More stories

  • in

    Herbaceous perennial ornamental plants can support complex pollinator communities

    1.Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).Article 

    Google Scholar 
    2.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insectdecline in the anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Harrison, T. & Winfree, R. Urban drivers of plant–pollinator interactions. Funct. Ecol. 29, 879–888 (2015).Article 

    Google Scholar 
    4.Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).Article 

    Google Scholar 
    6.Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities dependson floral resource availability and bee functional traits. PLoS One 14, e025852. https://doi.org/10.1371/journal.pone.0225852 (2019).CAS 
    Article 

    Google Scholar 
    7.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    8.Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).Article 

    Google Scholar 
    9.Threlfall, C. G. et al. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187, 240–248 (2015).Article 

    Google Scholar 
    10.Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).PubMed 
    Article 

    Google Scholar 
    11.Bartomeus, I. et al. Historical changes in Northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U. S. A. 110, 4656–4660 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Willmer, P. Pollination and Floral Ecology (Princeton University Press, Princeton, 2011).Book 

    Google Scholar 
    13.Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).Book 

    Google Scholar 
    14.Robertson, C. Heterotropic bees. Ecology 6, 412–436 (1925).Article 

    Google Scholar 
    15.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U. S. A. 100, 9383–9387 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004).Article 

    Google Scholar 
    17.Tylianakis, J. M. & Coux, C. Tipping points in ecological networks. Trends Plant Sci. 19, 281–283 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along agradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170. https://doi.org/10.3389/fevo.2018.00170 (2018).Article 

    Google Scholar 
    21.Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).Article 

    Google Scholar 
    22.Cohen, H., Philpott, S. M., Liere, H., Lin, B. B. & Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 24, 275–290 (2021).Article 

    Google Scholar 
    23.Menz, M. H. M. et al. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci. 16, 4–12 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.M’Gonigle, L. K., Williams, N. M., Lonsdorf, E. & Kremen, C. A tool for selecting plants when restoring habitat for pollinators. Conserv. Lett. 10, 105–111 (2017).Article 

    Google Scholar 
    25.Köppler, M.-R. & Hitchmough, J. D. Ecology good, aut-ecology better; improving the sustainability of designed plantings. J. Landsc. Archit. 10, 82–91 (2015).Article 

    Google Scholar 
    26.Tabassum, S. et al. Using ecological knowledge for landscaping with plants in cities. Ecol. Eng. 158, 106049. https://doi.org/10.1016/j.ecoleng.2020.106049 (2020).Article 

    Google Scholar 
    27.Campbell, B., Khachatryan, H. & Rihn, A. Pollinator-friendly plants, reasons for and barriers to purchase. Am. Soc. Hortic. Sci. 27, 831–839 (2017).
    Google Scholar 
    28.Khachatryan, H. et al. Visual attention to eco-labels predicts consumer preferences for pollinator friendly plants. Sustainability 9, 1743. https://doi.org/10.3390/su9101743 (2017).Article 

    Google Scholar 
    29.Hitchmough, J. & Woudstra, J. The ecology of exotic herbaceous perennials grown in managed, native grassy vegetation in urban landscapes. Landsc. Urban Plan. 45, 107–121 (1999).Article 

    Google Scholar 
    30.Ault, J. Breeding and development of new ornamental plants from North American native taxa. Acta Hortic. 624, 37–42 (2003).Article 

    Google Scholar 
    31.Comba, L. et al. Garden flowers: Insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 83, 73–86 (1999).Article 

    Google Scholar 
    32.Garbuzov, M. & Ratnieks, F. L. W. Using the British National Collection of asters to compare the attractiveness of 228 varieties to flower-visiting insects. Environ. Entomol. 44, 638–646 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Erickson, E. et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 49, 178–188 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Garbuzov, M. & Ratnieks, F. L. W. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).Article 

    Google Scholar 
    35.Russo, L., DeBarros, N., Yang, S., Shea, K. & Mortensen, D. Supporting crop pollinators with floral resources: Network-based phenological matching. Ecol. Evol. 3, 3125–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Thompson, J. D. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system?. Oecologia 126, 386–394 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Tuell, J. K., Fiedler, A. K., Landis, D. & Isaacs, R. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs. Environ. Entomol. 37, 707–718 (2008).PubMed 
    Article 

    Google Scholar 
    38.Fowler, J. Specialist bees of the Northeast: Host plants and habitat conservation. Northeast. Nat. 23, 305–320 (2016).Article 

    Google Scholar 
    39.Jessica J. R. Catch the buzz-pollinator diversity, distribution, and phenology in Shenandoah National Park (Natural Resource Report. NPS/SHEN/NRR—2017/1441. National Park Service, 2017).40.Savoy-Burke, G. Woodland Bee Diversity in the Mid-Atlantic. (Master’s Thesis, University of Delaware, Newark DE, 2017).41.Fisher, R. M. Evolution and host specificity: Dichotomous invasion success of Psithyrus citrinus (Hymenoptera: Apidae), a bumblebee social parasite in colonies of its two hosts. Can. J. Zool. 63, 977–981 (1985).Article 

    Google Scholar 
    42.Packer, L., Genaro, J. & Sheffield, C. S. The bee genera of Eastern Canada. Can. J. Arthropod Identif. 3, 1–32 (2007).
    Google Scholar 
    43.Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: A century of change. J. Insect Conserv. 23, 45–62 (2019).Article 

    Google Scholar 
    44.Domínguez-García, V. & Muñoz, M. A. Ranking species in mutualistic networks. Sci. Rep. 5, 8182. https://doi.org/10.1038/srep08182 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).Article 

    Google Scholar 
    46.Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: Analysingecological networks. R News 8(2), 8–11 (2008).
    Google Scholar 
    47.Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    48.Wright, G. A. & Schiestl, F. P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 23, 841–851 (2009).Article 

    Google Scholar 
    49.Corbet, S. et al. Native or Exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Campbell, D. R., Bischoff, M., Lord, J. M. & Robertson, A. W. Flower color influences insect visitation in alpine New Zealand. Ecology 91, 2638–2649 (2010).PubMed 
    Article 

    Google Scholar 
    51.Harder, L. D. Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198–210 (1985).Article 

    Google Scholar 
    52.Wilde, H. D., Gandhi, K. J. K. & Colson, G. State of the science and challenges of breeding landscape plants with ecological function. Hortic. Res. 2, 14069. https://doi.org/10.1038/hortres.2014.69 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Stearn, W. T. Nepeta mussinii and N. × Faassenii. J. R. Hortic. Soc. 75, 403–406 (1950).
    Google Scholar 
    55.Seitz, N., VanEngelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Kammerer, M., Tooker, J. F. & Grozinger, C. M. A long-term dataset on wild bee abundance in Mid-Atlantic United States. Sci. Data 7, 240. https://doi.org/10.1038/s41597-020-00577-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).PubMed 
    Article 

    Google Scholar 
    58.Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species?. J. Appl. Ecol. 52, 1156–1164 (2015).CAS 
    Article 

    Google Scholar 
    59.Mach, B. M. & Potter, D. A. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS One 13, e0208428. https://doi.org/10.1371/journal.pone.0208428 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102. https://doi.org/10.1002/ecs2.3102 (2020).Article 

    Google Scholar 
    61.Rollings, R. & Goulson, D. Quantifying the attractiveness of garden flowers for pollinators. J. Insect Conserv. 23, 803–817 (2019).Article 

    Google Scholar 
    62.Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).Article 

    Google Scholar 
    63.Vrdoljak, S. M., Samways, M. J. & Simaika, J. P. Pollinator conservation at the local scale: Flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. J. Insect Conserv. 20, 711–721 (2016).Article 

    Google Scholar 
    64.Burkle, L. A. & Alarcon, R. The future of plant–pollinator diversity: Understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).PubMed 
    Article 

    Google Scholar 
    65.Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).Article 

    Google Scholar 
    66.Baum, K. A. & Wallen, K. E. Potential bias in pan trapping as a function of floral abundance. J. Kansas Entomol. Soc. 84, 155–159 (2011).Article 

    Google Scholar 
    67.Robertson, A. W. & MacNair, M. R. The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72, 106–114 (1995).Article 

    Google Scholar 
    68.Bennett, A. B. & Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One 14, e0212034. https://doi.org/10.1371/journal.pone.0212034 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two Northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).Article 

    Google Scholar 
    70.Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).Article 

    Google Scholar 
    71.Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article 

    Google Scholar 
    72.Potted herbaceous perennial plants sold. Census of Agriculture – 2014 census of horticultural specialties (USDA-NASS, 2014).73.Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering mediterranean shrub. Oikos 58, 277–288 (1990).Article 

    Google Scholar 
    75.Tuell, J. K. & Isaacs, R. Elevated pan traps to monitor bees in flowering crop canopies. Entomol. Exp. Appl. 131, 93–98 (2009).Article 

    Google Scholar 
    76.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020)77.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.3. (2020).78.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–7. (2020).79.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).MATH 
    Book 

    Google Scholar 
    80.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar  More

  • in

    Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae)

    1.Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).Article 

    Google Scholar 
    2.Maschinski, J. et al. Sinking ships: Conservation options for endemic taxa threatened by sea level rise. Clim. Change 107, 147–167 (2011).ADS 
    Article 

    Google Scholar 
    3.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Heaney, L. R., Balete, D. S. & Rickart, E. A. Models of oceanic island biogeography: Changing perspectives on biodiversity dynamics in archipelagoes. Front. Biogeogr. 5, 249–257 (2013).Article 

    Google Scholar 
    5.Keppel, G., Lowe, A. J. & Possingham, H. P. Changing perspectives on the biogeography of the tropical South Pacific: Influences of dispersal, vicariance and extinction. J. Biogeogr. 36, 1035–1054 (2009).Article 

    Google Scholar 
    6.Laurance, W. F. Beyond Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, jB. & Ricklefs, R. E.) 214–237 (Princeton University Press, 2010).
    Google Scholar 
    7.Cheesman, L. E. Biogeographical significance of Aneityum Island, New Hebrides. Nature 180, 903–904 (1957).ADS 
    Article 

    Google Scholar 
    8.Cox, B. T. M. & Burns, K. C. Convergent evolution of gigantism in the flora of an isolated archipelago. Evol. Ecol. 31, 741–752 (2017).Article 

    Google Scholar 
    9.Hamilton, A. M., Klein, E. R. & Austin, C. C. Biogeographic breaks in Vanuatu, a nascent oceanic archipelago. Pac. Sci. 64, 149–159 (2010).Article 

    Google Scholar 
    10.Coleman, P. J. Geology of the Solomon and New Hebrides islands, as part of the Melanesian re-entrant, Southwest Pacific. Pac. Sci. 24, 289–314 (1970).
    Google Scholar 
    11.Valente, L. et al. A simple dynamic model explains the diversity of island birds worldwide. Nature 579, 92–96 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Keppel, G., Buckley, Y. M. & Possingham, H. P. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Ecology 98, 87–95 (2010).Article 

    Google Scholar 
    13.Cheng, L. Insects in marine environments. Marine Insects 1, 1–4 (1976).
    Google Scholar 
    14.Ballantyne, L. A. & Buck, E. Taxonomy and behavior of Luciola (Luciola) aphrogeneia, a new surf firefly from Papua New Guinea. Trans. Am. Entomol. Soc. 105, 117–137 (1979).
    Google Scholar 
    15.Doyen, J. T. Marine beetles (Coleoptera excluding Staphylinidae). In Marine Insects (ed. Cheng, L.) 497–519 (American Elsevier, 1976).16.Topp, W. & Ring, R. A. Adaptations of Coleoptera to the marine environment. II. Observations on rove beetles (Staphylinidae) from rocky shores. Can. J. Zool. 66, 2469–2474 (1988).Article 

    Google Scholar 
    17.Lloyd, J. E. Fireflies (Coleoptera: Lampyridae). In Encyclopedia of Entomology 429–1452 (Springer Dordrecht, 2008).18.McDermott, F. A. Photuris bethaniensis, a new Lampyrid firefly. Proc. U. S. Natl. Mus. 103, 35–37 (1953).Article 

    Google Scholar 
    19.Vaz, S. et al. On the intertidal firefly genus Micronaspis Green, 1948, with a new species and a phylogeny of Cratomorphini based on adult and larval traits (Coleoptera: Lampyridae). Zool. Anz. 292, 64–91 (2021).Article 

    Google Scholar 
    20.Ballantyne, L. A. & Lambkin, C. Systematics of Indo-Pacific fireflies with a redefinition of Australasian Atyphella Olliff, Madagascan Photurolociola Pic, and description of seven new genera from the Luciolinae (Coleoptera: Lampyridae). Zootaxa 1997, 1–188 (2009).Article 

    Google Scholar 
    21.Ballantyne, L. A. et al. The Luciolinae of SE Asia and the Australopacific region: A revisionary checklist (Coleoptera: Lampyridae) including description of three new genera and 13 new species. Zootaxa 4687, 1–174 (2019).Article 

    Google Scholar 
    22.Saxton, N. A., Powell, G. S., Martin, G. J. & Bybee, S. M. Two new species of coastal Atyphella Ollliff (Lampyridae: Luciolinae). Zootaxa 4722, 270–276 (2020).Article 

    Google Scholar 
    23.Gassner, P. et al. Marine Atlas. Maximizing Benefits for Vanuatu. https://grid.cld.bz/Marine-Atlas-Maximizing-Benefits-for-Vanuatu1/10/ (2019).24.Saxton, N. A., Powell, G. S., Serrano, S. J., Monson, A. K. & Bybee, S. M. Natural history and ecological niche modelling of coastal Atyphella Olliff larvae (Lampyridae: Luciolinae) in Vanuatu. J. Nat. Hist. 53, 2271–2280 (2019).Article 

    Google Scholar 
    25.Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    27.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    28.Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article 

    Google Scholar 
    29.Stas, M. et al. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landsc. Urban Plan. 198, 103770 (2020).Article 

    Google Scholar 
    30.Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).Article 

    Google Scholar 
    31.Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).Article 

    Google Scholar 
    32.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    33.Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Silva, D. P., Aguiar, A. G. & Simião-Ferreira, J. Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J. Insect Conserv. 20, 611–620 (2016).Article 

    Google Scholar 
    35.Cardoso, P., Erwin, T. L., Borges, P. A. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    36.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    37.Lomolino, M. V. Conservation biogeography. In Frontiers of Biogeography: new directions in the geography of nature (eds. Lomolino, M. V. & Heaney, L. R.) 293–296 (Sinauer Associates, Sunderland, Massachusetts, 2004).38.Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    39.Cui, S., Luo, X., Li, C., Hu, H. & Jiang, Z. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodivers. Sci. 26, 171 (2018).Article 

    Google Scholar 
    40.Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inform. 6, 364–370 (2011).Article 

    Google Scholar 
    41.Raman, S., Shameer, T. T., Sanil, R., Usha, P. & Kumar, S. Protrusive influence of climate change on the ecological niche of endemic brown mongoose (Herpestes fuscus fuscus): A MaxEnt approach from Western Ghats, India. Model. Earth Syst. Environ. 6, 1795–1806 (2020).Article 

    Google Scholar 
    42.Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).Article 

    Google Scholar 
    43.Kumar, S. & Stohlgren, T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. 1, 094–098 (2009).
    Google Scholar 
    44.Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).CAS 
    Article 

    Google Scholar 
    45.New, T. R. Conserving narrow range endemic insects in the face of climate change: Options for some Australian butterflies. J. Insect Conserv. 12, 585–589 (2008).Article 

    Google Scholar 
    46.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).Article 

    Google Scholar 
    47.Hijmans, R. J., Cameron, S. & Parra, J. WorldClim, Version 1.4 (University of California, 2005).
    Google Scholar 
    48.Hijmans, R. J. et al. DIVA-GIS. Version, 7.5. A Geographic Information System for the Analysis of Species Distribution Data. http://www.diva-gis.org (2012).49.Phillips, S. J., Dudik, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning 655–662 (2004).50.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).Article 

    Google Scholar 
    51.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    52.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020).53.Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    54.RStudio Team RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/ (2020).55.Zizka, A., Antonelli, A. & Silvestro, D. Sampbias: Evaluating geographic sampling bias in biological collections. Ecography 44, 25–32 (2020).Article 

    Google Scholar 
    56.Almeida, M. C., Cortes, L. G. & De Marco Junior, P. New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv. Divers. 3, 252–256 (2010).Article 

    Google Scholar 
    57.De Siqueira, M. F., Durigan, G., de Marco Júnior, P. & Peterson, A. T. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17, 25–32 (2009).Article 

    Google Scholar 
    58.Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    59.McCune, J. L. Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol. 53, 1871–1879 (2016).Article 

    Google Scholar 
    60.Rinnhofer, L. J. et al. Iterative species distribution modelling and ground validation in endemism research: An Alpine jumping bristletail example. Biodiversity 21, 2845–2863 (2012).
    Google Scholar 
    61.Peterman, W. E., Crawford, J. A. & Kuhns, A. R. Using species distribution and occupancy modeling to guide survey efforts and assess species status. J. Nat. Conserv. 21, 114–121 (2013).Article 

    Google Scholar 
    62.Searcy, C. A. & Shaffer, H. B. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. Ecography 37, 983–992 (2014).Article 

    Google Scholar 
    63.Virzi, T., Lockwood, J. L., Lathrop, R. G., Grodsky, S. M. & Drake, D. Predicting American Oystercatcher (Haematopus palliatus) breeding distribution in an urbanized coastal ecosystem using maximum entropy modeling. Waterbirds 40, 104–122 (2017).Article 

    Google Scholar 
    64.Greaves, G. J., Mathieu, R. & Seddon, P. J. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biol. Conserv. 132, 211–221 (2006).Article 

    Google Scholar 
    65.Raxworthy, C. J. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 15, 289–298 (2009).Article 

    Google Scholar 
    67.Faith, D. et al. Bridging the biodiversity data gaps: Recommendations to meet users’ data needs. Biodivers. Inform. 8, 41–58 (2013).Article 

    Google Scholar 
    68.Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: A review, some observations and a look to the future. Biology 85, 247–266 (2010).
    Google Scholar 
    69.Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).Article 

    Google Scholar 
    71.Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.National Integrated Coastal Management Framework. National Integrated Coastal Management Framework and Implementation Strategy for Vanuatu. https://extwprlegs1.fao.org/docs/pdf/van171039.pdf (2010).73.Department of Environmental and Protection and Conservation. Coastal Development. https://environment.gov.vu/images/EIA/EIA_G%20Coastal%20development.pdf (2017). More

  • in

    Increased ranking change in wheat breeding under climate change

    1.Reynolds, M. P. et al. Improving global integration of crop research. Science 357, 359–360 (2017).CAS 
    Article 

    Google Scholar 
    2.Braun, H., Atlin, G. & Payne, T. Multi-location testing as a tool to identify plant response to global climate change. in Climate Change and Crop Production (ed. Reynolds, M. P.) 115–138 (CABI, 2010).3.Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 

    Google Scholar 
    4.Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).Article 

    Google Scholar 
    5.Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 14–21 (2007).Article 

    Google Scholar 
    6.Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).Article 

    Google Scholar 
    7.Crespo-Herrera, L. A. et al. Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Sci. 57, 789–801 (2017).Article 

    Google Scholar 
    8.Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).CAS 
    Article 

    Google Scholar 
    9.Rosegrant, M. W. & Cline, S. A. Global food security: challenges and polices. Science 302, 1917–1919 (2003).CAS 
    Article 

    Google Scholar 
    10.Li, Y., Suontama, M., Burdon, R. D. & Dungey, H. S. Genotype by environment interactions in forest tree breeding: review of methodology and perspective on research and application. Tree Genet. Genomes 13, 60 (2017).Article 

    Google Scholar 
    11.Mishra, R. M. et al. Crossover interactions for grain yield in multienvironmental trials of winter wheat. Crop Sci. 46, 1291–1298 (2006).Article 

    Google Scholar 
    12.Allard, R. W. & Bradshaw, A. D. Implications of genotype–environmental interactions in applied plant breeding. Crop Sci. 4, 503–508 (1964).Article 

    Google Scholar 
    13.Reynolds, M. P., Hays, D. & Chapman, S. Breeding for adaptation to heat and drought stress. in Climate Change and Crop Production (ed. Reynolds, M. P.) 71–91 (CABI, 2010).14.Leon, N., Jannink, J., Edwards, J. W. & Kaeppler, S. M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 56, 2081–2089 (2016).Article 

    Google Scholar 
    15.Reynolds, M. & Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171 (2016).Article 

    Google Scholar 
    16.Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J. & Lobell, D. B. An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc. R. Soc. B. 2018, 20122190 (2012).
    Google Scholar 
    17.Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).CAS 
    Article 

    Google Scholar 
    18.Sharma, R. C. et al. Genetic gains for grain yield in CIMMYT spring bred wheat across international environment. Crop Sci. 52, 1522–1533 (2012).Article 

    Google Scholar 
    19.Boehm Jr, J. D., Ibba, M., Kiszonas, A. & Morris, C. F. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality. Crop Sci. 57, 1485–1498 (2017).Article 

    Google Scholar 
    20.Lillemo, M., van Ginkel, M., Trethowan, R. M., Hernandez, E. & Crossa, J. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45, 2443–2453 (2005).Article 

    Google Scholar 
    21.Manes, Y. et al. Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Sci. 52, 1543–1552 (2012).Article 

    Google Scholar 
    22.You, L. et al. Spatial Production Allocation Model (SPAM) 2005 V3.2 International Food Policy Research Institute (IFPRI), International Institute fo Applied Systems Analysis (IIASA) (2017).23.Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programme. Aus. J. Agric. Res. 14, 742–754 (1963).Article 

    Google Scholar 
    24.De los Campos et al. A data-driven simulation platform to predict cultivars’ performance under uncertain weather conditions. Nat. Commun. 11, 4876 (2020).Article 

    Google Scholar 
    25.Lantican, M. A. et al. Impacts of International Wheat Improvement Research 1994–2014 (CIMMYT, 2016).26.Dreccer, M. F., Bonnett, D. & Lafarge, T. Plant breeding under a changing climate. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 8013–8024 (Springer, 2012).27.Laiding, F., Drobek, T. & Meyer, U. Genotypic and environmental variability of yield for cultivars from 30 different crops in German official variety trials. Plant Breed. 127, 541–547 (2008).Article 

    Google Scholar 
    28.Allard, R. W. Principles of Plant Breeding 2nd edn (John Wiley & Sons, 1999).29.Kusmec, A., Srinivasan, S., Nettleton, D. & Schnable, P. S. Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat. Plants 3, 715–723 (2017).CAS 
    Article 

    Google Scholar 
    30.Gauch, H. G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs (Elsevier, 1992). More

  • in

    The declining tropical carbon sink

    1.Lapola, D. M. et al. Proc. Natl Acad. Sci. USA 115, 11671–11679 (2018).CAS 
    Article 

    Google Scholar 
    2.Phillips, O. L., Brienen, R. J. W. & the RAINFOR collaboration. Carbon Balance Manag. 12, 1 (2017)..3.Hubau, W. et al. Nature 579, 80–87 (2020).CAS 
    Article 

    Google Scholar 
    4.Fleischer, K. et al. Nat. Geosci. 12, 736–741 (2019).CAS 
    Article 

    Google Scholar 
    5.Huntingford, C. et al. Nat. Geosci. 6, 268–273 (2013).CAS 
    Article 

    Google Scholar 
    6.Koch, A., Hubau, W. & Lewis, S. L. Earth’s Future 9, e2020EF001874 (2021).CAS 
    Article 

    Google Scholar 
    7.Eyring, V. et al. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    8.Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. (IPCC, 2019).9.Friend, A. D. et al. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).CAS 
    Article 

    Google Scholar 
    10.Pugh, T. A. M. et al. Biogeosciences https://doi.org/10.5194/bg-17-3961-2020 (2020).Article 

    Google Scholar 
    11.Hartmann, H., Adams, H. D., Anderegg, W. R. L., Jansen, S. & Zeppel, M. J. B. New Phytol. 205, 965–969 (2015).Article 

    Google Scholar 
    12.Scheiter, S., Langan, L. & Higgins, S. I. New Phytol. 198, 957–969 (2013).Article 

    Google Scholar  More

  • in

    Using the IUCN Red List to map threats to terrestrial vertebrates at global scale

    Species-level dataSpecies range maps were derived from BirdLife International and NatureServe50 and the IUCN51. The threat data were from the IUCN Threats Classification Scheme (Version 3.2), which contains 11 primary threat classes and almost 50 subclasses52. In Red List assessments, assessors assign those threats that impact the species. For birds, the scope of the impact is also recorded categorically as the percentage of the species population that the threat impacts (unknown, negligible, 90%) and the severity, describing the scale of the impact on population declines: unknown, no decline, negligible declines, fluctuations, slow but significant declines (30%).Model development approachWe designed our analytical framework with three considerations in mind. First, the threat location information is limited: for each species, the data only describe whether a species is threatened by a given activity anywhere within its range (data on the timing, scope and severity of threats are available only for birds and are not spatially explicit). Second, we wanted to compare the spatial patterns of threat against independent data on spatial distributions of human activities. Third, for many activities, the relationship between human activity (for example, hunting or invasive species and diseases) and biodiversity response is poorly understood. We therefore chose not to incorporate known patterns of human activity as explanatory variables in our models.In the absence of global datasets on the spatial patterns of the impact probability of each threat, we used a simulation approach to develop our models and assess the ability of different model parameterizations to reproduce our simulated threat. This process had four steps (Extended Data Fig. 1).Simulated threat intensity mapsFirst, we simulated a continuous synthetic threat across sub-Saharan Africa. The concept behind this is that a credible model should be able to reproduce a ‘true’, synthetic threat pattern on the basis of information comparable to that available in the Red List. To test this, we generated a set of synthetic, continuous surfaces of threat intensity with different levels of spatial autocorrelation and random variation (Supplementary Fig. 1). This was achieved by taking a grid of 50 km × 50 km (2,500 km2) pixels across the Afrotropic biogeographic realm (i.e., sub-Saharan Africa). Threat intensity was modelled as a vector of random variables, Z, one for each pixel i, generated with a correlation structure given by the distance matrix between points weighted by a scalar value, r, indicating the degree of correlation (equations (1–3)). Four values of r were used: 1 × 10−6, which yields very strong autocorrelation; 1 × 10−4, which yields strong autocorrelation; 0.05, which yields moderate autocorrelation; and 0.3, which produces a low-correlation, localized pattern (Supplementary Fig. 1). The model included the following equations:$${mathbf{Z}}(r) = U^{mathrm{T}}{mathrm{Norm}}left( {n,0,1} right)$$
    (1)
    $$W = UU^{ast}$$
    (2)
    $$W = {mathrm{e}}^{left( { – rD} right)}$$
    (3)
    where r is a scalar determining the degree of spatial autocorrelation (as r decreases, the autocorrelation increases), D is the Euclidean distance matrix between each pair of pixels, W is the matrix of weights for the threat intensity, U and U* are the upper triangular factors of the Choleski decomposition of W and its conjugate transpose, UT is the transpose of U and n is the number of pixels.We chose the Afrotropic biogeographic realm (sub-Saharan Africa) as our geography within which to develop the modelling approach because it permitted more rapid iterations than a global-scale simulation while also retaining characteristics of importance for the model evaluation such as strong environmental gradients and heterogeneity in species richness. However, for the simulation, no information from the geography or overlapping species ranges was used, except the spatial configuration of the polygons. Thus, the use of the Afrotropic realm was purely to avoid generating thousands of complex geometries for the purpose of the simulation. Using a real geography and actual species ranges ensures that our simulation contains conditions that are observed in reality (for example, areas of high and low species richness also observed in the real world). We took the simulated threat maps generated through this process to be our ‘true’ likelihood of a randomly drawn species that occurs in that location being impacted by the synthetic threat (Supplementary Fig. 1).Simulating the red-listing processSecond, we wanted to simulate the red-listing process whereby experts evaluate whether a threat is impacting a species on the basis of the overall threat intensity within its range. For this, we used the range maps for all mammal species in Africa and assigned a binary threat classification (that is, affected or not affected) to each species on the basis of the values of the synthetic threat within each species’ range. We assumed that the binary assessment of threat for a species is based on whether the level of impact across a proportion of its range is judged as significant. This step was intended to replicate the real red-listing process, where assessors define threats that impact the species on the basis of an assessment of the information available on threatening mechanisms and species responses. In practice, this was done by overlaying the real range maps for mammals over the four simulated threat surfaces and assessing the intensity of synthetic threat within each species range map. We wanted to assign species impacts considering that species will be more likely to be impacted if a greater part of their range has a high threat intensity. Understanding how to set a threshold for what intensity would constitute sufficient threat to be assessed as affected is a complicated exercise. We thus tested three thresholds to capture different assumptions. These thresholds were chosen after discussion with leading experts on the red-listing process. More specifically, we calculated the 25th, 50th and 75th percentiles of threat intensity across pixels within the species range. We then used a stochastic test to convert these quantiles to binary threat class, C. For each species, we produced a set of ten draws from a uniform distribution bounded by 0 and 1. If over half of the draws were lower than the threat intensity quantile, the species was classified as threatened for that percentile.The above simulation assumes perfect knowledge of the threat intensities across the species range, which might not always be the case in the actual red-listing process. In real life, certain areas within species ranges are less well known for a suite of different reasons. To incorporate some uncertainty about the knowledge of the red-listing experts about the ‘true’ threat intensity, we constructed a layer to describe the spatial data uncertainty associated with the Red List. This aspect was intended to simulate the imperfect knowledge of the simulated ‘Red List assessors’. This layer was calculated as the proportion of species present in a given location that are categorized as Data Deficient—in other words, there is insufficient information known about the species to assess its extinction risk using the IUCN Red List Criteria (Extended Data Fig. 7). Then, when calculating the 25th, 50th and 75th percentiles of threat intensity across each range, we weighted this calculation by one minus the proportion of Data Deficient species, so that more uncertain places (those with a greater proportion of Data Deficient species) contributed less to the calculation than locations where knowledge was more certain. These were then converted to a binary threat class accounting for uncertainty in expert knowledge among the simulated ‘assessors’, CUncertain, using the same stochastic process described above for the calculation of C.This step produced, for each species, a threat classification analogous to the threat classification assigned by experts as part of the IUCN Red List process. Six sets of threat classifications were produced for each synthetic threat surface, on the basis of the 25th, 50th and 75th percentiles with perfect (C0.25, C0.5 and C0.75) or uncertain (CUncertain-0.25, CUncertain-0.5 and CUncertain-0.75) spatial knowledge.Model formulation and selectionThird, using all species polygons with assigned threat assessments from step 2 (that is, affected or not affected), we fitted nine candidate models and predicted the estimated probability of impact for each grid cell. Then, in a fourth step, we compared the predicted probabilities of impact produced in step 3 with the original synthetic threat maps created in step 1 to test the predictive ability of our models.The Red List threat assessment does not contain information on where in the range the impact occurs. Therefore, a species with a very small range provides higher spatial precision about the location of the impact, whereas a species with a large range may be impacted anywhere within a wide region. To address this lack of precision in the impact location, we took the area of each species range to serve as a proxy for the spatial certainty of the impact information. The certainty that a species was impacted or not impacted in a given cell depended on its range size, R. The models we evaluated therefore incorporated R in different ways (Supplementary Table 1).The models were fitted as a binomial regression with a logit link function. For each pixel, the model predicts the probability of impact, PTh—in other words, the probability that if you sampled a species at random from those that occur in that pixel, the species would be impacted by the activity being considered. To account for uncertainties in the simulation of the threat assessment process (thresholds for impact and perfect or imperfect knowledge), models were fitted to the six sets of threat codes (C0.25, C0.5, C0.75, CUncertain-0.25, CUncertain-0.5 and CUncertain-0.75), and the root mean squared error (RMSE) was calculated between PTh and the simulated threat intensity, Z(r), for each value of r. For each simulation, we ranked the different models according to their model fit as measured by the RMSE. We assessed these ranks across all simulations and sets of threat codes. We evaluated the models on the basis of the ranks of RMSE, across the threat code sets and threat intensity maps. Rank distributions for each model are shown in Extended Data Fig. 2, and the results from these models are shown in Supplementary Tables 1 and 2.All models were correlated (Pearson’s r2  > 0.5), albeit with some variation between model types and across the simulation parameters (Supplementary Fig. 2). However, some models had greater predictive accuracy when evaluated using the RMSE. The top four ranking models were, in order of decreasing summed rank, (1) inverse of cube root of range size as a weight, (2) inverse 2.5 root of range size as a weight, (3) inverse square root of range size as a weight and (4) inverse natural logarithm of range size as a weight. The fact that these four models showed good model fit suggests that the best model structure had a measure of range size as a weight but that the model was not particularly sensitive to the transformation of range size.The best-fitting model across the range of simulation parameters was an intercept-only logistic regression where the response variable was the binary threat code (1 = threatened, 0 = not threatened) for each species in the pixel and where the inverse cube root of the range size of each species was used as a weight. The model was concordant across the set of simulated datasets with a relationship that was predominantly linear with r2 between 0.47 and 0.7, depending on simulation parameters for Z(r) in 0.05, 10−4 and 10−6, centred around unity and with the RMSE ranging between 0.129 and 0.337 depending on simulation parameters (Supplementary Figs. 2 and 3). The choice of the inverse cube root range size weight was based on the performance of this against eight other model types (Supplementary Fig. 4 and Supplementary Table 1).We conducted a decomposition of variance in model performance using a binomial regression model, with RMSE as the dependent variable and model type, knowledge level and autocorrelation structure as the independent factorial variables. This showed that knowledge about the threats underlying each species range and how that threat information is used in the assessment explained the vast majority (94.7%) of the variation in RMSE outcomes (Supplementary Fig. 4).For birds, further information on the scope of the threat was available as an ordinal variable describing the fraction of range that the threat covers. We explored the use of scope in our models but concluded that to avoid arbitrary decisions about the scope of non-threatened species (where they are either not threatened anywhere or threatened in only a small part of their range), and for consistency with other taxonomic groups, we would model birds using the same model structure as used for mammals and amphibians (see the Supplementary Methods for further details).Mapping probability of impactOnce the best-performing model was identified using the simulated data, we then used this model on the actual Red List threat and range data to develop threat maps. This model produced threat maps for each taxonomic group (amphibians, birds and mammals) of the probability of impact, PTh, for each individual threat. For a given pixel, threat and taxonomic group, this estimates the probability that a randomly sampled species with a range overlapping with that pixel is being impacted by the threat, while taking into account spatial imprecision in the Red List data.Threat maps were generated using range map data and threat assessments from the IUCN Red List18. We intersected range maps for 22,898 extant terrestrial amphibians (n = 6,458), birds (n = 10,928; excluding the spatial areas within the range that are associated with ‘Passage’—where the species is known or thought very likely to occur regularly during relatively short periods of the year on migration) and mammals (n = 5,512; including those with uncertain ranges) with a global 50 km × 50 km (2,500 km2) resolution, equal-area grid for the terrestrial world. This provided, for each 50 km × 50 km pixel, a list of the species whose range overlapped it, along with the associated range size of each species. For each pixel and taxonomic group (amphibians, birds and mammals) independently, we then modelled the probability of impact, PTh,Activity (for example, PTh,Logging for logging, PTh,Agriculture for agriculture or PTh,Pollution for pollution), for each of the six threats: agriculture, hunting and trapping, logging, pollution, invasive species and diseases, and climate change. We focused on these as the six main threats as defined by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services4, but our methodological framework is flexible and could be expanded to other threats in the IUCN classification19. We used only taxonomic groups with a sufficiently high total number of species and where they have been comprehensively assessed so that potential biases associated with the groups of species prioritized by experts are avoided.Calculating uncertainties for the threat probabilityWe estimated a measure of uncertainty associated with our impact probability predictions using maps of the proportions of Data Deficient species in each cell within each taxonomic class (amphibians, birds or mammals) as a measure of knowledge certainty in that cell. The rationale for this approach is that places with more Data Deficient species with unknown threatened status should have greater uncertainty in the probability of impact. We therefore created greater variation in the data where there were more Data Deficient species. We used the knowledge-certainty map to probabilistically draw a sample of 100 threat codes for each species, on the basis of the median Data Deficiency across the species range. The random sample changed the species threat code with a probability related to the proportion of Data Deficient species within its range. If the median proportion of Data Deficient species was zero, then we assumed that there was a small probability (0.005) that the species could have been incorrectly coded. Where the median proportion was greater than zero, the probability increased linearly. So, for a species with 5% Data Deficient species within its range, the sample changed the species threat code with a probability close to 5%; if the median proportion was equal to 0.5, then the probability of the species being incorrectly assigned was equal to 0.5. We then fitted the impact probability model with each of the 100 species threat codes and generated a distribution of predicted threat probabilities in each grid cell, from which we took the 95% confidence intervals as the uncertainty estimates (Extended Data Figs. 8–10).Evaluating modelled threat patternsWe evaluated the spatial patterns of threat on the basis of the real Red List threat assessment data against empirical data in two independent ways. First, we compared the probability of impact from logging and agriculture combined within forested biomes (that is, corresponding to remotely detected forest loss, which we refer to as the probability of impact from forest loss, PTh,Forest-loss) with data on forest cover change10. Forest cover change was aggregated from their native 30 m × 30 m (900 m2) resolution pixels to our 50 km × 50 km resolution pixels using Google Earth Engine. For each 50 km × 50 km pixel, we calculated the total area lost between 2000 and 2013 and the area lost as a proportion of the area in 2000. We restricted our analysis to forested biomes: (1) tropical and subtropical moist broadleaf forests, (2) tropical and subtropical dry broadleaf forests, (3) tropical and subtropical coniferous forests, (4) temperate broadleaf and mixed forests, (5) temperate coniferous forests and (6) boreal forests/taiga, following the World Wildlife Fund’s ecoregions classification53. The relationship between forest loss and the probability of impact from forest loss as captured by agriculture and logging overall showed a significant positive correlation: PTh,Forest-loss increased with increasing forest cover loss (P  More

  • in

    Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens

    1.Huang Y, Liu Q, Jia WQ, Yan CR, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Li WF, Wufuer R, Duo J, Wang SZ, Luo YM, Zhang DY, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci Total Environ. 2020;749:141420.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Weithmann N, Moller JN, Loder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018;4:eaap8060.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Jiang JH, Wang XW, Ren HY, Cao GL, Xie GJ, Xing DF, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ. 2020;746:141378.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun. 2020;11:3381.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Roblin B, Ryan M, Vreugdenhil A, Aherne J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ Sci Technol. 2020;54:11100–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Xu CY, Zhang BB, Gu CJ, Shen CS, Yin SS, Aamir M, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater. 2020;400:123228.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Machado AAD, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 2018;24:1405–16.Article 

    Google Scholar 
    9.Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368:1430–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol. 2016;50:5774–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Boots B, Russell CW, Green DS. Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol. 2019;53:11496–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Li H-Z, Zhu D, Lindhardt JH, Lin S-M, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol. 2021;55:4658–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53:6044–52.Article 
    CAS 

    Google Scholar 
    14.Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem. 2018;116:302–10.CAS 
    Article 

    Google Scholar 
    15.Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Arias-Andres M. Who is where in the plastisphere, and why does it matter? Mol Ecol Resour. 2020;20:617–9.Article 

    Google Scholar 
    17.Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the plastisphere. ISME J. 2020;15:789–806.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biot. 2020;104:6501–11.CAS 
    Article 

    Google Scholar 
    19.Bhagwat G, Zhu Q, O’Connor W, Subashchandrabose S, Grainge I, Knight R, et al. Exploring the composition and functions of plastic microbiome using whole-genome sequencing. Environ Sci Technol. 2021;55:4899–913.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Arias-Andres M, Klumper U, Rojas-Jimenez K, Grossart HP. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut. 2018;237:253–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Zhou J, Gui H, Banfield CC, Wen Y, Zang H, Dippold MA, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem. 2021;156:108211.CAS 
    Article 

    Google Scholar 
    22.Hernando-Amado S, Coquet TM, Baquero F, Martinez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4:1432–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Zhu Y-G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, et al. Soil biota, antimicrobial resistance and planetary health. Environ Int. 2019;131:105059.PubMed 
    Article 

    Google Scholar 
    25.Bank MS, Ok YS, Swarzenski PW. Microplastic’s role in antibiotic resistance. Science. 2020;369:1315.PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165:114979.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Yang K, Chen Q-L, Chen M-L, Li H-Z, Liao H, Pu Q, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ Sci Technol. 2020;54:11322–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Yang YY, Liu GH, Song WJ, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Lu X-M, Lu P-Z, Liu X-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709:136276.CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Yan XY, Yang XY, Tang Z, Fu JJ, Chen FM, Zhao Y, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ Pollut. 2020;262:114270.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Zhu D, Ding J, Yin Y, Ke X, O’Connor P, Zhu Y-G. Effects of earthworms on the microbiomes and antibiotic resistomes of detritus fauna and phyllospheres. Environ Sci Technol. 2020;54:6000–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol R 2017;81:e00002–17.Article 

    Google Scholar 
    35.Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 2019;366:886–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Change Biol. 2020;26:3221–9.Article 

    Google Scholar 
    38.de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005–15.Article 

    Google Scholar 
    39.Li MM, Ray P, Teets C, Pruden A, Xia K, Knowlton KF. Short communication: Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J Dairy Sci. 2020;103:2877–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Luo T, Wang Y, Pandey P. The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. Environ Sci Pollut R. 2021;28:6675–83.CAS 
    Article 

    Google Scholar 
    41.Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, et al. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Res. 2021;194:116926.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130:104912.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Zhou S-Y-D, Zhu D, Giles M, Daniell T, Neilson R, Yang X-R. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environ Int. 2020;136:105359.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut. 2020;257:113449.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit Rev Env Sci Tec. 2020;50:2175–222.CAS 
    Article 

    Google Scholar 
    48.Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.PubMed 
    Article 

    Google Scholar 
    49.Zhu D, An X-L, Chen Q-L, Yang X-R, Christie P, Ke X, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ Sci Technol. 2018;52:3081–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Zhu D, Delgado-Baquerizo M, Su J-Q, Ding J, Li H, Gillings MR, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ Sci Technol. 2021;55:7445–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 2016;10:1998–2009.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Liu C, Li H, Zhang Y, Si D, Chen Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour Technol. 2016;216:87–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Zhu D, Xiang Q, Yang X-R, Ke X, O’Connor P, Zhu Y-G. Trophic transfer of antibiotic resistance genes in a soil detritus food chain. Environ Sci Technol. 2019;53:7770–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Li H, Zhou X-Y, Yang X-R, Zhu Y-G, Hong Y-W, Su J-Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ. 2019;665:61–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:884–90.Article 
    CAS 

    Google Scholar 
    59.Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.PubMed 
    Article 

    Google Scholar 
    61.Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, et al. Interval estimation for a binomial proportion—comment—rejoinder. Stat Sci. 2001;16:101–33.Article 

    Google Scholar 
    62.Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    64.Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome. 2020;15:11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Frere L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Parrish K, Fahrenfeld NL. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ Sci-Wat Res. 2019;5:495–505.CAS 

    Google Scholar 
    67.Hossain MR, Jiang M, Wei Q, Leff LG. Microplastic surface properties affect bacterial colonization in freshwater. J Basic Micro. 2019;59:54–61.CAS 
    Article 

    Google Scholar 
    68.Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Hesse E, O’Brien S, Luján AM, Sanders D, Bayer F, van Veen EM, et al. Stress causes interspecific facilitation within a compost community. Ecol Lett. 2021;00:1–9.
    Google Scholar 
    70.Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Adair KL, Wilson M, Bost A, Douglas AE. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018;12:959–72.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. Msystems. 2016;1:e00024–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Kwon J-H, Chang S, Hong SH, Shim WJ. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. Integr Environ Assess. 2017;13:494–9.Article 

    Google Scholar 
    75.Xiang Q, Zhu D, Chen Q-L, O’Connor P, Yang X-R, Qiao M, et al. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (similar to 2 mm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environ Sci Technol. 2019;53:12823–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Virsek MK, Lovsin MN, Koren S, Krzan A, Peterlin M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull. 2017;125:301–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Caruso G. Microplastics as vectors of contaminants. Mar Pollut Bull. 2019;146:921–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    78.MacLean RC, San Millan A. The evolution of antibiotic resistance. Science. 2019;365:1082–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Zhang H, Wang J, Zhou B, Zhou Y, Dai Z, Zhou Q, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ Pollut. 2018;243:1550–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    1.Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012;109:35–47.Article 

    Google Scholar 
    2.Behm JE, Kiers ET. A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol. 2014;102:315–27.Article 

    Google Scholar 
    3.Relyea RA. Phenotypic plasticity in the interactions and evolution of species. Ecology. 2005;86:321–6.Article 

    Google Scholar 
    4.Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci. 2010;1206:35–55.PubMed 
    Article 

    Google Scholar 
    5.Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15:684–92.CAS 
    Article 

    Google Scholar 
    6.Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol. 2008;14:1125–40.Article 

    Google Scholar 
    7.Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5:537–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Chevin LM, Gallet R, Gomulkiewicz R, Holt RD, Fellous S Phenotypic plasticity in evolutionary rescue experiments. Philos Trans R Soc B Biol Sci. 2013;368:20120089.9.Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett. 2014;17:1351–64.PubMed 
    Article 

    Google Scholar 
    10.Slepecky RA, Starmer WT. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia. 2009;101:823–32.PubMed 
    Article 

    Google Scholar 
    11.Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. Microbial bet-hedging: the power of being different. Curr Opin Microbiol. 2015;25:67–72.PubMed 
    Article 

    Google Scholar 
    12.Rong M, Zheng X, Ye M, Bai J, Xie X, Jin Y, et al. Phenotypic plasticity of staphylococcus aureus in liquid medium containing vancomycin. Front Microbiol. 2019;10:1–11.Article 

    Google Scholar 
    13.Schmidt K, van Oosterhout C, Collins S, Mock T. The role of phenotypic plasticity and epigenetics in experimental evolution with phytoplankton. Perspect Phycol. 2016;3:29–36.
    Google Scholar 
    14.Graham EB, Crump AR, Kennedy DW, Arntzen E, Fansler S, Purvine SO, et al. Multi’omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Sci Total Environ. 2018;642:742–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Frac M, Hannula SE, Belka M, Jȩdryczka M. Fungal biodiversity and their role in soil health. Front Microbiol. 2018;9:1–9.Article 

    Google Scholar 
    17.Ritz K, Young IM. Interactions between soil structure and fungi. Mycologist. 2004;18:52–59.Article 

    Google Scholar 
    18.Kwon MJ, Haraguchi A, Kang H. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biol Biochem. 2013;60:33–44.CAS 
    Article 

    Google Scholar 
    19.Sardans J, Peñuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem. 2005;37:455–61.CAS 
    Article 

    Google Scholar 
    20.Hsu JP, Chen TH, Wang HH. A kinetic study of the growth of a Rhizopus colony. J Theor Biol. 1989;140:445–51.Article 

    Google Scholar 
    21.Baath E. Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol. Soil Biol Biochem. 2001;33:2011–8.CAS 
    Article 

    Google Scholar 
    22.Querejeta JI. Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. Mycorrhizal mediation of soil. Elsevier; 2017. p. 299–317.23.Tisdall JM. Fungal hyphae and structural stability of soil. Aust J Soil Res. 1991;29:729–43.Article 

    Google Scholar 
    24.Augé RM, Stodola AJW, Tims JE, Saxton AM. Moisture retention properties of a mycorrhizal soil. Plant Soil. 2001;230:87–97.Article 

    Google Scholar 
    25.Chevin LM, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 2010;8:e1000357.26.Rodriguez C, Dominguez A. The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can J Microbiol. 1984;30:605–12.CAS 
    Article 

    Google Scholar 
    27.De Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, et al. Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang. 2012;2:276–80.Article 

    Google Scholar 
    28.Xiong J, Peng F, Sun H, Xue X, Chu H. Divergent responses of soil fungi functional groups to short-term warming. Microb Ecol. 2014;68:708–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Chevin LM, Collins S, Lefèvre F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol. 2013;27:967–79.Article 

    Google Scholar 
    30.Beier S, Rivers AR, Moran MA, Obernosterer I. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME J. 2015;9:1141–51.PubMed 
    Article 

    Google Scholar 
    31.Hall EK, Singer GA, Kainz MJ, Lennon JT. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Funct Ecol. 2010;24:898–908.Article 

    Google Scholar 
    32.Lennon JT, Aanderud ZT, Lehmkuhl BK Jr, Mapping DRS. the niche space of soil microorganisms using taxonomy and traits. Ecology. 2016;93:1867–79.Article 

    Google Scholar 
    33.Glassman SI, Weihe C, Li J, Albright M, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Bárcenas‐Moreno G, Gómez‐Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article 

    Google Scholar 
    35.Geisseler D, Horwath WR, Scow KM. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia. 2011;54:71–78.Article 

    Google Scholar 
    36.Allison SD, Romero-Olivares AL, Lu L, Taylor JW, Treseder KK. Temperature acclimation and adaptation of enzyme physiology in Neurospora discreta. Fungal Ecol. 2018;35:78–86.Article 

    Google Scholar 
    37.Cross D, Kenerley CM. Modelling the growth of Trichoderma virens with limited sampling of digital images. J Appl Microbiol. 2004;97:486–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Ramin KI, Allison SD. Bacterial tradeoffs in growth rate and extracellular enzymes. Front Microbiol. 2019;10:1–10.Article 

    Google Scholar 
    39.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.PubMed 
    Article 

    Google Scholar 
    41.Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y, et al. Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J. 2016;10:109–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.A’Bear AD, Jones TH, Kandeler E, Boddy L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem. 2014;70:151–8.Article 
    CAS 

    Google Scholar 
    43.Alster CJ, German DP, Lu Y, Allison SD. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol Biochem. 2013;64:68–79.CAS 
    Article 

    Google Scholar 
    44.Alster CJ, Weller ZD, von Fischer JC. A meta‐analysis of temperature sensitivity as a microbial trait. Glob Chang Biol. 2018;24:4211–4224.45.Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, et al. Who is who in litter decomposition Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 2012;6:1749–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Luo L, Meng H, Gu JD. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J Environ Manage. 2017;197:539–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Haas L. Conquests and historical identities in California, 1769–1936. 1995. University of California Press.48.KIZH Nation. KIZH NATION (Pronounced Keech), Gabrieleño Band Of Mission Indians. https://gabrielenoindians.org/. Accessed 23 Sep 2020.49.Kimball S, Goulden ML, Suding KN, Parker S. Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecol Appl. 2014;24:1390–404.PubMed 
    Article 

    Google Scholar 
    50.Potts DL, Suding KN, Winston GC, Rocha AV, Goulden ML. Ecological effects of experimental drought and prescribed fire in a southern California coastal grassland. J Arid Environ. 2012;81:59–66.Article 

    Google Scholar 
    51.Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.PubMed 
    Article 

    Google Scholar 
    52.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). Pcr protocols: a guide to methods and applications. 1990. Academic Press, Inc., San Diego, California, USA; London, England, Uk., pp 315–22.53.Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Matulich KL, Weihe C, Allison SD, Amend AS, Berlemont R, Goulden ML, et al. Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J. 2015;9:2477–89.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Connor EW, Sandy M, Hawkes CV. Microbial tools in agriculture require an ecological context: Stress-dependent non-additive symbiont interactions. Agron J. 2017;109:917–26.Article 

    Google Scholar 
    56.Sinsabaugh RL, Carreiro MM, Alvarez S. Enzyme and microbial dynamics of litter decomposition. Enzymes in the Environment activity ecology and applications. Marcel Dekker, New York, Basel 2002; 249–65.57.Wohl DL, McArthur JV. Aquatic actinomycete-fungal interactions and their effects on organic matter decomposition: a microcosm stu in the dy. Microb Ecol. 2001;42:446–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Alster CJ, Allison SD, Glassman SI, Martiny A, Treseder K. Exploring trait trade-offs for fungal decomposers in a Southern California grassland. Front Microbiol. 2021;12:665.Article 

    Google Scholar 
    59.Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology. 2013;94:714–25.PubMed 
    Article 

    Google Scholar 
    60.Shen Q, Kirschbaum MUF, Hedley MJ, Arbestain MC. Testing an alternative method for estimating the length of fungal hyphae using photomicrography and image processing. PLoS One. 2016;11:1–12.
    Google Scholar 
    61.Killham K. Soil Microbiology and Biochemistry. By EA PAUL and FE CLARK. 23×15 cm. Pp. xiii+340 with 108 text-figures. San Diego, CA, USA: Academic Press: 2nd Edition, 1996. Price h/b: £29.95, ISBN 0 12 546806 7. New Phytol. 1998;138: 563–6.62.Sylvia DM 3 Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. Methods in microbiology. 1992. Elsevier, pp 53–65.63.Bakken LR, Olsen RA. Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol. 1983;45:1188–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. 2020. R Foundation for Statistical Computing, Vienna, Austria.65.Lenth RV. Response-surface methods in R, using RSM. J Stat Softw. 2009;32:1–17.Article 

    Google Scholar 
    66.Khuri AI. A general overview of response surface methodology. Biometrics Biostat Int J. 2017;5:87–93.
    Google Scholar 
    67.Aydar AY. Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes. InTech; 2018. p. 157–69.68.Brasil JL, Martins LC, Ev RR, Dupont J, Dias SLP, Sales JAA, et al. Factorial design for optimization of flow-injection preconcentration procedure for copper(II) determination in natural waters, using 2-aminomethylpyridine grafted silica gel as adsorbent and spectrophotometric detection. Int J Environ Anal Chem. 2005;85:475–91.CAS 
    Article 

    Google Scholar 
    69.Montgomery DC. Design and analysis of experiments, ninth. 2017. Wiley.70.Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package version 133, 2019. https://CRAN.R-project.org/package=emmeans71.Pagel M. Inferring historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 2003;57:717–45.Article 

    Google Scholar 
    73.Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.Article 

    Google Scholar 
    74.Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: from taxonomy to traits. Science. 2008;320:1039–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.García FC, Bestion E, Warfield R, Yvon-Durochera G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci USA. 2018;115:10989–94.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Pold G, DeAngelis KM. Up against the wall: the effects of climate warming on soil microbial diversity and the potential for feedbacks to the carbon cycle. Diversity. 2013;5:409–25.CAS 
    Article 

    Google Scholar 
    78.Nielsen UN, Wall DH, Six J. Soil biodiversity and the environment. Annu Rev Environ Resour. 2015;40:63–90.Article 

    Google Scholar 
    79.Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos. 2000;90:279–94.Article 

    Google Scholar 
    80.Goberna M, Navarro-Cano JA, Valiente-Banuet A, García C, Verdú M. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett. 2014;17:1191–201.PubMed 
    Article 

    Google Scholar 
    81.Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett. 2010;13:1085–93.PubMed 
    Article 

    Google Scholar 
    82.Morrison EW, Pringle A, Van Diepen LTA, Frey SD. Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition. Soil Biol Biochem. 2018;125:75–85.CAS 
    Article 

    Google Scholar 
    83.Romero-Olivares AL, Meléndrez-Carballo G, Lago-Lestón A. Soil metatranscriptomes under long-term experimental warming and drying: fungi allocate resources to cell metabolic maintenance rather than decay. Front Microbiol. 2019;10:1–9.Article 

    Google Scholar 
    84.Malik AA, Martiny JBH, Brodie EL, Allison SD, Martiny AC. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:2236–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:4.Article 

    Google Scholar 
    86.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:1–9.Article 

    Google Scholar 
    87.Rafiq M, Hassan N, Rehman M, Hasan F. Adaptation mechanisms and applications of psychrophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds). Fungi in extreme environments: ecological role and biotechnological significance. 2019. Springer International Publishing, Cham, pp 157–74.88.Alster CJ, Baas P, Wallenstein MD, Johnson NG, von Fischer JC. Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory. Front Microbiol 2016;7:1821.89.Angilletta Jr MJ, Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. 2009. Oxford University Press.90.Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. Soil Enzymology. 2011. Springer Berlin/Heidelberg, pp 245–58.91.Allison SD, Weintraub MN, Gartner TB, Waldrop MP. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. Soil Enzymology. 2011. Springer, pp 229–43. More

  • in

    Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world

    Spatial databaseWe collected species occurrences from the most accurate and available source of data for each taxonomic group. For mammals, birds, reptiles and amphibians, we used the IUCN spatial database to assign realm identity for each species15. By doing this, we assigned a realm for 5489 mammal species, 10,787 bird species, 5489 reptile species and 5833 amphibian species. Since IUCN spatial database does not cover all species, we completed our database with two additional sources of species occurrences: (1) the WWF WildFinder species database23, except for mammals where we used the latest version of the species distribution provided by ref. 24. If (1) was not available, we used (2) the global biodiversity information facility (GBIF). Using WWF WildFinder, we assigned a realm for 1634 bird species, 7378 reptile species and 2006 amphibian species. 437 mammal species were assigned using ref. 24. From GBIF, we downloaded all the records belonging to the four classes of animals (Mammals50, Aves51, Reptiles52 and Amphibians53). Before using the spatial data, we cleaned the dataset following a cleaning procedure that was similar to but more conservative than other currently available methods (e.g. CoordinatesCleaner, BDCleaner54). First, records were screened, and only those with (1) coordinates; (2) a taxonomic rank of “species” were kept. From this list, we filtered out the records with clearly false locality coordinates (e.g. latitude equal to longitude, both latitude and longitude equal to 0, and longitude/latitude outside the possible range (i.e. −180; 180 for longitude and −90; 90 for latitude)). Those are the most common errors encountered with GBIF occurrence data55. In addition, we removed the records from living specimens (i.e. from zoos, botanical gardens), conserved specimens (i.e. museums), and unknown sources. We also excluded the species with less than 50 records within each realm as a low number of records can be due to misidentifications, which might have strong effects on our analyses. We finally refined the dataset by overlaying the occurrences within the six biogeographic realms (see below) and dropping the species that fall outside of the polygons. This spatial overlay process was conducted using the ‘sp’ library56 in R. The number of species for which realm was assigned using GBIF was 1 ( More