e0184086. https://doi.org/10.1371/journal.pone.0184086 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Gilchrist, A. S. et al. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species. BMC Genomics 15, 1153. https://doi.org/10.1186/1471-2164-15-1153 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Fleischer, J. & Krieger, J. Insect pheromone receptors—Key elements in sensing intraspecific chemical signals. Front. Cell. Neurosci. 12. https://doi.org/10.3389/fncel.2018.00425 (2018).39.Liu, Z. et al. An antennae-specific odorant-binding protein is involved in Bactrocera dorsalis Olfaction. Front. Ecol. Evol. 8.https://doi.org/10.3389/fevo.2020.00063 (2020).40.Tan, K. H. Recaptures of feral Bactrocera dorsalis and B. umbrosa (Diptera: Tephritidae) males after feeding on methyl eugenol. Bull. Entomol. Res. 110, 15–21, https://doi.org/10.1017/S0007485319000208 (2019).41.Liu, L. et al. Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39, 133–146. https://doi.org/10.1016/s0896-6273(03)00394-5 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Swarup, S., Huang, W., Mackay, T. F. C. & Anholt, R. R. H. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci USA 110, 1017–1022. https://doi.org/10.1073/pnas.1220168110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    43.Vijayan, V., Thistle, R., Liu, T., Starostina, E. & Pikielny, C. W. Drosophila pheromone-sensing neurons expressing the ppk25 Ion channel subunit stimulate male courtship and female receptivity. PLoS Genet. 10, e1004238. https://doi.org/10.1371/journal.pgen.1004238 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. & Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140–1151. https://doi.org/10.1016/j.cell.2012.03.045 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Khan, M. A. M. et al. Raspberry ketone accelerates sexual maturation and improves mating performance of sterile male Queensland fruit fly, Bactrocera tryoni (Froggatt). Pest Manag. Sci. 75, 1942–1950. https://doi.org/10.1002/ps.5307 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Weldon, C. W., Perez-Staples, D. & Taylor, P. W. Feeding on yeast hydrolysate enhances attraction to cue-lure in Queensland fruit flies, Bactrocera tryoni. Entomol. Experim. et Applicata 129, 200–209. https://doi.org/10.1111/j.1570-7458.2008.00768.x (2008)47.Najar-Rodriguez, A. J., Galizia, C. G., Stierle, J. & Dorn, S. Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J. Exp. Biol. 213, 3388 (2010).CAS 
    Article 

    Google Scholar 
    48.Bertschy, C., Turlings, T. C., Bellotti, A. C. & Dorn, S. Chemically-mediated attraction of three parasitoid species to mealybug-infested cassava leaves. Florida Entomologist 80, 383–395 (1997).Article 

    Google Scholar 
    49.Butler, D. G., Cullis, B. R., Gilmour, A. R. & Gogel, B. J. (Queensland Department of Primary Industries and Fisheries, Australia, 2009).50.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Zhao, Q.-Y. et al. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinf. 12, S2. https://doi.org/10.1186/1471-2105-12-S14-S2 (2011).CAS 
    Article 

    Google Scholar 
    52.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. https://doi.org/10.1093/bioinformatics/bti610 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902. https://doi.org/10.1038/nbt.2931 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Al-Shahrour, F., Díaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580. https://doi.org/10.1093/bioinformatics/btg455 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 43, e47–e47. https://doi.org/10.1093/nar/gkv007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Contrasting effects of the COVID-19 lockdown on urban birds’ reproductive success in two cities

    Data collectionData on the birds’ reproductive success and the number of humans present at nest sites were collected as part of a long-term, ongoing monitoring project in Hungary, in which we investigate the impacts of urbanization on populations of great tits. The great tit is an insectivorous passerine bird that is widespread across the Western Palearctic, occupies both urban and forest habitats, readily accepts nestboxes, and shares many important ecological traits with other tit or chickadee species also occurring in urban habitats27. These traits make this species an ideal model organism for studying the effects of the anthropause on wildlife in different environments.Study sitesWe monitored breeding great tit populations and also collected human presence data in two urban areas and at one forest study site. In one of the urban sites, Veszprém (47°05′17.29″N, 17°54′29.66″E; human population: c. 56,000; the monitoring scheme started in 2013), the nestboxes were placed in public green spaces (public parks, university campuses, a bus station, and a cemetery) that are surrounded by built-up areas and roads, and experience frequent anthropogenic disturbance. At the other urban size, Budapest (47°30′27.4″N, 19°01′03.4″E; the capital city of Hungary, human population: c. 1.75 million; the monitoring scheme started in 2019), the nestboxes were placed in two public urban parks, located c. 400 m from each other in the city core area and separated by high-traffic roads. The parks are freely accessible to residents and are heavily embedded within the urban matrix. At both urban sites, most of the nestboxes are distributed along paths or walking trails. Even though the two cities greatly differ in their size and human population, our urban study plots in both cities have similar general characteristics: these are surrounded by built-up areas, are at a similar distance (c. 3–4 km) from the nearest forested areas (for Veszprém, this is the forest at Vilma-puszta: 47°05′06.7″N, 17°51′51.4″E; for Budapest, this is the forest at Normafa: 47°30′27.7″N 18°57′51.1″E), and nests also experienced a similar level of human disturbance in the pre-COVID reference period (Fig. 1b). The forest site, Szentgál (47°06′39.75″N, 17°41′17.94″E; the monitoring scheme started in 2013), is a mature woodland, dominated by beech (Fagus sylvatica) and hornbeam (Carpinus betulus), located 3 km away from the nearest human habitation (Szentgál, human population: c. 2.800), c. 20 km and 110 km away from Veszprém and Budapest, respectively. There are no paved roads in the forest, and the area is relatively free from human disturbance although it experiences occasional hunting and logging activity.Human presence around nestsTo quantify human presence at our study sites for 2020 and the reference years we counted the number of humans (motorized vehicles excluded) during each nest check, for 30 s, in the proximity of the nestboxes (for similar approach see Corsini et al. 2019). The number of humans was recorded within a 50-m radius of the nestboxes between 2013 and 2018 (Veszprém, Szentgál), and within a 15-m radius distance in 2019–2020 (all sites). We changed the counting distance in 2019 due to methodological reasons following28. However, to be able to compare the human presence data of 2020 in Veszprém and Szentgál to that recorded in earlier years, in 2020 we performed the counts with both the 15-m and the 50-m radius distances at these two sites. Thus, for 2020 in Veszprém, we have human presence data both for the 50-m and the 15-m radius areas that were used in the forest-city and the between-cities comparisons, respectively (see below). For each year and study site, we used human presence data only from seasonally first broods (defined below), and only from nests where there were either already eggs or nestlings in the nest, resulting in 9.4 ± 3.6 (mean ± SD) observations per brood which is a reliable indicator of human presence28.Birds’ reproductive successWe monitored nestboxes each year at least twice a week from mid-March to early June to record laying and hatching dates, clutch size, hatching success, and the number of nestlings in active great tit nests. We ringed nestlings at day 14–16 post-hatch (i.e. a few days before fledging; hatching day of the first chick = day 1) with a numbered metal ring and also recorded their body mass (to the nearest 0.1 g), tarsus length (to the nearest 0.1 mm and following Svensson’s ‘alternative’ method29) and wing length (from the bend of the wing to the longest primary; to nearest 1 mm). Shortly after the expected date of fledging we carefully examined the nest material to identify and count the number of chicks that died after ringing (due to e.g. starvation, predation) that we included in the calculation of nestling survival (detailed below). The aim of this is to get a more accurate estimate for the number of offspring that could indeed fledge from the nest. The number of broods (nestlings) that suffered partial or complete mortality between ringing and fledging were: n = 6 (13) in Budapest (2019–2020), n = 70 (152) in Veszprém (2013–2020), and n = 25 (83) in the Szentgál forest.From these data we determined clutch size (the maximum number of eggs observed in a brood), hatching success (the proportion of chicks hatched / eggs laid), the number of fledglings, and nestling survival (the proportion of fledged young / hatched chicks). The number of fledglings (i.e. the number of young fledged successfully) was calculated as the number of chicks ringed minus the number of chicks found dead in the nest after the ringing. We involved only seasonally first breeding attempts (as this period overlapped with the lockdown period; detailed at the Statistical analyses), and defined first broods as follows. In our study system breeding great tits are captured on their nests and receive a unique combination of colour rings. Active nests are also routinely equipped with a small, concealed video camera enabling us to reliably identify over 80% of breeding individuals each year30. Thus, relying on this setup, we considered a clutch as a first breeding attempt of a pair if it was initiated before the date of the first egg laid in the earliest second clutch at that site by an individually identifiable (i.e. colour-ringed) female that successfully raised her first clutch (i.e. fledged at least one young) in that year.Air pollution and meteorological conditionsTo describe the levels of traffic-related air pollution (nitrogen dioxide [NO2], nitrogen oxides [NOX] and ozone [O3]) and the meteorological conditions (temperature and precipitation) at the two urban study sites (Veszprém and Budapest), we used data provided by the Hungarian Air Quality Monitoring Network and the Hungarian Meteorological Service, respectively. To better understand which aspect of the anthropause might have affected great tits’ breeding success we thus assessed if the lockdown affected air pollution levels differently at the two urban study sites (compared to 2019), or if weather conditions showed different fluctuations between 2019 and 2020 at the two cities. For more details on the statistical analyses and results, see ESM: Sect. 1.Statistical analysesThe duration of the official restrictions on human mobility (lockdown) spanned between 28 March–4 May in Veszprém (calendar date: 88–125; 01 January = 1) and 28 March–18 May (88–139) in Budapest. During this period people were allowed to leave their homes e.g. to run essential errands including individual sport and recreational activities in public green spaces, although with keeping at least 1.5 m from each other (social distancing). Very importantly, from the point of view of our study, the period of movement restrictions had almost completely overlapped with the seasonally first breeding attempts (from egg-laying to fledging) of great tits at both urban sites. The date of laying the 1st egg (calendar date, mean ± SD) in Veszprém was 94.2 ± 6.4, while in Budapest 97 ± 7.8; the date of chick ringing and measuring in Veszprém was 128 ± 5.3, while in Budapest: 133 ± 9.1. Thus, we decided not to exclude any first broods based on the date in order to maximize our sample size. Similarly, the period from which we involved human presence data was also strongly overlapped with the duration of the movement restrictions in both cities. Therefore, in Veszprém, the calendar dates of the first and the last human count at each nest were 87–108 (median: 100) and 121–142 (median: 132), respectively, while in Budapest 87–128 (median: 98) and 118–155 (median: 128).Human presence around nestsIn accordance with our first objective (forest-city comparisons), we explored if the lockdown in 2020 caused any changes in human disturbance around the great tit nests. To do so, we compared the number of humans (50-m radius of the nests) between 2020 and the 2013–2018 reference period, separately for the forest (Szentgál) and urban (Veszprém) study sites. Note that in 2019, we did not collect data on human presence within a 50-m radius at Veszprém and Szentgál (see above: Data collection), therefore 2019 was not included in the reference period of this analysis. We, however, also compared human presence in Veszprém between 2019 and 2020 using the 15-m radius data which indicates a change that is consistent with the differences found using the 50-m radius data (detailed below).First, we built generalized linear mixed-effects (GLM, lme4 R package) models with Poisson error distribution with the number of humans as the response variable, including year as a fixed factor and nestbox ID as random factor to control for non-independence of the data. Next, we extracted the mean values (least-squares means; package emmeans31) and associated standard errors for each year as estimated by the model. We computed the mean of these yearly mean estimates for the 2013–2018 reference period (i.e. calculated a single overall mean describing the whole reference period) and compared this long-term mean to the mean estimate of 2020 by calculating the linear contrast between them (with the ‘contrast’ function of the emmeans package), and expressed linear contrasts as 2020 minus the reference period.For our second objective (between-cities comparisons), we compared the changes in human disturbance around the nestboxes at the two urban study sites, Veszprém and Budapest, using the number of humans recorded within the 15-m radius of the active nests in 2019 and 2020. We analysed the data from Budapest and Veszprém separately and built generalized linear mixed-effects models with Poisson error distribution with the number of humans (15-m radius of the nests) as the response variable, including year as a fixed factor and nestbox ID as random factor to control for non-independence.Birds’ reproductive successWe used data from 2019 (reference; for justification see below in this section) and 2020 (lockdown). First, we constructed separate linear models to analyse each component of reproductive success (response variables), and for the forest-city and the between-cities comparisons. We used linear models (LM) for clutch size and the number of fledglings, generalized linear models (GLM, with quasi-binomial error distribution) for hatching success and nestling survival, and linear-mixed effects models (LME) for nestling body size traits (body mass, tarsus length, and wing length). Models on nestling body size traits contained nestlings’ age at ringing as a confounding variable (three-level factor: 14, 15, or 16 d of age) and brood ID as a random factor to control for the non-independence of chicks raised in the same brood. Finally, these models always contained a habitat (Veszprém or Szentgál) × year (2019 or 2020) interaction term for forest-city comparisons and a city (Budapest or Veszprém) × year (2019 or 2020) interaction term for between-cities comparisons. We checked assumptions of residuals’ normality and homogeneity of variance by inspecting the residuals plots which were respected for all models.Next, to test the prediction for our first objective (forest-city comparisons), we extracted the mean values (least-squares means) and associated standard errors of each response variable for each habitat × year combination as estimated by the linear model’s interaction. Then, from these estimates, we calculated habitat contrasts, i.e. the mean forest-city difference (forest minus urban) for each year (i.e. for 2019 and 2020), and compared the mean habitat contrast for the 2019 reference year to the mean habitat contrast of 2020; for similar approach see14,32,33.For our second objective (between-cities comparisons), we followed the same procedure as for the forest-city comparisons (detailed above) except that here we compared the differences between cities (Budapest minus Veszprém) in 2020 and 2019. These full models (i.e. for the forest-city and between-cities comparisons) are presented in Table S1–S2 (ESM: Sect. 2).In our study, we chose 2019 as a reference year for multiple reasons. First, because this was temporally the closest year without a lockdown. Second, because for Budapest we have monitoring data only from 2019 to 2020, using 2019 and 2020 in all analyses makes the results more comparable. Finally, although we have monitoring data from a total of eight years (2013–2020) for Szentgál (forest site) and Veszprém (urban site), for the forest-city comparisons we did not include years before 2019 in the reference because we noticed a negative trend in birds’ reproductive success throughout the study years (Fig. S3). This trend was especially apparent in the forest population, and may have reduced the forest-city difference by the end of the study period. Indeed, 2019 and 2020 were amongst the poorest years and resulted in a very similar reproductive success between both years within both habitats (Fig. S3). Because such temporal trend may have confounded the comparisons of 2020 with earlier years, to take account for its effect, and to further justify our approach of using 2019 as the reference year, we conducted additional analyses on the birds’ reproductive success by comparing both 2019 and 2020 (separately) to the 2013–2018 long-term reference period. We predict that if 2019 and 2020 are similarly affected by the decreasing trend in reproductive success than then the differences between the long-term reference period and 2019 and 2020, respectively, should be similar. For the details of these long-term forest-city comparisons see ESM: Sect. 3 and Table S3).Finally, we did not conduct the forest-city comparisons (first objective) between the forest site (Szentgál) and the other urban site (Budapest) for two reasons. First, because unlike to the Szentgál vs. Veszprém setup, we did not have an appropriate forest (control) location which is close to Budapest. Second, because conducting comparisons between the long-term data and 2019 and 2020, respectively (see: ESM Sect. 3) was not possible for Budapest because we do not have similar long-term data for the latter site.Clutches that failed before reaching the incubation stage (due to predation or desertion; i.e. final clutch size was uncertain), suffered complete mortality due to weather (e.g. nestbox fall from the tree due to strong wind), and cases when complete or partial clutch or brood loss may have occurred due to the monitoring process (e.g. when a nestbox was dropped or when complete brood failure occurred soon after capturing a parent on the nest) were excluded from all analyses. In the analyses investigating the number of fledglings, fledging success, and nestling body size traits we involved nests only where at least one nestling hatched, and excluded broods that were involved in a food-supplementation experiment (as treatment group) during the nestling rearing period in 201714. We used the R 4.0.5 software environment for statistical analysis and creating figures34.Ethical statementAll procedures were in accordance with Hungarian laws, and adhered to the ASAB/ABS guidelines for the use of animals in behavioural research and teaching. Permit to the use of animals in this study was provided by the National Scientific Ethical Committee on Animal Experimentation (permit number: PE-06/KTF/997–8/2018, FPH061/1329–5/2018, PE-06/KTF/06,543–7/2020 and FPH061/3036–4/2020). Permits to study protected species and access to protected areas were provided by the Middle Transdanubian Inspectorate for Environmental Protection, Natural Protection and Water Management (permit numbers: 31559/2011, 24,861/2014 and VE-09Z/03,454–8/2018, for working in Veszprém and Szentgál) and the Environment Protection and Nature Conservation Department of the Pest County Bureau of the Hungarian Government and the Mayor’s Office of Budapest (permit numbers: PE-06/KTF/997–8/2018, FPH061/1329–5/2018, PE-06/KTF/06,543–7/2020 and FPH061/3036–4/2020, for working in Budapest). More

  • in

    A life cycle assessment of reprocessing face masks during the Covid-19 pandemic

    ScopeWe compared disposable face masks that were used once with face masks that were sterilized and used five more times (six times in total). Sterilisation and PFE test data of the Aura 1862+ (3M, Saint Paul, Minnesota, USA) face mask indicate that this type of face mask shows good performance after multiple sterilisation cycles10,11,12. In a previous pilot study, the company CSA Services (Utrecht, the Netherlands), a sterilization facility for cleaning, disinfection and sterilization of medical instruments, was rebuild to process FFP2 face masks. In total, 18,166 single use FFP2 masks were sterilised after use in a medical autoclave. As the majority (n = 7993) were Aura 1862+ (3M, Saint Paul, Minnesota, USA), this particular type of face mask was chosen for the LCA.The total weight of the face masks and packaging together during end-of-life consists of incineration for the face masks (97%) and landfill for the carton box packaging of new face masks (3%). There is no recycling potential used in our model since the materials coming from the operating room and its packaging is commonly disposed as medical waste. In the Netherlands, no energy recovery takes place at the incineration of regulated medical waste. Therefore, no co-function was applicable for the end-of-life scenario.Recycling is often a multi-functional process that produces two or more goods. To deal with the multi-functionality in the background processes, the cut-off approach was applied to exclude the allocation of the greenhouse gas emissions to additional goods. This means that potential rest materials such as energy gained during incineration are cut-off and that the greenhouse gas emissions are fully allocated to the waste treatment processes itself.In the LCA, the ‘functional unit’ defines the primary function that is fulfilled by the investigational products and indicates how much of this function is considered18. In this study, we pragmatically chose as a definition for the protection of 100 health care workers against airborne viruses, using one FFP2 certified face mask, each during one working shift of an average of 2 h in a hospital in the Netherlands.Table 1 shows the differences between the two scenarios:

    1.

    100 masks including packaging, transported from production to the hospital, used and disposed.

    2.

    100 times use of reprocessed masks. We calculated that 27.1 masks are being produced and transported from production to the hospital. The 27.1 are being reprocessed five times, taking into account that 20% of the batch cannot be reprocessed. Therefore 80% of the batch could be used for reprocessing after each step resulting in: 27.1 (new) + 21.7 (repro 1) + 17.3 (repro 2) + 13.9 (repro 3) + 11.1 (repro 4) + 8.9 (repro 5) = 100 times of use. For each time of reprocessing the batch is transported from the hospital to the (hospital) Central Sterilization Services Department (CSSD) and disposed after five times of reprocessing.

    Table 1 Comparison between reference flow 1 and 2.Full size tableCombining the functional unit with the two alternative scenarios results in the reference flows for the protection of 100 health care workers against airborne viruses, either using a face mask one single time (100 virgin masks produced for the 1st scenario), or reusing a face mask for five additional times (27.1 virgin masks produced for the 2nd scenario). For both reference flows, only FFP2 certified face masks are considered. For the calculations each mask is used for a single two hours working shift in an average hospital in the Netherlands.Life cycle inventory (LCI) analysisThe inventory data includes all phases from production (including material production and part production), transport, sterilisation to end-of-life of the life cycle of the single use and reprocessed face masks. We disassembled one face mask to obtain the weight of each individual component on a precision scale (Fit Evolve, Bangosa Digital, Groningen, the Netherlands) with a calibrated inaccuracy of 1.5%. Component information and materials were obtained from the data fact sheet provided by the manufacturer. We conducted a separate validation experiment to establish the material composition in the filtering fabric (Supplement file).This LCA with the Aura 3M masks was based on steam sterilization by means of a hospital autoclave and therefore part of this study. Therefore, face masks were placed in a sterilization bag that contained up to five masks. A total of 1000 masks were placed into an autoclave (Getinge, GSS6713H-E, Sweden) per cycle. After sterilization, the masks were transported to the hospital. Masks were reprocessed for a maximum of five times before final disposal10,11.The assessment of climate change impact is done following as closely as possible the internationally accepted Life Cycle Assessment (LCA) method following the ISO 14040 and 14044 standards19,20. The LCA examines all the phases of the product’s life cycle from raw material extraction to production, packaging, transport, use and reprocessing until final disposal19. The LCA was modelled using SimaPro 9.1.0.7 (PRé Sustainability, Amersfoort, The Netherlands). The background life cycle inventory data were retrieved from the ecoinvent database (Ecoinvent version 3.6, Zürich, Switzerland)21.To make a valid comparison between the disposable and reprocessing face masks, the system boundaries should be equal in both scenarios. The system boundaries in this study consisted of the production, the use and the disposal and waste treatment of the masks. For the reprocessed face masks, the lifecycle is extended due to the sterilisation process (Fig. 1). Therefore, the additional PPE’s and materials needed to safely process the masks (e.q. masks, gloves and protective sheets) are included in the production phase. The production of machinery for the manufacturing of the face masks and the autoclave were not included in this study.Figure 1System boundary overview of new and reprocessed face masks including waste treatment by incineration.Full size imageThe production facility for the face masks is located in Shanghai, China22,23. Further distribution took place from Bracknell, UK to Neuss, Germany and the final destination was set in Rotterdam, the Netherlands.The packaging materials were disposed in the hospital where the face masks are used primarily. After first use, face masks were transported to the sterilisation department. All masks were manually checked before reprocessing by personnel wearing PPE. Of all used Aura 1862+ facemasks that entered the CSA, approximately 10% was discarded. To remain conservative, the LCA was conducted based on a 20% rejection rate as a result of face masks which could not be reused anymore due to deformities, lipstick, and broken elastic bands.A full overview of the life cycle inventory table for the two scenarios and details on model assumptions are added in the Supplemental file (Supplemental file, Part B).Life cycle impact assessmentThe carbon footprint (kg CO2 eq) was chosen as the primary unit in the impact category. ReCiPe was applied at midpoint level and used to translate greenhouse gas emissions into climate change impact16.Uncertainty analysisThe final LCA model contains several uncertainties based on assumptions and measurement inaccuracies24. The included uncertainties were based on weighted components of the masks as well as the packaging which were measured with 1.5% inaccuracy of the precision scale apparatus. A Monte Carlo sampling25 was conducted for both alternatives (disposable and reprocessing) where input parameters for the LCA were sampled randomly from their respective statistical distributions in for 10,000 ‘runs’. Because input parameters between scenarios were partly overlapping, we compared these two scenarios directly using a discernibility analysis. This technique, establishes which scenario is beneficial for each of 10,000 Monte Carlo runs. We report the percentage of instances where the reprocessing scenario has a lower carbon footprint than the disposable scenario.Sensitivity analysisA sensitivity analysis was conducted to check the sensitivity of the outcome measures to variation in the input parameters. To determine which parameters are interesting to investigate, three aspects were considered: the variations in number of face masks per sterilization cycle (autoclave capacity), rejection rate (number of losses per cycle) and transport distance to the CSSD. Finally, we included the relative contribution of these variations. The following three parameter variations were chosen for the sensitivity analysis:

    1.

    Rejection percentage. The rejection rate was defined based on experiences from the participating sterilisation department and studies that show that sterilisation of the face masks up to 5 times is possible. Masks were re-used for 5 times, approximately 10% was discarded during the total life cycle. Out of this experience and to remain conservative, the total rejection rate was set on 20%. Therefore it is interesting to investigate whether variation in PFE testing outcomes or differences in user protocols influence the outcomes. This should indicate if masks from higher or lower quality can also be suitable candidates for reprocessing.

    2.

    Autoclave capacity, which largely depends on the loading of the autoclave. To mimic different loads of the autoclave, it is interesting to know the influence of sterilizing fewer masks per run on the model.

    3.

    Transport. As it is likely that many hospitals have a Central Sterilisation Services Department (CSSD) it is interesting to know the effect of having zero transportation. Moreover, in case hospitals are not willing to change the routing in their CSSD it is interesting to observe how outcomes are influenced if transportation is set on the maximal realistic value of 200 km.

    The parameters have been varied with 250 and 500 face masks per sterilisation batch. A rate varying with 10% and 30% of the face masks being rejected due to quality reasons and variation in transport kilometres of 0–200 km.There is a small difference between the baselines of the sensitivity, LCIA and contribution analyses because all these are performed using separate Monte-Carlo simulations. The output of the different simulations may show minor differences due to statistical distribution.Cost price comparisonA cost analysis was made to give insight in costing from a procurement perspective. The cost analysis is conducted with five face masks that were steam sterilized per batch in a permeable laminate bag, Halyard type CLFP150X300WI-S20 and includes the expenses of energy, depreciation, water consumption, cost of personnel, overhead and compared to the prices for a new disposable 3M Aura face mask during the first and second Corona waves. Five pieces per bag were chosen in order to have enough space between the masks to sterilise each mask properly. The cost analysis is based on actual sterilization as well as associated costs compared to the prices of new disposable face masks. The costs were then related to the functional unit of protecting 100 health care workers by calculating the difference in the amount of Euros per 100 face masks. More

  • in

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Study regions and farmsTen European regions from boreal to Mediterranean were selected (Supplementary Table 1). They represented major agricultural land uses such as arable crops including horticulture, mixed farming, grassland and perennial crops (vineyards and olives). Within each region, a pool of ~20–40 farms was selected from which 12–20 farms were randomly selected (169 in total) that belonged to the same farm type, produced under homogeneous climatic and environmental circumstances and fulfilled specific criteria regarding their main production branch. In case the selected farms were not willing to participate, we asked other farms from the pool till the sufficient number has been reached. The selected organic farms had all been certified for at least five years. Farmers were asked if they were willing to participate in the study. If they refused, additional random sampling was conducted. In the region NL, 11 organic farms agreed to participate but only three non-organic farms, whereas seven organic farms and 11 non-organic farms were available in the region HU. During the study, one non-organic farmer in the region CH ceased participation.Habitat maps and farm interviewsThe complete area of all selected farms was mapped, using the BioHab method36. Excluded from the farm area were woody and aquatic habitats larger than 800 m2 and summer pastures. Within the farm area, areal and linear habitats were recorded. For an areal habitat, the minimal mapping unit was 400 m2 with a width of at least 5 m. More narrow habitats, between 0.5 and 5 m wide and at least 30 m long, were mapped as linear habitats. Habitats were distinguished in habitat types according to Raunkiær life forms, environmental conditions and management evidence28. Further, a farmland class was assigned to each habitat that described whether the habitat was managed for agricultural production or other objectives such as e.g. nature conservation. In face-to-face interviews following a standardized questionnaire, farmers provided detailed information on field management and yield.Categorization as production fields and semi-natural habitatsBased on the habitat maps and available information about management intensity, we categorized all habitats as either semi-natural habitats or production fields. In agricultural landscapes, these two categories are often not clearly distinguishable. There is a gradient from more intensively managed production fields to less intensively used semi-natural habitats. In addition, a categorization at the local scale can be different from an approach at a European scale (29 and see p. 45 of37). Here, we applied the same criteria for all ten study regions.In all cases, we categorized as production fields: arable crops, intensively managed grasslands (following main plant species observed, management evidence and objectives, with fertilization and/or two or more cuts a year), horticultural crops, and vineyards.We categorized as semi-natural habitats: linear habitats, habitats that were managed for nature conservation objectives, habitats where mainly geophytes, helophytes or hydrophytes were growing, grasslands with woody vegetation (shrubs and/or trees), and extensively managed grasslands (no fertilization, no or one cut a year).Species samplingVascular plant, earthworm, spider and bee species were sampled in all different habitat types of a farm. One plot per habitat type was randomly selected per farm for species sampling. This resulted in 1402 selected habitat plots on 169 farms (Supplementary Table 2). In the selected habitats, species were sampled during one growing season, using standardized protocols19,38. Plant species were identified in squares of 10 × 10 m in areal habitats and in rectangular strips of 1 × 10 m in linear habitats. Earthworms were collected at three random locations of 30 × 30 cm per habitat. First, a solution of allyl isothiocyanate (AITC) was poured out to extract earthworms from the soil. Afterwards, a 20-cm-deep soil core from the same location was hand sorted to find additional specimens. Identification took place in the lab. Spiders were sampled on three dates at five random locations per habitat within a circle of 0.1 m2. Using a modified vacuum shredder, spiders were taken from the soil surface, transferred to a cool box, frozen, or put in ethanol, sorted and identified in the lab. Bees (wild bees and bumble bees) were sampled on three dates, during dry, sunny and warm weather conditions. They were captured with an entomological aerial net along a 100 m long and 2 m wide transect, transferred to a killing jar and identified in the lab.Grouping of species dataSpecies data were pooled per taxa, habitat and region, and three sub-communities were formed with species (1) exclusively found in semi-natural habitats, i.e. unique to semi-natural habitats, (2) exclusively found in production fields, i.e. unique to production fields, and (3) found in both habitat categories i.e. shared by production fields and semi-natural habitats. For calculations of effects over all four taxa, species richness was the sum of the individual taxa species richnesses.Estimating species richnessSpecies richness was estimated using coverage- and sample-size-based rarefaction and extrapolation curves31,39,40. Rarefaction and extrapolation, including confidence intervals (bootstrap method) and sampling coverage, were calculated in R 3.4.041 using package iNEXT42. Detailed information is provided below for each topic.Estimating richness of unique species to compare semi-natural habitats and production fieldsTo legitimately compare the richness of species unique to semi-natural habitats and to production fields, we used the coverage-based method, i.e. we standardized the samples by their completeness30. The point of comparison was determined by the so-called ‘base coverage’ identified by the following procedure31: (1) select the maximum sample coverage at reference sample size (number of sampling units) of the sub-communities under comparison, (2) select the minimum sample coverage at twice the reference sample size of the sub-communities under comparison, (3) identify the maximum of the results from step (1) and step (2) as ‘base coverage’. The species richness estimates were then read off from the species sample-size-based rarefaction and extrapolation curves at the ‘base coverage’ for each sub-community being compared. If zero or exactly one species was unique to a sub-community at the reference sample size, no sample coverage could be calculated. In this case, we set the species richness at 0 or 1, respectively. The species richness estimate of the other sub-community under comparison was then read off at twice the reference sample size on the curve.The ‘base coverage’ was individually defined for each region and each taxonomic group since the mixed effects models used to analyze the data took into account the variation among regions and taxonomic groups.Differences in species richness unique to semi-natural habitats and production fieldsThe difference between the species richness unique to semi-natural habitats and unique to production fields was tested with mixed effects models using package lme4 (Version 1.1-12) in R43. The data were (Sij | β, b, x) ~ Poisson(µij) from i = 1, …, 10 regions. The model is:$${{{rm{ln}}}}left({mu }_{{ij}}right)={beta }_{0}+{beta }_{1}{x}_{1i}+{b}_{1i}$$
    (1)
    $${b}_{1} sim N(0,sigma 2)$$where ({beta }_{0}) is a fixed intercept, ({beta }_{1}) a fixed effect sub-community ({x}_{1{ij}}) (species unique to semi-natural habitats versus species unique to production fields), b1i are random intercepts for region i. Random effects are normally distributed with mean 0 and variance σ2. The significance of term ({beta }_{1}) was calculated by log-likelihood ratio tests with one degree of freedom. For the models over all four taxa, an additional random intercept was included, i.e. b2j with mean 0 and variance σ2 for j = 1, …, 4 taxa (Fig. 1b).Differences in species richness between organic and non-organic systemsThe comparison between organic and non-organic systems of species unique to semi-natural habitats and to production fields, and of species shared by the two habitat categories, relied on coverage-based extrapolation as described above. Differences between management systems were tested for significance using mixed-effects models with management system ({beta }_{1}) ({x}_{1{ij}}) as fixed effect in (1).Estimating species loss due to conversion of semi-natural habitats to production fieldsTo predict the species loss due to conversion of semi-natural habitats to production fields, we relied on sample-size-based extrapolations31 with species incidence frequencies. We estimated the richness of the species pool for the total number of mapped habitats including the extrapolated species richness unique to semi-natural habitats and unique to production fields, and the observed richness of shared species for each of the four taxa. This species pool provided the basis for the calculation of the species loss or gain (Table 1 and Supplementary Table 7). To model the species richness decrease for any amount of semi-natural habitats converted to production fields, we calculated and drew backward the curve composed of the accumulation curve for species unique to semi-natural habitats, to which the estimated total species richness unique to production fields (constant) and the corresponding gain of species unique to production fields (increases with increasing area of production fields as semi-natural habitats are converted), and the richness of observed shared species (constant) were added. This is the species decrease curve (Supplementary Fig. 2). If started at the observed species richness, this curve corresponds exactly to a species richness curve calculated by a cumulative random removal of semi-natural habitats one by one from the pool of all habitats. The four taxa decrease curves were added for the curve in Fig. 2. Confidence intervals (CI, 95%) shown in Figs. 2 and 3 are calculated by bootstrapping within the calculation of the species accumulation curves (iNEXT42), upper and lower bounds of the 95% CI of the four taxa being added. From the species decrease curve, we read off the predicted species richness for a conversion of 50% and 90% of the semi-natural habitats, and a conversion required to increase production by 10%.As species were sampled in 20% of all mapped habitats on average per region (min. 8%, max. 35%), extrapolated species accumulation curves used to build the species decrease curve were calculated for more than two to three times the reference sample size, which is the suggested range for reliable extrapolation of the species richness estimator31,44. Obviously, the confidence intervals (CI) of the species richness extrapolations here became wide (Supplementary Fig. 4). As we still wanted to show the impact of a conversion of the whole semi-natural area into production fields on the production gain in the ten regions, we used the uncertainty (upper and lower bounds of the 95% CI of the four taxa added) to define two situations in addition to the average case to predict species richness for a 50% and a 90% semi-natural habitat conversion, and a conversion required to increase production by 10%: (1) a worst case situation with the upper bound of the CI of the expected species richness unique to semi-natural habitats, the lower bound of the CI of the expected species richness unique to production fields, and shared species assumed not to be able to survive without semi-natural habitats and considered like species unique to semi-natural habitats (i.e. upper bound); and (2) a best case situation with the lower bound of the CI of the expected species richness unique to semi-natural habitats, the upper bound of the CI of the expected species richness unique to production fields, and the lower bound of the CI of the expected shared species richness.Estimating production gainFarmer interviews delivered an average yield per crop type per farm for the years 2008–2010 (Supplementary Data45 shows details for organic and non-organic systems separately). Farmers indicated yield in kilograms or tons per hectare. This was transformed into energy units, i.e. mega joules per hectare (MJ ha−1) using standard values46. From this, for each region, the average yield (MJ ha−1) was calculated by first multiplying individual crop type yields by the corresponding crop type areas to obtain the production per crop type, then summing up the production of all crop types, and finally dividing this sum by the total area of the crop types. For livestock farms, the fodder production of grasslands was estimated based on the average requirements per livestock unit, accounting for the amount of feed grain, legumes, silage maize and of imported feedstuff. All yields relate to plant biomass production and do not comprise livestock products. The average yield takes into account the relative cover of the different crop types in the regions. Therefore, the conversion of the semi-natural area to production fields was region-specific. The production of certain semi-natural habitats as e.g. olive groves in Spain was not part of the production calculation. The reason is that data on production for semi-natural habitats were mainly not available and/or negligible, e.g. extensively used grassland in CH or in HU, and we decided to apply the same treatment to all the regions. Consequently, in case of olive groves in Spain the effective increase in production is overestimated. To calculate the production gain per region, the production field area added by the conversion of semi-natural habitat area was multiplied by the average yield. In practice, in many regions it may be impossible to convert semi-natural habitat to productive land due to geomorphological constraints and poor soils, and even if land were converted, yields would be much lower than these averages. The results presented here, especially the 90% scenario, are therefore over-optimistic. On the other hand, our calculations are based on the area of semi-natural habitat available for conversion on existing farms, but in some regions other sources of semi-natural land may be available for conversion, e.g. former agricultural land that has been abandoned.Species loss and production gain for three scenariosWe calculated the change of species richness and the production gain under current day production efficiency for two scenarios: (1) a conversion of 90% of the semi-natural area into production fields. The 10% of semi-natural area remaining is considered unsuitable for agricultural use or even impossible to cultivate; (2) a conversion of 50% of the semi-natural area into production fields, and (3) a necessary conversion of the semi-natural area into production fields to achieve a 10% production increase per region.Standardization for organic and non-organic systemsAlthough the overall mapped area, the number of semi-natural habitats, the number of production fields and the average habitat size did not significantly differ between the two management systems (Supplementary Table 5), we standardized the number and size of habitats to the average across both systems per region to compare the species loss and production gain at current day production efficiency in the organic and non-organic systems. The total production in organic and non-organic systems per region was calculated based on the respective yield and the average mapped area of the production fields across both systems as described in section “Estimation of production gain”. The impact on biodiversity was analyzed for the scenario that organic systems should achieve the same level of production as non-organic systems by converting semi-natural habitats to production fields. We calculated the amount of the required area to be converted into production fields and the corresponding species change.Differences between management systems were again tested for significance using mixed-effects models with management system ({{{{rm{beta }}}}}_{1}) ({{{{rm{x}}}}}_{1{{{rm{ij}}}}}) as fixed effect in (1).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    High rates of short-term dynamics of forest ecosystem services

    1.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 

    Google Scholar 
    2.Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).CAS 

    Google Scholar 
    3.Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).
    Google Scholar 
    4.Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).
    Google Scholar 
    5.Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).
    Google Scholar 
    6.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).7.Summary for Policymakers. In Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).8.Martínez-Harms, M. J. & Balvanera, P. Methods for mapping ecosystem service supply: a review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 8, 17–25 (2012).
    Google Scholar 
    9.Hauck, J. et al. ‘Maps have an air of authority’: potential benefits and challenges of ecosystem service maps at different levels of decision making. Ecosyst. Serv. 4, 25–32 (2013).
    Google Scholar 
    10.Balvanera, P. et al. Conserving biodiversity and ecosystem services. Science 291, 2047 (2001).CAS 

    Google Scholar 
    11.Dick, J., Maes, J., Smith, R. I., Paracchini, M. L. & Zulian, G. Cross-scale analysis of ecosystem services identified and assessed at local and European level. Ecol. Indic. 38, 20–30 (2014).
    Google Scholar 
    12.UK National Ecosystem Assessment. The UK National Ecosystem Assessment Technical Report. (UNEP-WCMC, 2011); http://uknea.unep-wcmc.org/13.Orsi, F., Ciolli, M., Primmer, E., Varumo, L. & Geneletti, D. Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy 99, 104840 (2020).
    Google Scholar 
    14.Holland, R. A. et al. The influence of temporal variation on relationships between ecosystem services. Biodivers. Conserv. 20, 3285–3294 (2011).
    Google Scholar 
    15.Renard, D., Rhemtull, J. M. & Bennett, E. M. Historical dynamics in ecosystem service bundles. Proc. Natl Acad. Sci. USA 112, 13411–13416 (2015).CAS 

    Google Scholar 
    16.Rukundo, E. et al. Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 89, 696–705 (2018).
    Google Scholar 
    17.Stürck, J., Schulp, C. J. E. & Verburg, P. H. Spatio-temporal dynamics of regulating ecosystem services in Europe—the role of past and future land use change. Appl. Geogr. 63, 121–135 (2015).
    Google Scholar 
    18.Rau, A. L. et al. Temporal patterns in ecosystem services research: a review and three recommendations. Ambio 49, 1377–1393 (2020).
    Google Scholar 
    19.Sutherland, I. J., Bennett, E. M. & Gergel, S. E. Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. For. Ecol. Manage. 374, 61–70 (2016).
    Google Scholar 
    20.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).CAS 

    Google Scholar 
    21.Vanhanen, H. et al. Making Boreal Forests Work for People and Nature (IUFRO, 2012).22.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 

    Google Scholar 
    23.Moen, J. et al. Eye on the Taiga: removing global policy impediments to safeguard the boreal forest. Conserv. Lett. 7, 408–418 (2014).
    Google Scholar 
    24.Global Forest Industry (Swedish Forest Industries, 2019); https://www.forestindustries.se/forest-industry/statistics/global-forest-industry/25.Saastamoinen, O., Kangas, K. & Aho, H. The picking of wild berries in Finland in 1997 and 1998. Scand. J. For. Res. 15, 645–650 (2000).
    Google Scholar 
    26.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).
    Google Scholar 
    27.Hou, Y., Li, B., Müller, F., Fu, Q. & Chen, W. A conservation decision-making framework based on ecosystem service hotspot and interaction analyses on multiple scales. Sci. Total Environ. 643, 277–291 (2018).CAS 

    Google Scholar 
    28.Blumstein, M. & Thompson, J. R. Land-use impacts on the quantity and configuration of ecosystem service provisioning in Massachusetts, USA. J. Appl. Ecol. 52, 1009–1019 (2015).
    Google Scholar 
    29.Fernandez-Campo, M., Rodríguez-Morales, B., Dramstad, W. E., Fjellstad, W. & Diaz-Varela, E. R. Ecosystem services mapping for detection of bundles, synergies and trade-offs: examples from two Norwegian municipalities. Ecosyst. Serv. 28, 283–297 (2017).
    Google Scholar 
    30.Gissi, E., Fraschetti, S. & Micheli, F. Incorporating change in marine spatial planning: a review. Environ. Sci. Policy 92, 191–200 (2019).
    Google Scholar 
    31.Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).CAS 

    Google Scholar 
    32.Willcock, S. et al. Do ecosystem service maps and models meet stakeholders’ needs? A preliminary survey across sub-Saharan Africa. Ecosyst. Serv. 18, 110–117 (2016).
    Google Scholar 
    33.Jonsson, M., Bengtsson, J., Gamfeldt, L., Moen, J. & Snäll, T. Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Nat. Plants 5, 141–147 (2019).
    Google Scholar 
    34.Pohjanmies, T. et al. Impacts of forestry on boreal forests: an ecosystem services perspective. Ambio 46, 743–755 (2017).
    Google Scholar 
    35.Miina, J., Hotanen, J.-P. & Salo, K. Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in Finnish mineral soil forests. Silva Fenn. 43, 577–593 (2009).
    Google Scholar 
    36.Hertel, A. G. et al. Berry production drives bottom–up effects on body mass and reproductive success in an omnivore. Oikos 127, 197–207 (2018).
    Google Scholar 
    37.Thiffault, E. Boreal forests and soils. Dev. Soil Sci. 36, 59–82 (2019).
    Google Scholar 
    38.Jonsson, M., Bengtsson, J., Moen, J., Gamfeldt, L. & Snäll, T. Stand age and climate influence forest ecosystem service delivery and multifunctionality. Environ. Res. Lett. 15, 0940a8 (2020).
    Google Scholar 
    39.Stokland, J. N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands. For. Ecol. Manage. 488, 119017 (2021).
    Google Scholar 
    40.Harmon, M. E., Ferrell, W. K. & Franklin, J. F. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247, 699–702 (1990).CAS 

    Google Scholar 
    41.Mazziotta, A. et al. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest. Glob. Change Biol. 21, 637–651 (2015).
    Google Scholar 
    42.Triviño, M. et al. Optimizing management to enhance multifunctionality in a boreal forest landscape. J. Appl. Ecol. 54, 61–70 (2017).
    Google Scholar 
    43.Qiu, J. & Turner, M. G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl Acad. Sci. USA 110, 12149–12154 (2013).CAS 

    Google Scholar 
    44.Felipe-Lucia, M. R. et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 9, 4839 (2018).
    Google Scholar 
    45.Eggers, J., Räty, M., Öhman, K. & Snäll, T. How well do stakeholder-defined forest management scenarios balance economic and ecological forest values? Forests 11, 86 (2020).
    Google Scholar 
    46.Eyvindson, K., Repo, A. & Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. For. Policy Econ. 92, 119–127 (2018).
    Google Scholar 
    47.Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).
    Google Scholar 
    48.Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).
    Google Scholar 
    49.Hufnagel, J., Reckling, M. & Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 40, 14 (2020).
    Google Scholar 
    50.Guerry, A. D. et al. Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 8, 107–121 (2012).
    Google Scholar 
    51.Wikström, P. et al. The Heureka Forestry Decision Support System: An Overview. Math. Comput. For Nat.-Resour. Sci. 3, 87–94 (2011).
    Google Scholar 
    52.Forest Statistics (Swedish University of Agricultural Sciences, 2020).53.Eriksson, A., Snäll, T. & Harrison, P. J. Analys av miljöförhållanden ‐ SKA 15. Report 11 (Swedish Forest Agency, 2015).54.Axelsson, A.-L. et al. in National Forest Inventories—Pathways for Common Reporting (eds Tomppo, E. et al.) 541–553 (Springer, 2010).55.Marklund, L. G. Biomass Functions for Pine, Spruce and Birch in Sweden (1988).56.Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 24–83 (2006).
    Google Scholar 
    57.Miina, J., Pukkala, T. & Kurttila, M. Optimal multi-product management of stands producing timber and wild berries. Eur. J. For. Res. 135, 781–794 (2016).
    Google Scholar 
    58.Schröter, M. & Remme, R. P. Spatial prioritisation for conserving ecosystem services: comparing hotspots with heuristic optimisation. Landsc. Ecol. 31, 431–450 (2016).
    Google Scholar 
    59.Wu, J., Feng, Z., Gao, Y. & Peng, J. Hotspot and relationship identification in multiple landscape services: a case study on an area with intensive human activities. Ecol. Indic. 29, 529–537 (2013).CAS 

    Google Scholar 
    60.Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).
    Google Scholar 
    61.R: A Language and Environment for Statistical Computing (R Development Core Team, 2014); https://www.R-project.org/ More