Herbaceous perennial ornamental plants can support complex pollinator communities
1.Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).Article
Google Scholar
2.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insectdecline in the anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
3.Harrison, T. & Winfree, R. Urban drivers of plant–pollinator interactions. Funct. Ecol. 29, 879–888 (2015).Article
Google Scholar
4.Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed
Article
PubMed Central
Google Scholar
5.McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).Article
Google Scholar
6.Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities dependson floral resource availability and bee functional traits. PLoS One 14, e025852. https://doi.org/10.1371/journal.pone.0225852 (2019).CAS
Article
Google Scholar
7.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article
Google Scholar
8.Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).Article
Google Scholar
9.Threlfall, C. G. et al. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187, 240–248 (2015).Article
Google Scholar
10.Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).PubMed
Article
Google Scholar
11.Bartomeus, I. et al. Historical changes in Northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U. S. A. 110, 4656–4660 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
12.Willmer, P. Pollination and Floral Ecology (Princeton University Press, Princeton, 2011).Book
Google Scholar
13.Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).Book
Google Scholar
14.Robertson, C. Heterotropic bees. Ecology 6, 412–436 (1925).Article
Google Scholar
15.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U. S. A. 100, 9383–9387 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004).Article
Google Scholar
17.Tylianakis, J. M. & Coux, C. Tipping points in ecological networks. Trends Plant Sci. 19, 281–283 (2014).CAS
PubMed
Article
Google Scholar
18.Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along agradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
19.Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed
PubMed Central
Article
Google Scholar
20.Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170. https://doi.org/10.3389/fevo.2018.00170 (2018).Article
Google Scholar
21.Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).Article
Google Scholar
22.Cohen, H., Philpott, S. M., Liere, H., Lin, B. B. & Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 24, 275–290 (2021).Article
Google Scholar
23.Menz, M. H. M. et al. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci. 16, 4–12 (2010).PubMed
Article
CAS
Google Scholar
24.M’Gonigle, L. K., Williams, N. M., Lonsdorf, E. & Kremen, C. A tool for selecting plants when restoring habitat for pollinators. Conserv. Lett. 10, 105–111 (2017).Article
Google Scholar
25.Köppler, M.-R. & Hitchmough, J. D. Ecology good, aut-ecology better; improving the sustainability of designed plantings. J. Landsc. Archit. 10, 82–91 (2015).Article
Google Scholar
26.Tabassum, S. et al. Using ecological knowledge for landscaping with plants in cities. Ecol. Eng. 158, 106049. https://doi.org/10.1016/j.ecoleng.2020.106049 (2020).Article
Google Scholar
27.Campbell, B., Khachatryan, H. & Rihn, A. Pollinator-friendly plants, reasons for and barriers to purchase. Am. Soc. Hortic. Sci. 27, 831–839 (2017).
Google Scholar
28.Khachatryan, H. et al. Visual attention to eco-labels predicts consumer preferences for pollinator friendly plants. Sustainability 9, 1743. https://doi.org/10.3390/su9101743 (2017).Article
Google Scholar
29.Hitchmough, J. & Woudstra, J. The ecology of exotic herbaceous perennials grown in managed, native grassy vegetation in urban landscapes. Landsc. Urban Plan. 45, 107–121 (1999).Article
Google Scholar
30.Ault, J. Breeding and development of new ornamental plants from North American native taxa. Acta Hortic. 624, 37–42 (2003).Article
Google Scholar
31.Comba, L. et al. Garden flowers: Insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 83, 73–86 (1999).Article
Google Scholar
32.Garbuzov, M. & Ratnieks, F. L. W. Using the British National Collection of asters to compare the attractiveness of 228 varieties to flower-visiting insects. Environ. Entomol. 44, 638–646 (2015).PubMed
Article
PubMed Central
Google Scholar
33.Erickson, E. et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 49, 178–188 (2020).CAS
PubMed
Article
Google Scholar
34.Garbuzov, M. & Ratnieks, F. L. W. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).Article
Google Scholar
35.Russo, L., DeBarros, N., Yang, S., Shea, K. & Mortensen, D. Supporting crop pollinators with floral resources: Network-based phenological matching. Ecol. Evol. 3, 3125–3140 (2013).PubMed
PubMed Central
Article
Google Scholar
36.Thompson, J. D. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system?. Oecologia 126, 386–394 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
37.Tuell, J. K., Fiedler, A. K., Landis, D. & Isaacs, R. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs. Environ. Entomol. 37, 707–718 (2008).PubMed
Article
Google Scholar
38.Fowler, J. Specialist bees of the Northeast: Host plants and habitat conservation. Northeast. Nat. 23, 305–320 (2016).Article
Google Scholar
39.Jessica J. R. Catch the buzz-pollinator diversity, distribution, and phenology in Shenandoah National Park (Natural Resource Report. NPS/SHEN/NRR—2017/1441. National Park Service, 2017).40.Savoy-Burke, G. Woodland Bee Diversity in the Mid-Atlantic. (Master’s Thesis, University of Delaware, Newark DE, 2017).41.Fisher, R. M. Evolution and host specificity: Dichotomous invasion success of Psithyrus citrinus (Hymenoptera: Apidae), a bumblebee social parasite in colonies of its two hosts. Can. J. Zool. 63, 977–981 (1985).Article
Google Scholar
42.Packer, L., Genaro, J. & Sheffield, C. S. The bee genera of Eastern Canada. Can. J. Arthropod Identif. 3, 1–32 (2007).
Google Scholar
43.Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: A century of change. J. Insect Conserv. 23, 45–62 (2019).Article
Google Scholar
44.Domínguez-García, V. & Muñoz, M. A. Ranking species in mutualistic networks. Sci. Rep. 5, 8182. https://doi.org/10.1038/srep08182 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
45.Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).Article
Google Scholar
46.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: Analysingecological networks. R News 8(2), 8–11 (2008).
Google Scholar
47.Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).ADS
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
48.Wright, G. A. & Schiestl, F. P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 23, 841–851 (2009).Article
Google Scholar
49.Corbet, S. et al. Native or Exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).PubMed
Article
PubMed Central
Google Scholar
50.Campbell, D. R., Bischoff, M., Lord, J. M. & Robertson, A. W. Flower color influences insect visitation in alpine New Zealand. Ecology 91, 2638–2649 (2010).PubMed
Article
Google Scholar
51.Harder, L. D. Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198–210 (1985).Article
Google Scholar
52.Wilde, H. D., Gandhi, K. J. K. & Colson, G. State of the science and challenges of breeding landscape plants with ecological function. Hortic. Res. 2, 14069. https://doi.org/10.1038/hortres.2014.69 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
53.Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).CAS
PubMed
Article
Google Scholar
54.Stearn, W. T. Nepeta mussinii and N. × Faassenii. J. R. Hortic. Soc. 75, 403–406 (1950).
Google Scholar
55.Seitz, N., VanEngelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850 (2020).PubMed
PubMed Central
Article
Google Scholar
56.Kammerer, M., Tooker, J. F. & Grozinger, C. M. A long-term dataset on wild bee abundance in Mid-Atlantic United States. Sci. Data 7, 240. https://doi.org/10.1038/s41597-020-00577-0 (2020).Article
PubMed
PubMed Central
Google Scholar
57.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).PubMed
Article
Google Scholar
58.Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species?. J. Appl. Ecol. 52, 1156–1164 (2015).CAS
Article
Google Scholar
59.Mach, B. M. & Potter, D. A. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS One 13, e0208428. https://doi.org/10.1371/journal.pone.0208428 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
60.Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102. https://doi.org/10.1002/ecs2.3102 (2020).Article
Google Scholar
61.Rollings, R. & Goulson, D. Quantifying the attractiveness of garden flowers for pollinators. J. Insect Conserv. 23, 803–817 (2019).Article
Google Scholar
62.Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).Article
Google Scholar
63.Vrdoljak, S. M., Samways, M. J. & Simaika, J. P. Pollinator conservation at the local scale: Flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. J. Insect Conserv. 20, 711–721 (2016).Article
Google Scholar
64.Burkle, L. A. & Alarcon, R. The future of plant–pollinator diversity: Understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).PubMed
Article
Google Scholar
65.Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).Article
Google Scholar
66.Baum, K. A. & Wallen, K. E. Potential bias in pan trapping as a function of floral abundance. J. Kansas Entomol. Soc. 84, 155–159 (2011).Article
Google Scholar
67.Robertson, A. W. & MacNair, M. R. The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72, 106–114 (1995).Article
Google Scholar
68.Bennett, A. B. & Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One 14, e0212034. https://doi.org/10.1371/journal.pone.0212034 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
69.Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two Northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).Article
Google Scholar
70.Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).Article
Google Scholar
71.Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article
Google Scholar
72.Potted herbaceous perennial plants sold. Census of Agriculture – 2014 census of horticultural specialties (USDA-NASS, 2014).73.Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS
PubMed
Article
PubMed Central
Google Scholar
74.Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering mediterranean shrub. Oikos 58, 277–288 (1990).Article
Google Scholar
75.Tuell, J. K. & Isaacs, R. Elevated pan traps to monitor bees in flowering crop canopies. Entomol. Exp. Appl. 131, 93–98 (2009).Article
Google Scholar
76.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020)77.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.3. (2020).78.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–7. (2020).79.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).MATH
Book
Google Scholar
80.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed
Article
Google Scholar More