More stories

  • in

    Extinction drives a discontinuous temporal pattern of species–area relationships in a microbial microcosm system

    Preparation of the pao cai soupFirst, 35 kg of white radish (Raphanus sativus), 35 kg of cabbage (Brassica oleracea), 2 kg of chili pepper (Capsicum frutescens), 1 kg of ginger (Zingiber officinale), 1 kg of peppercorns (Zanthoxylum bungeanum), 2.5 kg of rock sugar, and 210 kg of cold boiled water (containing 6% salt) were divided into six ceramic jars. After 7 days of natural fermentation at room temperature, the pao cai was filtered out with sterile gauze to obtain 200 kg of pao cai soup. To ensure an even distribution of microorganisms in the soup, the soup was mixed well and then left to rest for 12 h, the supernatant was taken, and the soup was left to rest for 12 h again.The plants used in this study were cultivated vegetables which purchased from the vegetable market at the study site. All local, national or international guidelines and legislation were adhered to in the production of this study.Establishment of the microcosm systemSeventy-eight for each size of 10 ml, 20 ml, 50 ml, 100 ml, 250 ml, 500 ml, and 1000 ml sterile glass culture flasks were filled with pao cai soup, the bottle mouth was sealed with sterile sealing film, and the bottle was capped without leaving any air (Fig. 1). Each flask became a microcosm and was cultured in a 25 °C incubator.Figure 1Schematic diagram of the establishment of the microcosmic system.Full size imageSample collectionBefore the microcosm system was established, a sample of well-mixed pao cai soup was taken as a reference to establish background biodiversity. The microbial community dynamics should change the fastest at the beginning of the microcosm system establishment and gradually become slower over time. Considering the workload and cost, this study collected samples daily for 1–10 day after the establishment of the microcosm and then collected every 2 days for 10–30 day and every 5 days for 30–60 day. Three different microcosms of the same volume were established. Monitoring was carried out for 60 days, and a total of 546 samples of 7 volumetric gradients were obtained at 26 time points. At the time of sampling, the pao cai soup in the microcosm was mixed, and 50 mL of sample (10 mL of sample was collected for microcosm systems with a volume of less than 50 mL) was collected. The sample was centrifuged at 8000 rpm for 10 min, the supernatant was collected for pH determination, and the pellet was stored in a − 80 °C freezer.Microbial analysesMicrobial DNA was extracted from pao cai samples using the E.Z.N.A.® Soil DNA Kit (Omega Biotek, Norcross, GA, U.S.) according to the manufacturer’s protocols. For bacteria, we targeted the V3-V4 region of the 16S ribosomal RNA (rRNA) gene, using the 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) primer pairs. For fungi, we targeted the ITS1-1F region of the nuclear ribosomal internal transcribed spacer region (ITS rDNA) gene, using ITS1-1F-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS-1F-R (5′-GCTGCGTTCTTCATCGATGC-3′). PCRs were performed in triplicate in a 20 μL mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu Polymerase and 10 ng of template DNA. The PCR program for the 16S rRNA gene was as follows: 3 min of denaturation at 95 °C; 27 cycles of 30 s at 95 °C, 30 s of annealing at 55 °C, and 45 s of elongation at 72 °C; and a final extension at 72 °C for 10 min. For the ITS1-1F region, the PCR program was as follows: samples were initially denatured at 98 °C for 1 min, followed by 30 cycles of denaturation at 98 °C for 10 s, primer annealing at 50 °C for 30 s, and extension at 72 °C for 30 s. A final extension step of 5 min at 72 °C was added to ensure complete amplification of the target region. The resulting PCR products were extracted from a 2% agarose gel, further purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using QuantiFluor™-ST (Promega, Madison, WI, USA).Purified amplicons were pooled in equimolar amounts and paired-end sequenced (2 × 300) on an Illumina NovaSeq platform (Illumina, San Diego, CA, USA) according to standard protocols. The analysis was conducted by following the “Atacama soil microbiome tutorial” of QIIME2 docs along with customized program scripts (https://docs.qiime2.org/2019.1/). Briefly, raw data FASTQ files were imported in the QIIME2 system using the qiime tools import program. Demultiplexed sequences from each sample were quality filtered, trimmed, denoised, and merged, and then the chimeric sequences were identified and removed using the QIIME2 DADA2 plugin to obtain the feature table of amplicon sequence variants (ASVs)24. Compared with traditional OTU that clusters at 97% similarity, ASV has higher accuracy, equivalent to 99% similarity clustering. The QIIME2 feature-classifier plugin was then used to align ASV sequences to the pretrained GREENGENES 13_8 99% database (trimmed to the V3-V4 region bound by the 338F/806R primer pair for bacteria) and UNITE database (for fungi) to generate the taxonomy table25. Any contaminating mitochondrial and chloroplast sequences were filtered using the QIIME2 feature-table plugin. Based on the sequence number of the lowest sample, perform the resampling to make the sequence number equal for each sample. Due to the random nature of sequencing, ASVs specific to each sample in this study were present. To reduce the uncertainty introduced by the sequencing process, we filtered out rare ASVs with less than 0.001% of the total sequence volume.Data analysisIn this study, the data of fungi and bacteria were integrated and analyzed, and all microbial diversity appearing in the text represent the sum of all fungi and bacteria. Species richness is equal to the number of taxa, which is equal to the total number of all bacterial and fungal ASVs. The vegan package in R 4.2.1 was used to calculate the species richness of each sample based on the ASV feature table26. Using flask volume instead of area, SAR fitting was performed using a semi-logarithmic model, and its significance was tested. The semi-logarithmic model is the function S = c + b*logA, where S is species richness, A is area (in this case, volume is used instead), and b and c are fit parameters27.The microcosmic system in this study is hermetically sealed, and all microorganisms originate from a single portion of well-mixed paocai soup (ie species pool). The speciation process in the 60-day experimental system should be negligible due to the short experimental period. The extinction rate of a microcosm system is equal to the number of ASVs lost in the microcosm system compared to the species pool divided by the total number of ASVs in the species pool. The extinction rate is the number of extinct ASVs in each system compared to the species pool. Pearson correlation analysis was performed with volume as the independent variable and extinction rate as the dependent variable to determine the correlation between volume and extinction rate at each time point. When microorganisms of a microcosmic system disappear entirely or cannot be detected, the microcosm is recorded as an annihilated microcosm. The annihilation rate at a time point is equal to the number of microcosms annihilated at that time, divided by the total number of microcosms. The difference between the extinction rate and annihilation rate defined in this paper is that the extinction rate is for ASVs within each sample, and the annihilation rate is for microcosmic system at each sampling time point. The two indicators jointly characterize the local extinction of microorganisms from different perspectives. Non-linear regression with a bell-shaped form was performed with time as an independent variable and pH and annihilation rate as dependent variables, and regression lines were plotted based on R 4.2.1.According to the taxonomy table, bacterial ASVs were divided into acid-producing and non-acid-producing categories, and their extinction rates were calculated separately. The agricola, ggplot2, vegan and ggpubr packages were used to draw alpha diversity box plots and perform the Wilcoxon rank sum test for differences between groups26,28,29,30. Non-metric multidimensional scaling (NMDS) analysis was performed with the vegan package based on Bray–Curtis dissimilarity. In addition, the potential Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologue (KO) functional profiles of microbial communities were predicted with PICRUSt31. Resistance-related genes were screened using the gene function predictions. The relationship between the relative abundance of resistance-related genes and the volume of the microcosm was analysed by Pearson correlation, and a forest map was plotted to present the results. More

  • in

    Applying an ecosystem services framework on nature and mental health to recreational blue space visits across 18 countries

    We investigated the complex relationships between the environmental characteristics of blue spaces and visit-related mental well-being in a multi-country study including 17 bluespace types and four facets of subjective well-being. Our aim was to operationalise, and consider the utility of, the Bratman et al.9 conceptual model that links ecosystem services (ESS) with mental health.Consistent with the proposed conceptual model, mental well-being outcomes relied on a complex interplay of individual, environmental, and visit characteristics.Summary of findingsOverall, bluespace visits were associated with better subjective mental well-being outcomes if the visits took place in nearby coastal areas or rural rivers, were perceived as safe and to have good water quality, and had a long duration. They could involve a range of activities such as playing with children, socialising, or walking. The degree to which the perceived presence of wildlife predicted visit satisfaction varied depending on the bluespace type, suggesting that the importance of ecosystem features such as biodiversity may vary by the setting.We can also identify the combination of environmental and visit characteristics associated with particularly high levels of well-being for a specific outcome. For example, an optimal visit in terms of happiness might be to sandy beaches where there are high levels of perceived safety and excellent water quality; with a visit lasting at least three hours; and possibly involving playing with children, socialising, sunbathing/paddling and/or walking with a dog; and has short travel times that do not involve public transport.RQ1—natural and environmental featuresResearch question 1a—Which bluespace type(s) were associated with the highest levels of recalled visit mental well-being?Four of the five bluespace types associated with the highest levels of visit satisfaction were coastal (sea cliffs, rocky shore, sandy beaches, rural river and seaside promenade), indicating that these environments may be particularly beneficial for well-being. Visits to these environments were also associated with the lowest levels of visit anxiety, with the exception of seaside promenade and sea cliffs, which were not significantly different to the grand mean. Seaside promenade was the only urban environment in the top five.In addition, only coastal sites were associated with significantly higher levels of visit happiness (compared to the grand mean), further highlighting the potential importance of these environments. Although not explored here, coastal scenes tend to be associated with particularly high aesthetic and scenic value25,26 which may also be positively related to subjective well-being.These findings are broadly consistent with other studies from the UK17,27, but are extended here to our international sample. White et al.28 also used data from the BlueHealth International Survey (BIS) and explored visit frequency to different environments and associations with general mental health and well-being outcomes, including the World Health Organisation five-item Well-being index referring to the two weeks prior to the survey. Consistent with the results here, they found that visit frequency to “coastal blue” environments was more strongly associated with psychological well-being in general than visit frequency to “inland blue” environments. Our study adds to these more general findings by showing that these associations may come as a direct result of the recalled well-being experienced on specific visits to these locations.Confidence in our results was strengthened as we included general mental well-being in our analysis to adjust for whether happier people tend to visit sandy beaches, for example. The results for visit anxiety were not always the inverse of the trends observed in the positive measures of well-being, supporting the need to look at multiple aspects of mental well-being when considering the effects of nature contact.Research question 1b—Which bluespace qualities were associated with the highest levels of recalled visit mental well-being?Of the range of qualities that we investigated as predictors, perceived safety and ‘excellent’ water quality (vs. ‘sufficient’) consistently exhibited the strongest relationships with subjective mental well-being. Perceived safety has been found to be important when visiting blue spaces in several qualitative studies29,30,31, as well as a quantitative study with older adults in Hong Kong14. Blue spaces have particular safety issues with respect to drowning32,33, but fear of crime29,30,33 or pedestrian safety34 may also be relevant.Water quality has also been found to be important in previous economic valuation studies of recreational use and enjoyment of lakes and estuaries in the USA and Australia35,36 as well as a contingent behaviour experiment carried out as part of the BlueHealth International Survey (in European countries only)37. We recognise that here we used a metric of perceived water quality, rather than measures based on biological or toxicological sampling. Nevertheless, perceptions have been reported to positively correlate with sampled water quality parameters38, although assessments can vary systematically such as by bluespace type39. Highly visible harmful algal blooms, for instance, have also been found to affect experiences of blue spaces40.Further, and again consistent with earlier work15,41,42, the presence of facilities and wildlife, and absence of litter, were generally associated with better subjective mental well-being. Both perceived presence of wildlife and facilities were also associated with higher levels of anxiety however, indicating complexities between environmental qualities and well-being. Some wildlife may be deemed unpleasant or an ecosystem disservice, for example. The presence of good facilities may indicate the presence of more people; and visitor density in natural environments can be related to preference43. These results highlight the importance of environmental quality and not just type, consistent with other frameworks12,37.Research question 2—How is exposure, as operationalised by visit duration, related to recalled visit mental well-being?Broadly consistent with research in the green and bluespace literature14,17,44, we found that mental well-being outcomes were generally higher with greater exposure as indicated by visit duration. For decreasing visit anxiety, this was only significant when visits were longer than an hour and a half. As we did not measure pre-visit anxiety levels, we are cautious about identifying this as a potential temporal threshold for reducing anxiety at this stage.Similarly, also using the BlueHealth International Survey, White et al.28 found that well-being outcomes were higher with greater visit exposure to green and blue spaces using a metric of visit frequency. However, in contrast to this and other research which looked at overall weekly aggregated time in nature (e.g.28,45), we have no evidence of diminishing marginal returns as the effect sizes associated with specific visit duration continued to increase with increasing duration.Research question 3—What experiences in blue spaces, in terms of activities (3a) and companions (3b), are associated with the most positive recalled visit mental well-being outcomes?Although walking was the most popular activity, the activity with the highest mental well-being ratings was playing with children, especially in certain locations such as beaches (Fig. 4). However, we also find that anxiety tended to be higher when children were present. We speculate that the purpose of the visit may be important. For example, many who go to the beach with children do so in order to play. However, if children are present on more adult-oriented activities such as hiking, this may increase adult anxiety during the visit. From a representative sample of English adults, White et al.17 found that recent nature visits with children were associated with the lowest levels of well-being. Therefore, visits with children may be associated with a more complex set of emotions, being both slightly more stressful, but also potentially more rewarding and ‘meaningful’46. Ecosystem features of beaches may be particularly supportive of high well-being activities. A qualitative study in the UK, for instance, highlighted the particular opportunities for adults and children to play together at the beach, including rock-pooling and making sandcastles as well as water-based activities47.Visits with other adults were associated with higher levels of both visit satisfaction and worthwhile-ness, and socialising as an activity was associated with better visit well-being for all outcomes compared to the grand mean. This is consistent with studies using the day reconstruction method, which link activities with experiential well-being, in the USA48 and Germany49 where socialising was associated with the highest, or second highest, levels of well-being for all the activities assessed. Further, social interactions have been recognised as an important benefit by many of those visiting freshwater blue spaces in a previous study18.Research question 4—Does the relationship between wildlife presence and recalled visit well-being vary by bluespace settings?The relationship between the presence of wildlife and visit satisfaction varied with bluespace type. The strongest positive association was found for fen, marsh and bog areas, which may also be related to the purpose of visit. For instance, those who visit places such as fens, marshes and bogs, may do so for the explicit purpose of observing wildlife (often birds) and the presence of wildlife would therefore be important for satisfaction with the visit.Perceptions towards wildlife have been found to vary by location in other studies. For example, in Sweden, greater prior experience with geese at beaches was associated with a negative attitude towards geese50. Further, the species present are likely to vary across different environments. In three urban areas in the UK, green spaces correlated with the abundance and species richness of birds considered to provide cultural services (songbirds and woodpeckers), while an abundance of birds considered to provide disservices (e.g. some gull species, feral pigeons) was independent of green spaces51. Preferences for some species over others may explain some of the negative or null relationships between the presence of wildlife at different blue spaces. These examples from the literature, alongside our own results, indicate the potential for benefits from the management of wildlife for psychological ecosystem services differentially across environments, although these should be considered alongside other conservation and ESS goals.MechanismsSeveral mechanisms potentially explain the beneficial effects of visiting blue spaces on mental health and well-being12, including the provision of opportunities for physical activity52,53; social interaction18; cognitive restoration and stress reduction17,54; emotion regulation55 and connecting with nature12. Consistent with these mechanisms, we found that respondents were using blue spaces for both physical activity and social interaction; and that playing with children and socialising were associated with particularly high levels of well-being.In addition to the positive association we find between some ESS and well-being, including presence of wildlife and water quality, additional bluespace ESS not considered here, may also affect mental health and well-being12. For example, the provision of a cooling effect56 and air pollution mitigation57.Strengths and limitationsA key strength is our operationalisation of the Bratman et al.9 conceptual model for mental health using data from a large, 18 country survey that included 17 different bluespace types, five quality metrics and four subjective mental well-being outcomes. The relatively high explanatory power of our models suggests all the variables we explored were important for subjective well-being.Despite the strengths, however, there were also several limitations. The survey was cross-sectional and causality cannot be inferred. For example, happier people may choose to visit a beach rather than another location, although we also controlled for general levels of subjective mental well-being in an attempt to control for this possibility (See Supplemental Materials). Further, although the majority of respondents (53%) recalled a visit within the last 7 days, some were recalling visits up to a month ago, with potential memory biases increasing in line with length of recall.Although our data were collected by an international market research company to be representative of age, gender and region within country, our online sample may not be fully representative across more characteristics and any country-level conclusions need to be treated with caution. We also acknowledge that there were no results from Africa, the Middle East or South America; and Hong Kong was the only representative from Asia. This suggests far more research is needed in other regions to better understand how bluespace ecosystems interact with subjective well-being globally.There may also be socioeconomic confounds that we did not include in our models which may account for some of the effects. Not everyone visits nature for recreation58, including about 4000 people here who did not visit a bluespace in the four weeks prior to responding to the survey. Some groups may therefore have been under-represented; and we should be careful in assuming that our findings generalise to all sub-population groups.Nevertheless, our visit sub-sample distributions were generally similar to that of the weighted percentages in the full sample, with the exception of age where those aged over 60 were under-represented (Table S2); therefore, we suspect these issues were not too influential for the overall results, although care needs to be extended to inferences with respect to older adults.A further limitation was that we only considered the qualities of places where people reported making recreational visits, with respondents presumably less likely to visit places where they feel really unsafe or lacking in facilities29. Further research may want to study responses to a broader range of bluespace settings, including those that are less visited, to determine the generalisability of the generally positive results found here. Such studies could use pre-existing tools to objectively assess the quality of blue spaces59.ImplicationsOur finding that coastal environments are particularly beneficial adds to the body of evidence linking coastal environments with health and well-being and suggests this is consistent across many countries. Previous research has found that greater proximity to blue spaces, especially coastal settings, predicts visit frequency14,60,61 as well as other health outcomes—e.g. reduced risk of mortality and better general health, well-being and physical activity53,62. Here, we found that shorter travel times also predict visit well-being, highlighting the importance of having equitable access to good quality natural environments near to people’s homes.We also identified that different types of coastal and inland blue spaces (e.g. seaside promande, rural rivers), with different qualities (e.g. wildlife present), involving particular types of activities in specific social configurations (e.g. playing with children), were especially good at promoting well-being. This moves beyond a simple location-based assessment of benefit to one that recognises the complex interplay between location, behavioural and social processes. Numerous commentators63 (including Bratman et al.9 on which we have based this paper) have argued that we need to go beyond the determinate effects of green and blue spaces and develop a far richer, more nuanced understanding. The approach we have taken here is intended as a step in this direction.In terms of policy applications, these results provide support for the potential health benefits of efforts to improve equitable access to high quality environments, such as the English Coast Path (https://englandcoastpath.co.uk/) and the creation of beaches in Barcelona with the Olympic project in 199264. Our results also hint at the importance of high-level legislation, such as the EU’s Bathing Waters Directive65 for mental well-being37. If conducted on a more fine-grained geographical level, results could have the potential to leverage public support for more localised conservation initiatives. Furthermore, such results could be used as a basis for integration into more systematic conservation planning66.Further researchAlthough we incorporate a range of variables in our analysis, and our pseudo-R2 values are relatively high for a social research context, considerable variation remains unexplained. Although other individual characteristics may be important, such as nature connectedness67 and memories68, further research could explore the specific ecosystem features and social contexts associated with the particular positive results from coastal spaces, which would be of interest to policy makers and environmental managers. We also speculated that purpose of visit may explain some of our findings. Further research could explore the interactions between motivations and location, experience, and well-being outcomes.The presence of wildlife was differentially important across bluespace types and further research could unpack this. Exploring similar possibilities for the other quality metrics, as well as considering additional ecosystem characteristics, would also be informative. For example, identifying which factors are important in perceptions of safety in blue spaces. Bratman et al.9 also considered effect modification by visitor characteristics and further research could include interactions, or sub-group analysis, by socio-demographic factors.Further research could also explore longer-term benefits of these features over repeated visits; the potential for ecosystem disservices, such as the relationships we find between an interaction of wildlife and ice rinks and well-being; the potential for negative outcomes associated with ecosystem degradation69; and the potential for positive mental health outcomes from ecological restoration70.We have demonstrated some of the complexities involved in the human-nature relationship and that many factors are related to the outcome from a visit. The conceptual model applied allows the investigation of a wide range of variables including natural features and other environmental qualities, and characteristics of the exposure and experience, as well as individual parameters. We suggest that other researchers can apply this conceptual model and design data collection accordingly to target specific research questions and hypotheses (as opposed to where we have fitted already collected data). More

  • in

    Climate drives global functional trait variation in lizards

    Higham, T. E. et al. Linking ecomechanical models and functional traits to understand phenotypic diversity. Trends Ecol. Evol. 36, 860–873 (2021).Article 
    PubMed 

    Google Scholar 
    Kearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. & Chown, S. L. Where do functional traits come from? The role of theory and models. Funct. Ecol. 35, 1385–1396 (2021).Article 
    CAS 

    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Macrophysiology for a changing world. Proc. R. Soc. B 275, 1469–1478 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubalcaba, J. G. & Jimeno, B. Biophysical models unravel associations between glucocorticoids and thermoregulatory costs across avian species. Funct. Ecol. 36, 64–72 (2022).Article 
    CAS 

    Google Scholar 
    Anderson, R. O., White, C. R., Chapple, D. G. & Kearney, M. R. A hierarchical approach to understanding physiological associations with climate. Glob. Ecol. Biogeogr. 31, 332–346 (2022).Article 

    Google Scholar 
    Angilletta, M. J. Jr, Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).Article 

    Google Scholar 
    Olalla‐Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad‐scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33, 781–793 (2006).Article 

    Google Scholar 
    Amado, T., Moreno Pinto, M. G. & Olalla‐Tárraga, M. Á. Anuran 3D models reveal the relationship between surface area‐to‐volume ratio and climate. J. Biogeogr. 46, 1429–1437 (2019).
    Google Scholar 
    Castro, K. M. S. A. et al. Water constraints drive allometric patterns in the body shape of tree frogs. Sci. Rep. 11, 1218 (2021).Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: a macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 
    PubMed 

    Google Scholar 
    Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2021).Article 
    PubMed 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).Article 
    PubMed 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2017).Article 

    Google Scholar 
    Ricklefs, R. E. & Schluter, D. (eds) Species Diversity in Ecological Communities: Historical and Geographical Perspectives (Univ. Chicago Press, 1993).Angilletta, M. J. Jr, Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).Article 
    PubMed 

    Google Scholar 
    Pincheira-Donoso, D. The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin. Theory Biosci. 129, 247–253 (2010).Article 
    PubMed 

    Google Scholar 
    Slavenko, A. et al. Global patterns of body size evolution in squamate reptiles are not driven by climate. Glob. Ecol. Biogeogr. 28, 471–483 (2019).Article 

    Google Scholar 
    Stevenson, R. D. Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am. Nat. 125, 102–117 (1985).Article 

    Google Scholar 
    Rubalcaba, J. G., Gouveia, S. F. & Olalla‐Tárraga, M. A. A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Glob. Ecol. Biogeogr. 28, 793–803 (2019).Article 

    Google Scholar 
    Rubalcaba, J. G. & Olalla‐Tárraga, M. Á. The biogeography of thermal risk for terrestrial ectotherms: scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 89, 1277–1285 (2020).Article 
    PubMed 

    Google Scholar 
    Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol. Biol. 8, 68 (2008).Jablonski, D. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62, 715–739 (2008).Article 
    PubMed 

    Google Scholar 
    Kearney, M. R., Porter, W. P. & Huey, R. B. Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods Ecol. Evol. 12, 458–467 (2021).Article 

    Google Scholar 
    Campbell-Staton, S. C., Bare, A., Losos, J. B., Edwards, S. V. & Cheviron, Z. A. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Mol. Ecol. 27, 2243–2255 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boretto, J. M., Fernández, J. B., Cabezas-Cartes, F., Medina, M. S. & Ibargüengoytía, N. R. in Lizards of Patagonia (eds Morando, M. & Avila, L. J.) 335–371 (Springer, 2020).Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 
    PubMed 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Chown, S. L. & Clusella‐Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).Article 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).Article 

    Google Scholar 
    Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology. Oecologia 13, 1–54 (1973).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fey, S. B. et al. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25, 3110–3120 (2019).Article 

    Google Scholar 
    Martin, T. L. & Huey, R. B. Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).Article 
    PubMed 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics 2nd edn (Springer-Verlag, 1998).Mao, J. & Yan, B. Global Monthly Mean Leaf Area Index Climatology, 1981–2015 (ORNL DAAC, 2019).Meiri, S. et al. Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob. Ecol. Biogeogr. 22, 834–845 (2013).Article 

    Google Scholar 
    Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renardy, M., Hult, C., Evans, S., Linderman, J. J. & Kirschner, D. E. Global sensitivity analysis of biological multiscale models. Curr. Opin. Biomed. Eng. 11, 109–116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carnell, R. lhs: Latin hypercube samples. R package version 1.1.1 (2020).Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).Article 

    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).Article 
    PubMed 

    Google Scholar 
    Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 
    PubMed 

    Google Scholar 
    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).Article 

    Google Scholar 
    Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLLMs. Syst. Biol. 68, 234–251 (2019).Article 
    PubMed 

    Google Scholar 
    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2020).Article 

    Google Scholar 
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    Koenker, R. et al. Package ‘quantreg’ (R-CRAN, 2018); https://cran.r-project.org/web/packages/quantreg/quantreg.pdfGriffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87, 2603–2613 (2006).Article 
    PubMed 

    Google Scholar 
    Bivand, R. R packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).Article 

    Google Scholar 
    Rubalcaba, J. G. et al. Data: ‘Climate drives global functional trait variation in lizards’. figshare https://doi.org/10.6084/m9.figshare.19949315 (2022). More

  • in

    Ontogenetic changes in the body structure of the Arctic fish Leptoclinus maculatus

    Meyer Ottesen, C. A. et al. Early life history of the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Mar. Biodivers. 41(3), 383–394 (2011).Article 

    Google Scholar 
    Murzina, S.A. Role of Lipids and Their Fatty Acid Components in Ecological and Biochemical Adaptations of Fish of the Northern Seas. Dr. Sci. Thesis (IPEE RAS, 2019).Murzina, S. A. et al. Tiny but fatty: Lipids and fatty acids in the Daubed Shanny (Leptoclinus maculatus), a small fish in Svalbard waters. Biomolecules 10, 368 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falk-Petersen, S., Falk-Petersen, I. B. & Sargent, J. R. Structure and function of an unusal lipid storage organ in the Arctic fish Lumpenus maculatus Fries. Sarsia 71(1), 1–6 (1986).Article 
    CAS 

    Google Scholar 
    Murzina S.A. The Role of Lipids and Their Fatty Acid Components in the Biochemical Adaptations of the Daubed Shanny Leptoclinus maculatus F. of the Northwestern Coast of Svalbard. PhD Thesis 184 (IB KarRC RAS, 2010)Pekkoeva, S. N. et al. Ecological role of lipids and fatty acids in the early postembryonic development of daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen in winter. Rus. J. Ecol. 48(3), 240–244 (2017).Article 
    CAS 

    Google Scholar 
    Hovde, S. C., Albert, O. T. & Nilssen, E. M. Spatial, seasonal and ontogenetic variation in diet of Northeast Arctic Greenland halibut (Reinhardtius hippoglossoides). ICES J. Mar. Sci. 59, 421–437 (2002).Article 

    Google Scholar 
    Labansen, A. L., Lydersen, C., Haug, T. & Kovacs, K. M. Spring diet of ringed seals (Phoca hispida) from northwestern Spitsbergen. Norway. ICES J. Mar. Sci. 64, 1246–1256 (2007).Article 

    Google Scholar 
    Moser, H. G. Morphological and functional aspect of marine fish larvae. in Marine Fish Larvae—Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.). 89–131. (University of Washington Press, 1981).Moser, H. G. et al. Ontogeny and systematics of fishes. in American Society Ichthyologists Herpetologists Special Publication. Vol. 760 (Allen Press, 1984).Webb, J. F. Larvae in fish development and evolution in The Origin and Evolution of Larval Forms. 109–158 (Academic Press, 1999).Govoni, J. J., Olney, J. E., Markle, D. F. & Curtsinger, W. R. Observations on structure and evaluation of possible functions of the vexillum in larval Carapidae (Ophidiiformes). Bull. Mar. Sci. 34, 60–70 (1984).
    Google Scholar 
    Pekkoeva, S. N. et al. Fatty acid composition of the postlarval daubed shanny (Leptoclinus maculatus) during the polar night. Polar Biol. 43, 657–664 (2020).Article 

    Google Scholar 
    Pekkoeva, S. N. et al. Ecological groups of the Daubed Shanny Leptoclinus maculatus (Fries, 1838), an Arcto-boreal species, regarding growth and early development. Rus. J. Ecol. 49(3), 253–259 (2018).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Version 12/2021. (R Foundation for Statistical Computing, 2020.)Kabakoff, R. R in Action: Data Analysis and Graphics with R 588 (DMK Press, 2014).
    Google Scholar 
    Murzina, S. A. et al. Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters. Fish Physiol. Biochem. 38(5), 1393–1407 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kondakova, E. A., Efremov, V. I. & Nazarov, V. A. Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development. Biol. Bull. 43(3), 208–215 (2016).Article 

    Google Scholar 
    Webster, M., Witkin, K. L. & Cohen-Fix, O. Sizing up the nucleus: Nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122(10), 1477–1486 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jevtić, P., Edens, L. J., Vuković, L. D. & Levy, D. L. Sizing and shaping the nucleus: mechanisms and significance. Curr. Opin. Cell Biol. 28, 16–27 (2014).Article 
    PubMed 

    Google Scholar 
    Kondakova, E. A., Efremov, V. I. & Kozin, V. V. Common and specific features of organization of the yolk syncytial layer of teleostei as exemplified in Gasterosteus aculeatus L. Biol. Bull. 46(1), 26–32 (2019).Article 

    Google Scholar 
    Enders, A. C. Reasons for diversity of placental structure. Placenta 30, 15–18 (2009).Article 

    Google Scholar 
    Carvalho, L. & Heisenberg, C. P. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 20(10), 586–592 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jaroszewska, M. & Dabrowski, K. Utilization of yolk: transition from endogenous to exogenous nutrition in fish. in Larval Fish Nutrition. 183–218 (2011).Kondakova, E. A., Efremov, V. I. & Bogdanova, V. A. Structure of the yolk syncytial layer in the larvae of whitefishes: A histological study. Russ. J. Dev. Biol. 48(3), 176–184 (2017).Article 
    CAS 

    Google Scholar 
    Kondakova, E. A. & Bogdanova, V. A. The fate of the yolk syncytial layer during postembryonic development of Stenodus leucichthys nelma. Ann. Zool. Fenn. 58(4–6), 155–160 (2021).
    Google Scholar 
    Chanet, B. & Meunier, F. J. The anatomy of the thyroid gland among “fishes”: phylogenetic implications for the Vertebrata. Cybium 38(2), 89–116 (2014).
    Google Scholar 
    Zenzerov, V.S. Features of the Structure and Functioning of the Thyroid Gland of Fish in the Barents Sea. Doctor of Science Thesis. Vol. 42 (PetrGU, 2007).Chalde, T. & Miranda, L. A. Pituitary–thyroid axis development during the larval–juvenile transition in the pejerrey Odontesthes bonariensis. J. Fish Biol. 91(3), 818–834 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Otero, A. P., Rodrigues, R. V., Sampaio, L. A., Romano, L. A. & Tesser, M. B. Thyroid gland development in Rachycentron canadum during early life stages. An. Acad. Bras. Ciênc. 86(3), 1507–1516 (2014).Article 
    PubMed 

    Google Scholar 
    Nilsson, M. & Fagman, H. Development of the thyroid gland. Development 144(12), 2123–2140 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eales, J. G. & Brown, S. B. Measurement and regulation of thyroidal status in teleost fish. Rev. Fish Biol. Fish. 3(4), 299–347 (1993).Article 

    Google Scholar 
    Raine, J. C. & Leatherland, J. F. Morphological and functional development of the thyroid tissue in rainbow trout (Oncorhynchus mykiss) embryos. Cell Tissue Res. 301(2), 235–244 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Jesus, E. G., Inui, Y. & Hirano, T. Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder larvae in vitro. Gen. Comp. Endocrinol. 79(2), 167–173 (1990).Article 
    PubMed 

    Google Scholar 
    Inui, Y. & Miwa, S. Metamorphosis of flatfish (Pleuronectiformes). in Metamorphosis in Fish. 107–153 (Taylor & Francis, 2012)Nemova, N. N., Rendakov, N. L., Pekkoeva, S. N., Nikerova, K. M. & Murzina, S. A. Dynamics of estradiol level during metamorphosis in the Daubed Shanny (Leptoclinus maculatus, Fries, 1838) from Spitsbergen Island. Dokl. Biol. Sci. 482, 188–190 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Icardo, J. M. The teleost heart: A morphological approach in Ontogeny and Phylogeny of the Vertebrate Heart. 35–53 (Springer, 2012).Icardo, J. M. Heart morphology and anatomy. in Fish Physiology. 1–54 (Academic Press, 2017).Hu, N., Yost, H. J. & Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. Anatomic. Rec. 264(1), 1–12 (2001).Article 
    CAS 

    Google Scholar 
    Icardo, J. M., Colvee, E., Cerra, M. C. & Tota, B. The bulbus arteriosus of stenothermal and temperate teleosts: A morphological approach. J. Fish Biol. 57, 121–135 (2000).Article 

    Google Scholar 
    Benjamin, M., Norman, D., Santer, R. M. & Scarborough, D. Histological, histochemical and ultrastructural studies on the bulbus arteriosus of the sticklebacks, Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei). J. Zool. 200(3), 325–346 (1983).Article 

    Google Scholar 
    Braun, M. H., Brill, R. W., Gosline, J. M. & Jones, D. R. Form and function of the bulbus arteriosus in yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans): static properties. J. Exp. Biol. 206(19), 3311–3326 (2003).Article 
    PubMed 

    Google Scholar 
    Icardo, J. M. Conus arteriosus of the teleost heart: Dismissed, but not missed. Anat. Rec. Part A Discov. Mol. Cell. Evolut. Biol. 288(8), 900–908 (2006).Article 

    Google Scholar 
    Tota, B. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. A Physiol. 76(3), 423–437 (1983).Article 
    CAS 

    Google Scholar 
    Gardinal, M. V. B. et al. Myocardium arrangement and coronary vessel distribution in the ventricle of three neotropical freshwater teleosts. Zool. Sci. 35(4), 360–367 (2018).Article 

    Google Scholar 
    BuzeteGardinal, M. V. et al. Heart structure in the Amazonian teleost Arapaima gigas (Osteoglossiformes, Arapaimidae). J. Anat. 234(3), 327–337 (2019).Article 
    CAS 

    Google Scholar 
    Icardo, J. M. & Colvee, E. The atrioventricular region of the teleost heart. A distinct heart segment. Anatomic. Rec. Adv. Integr. Anat. Evolut. Biol. 294(2), 236–242 (2011).Article 

    Google Scholar 
    Kock, K. H. Antarctic icefishes (Channichthyidae): A unique family of fishes. A review, Part I. Polar Biol. 28, 862–895 (2005).Article 

    Google Scholar 
    Cocca, E. et al. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes. Proc. Natl. Acad. Sci. 92(6), 1817–1821 (1995).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    di Prisco, G., Cocca, E., Parker, S. K. & Detrich, H. W. III. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295(2), 185–191 (2002).Article 
    PubMed 

    Google Scholar 
    Sidell, B. D. & O’Brien, K. M. When bad things happen to good fish: The loss of hemoglobin and myoglobin expression in Antarctic icefishes. J. Exp. Biol. 209(10), 1791–1802 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaufman, Z. S. Adaptation of aquatic organisms to existence in high latitudes. Proc. Karelian Sci. Center Russ. Acad. Sci. 1, 3–19 (2015).
    Google Scholar 
    Jakubowski, M. Dimensions of respiratory surfaces of the gills and skin in the Antarctic white-blooded fish, Chaenocephalus aceratus Lönnberg (Chaenichthyidae). Z. Mikrosk.-Anat. Forschung. 96(1), 145–156 (1982).CAS 

    Google Scholar 
    Graham, J. B. Air-breathing fishes: The biology, diversity, and natural history of air-breathing fishes. in Encyclopedia of Fish Physiology. 1861–1874 (Elsevier, 2011).Maniatis, G. M. & Ingram, V. M. Erythropoiesis during amphibian metamorphosis: I. Site of maturation of erythrocytes in Rana catesbeiana. J. Cell Biol. 49(2), 372–379 (1971).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maruyama, K., Yasumasu, S. & Iuchi, I. Characterization and expression of embryonic and adult globins of the teleost Oryzias latipes (medaka). J. Biochem. 132(4), 581–589 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brownlie, A. et al. Characterization of embryonic globin genes of the zebrafish. Dev. Biol. 255(1), 48–61 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng, J. et al. Channel catfish hemoglobin genes: Identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress. Comp. Biochem. Physiol. D Genom. Proteom. 9, 11–22 (2014).CAS 

    Google Scholar 
    Miwa, S. & Inui, Y. Thyroid hormone stimulates the shift of erythrocyte populations during metamorphosis of the flounder. J. Exp. Zool. 259(2), 222–228 (1991).Article 
    CAS 

    Google Scholar 
    Hansen, A., Reutter, K. & Zeiske, E. Taste bud development in the zebrafish, Danio rerio. Dev. Dyn. 223(4), 483–496 (2002).Article 
    PubMed 

    Google Scholar 
    Wang, C. A. et al. The development of pharyngeal taste buds in Hucho taimen (Pallas, 1773) larvae. Iran. J. Fish. Sci. 15(1), 426–435 (2016).ADS 

    Google Scholar 
    Fraser, G. J., Graham, A. & Smith, M. M. Conserved deployment of genes during odontogenesis across osteichthyans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271(1555), 2311–2317 (2004).Article 

    Google Scholar 
    Zambonino-Infante, J. L. et al. Ontogeny and physiology of the digestive system of marine fish larvae. in Feeding and Digestive Functions of Fishes. 281–348 (Science Publishers, 2008)Rønnestad, I. et al. Feeding behaviour and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 5, S59–S98 (2013).Article 

    Google Scholar 
    Wallace, R. A. & Selman, K. Physiological aspects of oogenesis in two species of stickelebacks, Gasterosteus aculeatus (L.) and Apeltes quadracus (Mitchill). J. Fish Biol. 14, 551–564 (1979).Article 

    Google Scholar  More

  • in

    Assessment of the variability of the morphological traits and differentiation of Cucurbita moschata in Cote d’Ivoire

    Description of the phenological, vegetative and yield traits of the accessions per habitatThe process of data management included the computation of mean squares for the assessed phenological, vegetative and yield traits of the accessions with the sampling habitats considered as the treatment factor. The error mean squares served in the multiple comparison of means reported in Table 1.Table 1 Means of the measured phonological, vegetative and flowering and yield traits of Cucurbita moschata genotypes sampled from seven habitats.Full size tableRegarding the phenological traits, the accessions from the habitat of Zh have the longest period from seeding to first male (102.39 d) and first female (108.14 d) flower appearances, and the longest period from seeding to physiological maturity (153.95 d). For those traits, the accessions from Tiassale and Soubre are not significantly different from those of Zh. And, accessions from Tiassale and Zh have the longest periods from seeding to 50% flowering. On the other hand, accessions from Korho, Ferke, Bondu and Burki develop their first male and female flowers and attain 50% flowering in a very short period. They also reach physiological maturity faster. Accessions from Korho, however, have the longest period from seeding to 50% emergence (6.07 d) and accessions from Bondu have the longest period from first female flower appearance to physiological maturity (53.04 d).
    For the vegetative traits, accessions from Tiassale and Soubre have the largest girth size (4.43 cm and 4.63 cm, respectively). Accessions from Tiassale have the longest (24.98 cm) and widest (19.94 cm) leaves, the longest male (16.2 cm) and female (4.03 cm) peduncles and the longest petioles (34.94 cm). The measures for those organs on accessions from Soubre rank second to those of Tiassale. On the other hand, accessions from Korho, Ferke, Bondu and Burki are characterized by smaller girth size, smaller leaves, smaller petioles and smaller peduncles of male and female flowers. But the accessions from Bondu are the tallest (586.91 cm) followed by the accessions from Ferke (489.20 cm). And the accessions from Zh are the shortest (417.38 cm).For the flowering and yield traits, accessions from Tiassale and Soubre show the largest numbers of male (27.33 units and 22.58 units, respectively) and female (5.22 units and 6.05 units, respectively) flowers per plant, largest numbers of fruits per plant (2.78 units and 2.53 units, respectively) and largest measures of all fruit-related traits. Their seeds are very large, but in small numbers. In contrast, accessions from Korho, Ferke, Bondu and Burki have the smallest numbers of male and female flowers per plant, the smallest numbers of fruits per plant and the smallest measures of fruit-related traits. They have large numbers of seeds, but their seeds are smaller, except the seeds of the accessions from Burki. Refer to Table 1 for more detailed information.
    Variability of the phenological, vegetative and yield traitsTable 2 shows the spread of the phenological and morphological traits of the assessed accessions of C. moschata. All the evaluated traits showed very wide ranges of distribution of the observations. Some conspicuously wide ranges of traits include number of days to 50% flowering (DTF) that goes from 52 to 152 d, plant height with a minimum of 48 cm and a maximum of 1510 cm, diameter of the fruit that is between 5.8 cm and 35 cm, weight of the fruit that varies between 150 g and 10,930 g and number of seeds per fruit that spreads in the interval from 32 units per fruit to 729 units per fruit. Excluding the number of days to 50% emergence (DTE), all the other assessed traits have remarkably wide ranges of phenotypic expressions (Table 2). All the traits but DTE, DTF, days from first female flower appearance to fruit maturity, fruit length and length of the dry seed, had outliers. The number of outliers ranged from 1 to 67. Except the outliers observed with the width of the dry seed, all the outliers were above 1.5*IQR + Q3 where IQR is the inter-quartile range and Q3 is the third quartile. The presence of outliers is indicative of the richness and large variability of the population of accessions. The outliers are exceptional performances that fall outside the normal distribution of the observations. They are a stock of unusual traits that can be used in a crop improvement program when beneficial. For example, the observed outliers for diameter of the fruit, weight of the fruit or thickness of the pulp can be used in a breeding program for the improvement of fruit yield. Similarly, outliers for beneficial traits related to the seed can be used to improve C. moschata crop for seed yield. Besides, the computed mean squares (data not reported) showed highly significant variations between accessions for the assessed traits. They all yielded p-values less than 0.01, providing additional support to the evidence of large variability among the accessions of C. moschata of Cote d’Ivoire. The computed standard deviation, and median absolute deviation for each trait are additional evidence. We should note that in most cases, the mean squares associated to year (data not reported) were not significant, indicating the relative stability of the assessed traits.Table 2 Minimum (Min), first quartile (Q1), median, third quartile (Q3), maximum (Max), standard deviation (SD), median absolute deviation (MAD) and outliers obtained from the phenological, vegetative and flowering and yield traits of 663 accessions of C. moschata.Full size tableThe components of variance, the quantitative genetic differentiation, the overall mean, and the coefficients of variation are reported in Table 3. The lme4 package37 used in the determination of the components of variance, does not provide p-values in the analysis of mixed or random models. The reported quantities in Table 3 are not accompanied with tests of significance. It is worth mentioning that the respective units of measure of the assessed traits are squared for the variances and the evaluated estimates will be reported without the units of measure. The phenotypic variance ((sigma_{p}^{2})) is partitioned into variance between morphotypes or genotypic variance ((sigma_{g}^{2})), and within morphotypes or residual variance ((sigma_{e}^{2})). For the class of phenological traits, considerable genotypic variances were observed with days to 50% flowering (266.21) and days to first male flower appearance (254.40), compared with their respective residual variances (148.13 and 199.50). Regarding the class of vegetative traits, only the peduncle length of male flowers had a genotypic variance (9.22) greater than its residual variance (8.86). In the class of flowering and yield traits, 8 of the 15 traits assessed showed large genotypic variances in comparison with their respective residual variances. They are number of female flowers per plant ((sigma_{g}^{2}) = 3.02 versus (sigma_{e}^{2}) = 2.36), length of the fruit ((sigma_{g}^{2}) = 53.96 versus (sigma_{e}^{2}) = 48.97), diameter of the fruit ((sigma_{g}^{2}) = 37.17 versus (sigma_{e}^{2}) = 16.76), volume of the fruit ((sigma_{g}^{2}) = 10,713,468 versus (sigma_{e}^{2}) = 3,904,590), weight of the fruit ((sigma_{g}^{2}) = 5,413,819 versus (sigma_{e}^{2}) = 1,420,187), diameter of the cavity enclosing the seed ((sigma_{g}^{2}) = 19.12 versus (sigma_{e}^{2}) = 7.75), thickness of the fruit pulp ((sigma_{g}^{2}) = 1.11 versus (sigma_{e}^{2}) = 0.94) and weight of the fruit pulp ((sigma_{g}^{2}) = 5,979,212 versus (sigma_{e}^{2}) = 1,088,750). For a trait to have a lager genotypic variance than the residual variance is synonymous to a relative ease of improvement of the crop for that trait through a breeding program.Table 3 Components of variances ((sigma_{p}^{2}), (sigma_{g}^{2}), (sigma_{e}^{2}), (sigma_{a}^{2})), quantitative genetic differentiation ((Q_{ST})), overall mean ((mu)), and coefficients of variation (%) ((CV_{p}),(CV_{g}),(CV_{e})), of the measured phenological, vegetative and yield traits of the accessions of C. moschata of Cote d’Ivoire.Full size tableThe coefficient of variation (CV) is another statistic that measures variation. It is actually the dispersion of a trait per unit measure of its mean, which can be used to compare variations of traits with different measurement units or different scales. As a rule-of-thumb, a coefficient of variation greater than 20% is indicative of large variation for the trait. The phenotypic coefficient of variation is considerably high for 25 of the 28 assessed traits. Only the number of days from seeding to physiological maturity, the first and second longest axes of the dry seed show coefficients of variation less than 20%. Traits with very large phenotypic coefficients of variation include the peduncle length of female flowers ((CV_{p}) = 93.98%), weight of the pulp ((CV_{p}) = 92.96%), volume of the fruit ((CV_{p}) = 89.17%), weight of the fruit ((CV_{p}) = 78.30%) and number of female flowers per plant ((CV_{p}) = 65.81%). With respect to the residual coefficients of variation, only the number of days from seeding to 50% emergence and number of days from first female flower appearance to physiological maturity have residual coefficients of variation greater than 20%, among the phenological traits. All the vegetative traits have residual coefficients of variation greater than 20%, and show a near-perfect linear relation (r = 0.98; p  More

  • in

    Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms

    Jayathilake PG, Jana S, Rushton S, Swailes D, Bridgens B, Curtis T, et al. Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms. Front Microbiol. 2017;8:1865.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flemming H-C, Neu TR, Wingender J (eds). The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). IWA Publishing, London, 2016.Morales-García AL, Bailey RG, Jana S, Burgess JG. The role of polymers in cross-kingdom bioadhesion. Philos Trans R Soc Lond B Biol Sci. 2019;374:20190192.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davey ME, O’Toole GA. Microbial biofilms: From ecology to molecular genetics. Microbiol Mol. 2000;64:847–67.Article 
    CAS 

    Google Scholar 
    Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25:193–213.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020;28:668–81.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.Article 
    CAS 
    PubMed 

    Google Scholar 
    Decho AW, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol. 2017;8:922.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boleij M, Seviour T, Wong LL, van Loosdrecht MCM, Lin Y. Solubilization and characterization of extracellular proteins from anammox granular sludge. Water Res. 2019;164:114952.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kim D, Barraza JP, Arthur RA, Hara A, Lewis K, Liu Y, et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc Natl Acad Sci USA. 2020;117:12375–86.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadiq FA, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, et al. Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Crit Rev Microbiol. 2021;47:338–58.Article 
    PubMed 

    Google Scholar 
    Liu W, Jacquiod S, Brejnrod A, Russel J, Burmølle M, Sørensen SJ. Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. ISME J. 2019;13:3054–66.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bridier A, Le Coq D, Dubois-Brissonnet F, Thomas V, Aymerich S, Briandet R. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging. PLOS One. 2011;6:e16177.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8:894–907.Article 
    CAS 
    PubMed 

    Google Scholar 
    Myszka K, Czaczyk K. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr Microbiol. 2009;58:541–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Harimawan A, Ting YP. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion. Colloids Surf B. 2016;146:459–67.Article 
    CAS 

    Google Scholar 
    Yang X-R, Li H, Nie S-A, Su J-Q, Weng B-S, Zhu G-B, et al. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Appl Environ Microbiol. 2015;81:938–47.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal B, van Niftrik L, Keltjens JT, Op den Camp HJM, Jetten MSM Chapter 3 – Anammox—Growth physiology, cell biology, and metabolism. In: Poole RK, editor. Adv Microb Physiol. 60: Academic Press; 2012. p. 211–62.Lu Y, Natarajan G, Nguyen TQN, Thi SS, Arumugam K, Seviour TW, et al. Species level enrichment of AnAOB and associated growth morphology under the effect of key metabolites. bioRxiv. 2020. 2020.02.04.934877Gonzalez-Gil G, Sougrat R, Behzad AR, Lens PN, Saikaly PE. Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Micro Ecol. 2015;70:118–31.Article 
    CAS 

    Google Scholar 
    Kindaichi T, Yuri S, Ozaki N, Ohashi A. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Sci Technol. 2012;66:2556–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Qin Y, Han B, Cao Y, Wang T. Impact of substrate concentration on anammox-UBF reactors start-up. Bioresour Technol. 2017;239:422–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen Z, Meng Y, Sheng B, Zhou Z, Jin C, Meng F. Linking exoproteome function and structure to anammox biofilm development. Environ Sci Technol. 2019;53:1490–500.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ali M, Shaw DR, Albertsen M, Saikaly PE. Comparative genome-centric analysis of freshwater and marine ANAMMOX cultures suggests functional redundancy in nitrogen removal processes. Front Microbiol. 2020;11:1637.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jia F, Yang Q, Liu X, Li X, Li B, Zhang L, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms. Environ Sci Technol. 2017;51:3260–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hou X, Liu S, Zhang Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge. Water Res. 2015;75:51–62.Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng C, Lotti T, Lin Y, Malpei F. Extracellular polymeric substances extraction and recovery from anammox granules: Evaluation of methods and protocol development. Chem Eng J. 2019;374:112–22.Article 
    CAS 

    Google Scholar 
    Lotti T, Carretti E, Berti D, Montis C, Del Buffa S, Lubello C, et al. Hydrogels formed by anammox extracellular polymeric substances: Structural and mechanical insights. Sci Rep. 2019;9:11633.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontology 2000. 2021;86:32–56.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol. 2013;195:545–55.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Honma K, Inagaki S, Okuda K, Kuramitsu HK, Sharma A. Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Micro Pathog. 2007;42:156–66.Article 
    CAS 

    Google Scholar 
    Li X-R, Du B, Fu H-X, Wang R-F, Shi J-H, Wang Y, et al. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Syst Appl Microbiol. 2009;32:278–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cho S, Takahashi Y, Fujii N, Yamada Y, Satoh H, Okabe S. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere 2010;78:1129–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morgenroth E, Sherden T, Van Loosdrecht MCM, Heijnen JJ, Wilderer PA. Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997;31:3191–4.Article 
    CAS 

    Google Scholar 
    Wong LL, Natarajan G, Boleij M, Thi SS, Winnerdy FR, Mugunthan S, et al. Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction. Appl Microbiol Biotechnol. 2020;104:3643–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Law Y, Kirkegaard RH, Cokro AA, Liu X, Arumugam K, Xie C, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Sci Rep. 2016;6:25719.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011;12:385.Article 

    Google Scholar 
    Liu X, Arumugam K, Natarajan G, Seviour TW, Drautz-Moses DI, Wuertz S, et al. Draft genome sequence of a Candidatus brocadia bacterium enriched from activated sludge collected in a tropical climate. Genome Announc. 2018;6:e00406–18.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PloS One. 2010;5:e9490–e.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.Article 
    CAS 
    PubMed 

    Google Scholar 
    Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67:5273–84.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seviour T, Wong LL, Lu Y, Mugunthan S, Yang Q, Shankari UDOCS, et al. Phase transitions by an abundant protein in the anammox extracellular matrix mediate cell-to-cell aggregation and biofilm formation. mBio 2020;11:e02052–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L, Rosen MK, et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 2018;22:1401–12.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fulton KM, Smith JC, Twine SM. Clinical applications of bacterial glycoproteins. Expert Rev Proteom. 2016;13:345–53.Article 
    CAS 

    Google Scholar 
    Upreti RK, Kumar M, Shankar V. Bacterial glycoproteins: Functions, biosynthesis and applications. Proteomics 2003;3:363–79.Article 
    CAS 
    PubMed 

    Google Scholar 
    van Teeseling MCF, Maresch D, Rath CB, Figl R, Altmann F, Jetten MSM, et al. The S-layer protein of the anammox bacterium Kuenenia stuttgartiensiss is heavily O-glycosylated. Front Microbiol. 2016;7:1721.PubMed 
    PubMed Central 

    Google Scholar 
    McGonigle JM, Lang SQ, Brazelton WJ, Parales RE. Genomic evidence for formate metabolism by Chloroflexi as the key to unlocking deep carbon in lost city microbial ecosystems. Appl Environ Microbiol. 2020;86:e02583–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vuillemin A, Kerrigan Z, D’Hondt S, Orsi WD. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay. FEMS Microbiol Ecol. 2020;96:fiaa223.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Jetten MS, Keltjens JT. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev. 2013;37:428–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Loera-Muro A, Guerrero-Barrera A, Tremblay DNY, Hathroubi S, Angulo C. Bacterial biofilm-derived antigens: A new strategy for vaccine development against infectious diseases. Expert Rev Vaccines. 2021;20:385–96.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39:649–69.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elias S, Banin E. Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.Article 
    CAS 
    PubMed 

    Google Scholar 
    Teeseling MCFV, Almeida NMD, Klingl A, Speth DR, Camp HJMOD, Rachel R, et al. A new addition to the cell plan of anammox bacteria: Candidatus Kuenenia stuttgartiensis has a protein surface layer as the outermost layer of the cell. J Bacteriol. 2014;196:80–9.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paula AJ, Hwang G, Koo H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat Commun. 2020;11:1354.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kragelund C, Caterina L, Borger A, Thelen K, Eikelboom D, Tandoi V, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol. 2007;59:671–82.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nierychlo M, Miłobędzka A, Petriglieri F, McIlroy B, Nielsen PH, McIlroy SJ. The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiol Ecol. 2018;95.Kragelund C, Thomsen TR, Mielczarek AT, Nielsen PH. Eikelboom’s morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi. FEMS Microbiol Ecol. 2011;76:451–62.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang J, Miao Y, Zhang Q, Sun Y, Wu L, Peng Y. Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: Microbial community and EPS analysis. Bioresour Technol. 2020;297:122459.Article 
    CAS 
    PubMed 

    Google Scholar 
    Björnsson L, Hugenholtz P, Tyson GW, Blackall LL. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 2002;148:2309–18.Article 
    PubMed 

    Google Scholar 
    Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge. Environ Sci Technol. 2018;52:13127–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pabst M, Grouzdev DS, Lawson CE, Kleikamp HBC, de Ram C, Louwen R, et al. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. ISME J. 2022;16:346–57.Article 
    CAS 
    PubMed 

    Google Scholar 
    Berlanga M, Guerrero R. Living together in biofilms: The microbial cell factory and its biotechnological implications. Micro Cell Fact. 2016;15:165.Article 

    Google Scholar 
    Liu T, Tian R, Li Q, Wu N, Quan X. Strengthened attachment of anammox bacteria on iron-based modified carrier and its effects on anammox performance in integrated floating-film activated sludge (IFFAS) process. Sci Total Environ. 2021;787:147679.Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression

    Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 2019;8:e46497.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 2008;320:1081–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Rivas LR. A reinterpretation of the concepts “sympatric” and “allopatric” with proposal for the additional terms “syntopic” and “allotopic”. Syst Zool. 1964;13:42–3.Article 

    Google Scholar 
    Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiene RP, Nowinski B, Esson K, Preston C, Marin R III, Birch J, et al. Unprecedented DMSP concentrations in a massive dinoflagellate bloom in Monterey Bay. Ca Geophys Res Lett. 2019;46:12279–88.Article 

    Google Scholar 
    Scholin CA, Birch J, Jensen S, Marin R, Massion E, Pargett D, et al. The quest to develop ecogenomic sensors a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography. 2017;30:100–13.Article 

    Google Scholar 
    Nowinski B, Smith CB, Thomas CM, Esson K, Marin R, Preston CM, et al. Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Sci Data. 2019;6:1–7.Article 
    CAS 

    Google Scholar 
    Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.Article 
    CAS 
    PubMed 

    Google Scholar 
    Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, et al. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME J. 2021;15:3576–86.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Belas R, Schell M, González J, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.Article 
    CAS 
    PubMed 

    Google Scholar 
    Suzuki MT, Preston CM, Béjà O, De La Torre J, Steward G, DeLong EF. Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay. Micro Ecol. 2004;48:473–88.Article 
    CAS 

    Google Scholar 
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giebel H-A, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, et al. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J. 2011;5:8–19.Article 
    PubMed 

    Google Scholar 
    Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 2011;5:1881–95.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. Appl Environ Microbiol. 2016;82:2100–11.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Nat Acad Sci. 2013;110:E488–E97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowinski B, Motard‐Côté J, Landa M, Preston CM, Scholin CA, Birch JM, et al. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol. 2019;21:1687–701.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J, et al. Genomes OnLine Database (GOLD) v. 8: overview and updates. Nucleic Acids Res. 2021;49:D723–D33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D77.Article 
    CAS 
    PubMed 

    Google Scholar 
    Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF, editor. Methods in Enzymology 531: Elsevier; 2013. p. 237–50.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Internal genomic DNA standard for quantitative metagenome analysis V3. protocols io 2017; https://doi.org/10.17504/protocols.io.jxdcpi6p.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Preparation of custom synthesized RNAtranscript standard V3. protocols io. 2017; https://doi.org/10.17504/protocols.io.jxccpiwp.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016. Report No.: 2167–9843Lee K, Choo Y-J, Giovannoni SJ, Cho J-C. Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2007;57:1653–8.Article 
    PubMed 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020;36:2251–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. Lawrence Berkeley National Laboratory, Berkeley, CA (United States); 2014.Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 2010;38:D382–D90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–17.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfaffel O. ClustImpute: An R package for K-means clustering with build-in missing data imputation. https://www.researchgate.net/publication/341881683.Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan L-K, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 
    PubMed 

    Google Scholar 
    Gifford SM, Zhao L, Stemple B, DeLong K, Medeiros PM, Seim H, et al. Microbial niche diversification in the Galápagos Archipelago and its response to El Niño. Front Microbiol. 2020;11:575194.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rich VI, Pham VD, Eppley J, Shi Y, DeLong EF. Time‐series analyses of Monterey Bay coastal microbial picoplankton using a ‘genome proxy’microarray. Environ Microbiol. 2011;13:116–34.Article 
    CAS 
    PubMed 

    Google Scholar 
    Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 2012;335:587–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010;468:60–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006;60:255–80.Article 
    PubMed 

    Google Scholar 
    West NJ, Obernosterer I, Zemb O, Lebaron P. Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol. 2008;10:738–56.Article 
    CAS 
    PubMed 

    Google Scholar 
    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017;11:1483–99.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Comm. 2018;9:1–8.Article 

    Google Scholar 
    Caro‐Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.Article 
    PubMed 

    Google Scholar 
    Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cohan FM. What are bacterial species? Ann Rev Microbiol. 2002;56:457–87.Article 
    CAS 

    Google Scholar 
    Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Meth. 2013;10:881–4.Article 
    CAS 

    Google Scholar 
    Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 2020;5:e00731–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol. 2007;10:504–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Eren EM. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018;2018:e4320–e.Article 

    Google Scholar 
    Neidhardt F, Umbarger H Chemical composition of Escherichia coli. In: FC N, Curtiss R III, JL I, ECC L, KB L, B M, et al., editors. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington DC: ASM Press; 1996. p. 13-6.Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, et al. A genomic perspective across Earth’s microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front Microbiol. 2022;12:761869.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu K-S, Kim C, Kim I, Yoo S, Choi B-S, Park C. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem. 2004;279:25544–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114:377–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. ISME J. 2022;16:1306–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 2012;337:1228–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012;3:e00036–12.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Environmental data from CTD during the Fall 2016 ESP deployment in Monterey Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756376.1.Environmental data from Niskin bottle sampling during the Fall 2016 ESP deployment in Monterey Bay. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756413.1. More

  • in

    Denser forests across the USA experience more damage from insects and pathogens

    Teale, S. A. & Castello, J. D. The past as key to the future: a new perspective on forest health. In Forest Health: An Integrated Perspective (eds Castello, J. D. & Teale, S. A.) 3–16 (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9780511974977.002.Chapter 

    Google Scholar 
    Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).Article 
    PubMed 

    Google Scholar 
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    North, M. P. et al. Operational resilience in western US frequent-fire forests. For. Ecol. Manag. 507, 120004 (2022).Article 

    Google Scholar 
    Raffa, K. F. et al. A literal use of “forest health” safeguards against misuse and misapplication. J. For. 107, 276–277 (2009).
    Google Scholar 
    Kolb, T. E., Wagner, M. R. & Covington, W. W. Concepts of forest health: Utilitarian and ecosystem perspectives. J. For. 92, 10–15 (1994).
    Google Scholar 
    Cale, J. A. et al. A quantitative index of forest structural sustainability. Forests 5, 1618–1634 (2014).Article 

    Google Scholar 
    Lintz, H. E. et al. Quantifying density-independent mortality of temperate tree species. Ecol. Indic. 66, 1–9 (2016).Article 

    Google Scholar 
    Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bettinger, P., Boston, K., Siry, J. P. & Grebner, D. L. Chapter 2—Valuing and Characterizing Forest Conditions. In Forest Management and Planning (eds Bettinger, P. et al.) 21–63 (Academic Press, 2017). https://doi.org/10.1016/B978-0-12-809476-1.00002-3.Chapter 

    Google Scholar 
    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fettig, C. J. et al. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manag. 238, 24–53 (2007).Article 

    Google Scholar 
    Morin, R. S. & Liebhold, A. M. Invasions by two non-native insects alter regional forest species composition and successional trajectories. For. Ecol. Manag. 341, 67–74 (2015).Article 

    Google Scholar 
    Nowak, J. T., Meeker, J. R., Coyle, D. R., Steiner, C. A. & Brownie, C. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: Evaluation of the southern pine beetle prevention program. J. For. 113, 454–462 (2015).
    Google Scholar 
    Asaro, C. & Chamberlin, L. A. Outbreak history (1953–2014) of spring defoliators impacting oak-dominated forests in Virginia, with emphasis on gypsy moth (Lymantria dispar L.) and fall cankerworm (Alsophila pometaria Harris). Am. Entomol. 61, 174–185 (2015).Article 

    Google Scholar 
    Negrón, J. F. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range. For. Ecol. Manag. 107, 71–85 (1998).Article 

    Google Scholar 
    Negrón, J. F. & Popp, J. B. Probability of ponderosa pine infestation by mountain pine beetle in the Colorado Front Range. For. Ecol. Manag. 191, 17–27 (2004).Article 

    Google Scholar 
    Schmid, J. M. & Frye, R. H. Spruce Beetle in the Rockies. Gen. Tech. Rep. RM-49 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1977).
    Google Scholar 
    Krivak-Tetley, F. E. et al. Aggressive tree killer or natural thinning agent? Assessing the impacts of a globally important forest insect. For. Ecol. Manag. 483, 118728 (2021).Article 

    Google Scholar 
    Bradford, J. B. et al. Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance. J. Appl. Ecol. 59, 549–559 (2022).Article 

    Google Scholar 
    Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).Article 
    PubMed 

    Google Scholar 
    Furniss, T. J., Das, A. J., van Mantgem, P. J., Stephenson, N. L. & Lutz, J. A. Crowding, climate, and the case for social distancing among trees. Ecol. Appl. 32, e2507 (2022).Article 
    PubMed 

    Google Scholar 
    Woodall, C. W. & Weiskittel, A. R. Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics. Sci. Rep. 11, 1–12 (2021).Article 

    Google Scholar 
    Gandhi, K. J. K., Campbell, F. & Abrams, J. Current status of forest health policy in the United States. Insects 10, 1–14 (2019).Article 

    Google Scholar 
    Ciesla, W. M. The role of human activities on forest insect outbreaks worldwide. Int. For. Rev. 17, 269–281 (2015).
    Google Scholar 
    Jactel, H. & Brockerhoff, E. G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10, 835–848 (2007).Article 
    PubMed 

    Google Scholar 
    Marini, L., Ayres, M. P. & Jactel, H. Impact of stand and landscape management on forest pest damage. Annu. Rev. Entomol. 67, 181–199 (2022).Article 
    PubMed 

    Google Scholar 
    Guyot, V., Castagneyrol, B., Vialatte, A., Deconchat, M. & Jactel, H. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 12, 20151037 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kneeshaw, D. D. et al. The vision of managing for pest-resistant landscapes: Realistic or utopic? Curr. For. Rep. 7, 97–113 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Chisholm, P. J., Stevens-Rumann, C. S. & Davis, T. S. Interactions between climate and stand conditions predict pine mortality during a bark beetle outbreak. Forests 12, 360 (2021).Article 

    Google Scholar 
    Ferrell, G. T., Otrosina, W. J. & Demars, C. J. Predicting susceptibility of white fir during a drought-associated outbreak of the fir engraver, Scolytus ventralis in California. Can. J. For. Res. 24, 302–305 (1994).Article 

    Google Scholar 
    Asaro, C., Nowak, J. T. & Elledge, A. Why have southern pine beetle outbreaks declined in the southeastern U.S. with the expansion of intensive pine silviculture? A brief review of hypotheses. For. Ecol. Manag. 391, 338–348 (2017).Article 

    Google Scholar 
    Nowak, J. T., Klepzig, K. D., Coyle, D. R., Carothers, W. A. & Gandhi, K. J. K. Southern pine beetles in central hardwood forests: Frequency, spatial extent, and changes to forest structure. In Managing Forest Ecosystems Volume 32: Natural Disturbances and Historic Range of Variation (eds Greenberg, C. H. & Collins, B. S.) 73–88 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-21527-3_4.Chapter 

    Google Scholar 
    Crocker, S. J., Liknes, G. C., McKee, F. R., Albers, J. S. & Aukema, B. H. Stand-level factors associated with resurging mortality from eastern larch beetle (Dendroctonus simplex LeConte). For. Ecol. Manag. 375, 27–34 (2016).Article 

    Google Scholar 
    Mattson, W. J. & Addy, N. D. Phytophagous insects as regulators of forest primary production. Science 190, 515–522 (1975).Article 
    ADS 

    Google Scholar 
    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).Article 
    PubMed 

    Google Scholar 
    Grégoire, J. C., Raffa, K. F. & Lindgren, B. S. Economics and politics of bark beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F. E. & Hofstetter, R. W.) 585–613 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-417156-5.00015-0.Chapter 

    Google Scholar 
    Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380, 321–334 (2016).Article 

    Google Scholar 
    Fettig, C. J. et al. Changing climates, changing forests: A western North American perspective. J. For. 111, 214–228 (2013).
    Google Scholar 
    Liebhold, A. M. et al. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 19, 1208–1216 (2013).Article 

    Google Scholar 
    Siegert, N. W., Mccullough, D. G., Liebhold, A. M. & Telewski, F. W. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers. Distrib. 20, 847–858 (2014).Article 

    Google Scholar 
    Smith, A., Herms, D. A., Long, R. P. & Gandhi, K. J. K. Community composition and structure had no effect on forest susceptibility to invasion by the emerald ash borer (Coleoptera: Buprestidae). Can. Entomol. 147, 318–328 (2015).Article 

    Google Scholar 
    Aukema, J. E. et al. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60, 886–897 (2010).Article 

    Google Scholar 
    Hicke, J. A. et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Chang. Biol. 18, 7–34 (2012).Article 
    ADS 

    Google Scholar 
    Feeny, P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 (1970).Article 

    Google Scholar 
    Schowalter, T. D., Hargrove, W. W. & Crossley, D. A. Herbivory in forested ecosystems. Annu. Rev. Entomol. 31, 177–196 (1986).Article 

    Google Scholar 
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).Article 

    Google Scholar 
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article 

    Google Scholar 
    Guyot, V. et al. Tree diversity limits the impact of an invasive forest pest. PLoS One 10, 1–16 (2015).Article 

    Google Scholar 
    Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Acker, S. A., Boetsch, J. R., Fallon, B. & Denn, M. Stable background tree mortality in mature and old-growth forests in western Washington (NW USA). For. Ecol. Manag. 532, 120817 (2023).Article 

    Google Scholar 
    Shive, K. L. et al. Ancient trees and modern wildfires: Declining resilience to wildfire in the highly fire-adapted giant sequoia. For. Ecol. Manag. 511, 120110 (2022).Article 

    Google Scholar 
    Searle, E. B., Chen, H. Y. H. & Paquette, A. Higher tree diversity is linked to higher tree mortality. Proc. Natl. Acad. Sci. U.S.A. 119, 1–7 (2022).Article 

    Google Scholar 
    Hart, S. J., Veblen, T. T., Eisenhart, K. S., Jarvis, D. & Kulakowski, D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 95, 930–939 (2014).Article 
    PubMed 

    Google Scholar 
    Hart, S. J., Veblen, T. T. & Kulakowski, D. Do tree and stand-level attributes determine susceptibility of spruce-fir forests to spruce beetle outbreaks in the early 21st century? For. Ecol. Manag. 318, 44–53 (2014).Article 

    Google Scholar 
    Temperli, C. et al. Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains? For. Ecol. Manag. 334, 53–63 (2014).Article 

    Google Scholar 
    Six, D. L., Biber, E. & Long, E. Management for mountain pine beetle outbreak suppression: Does relevant science support current policy? Forests 5, 103–133 (2014).Article 

    Google Scholar 
    Black, S. H., Kulakowski, D., Noon, B. R. & Dellasala, D. A. Do bark beetle outbreaks increase wildfire risks in the central U.S. rocky mountains? Implications from recent research. Nat. Areas J. 33, 59–65 (2013).Article 

    Google Scholar 
    Oswalt, S. N., Smith, W. B., Miles, P. D. & Pugh, S. A. Forest Resources of the United States, 2017: A Technical Document Supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97 (US Department of Agriculture, Forest Service, 2019). https://doi.org/10.2737/WO-GTR-97.Book 

    Google Scholar 
    Cleland, D. et al. Terrestrial condition assessment for national forests of the USDA Forest Service in the continental US. Sustainability 9, 1–19 (2017).Article 

    Google Scholar 
    USDA Forest Service Forest Health Protection. Insect and Disease Detection Survey (IDS) data downloads. https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/detection-surveys.shtml (2021). Accessed on 9 October 2021.Spruce, J. P. et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 115, 427–437 (2011).Article 
    ADS 

    Google Scholar 
    Gomez, D. F., Ritger, H. M. W., Pearce, C., Eickwort, J. & Hulcr, J. Ability of remote sensing systems to detect bark beetle spots in the southeastern US. Forests 11, 1–10 (2020).Article 

    Google Scholar 
    Hanavan, R. P. et al. Supplementing the forest health national aerial survey program with remote sensing during the COVID-19 pandemic: Lessons learned from a collaborative approach. J. For. 120, 125–132 (2021).
    Google Scholar 
    Johnson, E. W. & Wittwer, D. Aerial detection surveys in the United States. Aust. For. 71, 212–215 (2008).Article 

    Google Scholar 
    Bright, B. C. et al. Using satellite imagery to evaluate bark beetle-caused tree mortality reported in aerial surveys in a mixed conifer forest in Northern Idaho, USA. Forests 11, 1–19 (2020).Article 

    Google Scholar 
    Coleman, T. W. et al. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. For. Ecol. Manag. 430, 321–336 (2018).Article 

    Google Scholar 
    Hicke, J. A., Xu, B., Meddens, A. J. H. & Egan, J. M. Characterizing recent bark beetle-caused tree mortality in the western United States from aerial surveys. For. Ecol. Manag. 475, 118402 (2020).Article 

    Google Scholar 
    Kosiba, A. M. et al. Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016. For. Ecol. Manag. 430, 94–104 (2018).Article 

    Google Scholar 
    Meigs, G. W., Kennedy, R. E., Gray, A. N. & Gregory, M. J. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region USA. For. Ecol. Manag. 339, 71–86 (2015).Article 

    Google Scholar 
    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures. Gen. Tech. Rep. SRS-80 (US Department of Agriculture, Forest Service, Southern Research Station, 2005). https://doi.org/10.2737/SRS-GTR-80.Book 

    Google Scholar 
    Randolph, K. D. C. et al. Past and present individual-tree damage assessments of the US national forest inventory. Environ. Monit. Assess. 193, 116 (2021).Article 
    PubMed 

    Google Scholar 
    Kromroy, K. W., Juzwik, J., Castillo, P. & Hansen, M. H. Using forest service forest inventory and analysis data to estimate regional oak decline and oak mortality. North. J. Appl. For. 25, 17–24 (2008).Article 

    Google Scholar 
    Coulston, J. W., Edgar, C. B., Westfall, J. A. & Taylor, M. E. Estimation of forest disturbance from retrospective observations in a broad-scale inventory. Forests 11, 1298 (2020).Article 

    Google Scholar 
    Wilson, B. T., Lister, A. J. & Riemann, R. I. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. For. Ecol. Manag. 271, 182–198 (2012).Article 

    Google Scholar 
    Blackard, J. A. et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 112, 1658–1677 (2008).Article 
    ADS 

    Google Scholar 
    Brosofske, K. D., Froese, R. E., Falkowski, M. J. & Banskota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. For. Sci. 60, 733–756 (2014).Article 

    Google Scholar 
    Lister, A. J. et al. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the United States national forest inventory. Forests 11, 1–41 (2020).Article 

    Google Scholar 
    USDA Forest Service Forest Health Protection. Individual Tree Species Parameter (ITSP) maps – GIS data downloads. https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-maps.shtml (2021). Accessed on 9 October 2021.Ellenwood, J. R., Krist, F. J. & Romero, S. A. National Individual Tree Species Atlas. FHTET-15-01 (US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 2015).
    Google Scholar 
    Krist, F. J. et al. National Insect and Disease Forest Risk Assessment. FHTET-14-01 (US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 2014).
    Google Scholar 
    Rulequest Inc. Cubist, release 2.07. https://www.rulequest.com/cubist-info.html (2011). Accessed on 15 July 2022.R Core Team. R: A language and environment for statistical computing. https://www.r-project.org (2021). Accessed on 4 March 2022.Esri Inc. ArcGIS Pro 2.8.0. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2021). Accessed on 4 March 2022. More