More stories

  • in

    Strong effects of food quality on host life history do not scale to impact parasitoid efficacy or life history

    Wajnberg, É. et al. (eds) Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications 1st edn. (Blackwell Publishing Ltd, 2008).
    Google Scholar 
    Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).Book 

    Google Scholar 
    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Apparent competition and insect community structure: Towards a spatial perspective. Annales Zoologica Fennici 42, 1–14 (2005).
    Google Scholar 
    Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 1–11 (2018).Article 

    Google Scholar 
    Hassell, M. P. & Waage, J. K. Host–parasitoid population interactions. Annu. Rev. Entomol. 29, 89–114 (1984).Article 

    Google Scholar 
    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Veen, F. J. F., Van Holland, P. D. & Godfray, H. C. J. Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology 86, 3182–3189 (2005).Article 

    Google Scholar 
    Schmidt, M. H. et al. Relative importance of predators and parasitoids for cereal aphid control. Proc. R. Soc. Lond. Series B Biol. Sci. 270, 1905–1909 (2003).Article 

    Google Scholar 
    Mills, N. J. & Wajnberg, É. Optimal foraging behavior and efficient biological control methods. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications 1st edn (eds Wajnberg, É. et al.) 1–30 (Blackwell Publishing, 2008).
    Google Scholar 
    Vinson, S. B. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    Benrey, B. & Denno, R. F. The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology 78, 987–999 (1997).
    Google Scholar 
    Chau, A. & Mackauer, M. Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae): Assessing costs and benefits. Can. Entomol. 133, 549–564 (2001).Article 

    Google Scholar 
    Strand, M. R. & Obrycki, J. J. Host specificity of insect parasitoids and predators. Bioscience 46, 422–429 (1996).Article 

    Google Scholar 
    Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Entomol. 21, 109–133 (1976).Article 

    Google Scholar 
    Wang, X. G. & Messing, R. H. Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behav. Ecol. Sociobiol. 56, 513–522 (2004).Article 

    Google Scholar 
    Liu, Z., Xu, B., Li, L. & Sun, J. Host-size mediated trade-off in a parasitoid Sclerodermus harmandi. PLoS ONE 6, e23260 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. Y., Yang, Z. Q., Wu, H. & Gould, J. R. Effects of host size on the sex ratio, clutch size, and size of adult Spathius agrili, an ectoparasitoid of emerald ash borer. Biol. Control 44, 7–12 (2008).Article 

    Google Scholar 
    Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: A manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).Article 

    Google Scholar 
    Scriber, J. M. & Slansky, F. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183–211 (1981).Article 

    Google Scholar 
    Moreau, J., Benrey, B. & Thiery, D. Assessing larval food quality for phytophagous insects: Are the facts as simple as they appear?. Funct. Ecol. 20, 592–600 (2006).Article 

    Google Scholar 
    Davidowitz, G., D’Amico, L. J. & Nijhout, H. F. The effects of environmental variation on a mechanism that controls insect body size. Evolut. Ecol. Res. 6, 49–62 (2004).
    Google Scholar 
    Williams, I. S. Slow-growth, high-mortality-a general hypothesis, or is it?. Ecol. Entomol. 24, 490–495 (1999).Article 

    Google Scholar 
    Chen, K. & Chen, Y. Slow-growth high-mortality: A meta-analysis for insects. Insect Sci. 25, 337–351 (2018).Article 
    PubMed 

    Google Scholar 
    Waldbauer, G. P. The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229–288 (1968).Article 

    Google Scholar 
    Hochuli, D. F. Insect herbivory and ontogeny: How do growth and development influence feeding behaviour, morphology and host use?. Austral. Ecol. 26, 563–570 (2001).Article 

    Google Scholar 
    Holmes, L. A., Nelson, W. A. & Lougheed, S. C. Food quality effects on instar-specific life histories of a holometabolous insect. Ecol. Evol. 10, 626–637 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).Article 

    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21, 138–150 (2018).Article 
    PubMed 

    Google Scholar 
    Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).Article 

    Google Scholar 
    Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33 (1981).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Larson, A. O. The bean weevil and the southern Cowpea weevil in California. United States Department of Agriculture. Technical Bulletin No. 593, Washington, D. C. (1938).Askew, R. R. & Shaw, M. R. Parasitoid communities: their size, structure and development in Insect Parasitoids: 13th Symposium of Royal Entomological Society of London (eds. Waage, J.K. & Greathead, D.J. 225–264 (1986).Holmes, L. A., Nelson, W. A., Dyck, M. & Lougheed, S. C. Enhancing the usefulness of artificial seeds in seed beetle model systems research. Methods Ecol. Evol. 11, 1701–1706 (2020).Article 

    Google Scholar 
    Ellers, J., Van Alphen, J. J. M. & Sevenster, J. G. A field study of size-fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. 99, 673–686 (2004).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Wood, S. N. Thin-plate regression splines. J. Roy. Stat. Soc. B 65, 95–114 (2003).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). Accessed 3 April 2020.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach 2nd edn. (Springer-Verlag, 2002).MATH 

    Google Scholar 
    Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575 (2016).Article 
    CAS 

    Google Scholar 
    Bolker, B., & R Development Core Team Tools for general maximum likelihood estimation. Version 1.0.20. (2017). Accessed 4 April 2020.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometical. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Rose, N. L., Yang, H., Turner, S. D. & Simpson, G. L. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta 82, 113–135 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Holmes, L. A., Nelson, W. A. & Lougheed, S. C. Data from: Food quality effects on instar-specific life histories of a holometabolous insect. Dryad Digital Repository. https://doi.org/10.5061/dryad.d7wm37px7 (2020).Therneau, T. A Package for Survival Analysis in R. R package version 3.2-13. https://CRAN.R-project.org/package=survival. (2021). Accessed 3 April 2020.Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans (Society for Industrial and Applied Mathematics, 1982).Book 
    MATH 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Clancy, K. M. & Price, P. W. Rapid herbivore growth enhances enemy attack: Sublethal plant defenses remain a paradox. Ecology 68, 733–737 (1987).Article 

    Google Scholar 
    Loader, C. & Damman, H. Nitrogen content of food plants and vulnerability of Pieris rapae to natural enemies. Ecology 72, 1586–1590 (1991).Article 

    Google Scholar 
    Uesugi, A. The slow-growth high-mortality hypothesis: Direct experimental support in a leafmining fly. Ecol. Entomol. 40, 221–228 (2015).Article 

    Google Scholar 
    Feeny, P. Plant apparency and chemical defense. in Biochemical Interaction Between Plants and Insects. 1–40 (Springer, 1976).Teder, T. & Tammaru, T. Cascading effects of variation in plant vigor on the relative performance of insect herbivores and their parasitoids. Ecol. Entomol. 27, 94–104 (2002).Article 

    Google Scholar 
    Kagata, H., Nakamura, M. & Ohgushi, T. Bottom-up cascade in a tri-trophic system: Different impacts of host-plant regeneration on performance of a willow leaf beetle and its natural enemy. Ecol. Entomol. 30, 58–62 (2005).Article 

    Google Scholar 
    Vet, L. E. M., Lewis, W. J. & Cardé, R. T. Parasitoid foraging and learning. In Chemical Ecology of Insects 2 (eds Cardé, R. T. & Bell, W. J.) 65–101 (Springer, 1995).Chapter 

    Google Scholar 
    Ishii, Y. & Shimada, M. Learning predator promotes coexistence of prey species in host-parasitoid systems. Proc. Natl. Acad. Sci. 109, 5116–5120 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ode, P. J. & Hardy, I. C. Parasitoid sex ratios and biological control. Behavioral ecology of insect parasitoids. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to field applications (eds Wajnberg, E. et al.) 253–291 (Wiley, 2008).Chapter 

    Google Scholar 
    Xiaoyi, W. & Zhongqi, Y. Behavioral mechanisms of parasitic wasps for searching concealed insect hosts. Acta Ecol. Sin. 28, 1257–1269 (2008).Article 

    Google Scholar 
    Otten, H., Wäckers, F., Battini, M. & Dorn, S. Efficiency of vibrational sounding in the parasitoid Pimpla turionellae is affected by female size. Anim. Behav. 61, 671–677 (2001).Article 

    Google Scholar 
    Kaplan, I., Carrillo, J., Garvey, M. & Ode, P. J. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14, 112–119 (2016).Article 
    PubMed 

    Google Scholar 
    Ode, P. J. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect Sci. 32, 118–123 (2019).Article 
    PubMed 

    Google Scholar 
    Barbosa, P., Gross, P. & Kemper, J. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregate. Ecology 72, 1567–1575 (1991).Article 
    CAS 

    Google Scholar 
    Barbosa, P. Natural enemies and herbivore–plant interactions: Influence of plant allelochemicals and host specificity. In Novel Aspects of Insect–Plant Interactions (eds Barbosa, P. & Letourneau, L. D. K.) 201–230 (Wiley, 1988).
    Google Scholar 
    Ode, P. J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51, 163–185 (2006).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    The hidden warming effects of the degradation of tropical moist forests

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. https://doi.org/10.1038/s41561-023-01137-y (2023). More

  • in

    Combining socioeconomic and biophysical data to identify people-centric restoration opportunities

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IKI. The Bonn Challenge. https://www.bonnchallenge.org/ (2022).UNCCD. Land Degradation Neutrality. https://www.unccd.int/land-and-life/land-degradation-neutrality/overview (2022).Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chaturvedi, R. et al. Restoration Opportunities Atlas of India. www.india.restorationatlas.org/methodology (2022).McLain, R., Lawry, S., Guariguata, M. R. & Reed, J. Toward a tenure-responsive approach to forest landscape restoration: a proposed tenure diagnostic for assessing restoration opportunities. Land Use Policy 104, 103748 (2021).Article 

    Google Scholar 
    Binod, B., Bhattarcharjee, A. & Ishwar, N. M. Bonn Challenge and India: Progress on Restoration Efforts Across States and Landscapes (IUCN, 2018).Government of India. Aspirational Districts Phase 1 (vikaspedia, 2018).Government of India. Census of India. https://censusindia.gov.in/2011census/dchb/DCHB.html (2011).DeFries, R. et al. Land management can contribute to net zero. Science 376, 1163–1165 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Borah, B., Bhattacharya, A. & Ishwar, N. M. Bonn Challenge and India. Progress On Restoration Efforts Across States and Landscapes. https://www.bonnchallenge.org/pledges/india (2018).Gopalakrishna, T. et al. Existing land uses constrain climate change mitigation potential of forest restoration in India. Conserv. Lett. https://doi.org/10.1111/conl.12867 (2022).Dhyani, S. et al. Agroforestry to achieve global climate adaptation and mitigation targets: are South Asian countries sufficiently prepared? Forests 12, 303 (2021).Article 

    Google Scholar 
    Nerlekar, A. N. et al. Removal or utilization? Testing alternative approaches to the management of an invasive woody legume in an arid Indian grassland. Restor. Ecol. https://doi.org/10.1111/rec.13477 (2022).Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat Sustain 4, 997–1004 (2021).Article 

    Google Scholar 
    Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soci. https://doi.org/10.5751/ES-11810-250401 (2020).DeFries, R. et al. Improved household living standards can restore dry tropical forests. Biotropica https://doi.org/10.1111/btp.12978 (2021).Lele, S., Khare, A. & Mokashi, S. Estimating and Mapping CFR Potential (ATREE, 2020).Agarwala, M. et al. Impact of biogas interventions on forest biomass and regeneration in southern India. Global Ecol. Conservation 11, 213–223 (2017).Article 

    Google Scholar 
    Menon, A. & Schmidt-Vogt, D. Effects of the COVID-19 pandemic on farmers and their responses: a study of three farming systems in Kerala. South India. Land 11, 144 (2022).
    Google Scholar 
    Fremout, T. et al. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate‐resilient restoration of tropical forest landscapes. J. Appl. Ecol. 59, 664–679 (2022).Article 

    Google Scholar 
    Hughes, K. A. et al. Can restoration of the commons reduce rural vulnerability? A Quasi-experimental comparison of COVID-19 livelihood-based coping strategies among rural households in three Indian States. Int. J. Common. 16, 189 (2022).Article 

    Google Scholar 
    Madhusudan, M. D. & Vanak, A. Mapping the Distribution and Extent of India’s Semi-arid Open Natural Ecosystems. https://doi.org/10.1002/essoar.10507612.1 (2021).Vanak, A. T., Hiremath, A. J., Ganesh, T. & Rai, N. D. Filling in the (Forest) Blanks: the Past, Present and Future of India’s Savanna Grasslands (ATREE, 2017).Oxford Poverty & Human Development Initiative. Global Multidimensional Poverty Index 2018. The Most Detailed Picture to Date of the World’s Poorest People. https://ophi.org.uk/wp-content/uploads/G-MPI_2018_2ed_web.pdf (2018).Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. https://rspatial.org/raster (2023).Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html (2023).QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2022). More

  • in

    Individual personality predicts social network assemblages in a colonial bird

    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. Lond. B 365, 4051–4063 (2010).Article 

    Google Scholar 
    Gosling, S. D. From mice to men: What can we learn about personality from animal research?. Psychol. Bull. 127, 45 (2001).Article 
    CAS 

    Google Scholar 
    Dingemanse, N. J., Class, B. & Holtmann, B. Nonrandom mating for behavior in the wild?. Trends Ecol. Evol. 36, 177–179 (2021).Article 

    Google Scholar 
    Croft, D. P. et al. Behavioural trait assortment in a social network: Patterns and implications. Behav. Ecol. Sociobiol. 63, 1495–1503 (2009).Article 

    Google Scholar 
    Morton, F. B., Weiss, A., Buchanan-Smith, H. M. & Lee, P. C. Capuchin monkeys with similar personalities have higher-quality relationships independent of age, sex, kinship and rank. Anim. Behav. 105, 163–171 (2015).Article 

    Google Scholar 
    Su, X. et al. Agonistic behaviour and energy metabolism of bold and shy swimming crabs Portunus trituberculatus. J. Exp. Biol. https://doi.org/10.1242/jeb.188706 (2019).Article 

    Google Scholar 
    Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).Article 

    Google Scholar 
    Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. P. Roy. Soc. B-Biol. Sci. 274, 333–339 (2007).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. Lond. B 365, 4099 (2010).Article 
    CAS 

    Google Scholar 
    David, M., Auclair, Y. & Cézilly, F. Personality predicts social dominance in female zebra finches, Taeniopygia guttata, in a feeding context. Anim. Behav. 81, 219–224 (2011).Article 

    Google Scholar 
    Favati, A., Leimar, O. & Løvlie, H. Personality predicts social dominance in male domestic fowl. PLoS ONE 9, e103535 (2014).Article 
    ADS 

    Google Scholar 
    McGhee, K. E. & Travis, J. Repeatable behavioural type and stable dominance rank in the Bluefin killifish. Anim. Behav. 79, 497–507 (2010).Article 

    Google Scholar 
    Krause, J., Croft, D. P. & James, R. Social network theory in the behavioural sciences: Potential applications. Behav. Ecol. Sociobiol. 62, 15–27 (2007).Article 
    CAS 

    Google Scholar 
    Flack, J. C., Girvan, M., de Waal, F. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, 2008).Book 

    Google Scholar 
    Patriquin, K. J., Leonard, M. L., Broders, H. G. & Garroway, C. J. Do social networks of female northern long-eared bats vary with reproductive period and age?. Behav. Ecol. Sociobiol. 64, 899–913 (2010).Article 

    Google Scholar 
    Gomes, A. C. R., Beltrão, P., Boogert, N. J. & Cardoso, G. C. Familiarity, dominance, sex and season shape common waxbill social networks. Behav. Ecol. 33, 526–540 (2022).Article 

    Google Scholar 
    Croft, D. P., Krause, J. & James, R. Social networks in the guppy (Poecilia reticulata). P. Roy. Soc. B-Biol. Sci. 271, S516–S519 (2004).Article 

    Google Scholar 
    Pike, T. W., Samanta, M., Lindström, J. & Royle, N. J. Behavioural phenotype affects social interactions in an animal network. P. Roy. Soc. B-Biol. Sci. 275, 2515–2520 (2008).
    Google Scholar 
    Aplin, L. M. et al. Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol. Lett. 16, 1365–1372 (2013).Article 
    CAS 

    Google Scholar 
    Massen, J. J. & Koski, S. E. Chimps of a feather sit together: Chimpanzee friendships are based on homophily in personality. Evol. Hum. Behav. 35, 1–8 (2014).Article 

    Google Scholar 
    Rault, J.-L. Friends with benefits: Social support and its relevance for farm animal welfare. Appl. Anim. Behav. Sci. 136, 1–14 (2012).Article 

    Google Scholar 
    Schneider, G. & Krueger, K. Third-party interventions keep social partners from exchanging affiliative interactions with others. Anim. Behav. 83, 377–387 (2012).Article 

    Google Scholar 
    Fraser, O. N. & Bugnyar, T. Do ravens show consolation? Responses to distressed others. PLoS ONE 5, e10605 (2010).Article 
    ADS 

    Google Scholar 
    Rose, P. & Croft, D. The potential of social network analysis as a tool for the management of zoo animals. Anim. Welf. 24, 123–138 (2015).Article 

    Google Scholar 
    Clark, F. E. Space to choose: network analysis of social preferences in a captive chimpanzee community, and implications for management. Am. J. Primatol. 73, 748–757 (2011).Article 

    Google Scholar 
    Corner, L., Pfeiffer, D. & Morris, R. Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Prev. Vet. Med. 59, 147–167 (2003).Article 
    CAS 

    Google Scholar 
    Hansen, H., McDonald, D. B., Groves, P., Maier, J. A. & Ben-David, M. Social networks and the formation and maintenance of river otter groups. Ethology 115, 384–396 (2009).Article 

    Google Scholar 
    Radosevich, L. M., Jaffe, K. E. & Minier, D. E. The utility of social network analysis for informing zoo management: Changing network dynamics of a group of captive hamadryas baboons (Papio hamadryas) following an introduction of two young males. Zoo Biol. 40, 503–516 (2021).Article 

    Google Scholar 
    Pacheco, X. P. & Madden, J. R. Does the social network structure of wild animal populations differ from that of animals in captivity?. Behav. Processes 190, 104446 (2021).Article 

    Google Scholar 
    Watters, J. V. & Powell, D. M. Measuring animal personality for use in population management in zoos: Suggested methods and rationale. Zoo Biol. 31, 1–12 (2012).Article 

    Google Scholar 
    Koski, S. E. Social personality traits in chimpanzees: temporal stability and structure of behaviourally assessed personality traits in three captive populations. Behav. Ecol. Sociobiol. 65, 2161–2174 (2011).Article 

    Google Scholar 
    Račevska, E. & Hill, C. M. Personality and social dynamics of zoo-housed western lowland gorillas (Gorilla gorilla gorilla). J. Zoo Aqua. Res. 5, 116–122 (2017).
    Google Scholar 
    Stoinski, T. S., Jaicks, H. F. & Drayton, L. A. Visitor effects on the behavior of captive western lowland gorillas: The importance of individual differences in examining welfare. Zoo Biol. 31, 586–599 (2012).Article 

    Google Scholar 
    Wielebnowski, N. C. Behavioral differences as predictors of breeding status in captive cheetahs. Zoo Biol. 18, 335–349 (1999).Article 

    Google Scholar 
    Barrett, L. P. et al. Personality assessment of headstart Texas horned lizards (Phrynosoma cornutum) in human care prior to release. Appl. Anim. Behav. Sci. 254, 105690 (2022).Article 

    Google Scholar 
    Rose, P. E., Brereton, J. E. & Croft, D. P. Measuring welfare in captive flamingos: Activity patterns and exhibit usage in zoo-housed birds. Appl. Anim. Behav. Sci. 205, 115–125 (2018).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Social bonds in a flock bird: Species differences and seasonality in social structure in captive flamingo flocks over a 12-month period. Appl. Anim. Behav. Sci. 193, 87–97 (2017).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Quantifying the social structure of a large captive flock of greater flamingos (Phoenicopterus roseus): Potential implications for management in captivity. Behav. Processes 150, 66–74 (2018).Article 

    Google Scholar 
    Rose, P. E., Croft, D. P. & Lee, R. A review of captive flamingo (Phoenicopteridae) welfare: A synthesis of current knowledge and future directions. Intern. Zoo Yearb. 48, 139–155 (2014).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Evaluating the social networks of four flocks of captive flamingos over a five-year period: Temporal, environmental, group and health influences on assortment. Behav. Processes 175, 104118 (2020).Article 

    Google Scholar 
    Munson, A. A., Jones, C., Schraft, H. & Sih, A. You’re just my type: Mate choice and behavioral types. Trends Ecol. Evol. 35, 823–833 (2020).Article 

    Google Scholar 
    Schuett, W., Tregenza, T. & Dall, S. R. Sexual selection and animal personality. Biol. Rev. 85, 217–246 (2010).Article 

    Google Scholar 
    Jackson, W. M. Why do winners keep winning?. Behav. Ecol. Sociobiol. 28, 271–276 (1991).Article 

    Google Scholar 
    Dammhahn, M. & Almeling, L. Is risk taking during foraging a personality trait? A field test for cross-context consistency in boldness. Anim. Behav. 84, 1131–1139 (2012).Article 

    Google Scholar 
    Van Oers, K., Drent, P. J., De Goede, P. & Van Noordwijk, A. J. Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. P. Roy. Soc. B-Biol. Sci. 271, 65–73 (2004).Article 

    Google Scholar 
    Hinton, M. G. et al. Patterns of aggression among captive American flamingos (Phoenicopterus ruber). Zoo Biol. 32, 445–453 (2013).Article 

    Google Scholar 
    Royer, E. A. & Anderson, M. J. Evidence of a dominance hierarchy in captive Caribbean flamingos and its relation to pair bonding and physiological measures of health. Behav. Processes 105, 60–70 (2014).Article 

    Google Scholar 
    Carere, C., Drent, P. J., Privitera, L., Koolhaas, J. M. & Groothuis, T. G. Personalities in great tits, Parus major: Stability and consistency. Anim. Behav. 70, 795–805 (2005).Article 

    Google Scholar 
    Jouventin, P., Lequette, B. & Dobson, F. S. Age-related mate choice in the wandering albatross. Anim. Behav. 57, 1099–1106 (1999).Article 
    CAS 

    Google Scholar 
    Black, J. M. Partnerships in Birds: The Study of Monogamy (Oxford University Press, USA, 1996).
    Google Scholar 
    Estevez, I., Andersen, I.-L. & Nævdal, E. Group size, density and social dynamics in farm animals. Appl. Anim. Behav. Sci. 103, 185–204 (2007).Article 

    Google Scholar 
    Pickering, S. The comparative breeding biology of flamingos Phoenicopteridae at the Wildfowl and Wetlands Trust Centre, Slimbridge. Intern. Zoo Yearbook 31, 139–146 (1992).Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (University of Chicago Press, 2008).Book 

    Google Scholar 
    Wilson, A. D., Krause, S., Dingemanse, N. J. & Krause, J. Network position: A key component in the characterization of social personality types. Behav. Ecol. Sociobiol. 67, 163–173 (2013).Article 

    Google Scholar 
    Renner, M. J. & Kelly, A. L. Behavioral decisions for managing social distance and aggression in captive polar bears (Ursus maritimus). J. Appl. Anim. Welf. Sci. 9, 233–239 (2006).Article 
    CAS 

    Google Scholar 
    Stevens, E. F. & Pickett, C. Managing the social environments of flamingos for reproductive success. Zoo Biol. 13, 501–507 (1994).Article 

    Google Scholar 
    Franks, D. W., Ruxton, G. D. & James, R. Sampling animal association networks with the gambit of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2010).Article 

    Google Scholar 
    Haddadi, H. et al. Determining association networks in social animals: Choosing spatial–temporal criteria and sampling rates. Behav. Ecol. Sociobiol. 65, 1659–1668 (2011).Article 

    Google Scholar 
    Whitehead, H. & Dufault, S. Techniques for analyzing vertebrate social structure using identified individuals. Adv. Stud. Behav. 28, 33–74 (1999).Article 

    Google Scholar 
    Borgatti, S.P., M., E., G., & C., F.L. UCINET for windows: software for social network analysis. Analytic Technologies: Harvard, MA (2002).Borgatti, S. P. NetDraw: graph visualization software (Analytic Technologies, 2002).
    Google Scholar 
    Bejder, L., Fletcher, D. & Bräger, S. A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998).Article 
    CAS 

    Google Scholar 
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).Article 

    Google Scholar 
    Perdue, B. M., Gaalema, D. E., Martin, A. L., Dampier, S. M. & Maple, T. L. Factors affecting aggression in a captive flock of Chilean flamingos (Phoenicopterus chilensis). Zoo Biol. 30, 59–64 (2011).
    Google Scholar 
    IBMCorp. IBM SPSS Statistics for Windows. IBM Corp: Armonk, NY (2012).Clarke, K.R. & Gorley, R.N. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. (2006).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020).RCoreTeam. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (2021).Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).Article 

    Google Scholar 
    Whitehead, H. SOCPROG programs: Analysing animal social structures. Behav. Ecol. Sociobiol. 63, 765–778 (2009).Article 

    Google Scholar 
    Whitehead, H. SOCPROG: Programs for analyzing social structure: Whitehead Lab (2019).Hanneman, R.A. & Riddle, M., Chapter 18: Some Statistical Tools. In: Introduction to Social Network Methods. (University of California, Riverside 2005). http://faculty.ucr.edu/~hanneman/.(2005) More

  • in

    Regardless of personality, males show similar levels of plasticity in territory defense in a Neotropical poison frog

    Bell, A. M. Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J. Evol. Biol. 18, 464–473 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dochtermann, N. A. & Jenkins, S. H. Behavioural syndromes in Merriam’s kangaroo rats (Dipodomys merriami): A test of competing hypotheses. Proc. R. Soc. Lond. B 274, 2343–2349 (2007).
    Google Scholar 
    Tremmel, M. & Müller, C. Insect personality depends on environmental conditions. Behav. Ecol. 24, 386–392 (2013).Article 

    Google Scholar 
    Zidar, J. et al. A comparison of animal personality and coping styles in the red junglefowl. Anim. Behav. 130, 209–220 (2017).Article 

    Google Scholar 
    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).Article 
    PubMed 

    Google Scholar 
    Réale, D. & Dingemanse, N. J. Personality and individual social specialization. In Social behaviour: Genes, ecology and evolution (eds Székely, T. et al.) 417–441 (Cambridge University Press, 2010).Chapter 

    Google Scholar 
    Dingemanse, N. J. & Dochtermann, N. A. Quantifying individual variation in behaviour. Mixed-effect modelling approaches. J. Anim. Ecol. 82, 39–54 (2013).Article 
    PubMed 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Reale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 
    PubMed 

    Google Scholar 
    Wolf, M., van Doorn, G. S. & Weissing, F. J. Evolutionary emergence of responsive and unresponsive personalities. Proc. Natl. Acad. Sci. USA 105, 15825–15830 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ólafsdóttir, G. Á. & Magellan, K. Interactions between boldness, foraging performance and behavioural plasticity across social contexts. Behav. Ecol. Sociobiol. 70, 1879–1889 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathot, K. J., Wright, J., Kempenaers, B. & Dingemanse, N. J. Adaptive strategies for managing uncertainty may explain personality-related differences in behavioural plasticity. Oikos 121(7), 1009–1020 (2012).Article 

    Google Scholar 
    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).Article 
    PubMed 

    Google Scholar 
    Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 365, 4021–4028 (2010).Article 

    Google Scholar 
    Benus, R. F., Daas, S. D., Koolhaas, J. M. & van Oortmerssen, G. A. Routine formation and flexibility in social and non-social behaviour of aggressive and non-aggressive male mice. Behaviour 112, 176–193 (1990).Article 

    Google Scholar 
    Dall, S. R., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).Article 

    Google Scholar 
    Mitchell, D. J. & Biro, P. A. Is behavioural plasticity consistent across different environmental gradients and through time?. Proc. R. Soc. B. 284(1860), 20170893 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamps, J. A. Individual differences in behavioural plasticities. Biol. Rev. 91, 534–567 (2016).Article 
    PubMed 

    Google Scholar 
    Stamps, J. A. & Biro, P. A. Personality and individual differences in plasticity. Curr. Opin. Behav. Sci. 12, 18–23 (2016).Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847 (2004).Article 

    Google Scholar 
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    Dingemanse, N. J. & Réale, D. Natural selection and animal personality. Behaviour 142, 1159–1184 (2005).Article 

    Google Scholar 
    Duque-Wilckens, N., Trainor, B. C. & Marler, C. A. Aggression and territoriality. In Encyclopedia of animal behavior (ed. Choe, J. C.) 539–546 (Elsevier, 2019).Chapter 

    Google Scholar 
    AmphibiaWeb. AmphibiaWeb: Information on amphibian biology and conservation. Available at https://amphibiaweb.org (2022).Ringler, M. et al. Acoustic ranging in poison frogs—It is not about signal amplitude alone. Behav. Ecol. Sociobiol. 71, 114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ringler, M., Ursprung, E. & Hödl, W. Site fidelity and patterns of short- and long-term movement in the brilliant-thighed poison frog Allobates femoralis (Aromobatidae). Behav. Ecol. Sociobiol. 63, 1281–1293 (2009).Article 

    Google Scholar 
    Ringler, M., Ringler, E., Magaña Mendoza, D. & Hödl, W. Intrusion experiments to measure territory size: Development of the method, tests through simulations, and application in the frog Allobates femoralis. PLoS ONE 6, e25844 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ringler, E., Ringler, M., Jehle, R. & Hödl, W. The female perspective of mating in A. femoralis, a territorial frog with paternal care—A spatial and genetic analysis. PLoS ONE 7, e40237 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ursprung, E., Ringler, M., Jehle, R. & Hödl, W. Strong male/male competition allows for nonchoosy females: High levels of polygynandry in a territorial frog with paternal care. Mol. Ecol. 20, 1759–1771 (2011).Article 
    PubMed 

    Google Scholar 
    Pröhl, H. Territorial behavior in dendrobatid frogs. J Herpetol 39, 354–365 (2005).Article 

    Google Scholar 
    Peignier, M. et al. Exploring links between personality traits and their social and non-social environments in wild poison frogs. Behav. Ecol. Sociobiol. 76, 93 (2022).Article 

    Google Scholar 
    Chaloupka, S. et al. Repeatable territorial aggression in a Neotropical poison frog. Front. Ecol. Evol. 10, 398 (2022).Article 

    Google Scholar 
    Amézquita Torres, A. et al. Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution 60, 1874–1887 (2006).
    Google Scholar 
    Rodríguez López, C., Amézquita Torres, A., Ringler, M., Pašukonis, A. & Hödl, W. Calling amplitude flexibility and acoustic spacing in the territorial frog Allobates femoralis. Behav. Ecol. Sociobiol. 74, 1–10 (2020).
    Google Scholar 
    Asab. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 159, 1–11 (2020).
    Google Scholar 
    Du Percie Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 18, e3000410 (2020).Article 

    Google Scholar 
    Ringler, E., Mangione, R. & Ringler, M. Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood. Mol. Ecol. Resour. 15, 737–746 (2015).Article 
    PubMed 

    Google Scholar 
    Ringler, M. et al. High-resolution forest mapping for behavioural studies in the Nature Reserve ‘Les Nouragues’, French Guiana. J. Maps 12, 26–32 (2016).Article 

    Google Scholar 
    Keith, D. A. et al. A function-based typology for Earth’s ecosystems. Nature 610, 513–518 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaefer, I. L., Montanarin, A., da Costa, R. S. & Lima, P. A. Temporal patterns of reproductive activity and site attachment of the brilliant-thighed frog Allobates femoralis from central Amazonia. J. Herpetol. 46, 549–554 (2012).Article 

    Google Scholar 
    Rasband, W. S. ImageJ (U. S. National Institutes of Health, 1997–2021).Bolger, D. T., Morrison, T. A., Vance, B., Lee, D. & Farid, H. A computer-assisted system for photographic mark–recapture analysis. Methods Ecol. Evol. 3, 813–822 (2012).Article 

    Google Scholar 
    Narins, P. M., Hödl, W. & Grabul, D. S. Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis. Proc. Natl. Acad. Sci. USA 100, 577–580 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gasser, H., Amézquita Torres, A. & Hödl, W. Who is calling? Intraspecific call variation in the aromobatid frog Allobates femoralis. Ethology 115, 596–607 (2009).Article 

    Google Scholar 
    Hödl, W. Dendrobates femoralis (Dendrobatidae): a handy fellow for frog bioacoustics in Proceedings of the 4th Ordinary General meeting of the Societas Europaea Herpetologica, (ed.van Gelder, J. J., Strijbosch, H. & Bergers, P.) (1987).Ursprung, E., Ringler, M. & Hödl, W. Phonotactic approach pattern in the neotropical frog Allobates femoralis: A spatial and temporal analysis. Behaviour 146, 153–170 (2009).Article 

    Google Scholar 
    Sonnleitner, R., Ringler, M., Loretto, M.-C. & Ringler, E. Experience shapes accuracy in territorial decision-making in a poison frog. Biol. Lett. 16, 20200094 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hödl, W. Phyllobates femoralis (Dendrobatidae): Rufverhalten und akustische Orientierung der Männchen (Freilandaufnahmen) in Bundesstaatliche Hauptstelle für Wissenschaftliche Kinematographie (1983).Tumulty, J. P. et al. Brilliant-thighed poison frogs do not use acoustic identity information to treat territorial neighbours as dear enemies. Anim. Behav. 141, 203–220 (2018).Article 

    Google Scholar 
    Fernandes, I. Y. et al. Unlinking the speciation steps: Geographical factors drive changes in sexual signals of an Amazonian Nurse-Frog through body size variation. Evol. Biol. 48, 81–93 (2021).Article 

    Google Scholar 
    Garcia, M. J. et al. Dueling frogs: do male green tree frogs (Hyla cinerea) eavesdrop on and assess nearby calling competitors?. Behav. Ecol. Sociobiol. 73(2), 1041 (2019).Article 

    Google Scholar 
    Gingras, B., Böckle, M., Herbst, C. T. & Fitch, W. T. Call acoustics reflect body size across four clades of anurans. J Zool 289(2), 143–150 (2013).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    Fox, J. et al. Package ‘sem’: Structural Equation Models. https://CRAN.R-project.org/package=sem (2022).Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 30 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmmR package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Bürkner, P.-C. brms: An R package for Bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Whalen, A. & Hoppitt, W. J. E. Bayesian model selection with network based diffusion analysis. Front. Psychol. 7, 409 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Ryan, M. J., Bartholomew, G. A. & Rand, A. S. Energetics of reproduction in a neotropical frog, Physalaemus pustulosus. Ecology 64, 1456–1462 (1983).Article 

    Google Scholar 
    Taigen, T. L. & Wells, K. D. Energetics of vocalization by an anuran amphibian (Hyla versicolor). J. Comp. Physiol. 155, 163–170 (1985).Article 

    Google Scholar 
    Pough, F. H. & Taigen, T. L. Metabolic correlates of the foraging and social behaviour of dart-poison frogs. Anim. Behav. 39, 145–155 (1990).Article 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelleher, S. R., Silla, A. J. & Byrne, P. G. Animal personality and behavioral syndromes in amphibians: A review of the evidence, experimental approaches, and implications for conservation. Behav. Ecol. Sociobiol. 72, 10539 (2018).Article 

    Google Scholar 
    Moser-Purdy, C., MacDougall-Shackleton, E. A. & Mennill, D. J. Enemies are not always dear: Male song sparrows adjust dear enemy effect expression in response to female fertility. Anim. Behav. 126, 17–22 (2017).Article 

    Google Scholar  More

  • in

    Observed reductions in rainfall due to tropical deforestation

    RESEARCH BRIEFINGS
    01 March 2023

    Tropical deforestation affects local and regional precipitation, but the effects are uncertain and have not been determined using observations. Satellite data sets were used to show reductions in precipitation over areas of tropical forest loss, with stronger reductions seen as the deforested area expands. More

  • in

    Carbon stocks of billions of individual African dryland trees estimated

    Tucker, C. et al. Nature 615, 80–86 (2023).Article 

    Google Scholar 
    Bayala, J. et al. Agric. Ecosyst. Environ. 205, 25–35 (2015).Article 

    Google Scholar 
    Keesstra, S. D. et al. Soil 2, 111–128 (2016).Article 

    Google Scholar 
    Dewi, S. et al. Int. J. Biodivers. Sci. Ecosyst. Serv. Mgmt 13, 312–329 (2017).Article 

    Google Scholar 
    Ahlström, A. et al. Science 348, 895–899 (2015).Article 
    PubMed 

    Google Scholar 
    Poulter, B. et al. Nature 509, 600–603 (2014).Article 
    PubMed 

    Google Scholar 
    Prăvălie, R. et al. Environ. Res. 201, 111580 (2021).Article 
    PubMed 

    Google Scholar 
    Reij, C. P. & Smaling, E. M. A. Land Use Policy 25, 410–420 (2008).Article 

    Google Scholar 
    Zomer, R. J., Bossio, D. A., Trabucco, A., van Noordwijk, M. & Xu, J. Circ. Agric. Syst. 2, 3 (2022).Article 

    Google Scholar 
    Chomba, S., Sinclair, F., Savadogo, P., Bourne, M. & Lohbeck, M. Front. For. Glob. Change 3, 571679 (2020).Article 

    Google Scholar 
    Dakpogan, A., Bayala, J., Ouattara, I. & Ellington, E. in United for Lands: From National Coalitions to a Pipeline of Bankable Projects for the Great Green Wall 54–56 (United Nations, 2022).
    Google Scholar 
    Garrity, D. P. & Bayala, J. in Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade (ed. van Noordwijk, M.) 153–175 (World Agroforestry, 2019).
    Google Scholar 
    Schnell, S., Kleinn, C. & Ståhl, G. Environ. Monit. Assess. 187, 600 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Sub-continental-scale carbon stocks of individual trees in African drylands

    OverviewThis study establishes a framework for mapping carbon stocks at the level of individual trees at a sub-continental scale in semi-arid sub-Saharan Africa north of the Equator. We used satellite imagery from the early dry season (Extended Data Fig. 1). The deep learning method developed by a previous study1 allowed us to map billions of discrete tree crowns at the 50-cm scale from West Africa to the Red Sea. Then we used allometry to convert tree crown area into tree wood, foliage and root carbon for the 0–1,000 mm year−1 precipitation zone in which our allometry was collected (Extended Data Fig. 2). We introduce a viewer that enables the billions of trees to be viewed at different scales, with information on location, metadata of the Maxar satellite image used, tree crown area and the estimated wood, foliage and root carbon content based on our allometry (Fig. 4). We also make available our output data for the 1,000 mm year−1 precipitation zone southward to 9.5° N latitude with information on location, precipitation, metadata of the Maxar satellite image used, tree crown area, tree wood carbon, tree root carbon and tree leaf carbon.Satellite imageryWe used 326,523 Maxar multispectral images from the QuickBird-2, GeoEye-1, WorldView-2 and WorldView-3 satellites collected from 2002 to 2020 from November to March from 9.5° N to 24° N latitude within Universal Transverse Mercator (UTM) zones 28–37 for Africa (Extended Data Table 1a). These images were obtained by NASA through the NextView License from the National Geospatial-Intelligence Agency. Data were assembled over several years with a focus on later years to achieve a relatively recent and complete wall-to-wall coverage.When using satellite data from different satellites over several years, with varying sun–target–satellite angles, with varying radiometric calibration of satellite spectral bands and different atmospheric compositions through which the surface is imaged, there are two possibilities for using hundreds of thousands of satellite images together quantitatively. One approach, used extensively in NASA’s, NOAA’s and the European Space Agency’s Earth-viewing satellite programmes, is to quantitatively inter-calibrate radiometrically the satellite channels through time; correct these data for time-dependent atmospheric effects such as aerosols, clouds, haze, smoke, dust and other atmospheric constituent effects and then normalize the viewing perspective to the same sun–target–satellite angle38. Another approach is to use the satellite data as collected; assemble training data of trees viewed from different satellites under different sun–target–satellite angles, different times, different atmospheric conditions and use machine learning with high-performance computing to perform the tree mapping at the 50-cm scale. The key to successful machine learning is to account for all the sources of variation within the domain of study in the training data to ensure accurate identification of trees under all circumstances. We included trees viewed substantially off-nadir, trees collected under different aerosol optical thicknesses, trees collected under cirrus cloud conditions, trees viewed in the forward and backward scan directions, trees on sandy soils, trees on clay soils, trees on burn scars, trees in laterite areas and trees in riverine settings. Our training data were collected by one team member and are a carefully selected manual delineation of 89,899 individual trees under a range of atmospheric conditions, viewing perspectives and ecological settings.All multispectral and panchromatic bands associated with our Maxar images were orthorectified to a common mapping basis. We next pan-sharpened all multispectral bands to the 0.5-m scale with the associated panchromatic band. The absolute locational uncertainty of pixels at the 0.5-m scale from orbit is approximately ±11 m, considering the root-mean-square location errors among the QuickBird-2, GeoEye-1, WorldView-2 and WorldView-3 satellites (Extended Data Table 1). We formed the normalized difference vegetation index (NDVI)39 from every image in the traditional way from the pan-sharpened red and near-infrared bands. We also associated the panchromatic band with the NDVI band and ensured that the panchromatic and NDVI bands were highly co-registered. The NDVI was used to distinguish tree crowns from non-vegetated background because the images were taken from a period when only woody plants were photosynthetically active in this area36. Our training data were labelled on images from the early dry season when only trees have green leaves. Because most semi-arid savannah trees continue to photosynthesize in the early dry season after herbaceous vegetation senesces, green leaf tree crowns are easily mapped because of their higher NDVI values than their senescent herbaceous vegetation surroundings. We substantiate this by analysis of 308 individual trees using NDVI time series with 4-m PlanetScope imagery that emphasized the importance of satellite data from the November, December and January early dry-season months (Extended Data Fig. 1).We next formed our data into mosaics by applying a set of decision rules, resulting in a collection of 16 × 16-km tiles within each UTM zone from 9.5° N to 24° N latitude for Africa. The initial round of scoring considered percentage cloud cover, sun elevation angle and sensor off-nadir angle: preference was given to imagery that had lower cloud cover, then higher sun elevation angle and finally view angles closest to nadir. In the second round of scoring, selections were assigned priority to favour early dry-season months and off-nadir view angles: preference was given to imagery from November, December and January with off-nadir angle less than ±15°; second to imagery from November to January with off-nadir angle between ±15° and ±30°; third to imagery from February or March with off-nadir angle less than ±15°; and finally to imagery from February or March with off-nadir angle between ±15° and ±30°. Image mosaics were necessary to eliminate multiple counting of trees. We formed mosaics using 94,502 images for tree segmentation, with 94% of these being from November, December and January. Ninety percent of our selected mosaic imagery was within ±15° of nadir, 87% were acquired between 2010 and 2020 and 94% were from the early dry season (Extended Data Fig. 7). A summary of month, year, solar elevation and off-nadir angle by UTM zone can be found in Supplemental Information Fig. 1.Possible obscuration of the surface by clouds totalled 4.1% of our input mosaic data area and aerosol optical depth >0.6 at 470-nm (ref. 40) areas totalled 3.4% of our input data. However, we mapped 691,477,772 trees in our possible cloud-cover-affected and aerosol-affected areas, indicating that cloud and aerosol effects were lower than these numbers. In addition, 0.9% of our input data did not process. We include a data layer in our viewer for these three conditions.Mapping tree crowns with deep learningWe used convolutional neural network models developed by a previous study1. The models were trained with manually delineated and annotated 89,899 individual trees along a north–south gradient from 0 to 1,000 mm year−1 rainfall1. Only features that showed a distinct crown area and associated shadow were included, which excluded small bushes, grass tussocks, rocks and other features that might have green leaves or cast a shadow from our classification. All training data and model training was done in UTM zones 28 and 29. Because tree floristic diversity in the 0–1,000 mm year−1 zone of our study is highly similar from the Atlantic Ocean to the Red Sea across Africa41,42,43, we added no further training data as our study moved further eastward. We used state-of-the-art deep learning to segment trees crowns at the 50-cm scale1. We used two different models based on a U-Net architecture, one for lower-rainfall desert regions with 150 mm year−1. Details about the network architecture, training process and hyperparameter choices can be found in ref. 1. Previous evaluation showed that early dry-season images performed better than late dry-season images, which was a limitation of our previous study. We reduced this error by using early dry-season images with only 6% of our area being covered by images from February and March. The models were also designed to separate clumped trees by highlighting spaces between different crowns during the learning process, similar to a strategy for separating touching cells in microscopic imagery22.AllometryVery-high-resolution satellite images and deep learning have achieved mapping of individual trees over large areas1. Each tree is georeferenced in the satellite data and defined by crown area. The challenge was to develop allometric equations for foliage, wood and root dry masses or carbon based on crown area regardless of species. This was met by reanalysing existing Sahelian and Sudanian woody plant data from destructive sampling. Overall, the seasonal maximum foliage, wood and root dry masses were measured on 900, 698 and 26 trees or shrubs from 27, 26 and 5 species, respectively, for which crown area was also measured. Several allometric regression models tested for foliage, wood or root masses are power functions and independent of species. All the regression outputs were inter-compared for fit indicators, by systematic estimates of prediction uncertainty and by root-to-wood ratios and foliage-to-wood ratios over the range of crown areas. This resulted in a set of ordinary least squares log–log equations with crown area as the independent variable. The Sahelian and Sudanian allometry equations were also compared with published allometry equations for tropical trees, primarily from more humid tropics, which are generally based on stem diameter, tree height and wood density. Our allometric predictions are within the range of other allometry predictions, reinforcing the confidence in their use beyond the Sahelian and Sudanian domains into sub-humid savannahs for discrete trees19.On the basis of ref. 19, we predicted the wood (w), foliage (f) and root (r) dry mass as functions of the crown area (A) of a single tree as:$$begin{array}{c}{text{mass}}_{{rm{w}}}(A)=3.9448times {A}^{1.1068},({N}_{{rm{w}}}=698)\ {text{mass}}_{{rm{f}}}(A)=0.2693times {A}^{0.9441},({N}_{{rm{f}}}=900)\ {text{mass}}_{{rm{r}}}(A)=0.8339times {A}^{1.1730},({N}_{{rm{r}}}=26)end{array}$$The tree mass components of wood, leaves and roots were combined to predict the total mass(A) in kg of a tree from its crown area A in m2:$$text{mass}left(Aright)={text{mass}}_{{rm{w}}}left(Aright)+{text{mass}}_{{rm{f}}}left(Aright)+{text{mass}}_{{rm{r}}}left(Aright)$$As in ref. 1, a crown area of size A  > 200 m2 was split into ({rm{lfloor }}A/100{rm{rfloor }}) areas of size 100 m2 and one area with the remaining m2 if necessary. We converted dry mass to carbon by multiplying with a factor of 0.47 (ref. 44).Uncertainty analysisWe evaluated the uncertainty of our tree crown area mapping and carbon estimation in two ways. First, we quantified our tree crown mapping omission and commission errors by inspecting randomly selected areas from UTM zones 28–37, validating that our neural network generalized over UTM zones consistently (Extended Data Fig. 8).Second, we quantified the relative error of our tree crown area estimation. We consider the uncertainty Δx of a quantity x and the corresponding relative uncertainty δx defined by the absolute and relative error, respectively45. To assess the relative error in crown area estimation resulting from errors by the neural network, we considered external validation data from ref. 1, which were not used in the model-building process. We considered expert-labelled tree crowns as well as the predicted tree crowns from 78 plots of 256 × 256 pixels. The hand-labelled set contained 5,925 trees and the system delineated 5,915 trees. The total hand-labelled tree crown area was 118,327 m2 and the neural network predicted 121,898 m2. This gave a relative error in crown area mapping of δarea = 3.3%. We matched expert-labelled and predicted tree crowns and computed the root-mean-square error (RMSE) per tree, taking overlapping areas and missed trees into account (see Extended Data Fig. 8). We estimated the allometric uncertainty (δallometric) using the data from ref. 19 (see below). The two relative errors δarea and δallometric were combined to an overall uncertainty estimate for the carbon prediction of ±19.8% (see below).Omission and commission errorsWe evaluated our tree crown mapping accuracy by analysis of 1,028 randomly selected 512 × 256-pixel areas over the 9.5° N to 24° N latitude within UTM zones 28–37. Because the drier 60% of our study area only contains 1% of the 9,947,310,221 trees we mapped in the 0–1,000 mm year−1 rainfall zone, we applied an 80% bias for selecting evaluation areas above the 200 mm year−1 precipitation line46, as >98% of tree identifications were above the 200 mm year−1 precipitation isoline. Identified tree polygons were further categorized into tree crown area classes from 0–15 m2, 15–50 m2, 50–200 m2 and >200 m2, with a total of 50,570 trees evaluated. Although a previous study reported greatest uncertainty in both the smallest and largest area classes1, our more expansive work found the greatest uncertainty in our smallest tree class. We excluded from evaluation any tiles that had annual precipitation46 >1,000 mm year−1 and all areas that were devoid of vegetation, leaving us with 850 areas.Seven members of our team evaluated the accuracy in terms of commission and omission by tree crown area classes for the 850 areas. Input data provided for every area were the NDVI layer, the panchromatic shadow layer and the neural net mapping results in each of the four crown area classes. Ancillary data available to evaluators included the centre coordinates for comparison with Google Earth data, the Funk et al.46 rainfall, the acquisition date of the area evaluated and the viewing perspective.We identified areas wrongly classified as tree crowns (commission errors), missed trees (omission errors) and crown areas corresponding to clumped trees (Extended Data Fig. 8). Clumped trees were most common for >200 m2 tree crown area. They were rare in the 3–15 m2 and 15–50 m2 tree classes, which comprise 88% of our tree crowns. In the 850 patches, the number of trees ranged from one tree to 326 trees, with a total of 50,570 trees evaluated and 3,765 errors identified. Overall, the commission and omission error rates were 4.9% and 2.7%, respectively, a net uncertainty of 2.2%.Allometric uncertainty estimationThe prediction of tree carbon from the crown area for a single tree based on crown area alone is inherently uncertain47,48. As the allometric equations are based on three different datasets, we compute their uncertainties independently, combine them and put them in relation to the total carbon measured in the three datasets.The allometric equations were established using an optimal least-squares fit of an affine linear model predicting the logarithmic carbon from the logarithmic tree crown area19. To estimate the uncertainty of the allometric equations, we repeated the fitting using random subsampling. The datasets were randomly split into training data (80%) for fitting the allometric equations and validation data (20%) for assessing the uncertainty. For example, from the root measurements, (({A}_{1},{y}_{1}),ldots ,({A}_{{N}_{{rm{r}}}},,{y}_{{N}_{{rm{r}}}})), we compute ({mu }_{{rm{r}}}=frac{1}{{N}_{{rm{r}}}}mathop{sum }limits_{i=1}^{{N}_{{rm{r}}}}{y}_{i}) and ({hat{mu }}_{{rm{r}}}=frac{1}{{N}_{{rm{r}}}}mathop{sum }limits_{i=1}^{{N}_{{rm{r}}}}{text{mass}}_{{rm{r}}}({A}_{i})). The corresponding error is ({varDelta }_{{rm{r}}}=|{mu }_{{rm{r}}}-{hat{mu }}_{{rm{r}}}|).Because the total carbon for a tree with a certain crown area is the sum of the three carbon components, we add the absolute uncertainties assuming independence45.$${varDelta }_{{rm{a}}{rm{l}}{rm{l}}{rm{o}}{rm{m}}{rm{e}}{rm{t}}{rm{r}}{rm{i}}{rm{c}}}simeq sqrt{{varDelta }_{{rm{f}}}^{2}+{varDelta }_{{rm{w}}}^{2}+{varDelta }_{{rm{r}}}^{2}}$$and compute the relative uncertainty as ({delta }_{text{allometric}}=frac{{varDelta }_{text{allometric}}}{{mu }_{text{mass}}}), in which the average mass μmass is given by the sum of the averages for wood (μw), leaves (μf) and root (μr). This process was repeated ten times, resulting in a mean relative uncertainty of$${bar{delta }}_{{rm{allometric}}}=19.5 % .$$Total carbon uncertaintyWe combine the uncertainties from the neural net mapping and our allometric equations, which can be viewed as considering (1 + A)·(1 + B) with A and B being random variables with standard deviations δarea and δallometric. Neglecting higher-order and interaction terms, we combine the two sources of uncertainty to (delta simeq sqrt{{delta }_{{rm{area}}}^{2}+{bar{delta }}_{{rm{allometric}}}^{2}}), resulting in an uncertainty in total tree carbon for our study of ±19.8%. See also Extended Data Fig. 9 for the RMSEs of our predicted crown areas calculated on external validation data from ref. 1, binned on the basis of the 50th quantiles of the hand-labelled crown areas and converted also into carbon. Extended Data Fig. 10 is a flow diagram summarizing our methods.Our viewerVisualizing our large tree-mapping dataset in an interactive format was essential for quality-control purposes, exploration of the data and hypothesis creation. Creating a web-based viewer serves the purpose of being the initial point of interaction with our dataset for fellow researchers, local stakeholders or the general public. The visualization of more than 10 billion trees in a web browser required maintaining performance, interactivity and individual metadata for each polygon. Users should be able to zoom in to any area within the dataset to view individual tree polygons and query their statistics while at the same time accurately depicting the overall trends of the dataset at lower zoom levels. The visualization also needed to clearly denote where data were missing or possibly affected by clouds or aerosols. Finally, the extent and origin of the source imagery, its acquisition date and a preview of the imagery needed to be available. To accomplish these goals, a vector-tile-based approach was taken, with the data visualized in a Mapbox GL JS map within a React web application. To create vector tiles covering the entire study area, we developed a data-processing pipeline using high-performance computing resources to transform the data into compatible formats, as well as to package, optimize and combine the vector tiles themselves.We used two tracks to store and visualize the results of this study on the web: vector polygon data and generalized rasters representing tree crown density. At the native spatial resolution of 50 cm, the map shows the full-resolution tree polygon dataset. At lower-spatial-resolution zoom levels, rasterized representations of tree density are shown. Visualizing generalized rasters in place of vector polygons improves performance substantially. As users zoom in to higher spatial resolutions, the raster layer fades away and is replaced by the full-resolution polygon layer. Once zoomed far enough to resolve individual polygons, users can click to select a polygon to show a map overlay containing various properties of the tree, as well as the date on which the source imagery was acquired and a link to preview the source imagery.Rainfall dataWe used the rainfall data of Funk et al. to estimate annual rainfall at 5.6-m grids46. We averaged the available data from 1982 to 2017 and extracted the mean annual rainfall for each mapped tree and bilinearly interpolated it to 100 × 100-m resolution. The rainfall data were also used to classify the study area into mean annual precipitation zones: hyper-arid from 0–150 mm year−1, arid from 150–300 mm year−1, semi-arid from 300–600 mm year−1 and sub-humid from 600–1,000 mm year−1 zones. The rainfall data are found at https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_monthly/ (ref. 46). More