More stories

  • in

    Rethinking river water temperature in a changing, human-dominated world

    Ouellet, V. et al. Sci. Total Environ. 736, 139679 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sutadian, A. D., Muttil, N., Yilmaz, A. G. & Perera, B. J. C. Environ. Monit. Assess. 188, 58 (2016).Article 
    PubMed 

    Google Scholar 
    Murdoch, P. S., Baron, J. S. & Miller, T. L. J. Am. Water Resour. Assoc. 36, 347–366 (2000).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. & Garner, G. Prog Phys Geogr. 39, 68–92 (2015).Article 

    Google Scholar 
    Abbott, B. W. et al. Nat. Geosci. 12, 533–540 (2019).Article 
    CAS 

    Google Scholar 
    Grill, G. et al. Nature 569, 215–221 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hermanson, L. et al. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).Article 

    Google Scholar 
    Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E. & Nobilis, F. Hydrol. Process. 22, 902–918 (2008).Article 

    Google Scholar 
    Hester, E. T. & Doyle, M. W. J. Am. Water Resour. Assoc. 47, 571–587 (2011).Article 

    Google Scholar 
    Schliemann, S. A., Grevstad, N. & Brazeau, R. H. Hydrol. Process 35, e14001 (2021).Article 

    Google Scholar 
    Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P. & Malcolm, I. A. Sci. Total Environ. 612, 1543–1558 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Sullivan, A. M., Devito, K. J. & Curry, R. A. Catena 177, 70–83 (2019).Article 

    Google Scholar 
    Chang, H. & Psaris, M. Sci. Total Environ. 461, 587–600 (2013).Article 
    PubMed 

    Google Scholar 
    Hester, E. T. & Bauman, K. S. J. Am. Water Resour. Assoc. 49, 328–342 (2013).Article 

    Google Scholar 
    Croghan, D., Van Loon, A. F., Sadler, J. P., Bradley, C. & Hannah, D. M. Hydrol. Process. 33, 144–159 (2018).Article 

    Google Scholar 
    Levia, D. F. et al. Nat. Geosci. 13, 656–658 (2020).Article 
    CAS 

    Google Scholar 
    Nelson, K. C. & Palmer, M. A. J. Am. Water Resour. Assoc 43, 440–452 (2007).Article 

    Google Scholar 
    Heggenes, J. et al. River Res. Appl. 37, 743–765 (2021).Article 

    Google Scholar 
    Menberg, K., Blum, P., Kurylyk, B. L. & Bayer, P. Hydrol. Earth Syst. Sci. 18, 4453–4466 (2014).Article 

    Google Scholar 
    Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Environ. Res. Lett. 14, 104012 (2019).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 36, e14525 (2022).Article 

    Google Scholar 
    Carothers, C. et al. Ecol. Soc. https://doi.org/10.5751/ES-11972-260116 (2021).Dugdale, S. J., Hannah, D. M. & Malcolm, I. A. Earth Sci. Rev. 175, 97–113 (2017).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Tavares, M. H. et al. Remote Sens. Environ. 241, 11172 (2020).Article 

    Google Scholar 
    Dugdale, S. J., Klaus, J. & Hannah, D. M. Water Resour. Res. 58, e2021WR031168 (2022).Article 

    Google Scholar 
    Mao, F. et al. Environ. Sci. Technol. 54, 9145–9158 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 25, 1191–1200 (2011).Article 

    Google Scholar 
    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. Earth Syst. Sci. Data 10, 765–785 (2018).Article 

    Google Scholar  More

  • in

    Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination

    Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).Article 

    Google Scholar 
    Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Brittain, C., Kremen, C. & Klein, A. M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19, 540–547 (2013).Article 
    ADS 

    Google Scholar 
    Rader, R., Reilly, J., Bartomeus, I. & Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19, 3103–3110 (2013).Article 
    ADS 

    Google Scholar 
    Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).Article 
    ADS 

    Google Scholar 
    Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 6, 1–10 (2015).Article 

    Google Scholar 
    Knop, E. et al. Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers. 11, 267–275 (2018).Article 

    Google Scholar 
    Goodwin, E. K., Rader, R., Encinas-Viso, F. & Saunders, M. E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian Alpine zone. Environ. Entomol. 50, 348–358 (2021).Article 

    Google Scholar 
    Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. Biol. Sci. 288, 20210547 (2021).
    Google Scholar 
    Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Chang. Biol. 21, 4021–4030 (2015).Article 
    ADS 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608. https://doi.org/10.1126/science.1230200 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).Article 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 386, 1964–1972 (2015).Article 

    Google Scholar 
    González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).Article 

    Google Scholar 
    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).Article 
    ADS 

    Google Scholar 
    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).Article 
    ADS 

    Google Scholar 
    Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).Article 

    Google Scholar 
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2242 (2018).Article 

    Google Scholar 
    Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. 276, 229–237 (2009).Article 

    Google Scholar 
    Jauker, F., Diekoetter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).Article 

    Google Scholar 
    Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 95, 466–474 (2014).Article 

    Google Scholar 
    Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N. & Ricketts, T. H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 280, 53–67 (2019).Article 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).Article 

    Google Scholar 
    Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).Article 

    Google Scholar 
    Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 279, 4845–4852 (2012).Article 

    Google Scholar 
    Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).Article 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).Article 

    Google Scholar 
    Miñarro, M. & Twizell, K. W. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie 46, 276–285 (2015).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kuehn, I., Frenzel, M. & Schweiger, O. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landsc. Ecol. 32, 581–593 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kühn, I., Frenzel, M. & Schweiger, O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol. 54, 527–536 (2017).Article 

    Google Scholar 
    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).Article 

    Google Scholar 
    Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 1–3 (2016).Article 

    Google Scholar 
    Taki, H., Okabe, K., Makino, S. I., Yamaura, Y. & Sueyoshi, M. Contribution of small insects to pollination of common buckwheat, a distylous crop. Ann. Appl. Biol. 155, 121–129 (2009).Article 

    Google Scholar 
    Krkošková, B. & Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 38, 561–568 (2005).Article 

    Google Scholar 
    Campbell, J. W., Irvin, A., Irvin, H., Stanley-Stahr, C. & Ellis, J. D. Insect visitors to flowering buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), in north-central Florida. Fla. Entomol. 99, 264–268 (2016).Article 

    Google Scholar 
    Hadley, N. F. Water Relations of Terrestrial Arthropods (CUP Archive, 1994).
    Google Scholar 
    Sgolastra, F. et al. Temporal activity patterns in a flower visitor community of Dictamnus albus in relation to some biotic and abiotic factors. Bull. Insectol. 69, 291–300 (2016).
    Google Scholar 
    Vicens, N. & Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420 (2000).Article 

    Google Scholar 
    Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R. & Cianciaruso, M. V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28, 1372–1383 (2020).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. (2013).Defra. (ed Food and Rural Affairs Department for Environment) (2019).Agency, J. M. Amedas, https://tenki.jp/past/2019/09/amedas/ (2019).Jacquemart, A.-L., Gillet, C. & Cawoy, V. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotechnol. 82, 104–108 (2007).Article 

    Google Scholar 
    Taki, H. et al. Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic Appl. Ecol. 11, 594–602 (2010).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Dray S, et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial. (2022).Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).Article 

    Google Scholar 
    Földesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75 (2016).Article 

    Google Scholar 
    Oksanen J, et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (2022)Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman and Hall/CRC, 1995).Book 
    MATH 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (2019).Sasaki, H. & Wagatsuma, T. Bumblebees (Apidae: Hymenoptera) are the main pollinators of common buckwheat, Fogopyrum esculentum, in Hokkaido, Japan. Appl. Entomol. Zool. 42, 659–661 (2007).Article 

    Google Scholar 
    Nagano, Y., Miyashita, T., Taki, H. & Yokoi, T. Diversity of co-flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecol. Res. 36, 882–891 (2021).Article 

    Google Scholar 
    Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions?. Gcb Bioenergy 6, 756–767 (2014).Article 

    Google Scholar 
    Sugiura, N., Miyazaki, S. & Nagaishi, S. A supplementary contribution of ants in the pollination of an orchid, Epipactis thunbergii, usually pollinated by hover flies. Plant Syst. Evol. 258, 17–26 (2006).Article 

    Google Scholar 
    Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).Article 

    Google Scholar 
    Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 49, 1373–1383 (2012).Article 

    Google Scholar 
    Michiyama, H., Arikuni, M. & Hirano, T. Effect of air temperature on the growth, flowering and ripening in common buckwheat. In The Procceeding of the 8th ISB (2001)Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-U196. https://doi.org/10.1038/nature10282 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).Article 

    Google Scholar 
    Choi, S.-W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Feldmeier, S. et al. Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Divers. Distrib. 24, 1047–1060 (2018).Article 

    Google Scholar  More

  • in

    Public interest in individual study animals can bolster wildlife conservation

    Benson, E. S. Sci. Context 29, 107–128 (2016).Article 
    PubMed 

    Google Scholar 
    Buckmaster, C. A. Lab Anim. 44, 237 (2015).Article 

    Google Scholar 
    Kelly, M. J. et al. J. Zool. 244, 473–488 (1998).Article 

    Google Scholar 
    Spagnuolo, O. S. B., Lemerle, M. A., Holekamp, K. E. & Wiesel, I. Mamm. Biol. https://doi.org/10.1007/s42991-022-00309-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    California Department of Fish and Wildlife. Mountain lion P-22 compassionately euthanized following complete health evaluation results. wildlife.ca.gov, https://wildlife.ca.gov/News/mountain-lion-p-22-compassionately-euthanized-following-complete-health-evaluation-results (17 December 2022).Road Ecology Center, UC Davis. California roadkill observation system, https://www.wildlifecrossing.net/california/ (accessed 19 December 2022).Wong-Parodi, G. & Feygina, I. Environ. Commun. 15, 571–593 (2021).Article 

    Google Scholar 
    Carmi, N., Arnon, S. & Orion, N. J. Environ. Educ. 46, 183–201 (2015).Article 

    Google Scholar 
    Manfredo, M. J., Urquiza-Haas, E. G., Don Carlos, A. W., Bruskotter, J. T. & Dietsch, A. M. Biol. Conserv. 241, 108297 (2020).Article 

    Google Scholar 
    Schueler, D. S. & Newberry, M. G. III Appl. Environ. Educ. Commun. 19, 259–273 (2020).Article 

    Google Scholar 
    Jennings, L. Public gets to name Dallas Zoo’s baby giraffe. Dallas Zoo https://zoohoo.dallaszoo.com/2014/11/05/public-gets-to-name-dallas-zoos-baby-giraffe/ (5 November 2014).Verma, A., van der Wal, R. & Fischer, A. Ambio 44(Suppl 4), 648–660 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macdonald, D. W., Jacobsen, K. S., Burnham, D., Johnson, P. J. & Loveridge, A. J. Animals 6, 26 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. D., Shanahan, E. A. & McBeth, M. K. The Science of Stories: Applications of the Narrative Policy Framework in Public Policy Analysis (Palgrave MacMillan, 2014). More

  • in

    The spatio-temporal distribution of alkaline phosphatase activity and phoD gene abundance and diversity in sediment of Sancha Lake

    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sc. Pollut. R. Int. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading an analysis of contemporary long term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Kim, L. H., Choi, E. & Michal, K. S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50, 53–61 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, X. J., Xiang, C. & Yao, Y. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res. 42, 2251–2259 (2008).Article 
    CAS 

    Google Scholar 
    Wang, S. R., Jin, X. C. & Bu, Q. Y. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A 316, 245–252 (2008).Article 
    CAS 

    Google Scholar 
    Miao, S. Y., De-Laune, R. D. & Jug-Sujinda, A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci. Total Environ. 371, 334–343 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Smits, J. G. C. & Van Beek, J. K. L. ECO: A generic eutrophication model including comprehensive sediment-water interaction. PLoS ONE 8, e68104 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Topcu, A. & Pulatsu, S. Phosphorus fractions and cycling in the sediment of a shallow eutrophic pond. Tarim Bilim. Derg. 20, 63–70 (2014).Article 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Song, C. L., Cao, X. Y. & Liu, Y. B. Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large chinese shallow eutrophic lake (Lake Taihu). Geomicrobiol. J. 26, 508–515 (2009).Article 
    CAS 

    Google Scholar 
    Pop, O., Martin, U., Abel, C. & Müller, J. P. The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous tat translocation system. J. Biol. Chem. 277, 3268–3273 (2002).Article 
    CAS 

    Google Scholar 
    Luo, H. W., Zhang, H. M. & Long, R. A. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 62, 61–69 (2011).Article 

    Google Scholar 
    Tan, H. et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 49, 661–672 (2012).Article 

    Google Scholar 
    Wan, W. J. et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degrad. Dev. 32, 766–776 (2021).Article 

    Google Scholar 
    Chen, X. et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl. Soil Ecol. 119, 197–204 (2017).Article 
    ADS 

    Google Scholar 
    Sagnon, A. et al. Amendment with Burkina Faso phosphate rock-enriched composts alters soil chemical properties and microbial structure, and enhances sorghum agronomic performance. Sci. Rep. 12, 13945 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhabra, S. et al. Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol. Fertil. Soils 49, 31–39 (2012).Article 

    Google Scholar 
    Luo, H. W., Benner, R., Long, R. A. & Hu, J. J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. 106, 212–219 (2009).Article 

    Google Scholar 
    Zhang, T. X. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, H. et al. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial growth and their succession. J. Environ. Sci. 103, 255–267 (2021).Article 
    CAS 

    Google Scholar 
    Sun, T. T., Huang, T. & Liu, Y. X. Effects of cyanobacterial growth and decline on the phoD-harboring bacterial community structure in sediments of Lake Chaohu. J. Lake Sci. 34, 32 (2022).ADS 

    Google Scholar 
    Li, Y., Ai, M. J., Sun, Y., Zhang, Y. Q. & Zhang, J. Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 67, 3144–3149 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Xu, W. L. & Mou, Z. S. Microbial community structure in the sediments and its relation to environmental factors in eutrophicated Sancha Lake. Int. J. Environ. Res. Public Health 16, 1931–1946 (2019).Article 
    CAS 

    Google Scholar 
    Jia, B. Y., Tang, Y. & Fu, W. L. Relationship among sediment characteristics, eutrophication process and human activities in the Sancha Lake. China Environ. Sci. 33, 1638–1644 (2013).CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Zhang, J. Q., Xu, W. L. & Mou, Z. S. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake. Int. J. Environ. Res. Public Health 16, 2141 (2019).Article 
    CAS 

    Google Scholar 
    Ruban, V., Brigault, S., Demare, D. & Philippe, A. M. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues reservoir, France. J. Environ. Monit. 1, 403–407 (1999).Article 
    CAS 

    Google Scholar 
    Ruban, V., López-Sánchez, J. F. & Pardo, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius J. Anal. Chem. 370, 224–228 (2001).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Fu, W. L. & Wu, D. M. Fractions and temporal and spatial distribution of phosphorus in the sediments of Sancha lake. Appl. Ecol. Environ. Res. 17, 11731–11743 (2019).Article 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Xu, W. L. & Mou, Z. S. Gcd gene diversity of quinoprotein glucose dehydrogenase in the sediment of Sancha lake and its response to the environment. Int. J. Environ. Res. Public Health 16, 1–10 (2019).Article 

    Google Scholar 
    Luo, G. W. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 
    CAS 

    Google Scholar 
    Lagos, L. et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 52, 1007–1019 (2016).Article 
    CAS 

    Google Scholar 
    Acuña, J. et al. Bacterial alkaline phosphomono-esterase in the rhizospheres of plants grown in chilean extreme environments. Biol. Fertil. Soils 52, 763–773 (2016).Article 

    Google Scholar 
    Nicholas, A. B. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 10, 57–59 (2013).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).Article 
    CAS 

    Google Scholar 
    Fan, X. F. & Xing, P. The vertical distribution of sediment archaeal community in the (black bloom) disturbing Zhushan Bay of Lake Taihu. Archaea 2016, 201–208 (2016).Article 

    Google Scholar 
    White, J. R., Nagarajan, N. & Pop, M. O. Statistical methods for detecting differentially abundant features in clinical metagenomic samples (differential abundance in clinical metagenomics). PLoS Comput. Biol. 5, 1–11 (2009).Article 

    Google Scholar 
    Hu, H., Chen, X. J., Hou, F. J., Wu, Y. P. & Cheng, Y. X. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front. Microbiol. 8, 606 (2017).Article 

    Google Scholar 
    Dai, J. Y. et al. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. J. Lake Sci. 28, 1153–1166 (2016).Article 

    Google Scholar 
    Chróst, R. J. & Overbeck, J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterio-plankton in lake plusee (North German Eutrophic Lake). Microb. Ecol. 13, 229–248 (1987).Article 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhao, D. D., Luo, J. F., Huang, X. Y. & Lin, W. T. Diversity of bacterial APase phoD gene in the Pearl River water. Acta Sci. Circum. 35, 722–728 (2015).CAS 

    Google Scholar 
    Valdespino-Castillo, P. M. et al. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol. Ecol. 90, 504–519 (2014).CAS 

    Google Scholar 
    Ni, Z. K., Li, Y. & Wang, S. R. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. Water Res. 220, 118663 (2022).Article 
    CAS 

    Google Scholar 
    Han, S. S. & Wen, T. M. Phosphorus release and affecting factors in the sediments of eutrophic water. J. Ecol. 23, 98–101 (2004).
    Google Scholar 
    Wang, F. F., Qu, J. H. & Hu, Y. S. Spatio-temporal characteristics and correlation of phosphate, pH and alkaline phosphatase on water-sediment interface of Lake Taihu. Ecol. Environ. Sci. 21, 907–912 (2012).
    Google Scholar 
    Lu, Y. M. et al. Bioavailability of organic phosphorus in Lake Chaohu sediments. J. Environ. Eng. Technol. 10, 197–204 (2020).
    Google Scholar 
    LeBrun, E. S., King, R. S., Back, J. A. & Kang, S. Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb. Ecol. 75, 64–73 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. Connecting sources, fractions and algal availability of sediment phosphorus in shallow lakes: An approach to the criteria for sediment phosphorus concentrations. J. Environ. Sci. 25, 798–810 (2023).Article 

    Google Scholar 
    Hu, Y. J. et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 628–629, 53–63 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria

    Strains belonging to the same species display distinct growth dynamics on the marine polysaccharide alginateWe first quantified the growth dynamics of the 12 Vibrionaceae strains (Supplementary Table 1) on alginate in well-mixed batch cultures. Growth of populations was initiated at approximately the same inoculum density (105 colony forming units (c.f.u.) ml−1). We tracked the growth dynamics by measuring the optical density at 600 nm and compared the maximum population size reached over the course of 36 h (Fig. 1 and S1). We found significant differences in the maximal optical density achieved by different strains within each species (Fig. 1 and S1). In V. splendidus, strains 12B01 and FF6 reached a lower maximum population size compared to strains 1S124 and 13B01 (Fig. 1 and S1A). In V. cyclitrophicus, strain ZF270 reached a lower maximum population size compared to strains 1F175, 1F111, and ZF28 (Fig. 1 and S1A). Similarly, in V. sp. F13, strain 9ZC77 reached a lower maximum population size than strains 9CS106, 9ZC13, and ZF57 (Fig. 1 and S1A). These findings suggest that some strains are limited in their growth abilities in well-mixed environments, perhaps as a consequence of differences in the amount and activity of enzymes they release (Supplementary Table 1).Fig. 1: Vibrionaceae strains differ in their growth dynamics on the marine polysaccharide alginate under well-mixed conditions.Maximum optical density (measured at 600 nm) achieved by populations of strains belonging to Vibrio splendidus, Vibrio cyclitrophicus, and Vibrio sp. F13 during the course of a 36 h growth cycle on the same concentration (0.1% weight/volume) of the polysaccharide alginate. Points and error bars indicate the mean of measurements across populations within each ecotype (npopulations = 3) and the 95% confidence interval (CI), respectively. Different letters indicate statistically significant differences between strains within one species (One-way ANOVA and Dunnett’s post-hoc test; V. splendidus: p  More

  • in

    Pathways of degradation in rangelands in Northern Tanzania show their loss of resistance, but potential for recovery

    Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29, 261–299 (2004).Article 

    Google Scholar 
    Millenium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Wetlands and Water: Synthesis (Island Press, Washington, DC, 2005).Lind, J., Sabates-Wheeler, R., Caravani, M., Kuol, L. B. D. & Nightingale, D. M. Newly evolving pastoral and post-pastoral rangelands of Eastern Africa. Pastoralism 10, 24 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffman, T. & Vogel, C. Climate change impacts on African rangelands. Rangelands 30, 12–17 (2008).Article 

    Google Scholar 
    Joyce, L. A. et al. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies. Rangeland Ecol. Manage. 66, 512–528 (2013).Article 

    Google Scholar 
    Stringer, L. C., Reed, M. S., Dougill, A. J., Seely, M. K. & Rokitzki, M. Implementing the UNCCD: Participatory challenges. Nat. Resour. Forum 31, 198–211 (2007).Article 

    Google Scholar 
    Vågen, T.-G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T. & Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225 (2016).Article 
    ADS 

    Google Scholar 
    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Muñoz, P. et al. Land degradation, poverty and inequality (2019).Bond, W. & Keeley, J. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 
    PubMed 

    Google Scholar 
    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).Article 
    PubMed 

    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 
    ADS 
    CAS 
    MATH 
    PubMed 

    Google Scholar 
    Fuhlendorf, S. D., Fynn, R. W. S., McGranahan, D. A. & Twidwell, D. Heterogeneity as the basis for rangeland management in Rangeland Systems: Processes, Management and Challenges, Springer Series on Environmental Management (ed. Briske, D. D.), 169–196 (Springer International Publishing, 2017).Liao, C., Agrawal, A., Clark, P. E., Levin, S. A. & Rubenstein, D. I. Landscape sustainability science in the drylands: mobility, rangelands and livelihoods. Landsc. Ecol. 35, 2433–2447 (2020).Article 

    Google Scholar 
    Galvin, K. A. Transitions: pastoralists living with change. Annu. Rev. Anthropol. 38, 185–198 (2009).Article 

    Google Scholar 
    López-i Gelats, F., Fraser, E. D. G., Morton, J. F. & Rivera-Ferre, M. G. What drives the vulnerability of pastoralists to global environmental change? A qualitative meta-analysis. Glob. Environ. Change 39, 258–274 (2016).Obiri, J. F. Invasive plant species and their disaster-effects in dry tropical forests and rangelands of Kenya and Tanzania. Jàmbá: Journal of Disaster Risk Studies 3, 417–428 (2011).Kioko, J., Kiringe, J. W. & Seno, S. O. Impacts of livestock grazing on a savanna grassland in Kenya. J. Arid Land 4, 29–35 (2012).Article 

    Google Scholar 
    Kotiaho, J. S. et al. The IPBES assessment report on land degradation and restoration. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem (2018).Western, D., Mose, V. N., Worden, J. & Maitumo, D. Predicting extreme droughts in savannah Africa: A comparison of proxy and direct measures in detecting biomass fluctuations, trends and their causes. PLoS One 10, e0136516 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. WIREs Climate Change 2, 45–65 (2011).Article 

    Google Scholar 
    Holechek, J. L., Cibils, A. F., Bengaly, K. & Kinyamario, J. I. Human population growth, African pastoralism, and rangelands: A perspective. Rangeland Ecol. Manage. 70, 273–280 (2017).Article 

    Google Scholar 
    Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Chang. 5, 823–829 (2015).Article 
    ADS 

    Google Scholar 
    Hill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: Characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sensing 12, 406 (2020).Article 
    ADS 

    Google Scholar 
    Lake, P. S. Resistance, resilience and restoration. Ecol. Manage. Restor. 14, 20–24 (2013).Article 

    Google Scholar 
    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).Article 
    PubMed 

    Google Scholar 
    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article 
    ADS 

    Google Scholar 
    Fedrigo, J. K. et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restor. Ecol. 26, 677–685 (2018).Article 

    Google Scholar 
    Ruppert, J. C. et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Chang. Biol. 21, 1258–1270 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Homewood, K. M. Policy, environment and development in African rangelands. Environ. Sci. Policy 7, 125–143 (2004).Article 

    Google Scholar 
    Caro, T. & Davenport, T. R. B. Wildlife and wildlife management in Tanzania. Conserv. Biol. 30, 716–723 (2016).Article 
    PubMed 

    Google Scholar 
    Bollig, M. & Schulte, A. Environmental change and pastoral perceptions: degradation and indigenous knowledge in two African pastoral communities. Hum. Ecol. 27, 493–514 (1999).Article 

    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nicholson, S. E. Climate and climatic variability of rainfall over Eastern Africa. Rev. Geophys. 55, 590–635 (2017).Article 
    ADS 

    Google Scholar 
    2012 Population and Housing Census (National Bureau of Statistics, Ministry of Finance, 2013).Kiffner, C., Nagar, S., Kollmar, C. & Kioko, J. Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J. Nat. Conserv. 31, 29–37 (2016).Article 

    Google Scholar 
    Foley, C. A. H. & Faust, L. J. Rapid population growth in an elephant Loxodonta africana population recovering from poaching in Tarangire National Park, Tanzania. Oryx 44, 205–212 (2010).Article 

    Google Scholar 
    Kebacho, L. L. Large-scale circulations associated with recent interannual variability of the short rains over East Africa. Meteorol. Atmos. Phys. 134, 10 (2021).Article 
    ADS 

    Google Scholar 
    Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E. & Marsham, J. H. Extreme rainfall in East Africa, October 2019-January 2020 and context under future climate change. Weather 76, 26–31 (2021).Article 
    ADS 

    Google Scholar 
    Abukari, H. & Mwalyosi, R. B. Comparing pressures on national parks in Ghana and Tanzania: The case of mole and Tarangire National Parks. Global Ecol. Conserv. 15, e00405 (2018).Article 

    Google Scholar 
    Kaswamila, A. An analysis of the contribution of community wildlife management areas on livelihood in Tanzania. Sustain. Natl. Res. Manag. 139–54 (2012).NTRI. Maps | NTRI – Northern Tanzania Rangelands Initiative. https://www.ntri.co.tz/maps/ (2016). Accessed: 2021-3-29.Mworia, J., Kinyamario, J. & John, E. Impact of the invader Ipomoea hildebrandtii on grass biomass, nitrogen mineralisation and determinants of its seedling establishment in Kajiado, Kenya. Afr. J. Range Forage Sci. 25, 11–16 (2008).Article 

    Google Scholar 
    Manyanza, N. M. & Ojija, F. Invasion, impact and control techniques for invasive Ipomoea hildebrandtii on Maasai steppe rangelands. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 17, 12 (2021).Thaiyah, A. G. et al. Acute, sub-chronic and chronic toxicity of Solanum incanum L in sheep in Kenya. Kenya Veterinarian 35, 1–8 (2011).
    Google Scholar 
    Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).Article 

    Google Scholar 
    Riginos, C. & Herrick, J. E. Monitoring rangeland health: a guide for pastoralists and other land managers in Eastern Africa. Version II (2010).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).QGIS Development Team. QGIS Geographic Information System. QGIS Association (2022).Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019).Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10 (2015).Funk, C. et al. The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes. Scientific Data 2, 1–21 (2015).Article 

    Google Scholar 
    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. arXiv:math/0505527 (2005).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2016).Scaramuzza, P. & Barsi, J. Landsat 7 scan line corrector-off gap-filled product development in Proceeding of Pecora 16, 23–27 (2005).
    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 
    ADS 

    Google Scholar 
    Rikimaru, A., Roy, P. S. & Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 39–47 (2002).Diek, S., Fornallaz, F., Schaepman, M. E. & De Jong, R. Barest pixel composite for agricultural areas using landsat time series. Remote Sensing 9, 1245 (2017).Article 
    ADS 

    Google Scholar 
    Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).Article 
    ADS 

    Google Scholar 
    Adams, B. et al. Mapping forest composition with Landsat time series: An evaluation of seasonal composites and harmonic regression. Remote Sensing 12, 610 (2020).Article 
    ADS 

    Google Scholar 
    Nwanganga, F. & Chapple, M. Practical machine learning in R (John Wiley and Sons, Indianapolis, 2020).Adam, E., Mutanga, O., Odindi, J. & Abdel-Rahman, E. M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 35, 3440–3458 (2014).Article 

    Google Scholar 
    Mansour, K., Mutanga, O., Adam, E. & Abdel-Rahman, E. M. Multispectral remote sensing for mapping grassland degradation using the key indicators of grass species and edaphic factors. Geocarto Int. 31, 477–491 (2016).Article 

    Google Scholar 
    Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-Seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sensing 12, 198 (2020).Article 
    ADS 

    Google Scholar 
    Yang, L. et al. Estimating surface downward shortwave radiation over china based on the gradient boosting decision tree method. Remote Sensing 10, 185 (2018).Article 
    ADS 

    Google Scholar 
    Pham, T. D. et al. Estimating mangrove Above-Ground biomass using extreme gradient boosting decision trees algorithm with fused Sentinel-2 and ALOS-2 PALSAR-2 data in Can Gio biosphere reserve, Vietnam. Remote Sensing 12, 777 (2020).Article 
    ADS 

    Google Scholar 
    Adobe Inc. Adobe illustrator.Lenth, R. V. emmeans: Estimated marginal means, aka Least-Squares means. R package version 1.5.4 (2021).Royall, R. M. The effect of sample size on the meaning of significance tests. Am. Stat. 40, 313–315 (1986).MATH 

    Google Scholar 
    Rue, H., Martino, S. & Chopin, N. Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Bakka, H. et al. Spatial modelling with R-INLA: A review. arXiv:1802.06350 [stat] (2018).Lobora, A. L. et al. Modelling habitat conversion in Miombo woodlands: Insights from Tanzania. J. Land Use Sci. 1747423X.2017.1331271 (2017).Bright, E. A., Rose, A. N., Urban, M. L. & McKee, J. LandScan 2017 High-Resolution global population data set. Tech. Rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2018).Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 5, 180227 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y., Fang, J., Ma, W. & Wang, W. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys. Res. Lett. 35 (2008).Guo, Q. et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 18, 3624–3631 (2012).Article 
    ADS 

    Google Scholar 
    Wang, X., Yue, Y. & Faraway, J. J. Bayesian Regression Modeling with INLA (Chapman and Hall/CRC, 2018).Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Loughlin, J. et al. Climate variability and conflict risk in East Africa, 1990–2009. Proc. Natl. Acad. Sci. 109, 18344–18349 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ongoma, V., Chen, H., Gao, C., Nyongesa, A. M. & Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 90, 901–920 (2018).Article 

    Google Scholar 
    Homewood, K. & Rodgers, W. A. Pastoralism, conservation and the overgrazing controversy. Conservation in Africa: People, policies and practice 111–128 (1987).Scoones, I. Exploiting heterogeneity: habitat use by cattle in dryland Zimbabwe. J. Arid Environ. 29, 221–237 (1995).Article 
    ADS 

    Google Scholar 
    Goldman, M. J. & Riosmena, F. Adaptive capacity in Tanzanian Maasailand: Changing strategies to cope with drought in fragmented landscapes. Glob. Environ. Change 23, 588–597 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selemani, I. S. & Others. Communal rangelands management and challenges underpinning pastoral mobility in Tanzania: a review. Livestock Res. Rural Dev. 26, 1–12 (2014).Middleton, N. Rangeland management and climate hazards in drylands: dust storms, desertification and the overgrazing debate. Nat. Hazards 92, 57–70 (2018).Article 

    Google Scholar 
    Sallu, S. M., Twyman, C. & Stringer, L. C. Resilient or vulnerable livelihoods? Assessing livelihood dynamics and trajectories in rural Botswana. Ecology and Society 15 (2010).Oba, G. & Lusigi, W. J. An overview of drought strategies and land use in African pastoral systems (Agricultural Administration Unit, Overseas Development Institute, 1987).Russell, S., Tyrrell, P. & Western, D. Seasonal interactions of pastoralists and wildlife in relation to pasture in an African savanna ecosystem. J. Arid Environ. 154, 70–81 (2018).Article 
    ADS 

    Google Scholar 
    Girvetz, E. et al. Future climate projections in Africa: Where are we headed? In The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future 15–27 (Springer International Publishing, 2019).Lyon, B. & DeWitt, D. G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 39 (2012).Liebmann, B. et al. Climatology and interannual variability of boreal spring wet season precipitation in the Eastern Horn of Africa and implications for its recent decline. J. Clim. 30, 3867–3886 (2017).Article 
    ADS 

    Google Scholar 
    Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B. & van Aalst, M. Projected changes in mean and extreme precipitation in Africa under global warming. part II: East Africa. J. Clim. 24, 3718–3733 (2011).Dunning, C. M., Black, E. & Allan, R. P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 31, 9719–9738 (2018).Article 
    ADS 

    Google Scholar 
    Rowell, D. P., Booth, B. B. B., Nicholson, S. E. & Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 28, 9768–9788 (2015).Article 
    ADS 

    Google Scholar 
    Vizy, E. K. & Cook, K. H. Mid-Twenty-First-Century changes in extreme events over Northern and Tropical Africa. J. Clim. 25, 5748–5767 (2012).Article 
    ADS 

    Google Scholar 
    Gebremeskel Haile, G. et al. Droughts in East Africa: Causes, impacts and resilience. Earth-Sci. Rev. 193, 146–161 (2019).Kendon, E. J. et al. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 10, 1794 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finney, D. L. et al. Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over Eastern Africa. J. Clim. 33, 2701–2718 (2020).Article 
    ADS 

    Google Scholar 
    Prins, H. H. T. & Loth, P. E. Rainfall patterns as background to plant phenology in Northern Tanzania. J. Biogeogr. 15, 451–463 (1988).Article 

    Google Scholar 
    Ngondya, I. B., Treydte, A. C., Ndakidemi, P. A. & Munishi, L. K. Invasive plants: ecological effects, status, management challenges in Tanzania and the way forward. J. Biodivers. Environ. Sci. (JBES) 10, 204–217 (2017).
    Google Scholar 
    Drusch, M. et al. Sentinel-2: ESA’s optical High-Resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).Article 
    ADS 

    Google Scholar 
    Rapinel, S. et al. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 223, 115–129 (2019).Article 
    ADS 

    Google Scholar 
    Li, W. et al. Accelerating savanna degradation threatens the Maasai Mara socio-ecological system. Glob. Environ. Change 60, 102030 (2020).Article 

    Google Scholar 
    Wonkka, C. L., Twidwell, D., Franz, T. E., Taylor, C. A. & Rogers, W. E. Persistence of a severe drought increases desertification but not woody dieback in semiarid savanna. Rangeland Ecol. Manage. 69, 491–498 (2016).Article 

    Google Scholar 
    Vierich, H. I. D. & Stoop, W. A. Changes in West African savanna agriculture in response to growing population and continuing low rainfall. Agric. Ecosyst. Environ. 31, 115–132 (1990).Article 

    Google Scholar 
    Fynn, R. W. S. & O’Connor, T. G. Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa. J. Appl. Ecol. 37, 491–507 (2000).Article 

    Google Scholar 
    Wang, S., Chen, W., Xie, S. M., Azzari, G. & Lobell, D. B. Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sensing 12, 207 (2020).Article 
    ADS 

    Google Scholar 
    Alananga, S., Makupa, E. R., Moyo, K. J., Matotola, U. C. & Mrema, E. F. Land administration practices in Tanzania: A replica of past mistakes. Journal of Property, Planning and Environmental Law (2019).Huggins, C. Village land use planning and commercialization of land in Tanzania. LANDac Research Brief 1 (2016).Stein, H., Maganga, F. P., Odgaard, R., Askew, K. & Cunningham, S. The formal divide: Customary rights and the allocation of credit to agriculture in Tanzania. J. Dev. Stud. 52, 1306–1319 (2016).Article 

    Google Scholar 
    Hall, D. G. M., Reeve, M. J., Thomasson, A. J. & Wright, V. F. Water retention, porosity and density of field soils (No. Tech. Monograph N9, 1977).Moore, D. C. & Singer, M. J. Crust formation effects on soil erosion processes. Soil Sci. Soc. Am. J. 54, 1117–1123 (1990).Article 
    ADS 

    Google Scholar 
    Cotler, H. & Ortega-Larrocea, M. P. Effects of land use on soil erosion in a tropical dry forest ecosystem, Chamela watershed, Mexico. Catena 65, 107–117 (2006).Article 

    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).Article 
    CAS 

    Google Scholar 
    Butz, R. J. Traditional fire management: historical fire regimes and land use change in pastoral East Africa. Int. J. Wildland Fire 18, 442–450 (2009).Article 

    Google Scholar  More

  • in

    Diagnosing destabilization risk in global land carbon sinks

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).Article 
    ADS 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bastos, A. et al. Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange. Atmos. Chem. Phys. 19, 12361–12375 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peñuelas, J. et al. Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).Article 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dakos, V., Nes, E. H. & Scheffer, M. Flickering as an early warning signal. Theor. Ecol. 6, 309–317 (2013).Article 

    Google Scholar 
    Sillmann, J., Daloz, A. S., Schaller, N. & Schwingshackl, C. in Climate Change 3rd edn (ed. Letcher, T. M.) 359–372 (Elsevier, 2021).Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Buermann, W. et al. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences 13, 1597–1607 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).Article 
    ADS 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 
    PubMed 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Fernández-Martínez, M. et al. Spatial variability and controls over biomass stocks, carbon fluxes and resource-use efficiencies in forest ecosystems. Trees Struct. Funct. 28, 597–611 (2014).Article 

    Google Scholar 
    Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).Article 
    PubMed 

    Google Scholar 
    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).Article 
    ADS 

    Google Scholar 
    Fernández‐Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 26, 7067–7078 (2020).Article 
    ADS 

    Google Scholar 
    Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) 1–56 (IPBES, 2019).Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).Article 

    Google Scholar 
    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Martín-Vide, J. & Peñuelas, J. The consecutive disparity index, D, as measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104, 5925–5930 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ackerman, D. E., Chen, X. & Millet, D. B. Global nitrogen deposition (2° × 2.5° grid resolution) simulated with GEOS-Chem for 1984–1986, 1994–1996, 2004–2006, and 2014–2016 (University of Minnesota, 2018); https://conservancy.umn.edu/handle/11299/197613.Harris, I., Jones, P. D. D., Osborn, T. J. J. & Lister, D. H. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).Article 

    Google Scholar 
    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, K. et al. Causes of slowing-down seasonal CO2 amplitude at Mauna Loa. Glob. Change Biol. 26, 4462–4477 (2020).Article 
    ADS 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957–aaf8957 (2016).Article 
    PubMed 

    Google Scholar 
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).Article 
    PubMed 

    Google Scholar 
    Peguero, G. et al. Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Glob. Change Biol. 25, 2727–2738 (2019).Article 
    ADS 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–91 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scheffer, M. Critical Transitions in Nature and Society (Princeton University Press, 2009).Ostfeld, R. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307 (2010).Article 
    ADS 

    Google Scholar 
    Chevallier, F. et al. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 41, 1065–1070 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).Article 
    ADS 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to interannual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Fernández‐Martínez, M. & Peñuelas, J. Measuring temporal patterns in ecology: the case of mast seeding. Ecol. Evol. 11, 2990–2996 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Ohlson, J. A. & Kim, S. Linear Valuation Without OLS: The Theil–Sen Estimation Approach (SSRN, 2015); https://ssrn.com/abstract=2276927.Komsta, L. Package mblm, 0.12.1: Median-based linear models (2013).Keeling, C. D. et al. in A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems (eds Ehleringer, J. R. et al.) 83–113 (Springer Verlag, 2005).Leroux, B. G., Lei, X. & Breslow, N. in Statistical Models in Epidemiology, the Environment and Clinical Trials (eds Halloran, M. & Berry, D.) 179–191 (Springer-Verlag, 2000).Lee, D. CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 55, 1–24 (2013).Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 15, ele.13456 (2020).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding

    Pawlowski, J. et al. CBOL Protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 10, e1001419 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Handbook of the Protists (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0.Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. Life 6, e26036 (2017).
    Google Scholar 
    Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gabr, A., Grossman, A. R. & Bhattacharya, D. Paulinella, a model for understanding plastid primary endosymbiosis. J. Phycol. 56, 837–843 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caron, D. A. New accomplishments and approaches for assessing protistan diversity and ecology in natural ecosystems. Bioscience 59, 287–299 (2009).Article 

    Google Scholar 
    Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean: Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).Article 
    PubMed 

    Google Scholar 
    Stoecker, D. K., Johnson, M. D., de Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310 (2009).Article 

    Google Scholar 
    Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Orsi, W. D. et al. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ. Microbiol. 20, 815–827 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corno, G. & Jürgens, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72, 78–86 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 91 (2017).Article 
    PubMed 

    Google Scholar 
    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    Epstein, S. & López-García, P. “Missing” protists: a molecular prospective. Biodivers. Conserv. 17, 261–276 (2008).Article 

    Google Scholar 
    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Lovejoy, C., Massana, R. & Pedrós-Alió, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microbiol. 72, 3085–3095 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worden, A. Z., Cuvelier, M. L. & Bartlett, D. H. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14, 331–336 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Countway, P. D. et al. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 9, 1219–1232 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massana, R. & Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11, 213–218 (2008).Article 
    PubMed 

    Google Scholar 
    Alexander, E. et al. Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ. Microbiol. 11, 360–381 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Logares, R. et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 150 (2015).Article 

    Google Scholar 
    Fell, J. W., Scorzetti, G., Connell, L. & Craig, S. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with More