More stories

  • in

    Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression

    Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 2019;8:e46497.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 2008;320:1081–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Rivas LR. A reinterpretation of the concepts “sympatric” and “allopatric” with proposal for the additional terms “syntopic” and “allotopic”. Syst Zool. 1964;13:42–3.Article 

    Google Scholar 
    Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiene RP, Nowinski B, Esson K, Preston C, Marin R III, Birch J, et al. Unprecedented DMSP concentrations in a massive dinoflagellate bloom in Monterey Bay. Ca Geophys Res Lett. 2019;46:12279–88.Article 

    Google Scholar 
    Scholin CA, Birch J, Jensen S, Marin R, Massion E, Pargett D, et al. The quest to develop ecogenomic sensors a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography. 2017;30:100–13.Article 

    Google Scholar 
    Nowinski B, Smith CB, Thomas CM, Esson K, Marin R, Preston CM, et al. Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Sci Data. 2019;6:1–7.Article 
    CAS 

    Google Scholar 
    Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.Article 
    CAS 
    PubMed 

    Google Scholar 
    Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, et al. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME J. 2021;15:3576–86.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Belas R, Schell M, González J, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.Article 
    CAS 
    PubMed 

    Google Scholar 
    Suzuki MT, Preston CM, Béjà O, De La Torre J, Steward G, DeLong EF. Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay. Micro Ecol. 2004;48:473–88.Article 
    CAS 

    Google Scholar 
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giebel H-A, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, et al. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J. 2011;5:8–19.Article 
    PubMed 

    Google Scholar 
    Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 2011;5:1881–95.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. Appl Environ Microbiol. 2016;82:2100–11.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Nat Acad Sci. 2013;110:E488–E97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowinski B, Motard‐Côté J, Landa M, Preston CM, Scholin CA, Birch JM, et al. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol. 2019;21:1687–701.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J, et al. Genomes OnLine Database (GOLD) v. 8: overview and updates. Nucleic Acids Res. 2021;49:D723–D33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D77.Article 
    CAS 
    PubMed 

    Google Scholar 
    Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF, editor. Methods in Enzymology 531: Elsevier; 2013. p. 237–50.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Internal genomic DNA standard for quantitative metagenome analysis V3. protocols io 2017; https://doi.org/10.17504/protocols.io.jxdcpi6p.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Preparation of custom synthesized RNAtranscript standard V3. protocols io. 2017; https://doi.org/10.17504/protocols.io.jxccpiwp.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016. Report No.: 2167–9843Lee K, Choo Y-J, Giovannoni SJ, Cho J-C. Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2007;57:1653–8.Article 
    PubMed 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020;36:2251–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. Lawrence Berkeley National Laboratory, Berkeley, CA (United States); 2014.Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 2010;38:D382–D90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–17.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfaffel O. ClustImpute: An R package for K-means clustering with build-in missing data imputation. https://www.researchgate.net/publication/341881683.Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan L-K, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 
    PubMed 

    Google Scholar 
    Gifford SM, Zhao L, Stemple B, DeLong K, Medeiros PM, Seim H, et al. Microbial niche diversification in the Galápagos Archipelago and its response to El Niño. Front Microbiol. 2020;11:575194.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rich VI, Pham VD, Eppley J, Shi Y, DeLong EF. Time‐series analyses of Monterey Bay coastal microbial picoplankton using a ‘genome proxy’microarray. Environ Microbiol. 2011;13:116–34.Article 
    CAS 
    PubMed 

    Google Scholar 
    Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 2012;335:587–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010;468:60–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006;60:255–80.Article 
    PubMed 

    Google Scholar 
    West NJ, Obernosterer I, Zemb O, Lebaron P. Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol. 2008;10:738–56.Article 
    CAS 
    PubMed 

    Google Scholar 
    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017;11:1483–99.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Comm. 2018;9:1–8.Article 

    Google Scholar 
    Caro‐Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.Article 
    PubMed 

    Google Scholar 
    Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cohan FM. What are bacterial species? Ann Rev Microbiol. 2002;56:457–87.Article 
    CAS 

    Google Scholar 
    Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Meth. 2013;10:881–4.Article 
    CAS 

    Google Scholar 
    Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 2020;5:e00731–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol. 2007;10:504–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Eren EM. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018;2018:e4320–e.Article 

    Google Scholar 
    Neidhardt F, Umbarger H Chemical composition of Escherichia coli. In: FC N, Curtiss R III, JL I, ECC L, KB L, B M, et al., editors. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington DC: ASM Press; 1996. p. 13-6.Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, et al. A genomic perspective across Earth’s microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front Microbiol. 2022;12:761869.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu K-S, Kim C, Kim I, Yoo S, Choi B-S, Park C. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem. 2004;279:25544–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114:377–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. ISME J. 2022;16:1306–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 2012;337:1228–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012;3:e00036–12.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Environmental data from CTD during the Fall 2016 ESP deployment in Monterey Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756376.1.Environmental data from Niskin bottle sampling during the Fall 2016 ESP deployment in Monterey Bay. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756413.1. More

  • in

    Habitat partitioning, co-occurrence patterns, and mixed-species group formation in sympatric delphinids

    Pianka, E. R. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 71, 2141–2145 (1974).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Tokeshi, M. Species Coexistence: Ecological and Evolutionary Perspectives. (Wiley-Blackwell, 2009).Grinnell, J. Geography and evolution. Ecology 5, 225–229 (1924).Article 

    Google Scholar 
    Roughgarden, J. Resource partitioning among competing species—A coevolutionary approach. Theor. Popul. Biol. 9, 388–424 (1976).Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Syme, J., Kiszka, J. J. & Parra, G. J. Dynamics of cetacean mixed-species groups: A review and conceptual framework for assessing their functional significance. Front. Mar. Sci. 8, 1–19 (2021).Article 

    Google Scholar 
    Stensland, E., Angerbjörn, A. & Berggren, P. Mixed species groups in mammals. Mamm. Rev. 33, 205–223 (2003).Article 

    Google Scholar 
    Cords, M. & Würsig, B. A Mix of Species: Associations of Heterospecifics Among Primates and Dolphins. in Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies (eds. Yamagiwa, J. & Karczmarski, L.) 409–431 (Springer, 2014). doi:https://doi.org/10.1007/978-4-431-54523-1_21.Goodale, E., Beauchamp, G. & Ruxton, G. D. Mixed-Species Groups of Animals: Behavior, Community Structure, and Conservation. (Academic Press, 2017).Krause, J. & Ruxton, G. D. Living in Groups. Oxford Series in Ecology and Evolution (Oxford University Press, 2002).Heymann, E. W. & Buchanan-Smith, H. M. The behavioural ecology of mixed-species troops of callitrichine primates. Biol. Rev. 75, 169–190 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sridhar, H. & Guttal, V. Friendship across species borders: factors that facilitate and constrain heterospecific sociality. Philos. Trans. R. Soc. B Biol. Sci. 373, 1–9 (2018).Greenberg, R. Birds of many feathers: The formation and structure of mixed-species flocks of forest birds. in On the Move: How and Why Animals Travel in groups (eds. Boinski, S. & Gerber, P. A.) 521–558 (University of Chicago Press, 2000).Waser, P. M. ‘Chance’ and mixed-species associations. Behav. Ecol. Sociobiol. 15, 197–202 (1984).Article 

    Google Scholar 
    Whitesides, G. H. Interspecific associations of Diana monkeys, Cercopithecus diana, in Sierra Leone, West Africa: biological significance or chance?. Anim. Behav. 37, 760–776 (1989).Article 

    Google Scholar 
    Waser, P. M. Primate polyspecific associations: Do they occur by chance?. Anim. Behav. 30, 1–8 (1982).Article 

    Google Scholar 
    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).Article 

    Google Scholar 
    Kasozi, H. & Montgomery, R. A. Variability in the estimation of ungulate group sizes complicates ecological inference. Ecol. Evol. 10, 6881–6889 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Syme, J., Kiszka, J. J. & Parra, G. J. How to define a dolphin ‘group’? Need for consistency and justification based on objective criteria. Ecol. Evol. 12, 1–18 (2022).Article 

    Google Scholar 
    Hutchinson, J. M. C. & Waser, P. M. Use, misuse and extensions of ‘ideal gas’ models of animal encounter. Biol. Rev. 82, 335–359 (2007).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Astaras, C., Krause, S., Mattner, L., Rehse, C. & Waltert, M. Associations between the drill (Mandrillus leucophaeus) and sympatric monkeys in Korup National Park. Cameroon. Am. J. Primatol. 73, 127–134 (2011).Article 
    PubMed 

    Google Scholar 
    Mammides, C., Chen, J., Goodale, U. M., Kotagama, S. W. & Goodale, E. Measurement of species associations in mixed-species bird flocks across environmental and human disturbance gradients. Ecosphere 9, 1–14 (2018).Article 

    Google Scholar 
    Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods Ecol. Evol. 7, 549–555 (2016).Article 

    Google Scholar 
    Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5, 397–406 (2014).Article 

    Google Scholar 
    Warton, D. I. et al. So Many variables: Joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).Article 
    PubMed 

    Google Scholar 
    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).Article 
    PubMed 

    Google Scholar 
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling. (Cambridge University Press, 2020). https://doi.org/10.1017/9781108591720.Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).Article 
    PubMed 

    Google Scholar 
    Haak, C. R., Hui, F. K., Cowles, G. W. & Danylchuk, A. J. Positive interspecific associations consistent with social information use shape juvenile fish assemblages. Ecology 101, 1–16 (2020).Article 

    Google Scholar 
    Bastianelli, G., Wintle, B. A., Martin, E. H., Seoane, J. & Laiolo, P. Species partitioning in a temperate mountain chain: Segregation by habitat vs. interspecific competition. Ecol. Evol. 7, 2685–2696 (2017).Aspin, T. & House, A. Alpha and beta diversity and species co-occurrence patterns in headwaters supporting rare intermittent-stream specialists. Freshw. Biol. n/a, (2022).Astarloa, A. et al. Identifying main interactions in marine predator-prey networks of the Bay of Biscay. ICES J. Mar. Sci. 76, 2247–2259 (2019).Article 

    Google Scholar 
    Parra, G. J. Resource partitioning in sympatric delphinids: space use and habitat preferences of Australian snubfin and Indo-Pacific humpback dolphins. J. Anim. Ecol. 75, 862–874 (2006).Article 
    PubMed 

    Google Scholar 
    Parra, G. J., Wojtkowiak, Z., Peters, K. J. & Cagnazzi, D. Isotopic niche overlap between sympatric Australian snubfin and humpback dolphins. Ecol. Evol. 12, 1–11 (2022).Article 

    Google Scholar 
    Kiszka, J. J. et al. Ecological niche segregation within a community of sympatric dolphins around a tropical island. Mar. Ecol. Prog. Ser. 433, 273–288 (2011).Article 
    ADS 

    Google Scholar 
    Bearzi, M. Dolphin sympatric ecology. Mar. Biol. Res. 1, 165–175 (2005).Article 

    Google Scholar 
    Zaeschmar, J. R. et al. Occurrence of false killer whales (Pseudorca crassidens) and their association with common bottlenose dolphins (Tursiops truncatus) off northeastern New Zealand. Mar. Mammal Sci. 30, 594–608 (2014).Article 

    Google Scholar 
    Elliser, C. R. & Herzing, D. L. Long-term interspecies association patterns of Atlantic bottlenose dolphins, Tursiops truncatus, and Atlantic spotted dolphins, Stenella frontalis, in the Bahamas. Mar. Mammal Sci. 32, 38–56 (2016).Article 

    Google Scholar 
    Kiszka, J. J., Perrin, W. F., Pusineri, C. & Ridoux, V. What drives island-associated tropical dolphins to form mixed-species associations in the southwest Indian Ocean?. J. Mammal. 92, 1105–1111 (2011).Article 

    Google Scholar 
    Brown, A. M., Bejder, L., Cagnazzi, D., Parra, G. J. & Allen, S. J. The north west cape, Western Australia: A potential hotspot for Indo-Pacific humpback dolphins Sousa chinensis?. Pacific Conserv. Biol. 18, 240–246 (2012).Article 

    Google Scholar 
    Allen, S. J., Cagnazzi, D., Hodgson, A. J., Loneragan, N. R. & Bejder, L. Tropical inshore dolphins of north-western Australia: Unknown populations in a rapidly changing region. Pacific Conserv. Biol. 18, 56–63 (2012).Article 

    Google Scholar 
    Palmer, C., Parra, G. J., Rogers, T. & Woinarski, J. Collation and review of sightings and distribution of three coastal dolphin species in waters of the Northern Territory. Australia. Pacific Conserv. Biol. 20, 116–125 (2014).Article 

    Google Scholar 
    Corkeron, P. J. Aspects of the Behavioral Ecology of Inshore Dolphins Tursiops truncatus and Sousa chinensis in Moreton Bay, Australia. in The Bottlenose Dolphin (eds. Leatherwood, S. & Reeves, R.) 285–293 (Elsevier, 1990). https://doi.org/10.1016/B978-0-12-440280-5.50018-4.Haughey, R. et al. Distribution and habitat preferences of Indo-Pacific Bottlenose Dolphins (Tursiops aduncus) inhabiting coastal waters with mixed levels of protection. Front. Mar. Sci. 8, 1–20 (2021).Article 

    Google Scholar 
    Hanf, D., Hodgson, A. J., Kobryn, H., Bejder, L. & Smith, J. N. Dolphin distribution and habitat suitability in North Western Australia: Applications and Implications of a Broad-Scale, Non-targeted Dataset. Front. Mar. Sci. 8, 1–18 (2022).Article 

    Google Scholar 
    Hunt, T. N., Allen, S. J., Bejder, L. & Parra, G. J. Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area. Sci. Rep. 10, 1–14 (2020).Article 

    Google Scholar 
    Hunt, T. N. Demography, habitat use and social structure of Australian humpback dolphins (Sousa sahulensis) around the North West Cape, Western Australia: Implications for conservation and management. PhD Thesis, Flinders University, Adelaide, Australia. (Flinders University, 2018).Cassata, L. & Collins, L. B. Coral reef communities, habitats, and substrates in and near sanctuary zones of Ningaloo marine park. J. Coast. Res. 241, 139–151 (2008).Article 

    Google Scholar 
    CALM MPRA. Management plan for the Ningaloo Marine Park and Muiron Islands Marine Management Area 2005–2015. (2005).Hunt, T. N. et al. Demographic characteristics of Australian humpback dolphins reveal important habitat toward the southwestern limit of their range. Endanger. Species Res. 32, 71–88 (2017).Article 

    Google Scholar 
    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Python Software Foundation. Python Language Reference, version 3.8.0. at https://www.python.org/ (2016).QGIS Development Team. QGIS Geographic Information System, version 3.8.3 Zanzibar. at http://qgis.osgeo.org (2019).Zanardo, N., Parra, G., Passadore, C. & Möller, L. Ensemble modelling of southern Australian bottlenose dolphin Tursiops sp. distribution reveals important habitats and their potential ecological function. Mar. Ecol. Prog. Ser. 569, 253–266 (2017).Hanberry, B. B. Finer grain size increases effects of error and changes influence of environmental predictors on species distribution models. Ecol. Inform. 15, 8–13 (2013).Article 

    Google Scholar 
    Gottschalk, T. K., Aue, B., Hotes, S. & Ekschmitt, K. Influence of grain size on species–habitat models. Ecol. Modell. 222, 3403–3412 (2011).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Passadore, C., Möller, L. M., Diaz-Aguirre, F. & Parra, G. J. Modelling dolphin distribution to inform future spatial conservation decisions in a marine protected area. Sci. Rep. 8, 1–14 (2018).Article 
    CAS 

    Google Scholar 
    Parra, G. J., Schick, R. & Corkeron, P. J. Spatial distribution and environmental correlates of Australian snubfin and Indo-Pacific humpback dolphins. Ecography (Cop.) 29, 396–406 (2006).Article 

    Google Scholar 
    Conrad, O. et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).R Core Team. R version 3.6.1. at https://www.r-project.org/ (2019).RStudio Team. RStudio: Integrated Develpment for R. at http://rstudio.com/ (2019).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).Article 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).Article 
    MATH 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).Article 

    Google Scholar 
    Tjur, T. Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. Am. Stat. 63, 366–372 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Syme, J. The behavioural ecology of mixed-species groups of delphinids. PhD Thesis, Flinders University, Adelaide, Australia. (Flinders University, 2023).Wang, J. Y. Bottlenose Dolphin, Tursiops aduncus, Indo-Pacific Bottlenose Dolphin. in Encyclopedia of Marine Mammals (eds. Würsig, B., Thewissen, J. G. M. & Kovacs, K. M.) 125–130 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00073-X.Parra, G. J. & Jefferson, T. A. Humpback Dolphins. in Encyclopedia of Marine Mammals (eds. Würsig, B., Thewissen, J. G. M. & Kovacs, K. M.) 483–489 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00153-9.Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol. Evol. 7, 189–199 (2017).Article 
    PubMed 

    Google Scholar 
    Browning, N. E., Cockcroft, V. G. & Worthy, G. A. J. Resource partitioning among South African delphinids. J. Exp. Mar. Bio. Ecol. 457, 15–21 (2014).Article 

    Google Scholar 
    Kiszka, J. J., Méndez-Fernandez, P., Heithaus, M. R. & Ridoux, V. The foraging ecology of coastal bottlenose dolphins based on stable isotope mixing models and behavioural sampling. Mar. Biol. 161, 953–961 (2014).Article 
    CAS 

    Google Scholar 
    Saayman, G. S. & Tayler, C. K. The socioecology of humpback dolphins (Sousa sp.). in Behavior of Marine Animals Current Perspectives in Research Volume 3: Cetaceans (eds. Winn, H. E. & Olla, B. L.) 165–226 (Springer, 1979).Gowans, S. & Whitehead, H. Distribution and habitat partitioning by small odontocetes in the Gully, a submarine canyon on the Scotian Shelf. Can. J. Zool. 73, 1599–1608 (1995).Article 

    Google Scholar 
    Clua, E. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).Article 

    Google Scholar 
    Quérouil, S. et al. Why do dolphins form mixed-species associations in the azores?. Ethology 114, 1183–1194 (2008).Article 

    Google Scholar 
    Heithaus, M. R. & Dill, L. M. Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491 (2002).Article 

    Google Scholar  More

  • in

    Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway

    Rahaman, A. et al. The increasing hunger concern and current need in the development of sustainable food security in the developing countries. Trends Food Sci. Technol. 113, 423–429. https://doi.org/10.1016/j.tifs.2021.04.048 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, J. R. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 485–533 (Cambridge University Press, 2014).
    Google Scholar 
    Yan, H. et al. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ. 808, 152170. https://doi.org/10.1016/j.scitotenv.2021.152170 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lobell, D. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change. 3, 497–501. https://doi.org/10.1038/nclimate1832 (2013).Article 
    ADS 

    Google Scholar 
    Vermeulen, S. J. et al. Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad. Sci. 110, 8357–8362. https://doi.org/10.1073/pnas.1219441110 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    FAO. Climate Change and Food Security: Risks and Responses (FAO, 2015).
    Google Scholar 
    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989. https://doi.org/10.1038/ncomms6989 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ding, Z. et al. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 244, 106626. https://doi.org/10.1016/j.agwat.2020.106626 (2021).Article 

    Google Scholar 
    Malhi, G. S., Kaur, M. & Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13, 1318 (2021).Article 
    CAS 

    Google Scholar 
    Persson, T. & Kværnø, S. Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway. J. Agric. Sci. 155, 361–377. https://doi.org/10.1017/S0021859616000241 (2017).Article 

    Google Scholar 
    Zhu, X. & Troy, T. J. Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future 6, 656–672. https://doi.org/10.1002/2017EF000687 (2018).Article 
    ADS 

    Google Scholar 
    Fischer, T. et al. Increase in irrigated wheat yield in north-west Mexico from 1960 to 2019: Unravelling the negative relationship to minimum temperature. Field Crops Res. 275, 108331. https://doi.org/10.1016/j.fcr.2021.108331 (2022).Article 
    ADS 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620. https://doi.org/10.1126/science.1204531 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harkness, C. et al. Adverse weather conditions for UK wheat production under climate change. Agric. For. Meteorol. 282, 107862. https://doi.org/10.1016/j.agrformet.2019.107862 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Seehusen, T. & Uhlen, A. K. Analyses of yield gaps for the production of wheat and barley in Norway, potential to increase yields on existing farmland. Norwegian Institute for Bioeconomics, Report 5/166/2019 (2020).Hakala, K. et al. Sensitivity of barley varieties to weather in Finland. J. Agric. Sci. 150, 145–160. https://doi.org/10.1017/S0021859611000694 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peltonen-Sainio, P., Jauhiainen, L., Hakala, K. & Ojanen, H. Climate change and prolongation of growing season, changes in regional potential for field crop production in Finland. Agric. Food Sci. 18, 171–190. https://doi.org/10.2137/145960609790059479 (2009).Article 

    Google Scholar 
    Fleisher, D. H. et al. A potato model intercomparison across varying climates and productivity levels. Glob. Change Biol. 23, 1258–1281. https://doi.org/10.1111/gcb.13411 (2017).Article 
    ADS 

    Google Scholar 
    Moen, A. National Atlas of Norway: Vegetation (Hønefoss, 1999).
    Google Scholar 
    Bakkestuen, V., Erikstad, L. & Halvorsen, R. Step-less models for regional environmental variation in Norway. J. Biogeogr. 35, 1906–1922 (2008).Article 

    Google Scholar 
    Statistics-Norway. 2020. https://www.ssb.no/jord-skog-jakt-og-fiskeri/statistikker/stjord (Accessed 10 November 2020).Hanssen-Bauer, I. et al. Climate in Norway 2100 – a knowledge base for climate adaptation. Norwegian Centre for Climate Sciences, Report 1/2017 49 (2017).Blandford, D., Gaasland, I., Vårdal, E. & McIntosh, C. Greenhouse gas emissions, land use, and food supply under the paris climate agreement—Policy choice in Norway. Appl. Econ. Perspect. Policy 41, 249–264. https://doi.org/10.1093/aepp/ppy011 (2019).Article 

    Google Scholar 
    Rötter, R. P. et al. What would happen to barley production in Finland if global warming exceeded 4 °C? A model-based assessment. Eur. J. Agron. 35, 205–214. https://doi.org/10.1016/j.eja.2011.06.003 (2011).Article 

    Google Scholar 
    Ozturk, I., Sharif, B., Baby, S., Jabloun, M. & Olesen, J. E. The long-term effect of climate change on productivity of winter wheat in Denmark, scenario analysis using three crop models. J. Agric. Sci. 155, 733–750. https://doi.org/10.1017/S0021859616001040 (2017).Article 
    CAS 

    Google Scholar 
    An, H. & Carew, R. Effect of climate change and use of improved varieties on barley and canola yield in Manitoba. Can. J. Plant Sci. 95, 127–139. https://doi.org/10.1139/CJPS-2014-221 (2014).Article 

    Google Scholar 
    Zhou, Z., Plauborg, F., Kristensen, K. & Andersen, M. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agric. For. Meteorol. 232, 595–605. https://doi.org/10.1016/j.agrformet.2016.10.017 (2017).Article 
    ADS 

    Google Scholar 
    Jensen, K. J. S. et al. Yield and development of winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) in field experiments with variable weather and drainage conditions. Eur. J. Agron. 122, 126075. https://doi.org/10.1016/j.eja.2020.126075 (2021).Article 
    CAS 

    Google Scholar 
    Lobell, D. B., Cahill, K. N. & Field, C. B. Historical effects of temperature and precipitation on California crop yields. Clim. Change 81, 187–203. https://doi.org/10.1007/s10584-006-9141-3 (2007).Article 
    ADS 

    Google Scholar 
    Skjelvag, A. O. Climatic conditions for crop production in Nordic countries. Agric. Food Sci. Finland 7(2), 149–160 (1998).Article 

    Google Scholar 
    Norsk-Klimaservicesenter. https://seklima.met.no/ (2020).Erikstad, L. & Bakkestuen, V. Calculating cumulative effects in GIS using a stepless multivariate model. MethodsX 8, 101407. https://doi.org/10.1016/j.mex.2021.101407 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aune-Lundberg, L. & Strand, G.-H. The content and accuracy of the CORINE land cover dataset for Norway. Int. J. Appl. Earth Observ. Geoinform. 96, 102266. https://doi.org/10.1016/j.jag.2020.102266 (2021).Article 

    Google Scholar 
    QGIS Geographic Information System (QGIS Association, 2020).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002. https://doi.org/10.1088/1748-9326/2/1/014002 (2007).Article 
    ADS 

    Google Scholar 
    Shumway, R. H. & Stoffer, D. S. Time Series Analysis and its Applications Vol. 560 (Springer, 2016).MATH 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0 (2020).Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(22), 2010. https://doi.org/10.18637/jss.v033.i01 (2010).Article 

    Google Scholar 
    Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B-Methodol. 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x (1996).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Hastie, T., Tibshirani, R. & Friendman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Meinshausen, N. & Bühlmann, P. Stability selection. J. Roy. Stat. Soc. B 72, 417–473. https://doi.org/10.2307/40802220 (2010).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Efron, B. & Stein, C. The jackknife estimate of variance. Ann. Stat. 9, 586–596. https://doi.org/10.1214/aos/1176345462 (1981).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Milborrow, S. plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots. R package version 3.5.7 (2020).Liu, H. Xu, X. & Li, J.J. HDCI: High Dimensional Confidence Interval Based on Lasso and Bootstrap. R package version 1.0–2 (2017).. Seehusen, T. & Uhlen, A. K. Analyses of yield gaps for the production of wheat and barley in Norway, potential to increase yields on existing farmland. Norwegian Institute for Bioeconomics, Report 5/166/2019. http://hdl.handle.net/11250/2637490 (2019).Stabbetorp, H. Dyrkingsomfang og avling i kornproduksjonen. Norsk institutt for bioøkonomi, Report 4 (1) (2017).Ebrahimi, E. et al. Assessing the impact of climate change on crop management in winter wheat—A case study for Eastern Austria. J. Agric. Sci. 154, 1153–1170. https://doi.org/10.1017/S0021859616000083 (2016).Article 

    Google Scholar 
    Kristensen, K., Schelde, K. & Olesen, J. Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 148, 1–15. https://doi.org/10.1017/S0021859610000675 (2010).Article 

    Google Scholar 
    Thaler, S., Eitzinger, J., Trnka, M. & Dubrovsky, M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agric. Sci. 150, 537–555. https://doi.org/10.1017/S0021859612000093 (2012).Article 
    CAS 

    Google Scholar 
    Ortiz, R. et al. Climate change, can wheat beat the heat?. Agr. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).Article 

    Google Scholar 
    Semenov, M., Stratonovitch, P., Alghabari, F. & Gooding, M. Adapting wheat in Europe for climate change. J. Cereal Sci. 59, 245–256. https://doi.org/10.1016/j.jcs.2014.01.006 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B. & Schlenker, W. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010. https://doi.org/10.1088/1748-9326/aa7f33 (2017).Article 
    ADS 

    Google Scholar 
    Zhu, X., Troy, T. & Devineni, N. Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields. Environ. Res. Lett. 14, 074021. https://doi.org/10.1088/1748-9326/ab25a1 (2019).Article 
    ADS 

    Google Scholar 
    Lobell, D. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001. https://doi.org/10.1088/1748-9326/aa518a (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Flø, S. et al. Rom for bruk av Norsk korn. Felleskjøpet, Report 49 (2017).Lillemo, M., Reitan, L. & Bjornstad, A. Increasing impact of plant breeding on barley yields in central Norway from 1946 to 2008. Plant Breeding 129, 484–490. https://doi.org/10.1111/j.1439-0523.2009.01710.x (2010).Article 

    Google Scholar 
    Wonneberger, R., Ficke, A. & Lillemo, M. Mapping of quantitative trait loci associated with resistance to net form net blotch (Pyrenophora teres f. teres) in a doubled haploid Norwegian barley population. PLoS One 12, e0175773. https://doi.org/10.1371/journal.pone.0175773 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, F. C. & Lobell, D. B. The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. 112, 2670–2675. https://doi.org/10.1073/pnas.1409606112 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, P. et al. Recent warming across the North Atlantic region may be contributing to an expansion in barley cultivation. Clim. Change 145, 351–365. https://doi.org/10.1007/s10584-017-2093-y (2017).Article 
    ADS 

    Google Scholar 
    Martin, P., Wishart, J., Dalmannsdottir, S., Halland, H. & Thomsen, a. M. Recent warming and the thermal requirement of barley in coastal Norway. Norwegian Institute for Bioeconomics, Report T2.4.3 ii (2018).Cattivelli, L., Ceccarelli, S., Romagosa, I. & Stanca, M. Abiotic stresses in Barley: Problems and solutions. In Barley: Production, Improvement, and Uses Vol. 4 (ed. Ullrich, S.) 282–306 (Blackwell UP, 2011).
    Google Scholar 
    Hura, T. Wheat and barley acclimatization to abiotic and biotic stress. Int. J. Mol. Sci. 21, 7423. https://doi.org/10.3390/ijms21197423 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kolberg, D., Persson, T., Mangerud, K. & Riley, H. Impact of projected climate change on workability, attainable yield, profitability and farm mechanization in Norwegian spring cereals. Soil Till. Res. 185, 122–138. https://doi.org/10.1016/j.still.2018.09.002 (2019).Article 

    Google Scholar 
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).Article 

    Google Scholar 
    Gammans, M., Mérel, P. & Ortiz-Bobea, A. Negative impacts of climate change on cereal yields: Statistical evidence from France. Environ. Res. Lett. 12, 054007. https://doi.org/10.1088/1748-9326/aa6b0c (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Ahmed, I., Harrison, M., Meinke, H. & Zhou, M. Barley phenology: physiological and molecular mechanisms for heading date and modelling of genotype-environment- management interactions. Plant Growth InTech 8, 175–202. https://doi.org/10.5772/64827 (2016).Article 
    CAS 

    Google Scholar 
    Hossain, A., da Silva, J. A. T., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Møllerhagen, P. Norsk potetproduksjon 2011. Bioforsk, Report 7(1) (2012).Hermansen, A., Lu, D. & Forbes, G. Potato production in China and Norway, similarities, differences and future challenges. Potato Res. 55, 197–203. https://doi.org/10.1007/s11540-012-9224-7 (2012).Article 

    Google Scholar 
    Hermansen, A., Nærstad, R., Le, V. & Nordskog, B. In Proceedings of the Eleventh EuroBlight Workshop (The Norwegian Institute for Agricultural and Environmental Research, Hamar, 2018).Raymundo, R. et al. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008 (2018).Article 

    Google Scholar 
    Rabia, A., Yacout, D., Shahin, S., Mohamed, A. & Abdelaty, E. Towards sustainable production of potato under climate change conditions. Curr. J. Appl. Sci. Technol. 18, 200–207. https://doi.org/10.14456/cast.2018.15 (2018).Article 

    Google Scholar 
    Haverkort, A. J., Franke, A. C., Engelbrecht, F. A. & Steyn, J. M. Climate change and potato production in contrasting South African agro-ecosystems. Potato Res. 56, 67–84. https://doi.org/10.1007/s11540-013-9230-4 (2013).Article 

    Google Scholar 
    Martinelli, F. et al. Advanced methods of plant disease detection A review. Agron. Sustain. Dev. 35, 1–25. https://doi.org/10.1007/s13593-014-0246-1 (2015).Article 

    Google Scholar 
    Borus, D. Impacts of Climate Change on the Potato (Solanum Tuberosum L.) Productivity in Tasmania, Australia and Kenya (University of Tasmania, 2017).
    Google Scholar 
    Fageria, N., Baligar, V. & Jones, C. Growth and Mineral Nutrition of Field Crops Vol. 5, 586 (CRC Press, 2010).Book 

    Google Scholar 
    Fleisher, D. H. et al. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011 (2013).Article 
    ADS 

    Google Scholar 
    Haverkort, A. J. & Struik, P. C. Yield levels of potato crops: Recent achievements and future prospects. Field Crop Res. 182, 76–85. https://doi.org/10.1016/j.fcr.2015.06.002 (2015).Article 

    Google Scholar 
    Van Oort, P. A. J., Timmermans, B. G. H., Meinke, H. & Van Ittersum, M. K. Key weather extremes affecting potato production in the Netherlands. Eur. J. Agron. 37, 11–22. https://doi.org/10.1016/j.eja.2011.09.002 (2012).Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 6, 410–427. https://doi.org/10.1002/2017EF000690 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Pulatov, B., Anna Maria, J. N., Karin, H. & Maj-Lena, L. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).Article 
    ADS 

    Google Scholar  More

  • in

    Machine learning identifies straightforward early warning rules for human Puumala hantavirus outbreaks

    We performed data acquisition, processing, analysis and visualization using Python23 version 3.8 with the packages Numpy24, Pandas25, Geopandas26, Matplotlib27, Selenium, Beautiful Soup28, SciPy14 and scikit-learn29. The functions used for specific tasks are explicitly mentioned to allow validation and replication studies.Data acquisition and processingHuman PUUV-incidenceHantavirus disease has been notifiable in Germany since 2001. The Robert Koch Institute collects anonymized data from the local and state public health departments and offers via the SurvStat application2 a freely available, limited version of its database for research and informative purposes. We retrieved the reported laboratory-confirmed human PUUV-infections (({text{n}}=text{11,228}) from 2006 to 2021, status: 2022-02-07). From the attributes available for each case, we retrieved the finest temporal and spatial resolution, i.e., the week and the year of notification, together with the district (named “County” in the English version of the SurvStat interface).To avoid bias through underreporting, our dataset was limited to PUUV-infections since 2006. The years 2006–2021 contain 91.9% of the total cases from 2001 to 2021. Human PUUV-incidence was calculated as the number of infections per 100,000 people, by using population data from Eurostat30. For each year, we used the population reported for the January 1 of that year. The population for 2020 was also used for 2021.In the analysis, we only included districts where the total infections were (ge {20}) and the maximum annual incidence was (ge {2}) in the period 2006–2021. The spatial information about the infections provided by the SurvStat application refers to the district where the infection was reported. Therefore, in most of the cases, the reported district corresponds to the residence of the infected person, which may differ from the district of infection. To compensate partially for differences between the reported place of residence and the place of infection, we combined most of the urban districts with their surrounding rural district. The underlying assumption was that most infections reported in urban districts occurred in the neighboring or surrounding rural district. In addition, some urban and rural districts have the same health department. Supplementary Table 1 lists the combined districts.Weather dataFrom the German Meteorological Service31 we retrieved grids of the following monthly weather parameters over Germany from 2004 to 2021: mean daily air temperature—Tmean, minimum daily air temperature—Tmin, and maximum daily air temperature—Tmax (all temperatures are the monthly averages of the corresponding daily values, in 2 m height above ground, in °C); total precipitation in mm—Pr, total sunshine duration in hours—SD, mean monthly soil temperature in 5 cm depth under uncovered typical soil of location in °C—ST, and soil moisture under grass and sandy loam in percent plant useable water—SM. The dataset version for Tmean, Tmin, Tmax, Pr, and SD was v1.0; for ST and SM the dataset version was 0. × . The spatial resolution was 1 × 1 km2.The data acquisition was performed with the Selenium package. The processing was based on the geopandas package26 using a geospatial vector layer for the district boundaries of Germany32. Each grid was processed to obtain the average value of the parameter over each district. We first used the function within to define a mask based on the grid centers contained in the district; we then applied this mask to the grid. In this method, called “central point rasterizing”33, each rectangle of the grid was assigned to a single district, the one that contained its center. The typical processing error was estimated to be about 1%, which agrees with the rasterizing error reported by Bregt et al.33; we consider that most likely this error is significantly less than the uncertainties of the grids themselves, caused by calculation, interpolation, and erroneous or missing observations.Data structureOur analysis was performed at the district level based on the annual infections, acquired by aggregating the weekly cases. From each monthly weather parameter, we created 24 records, for all months of the two previous years. Each observation in our dataset characterized one district in one year. Its target was acquired by transforming the annual incidence, as described in the following section. Each observation comprised all 168 available predictors from the weather parameters (7 parameters × 24 months), thereafter called “variables”. The notation for the naming of the variables follows the format Vx__, where “Vx” can be V1 or V2 that corresponds to one or two years before, respectively;  is the abbreviation of the weather parameter (see previous subsection: “Weather data”); and  is the numerical value of the month, i.e., from 1 to 12.The observations for combined districts retained the label of the rural district. For their infections and populations, we aggregated the individual values, and recalculated the incidence. For their weather variables, we assigned the mean values weighted by the area of each district.Target transformationTo consider the effects that drive the occurrence of high district-relative incidence, we discretized the incidence at the district level. The incidence scaled at its maximum value for each district showed extreme values for minima and maxima. About 49% of all observations were in the range [0, 0.1) and 8% in the range [0.9, 1] (Fig. 5). Therefore, we specifically selected to discretize the scaled incidence with two bins, i.e., to binarize it.Figure 5Histograms of the annual PUUV incidence from 2006 to 2021, scaled to its maximum value for each of the selected districts. Left: Raw incidence. Right: Log-transformed incidence, according to Eq. (6).Full size imageWe first applied a log-transformation to the incidence values34, described in Eq. (6).$${text{Log – incidence}} = log_{10} left( {{text{incidence}} + 1} right)$$
    (6)
    The addition of a positive constant ensured a noninfinite value for zero incidence, with 1 selected so that the log-incidence is nonnegative, and a zero incidence was transformed into a zero log-incidence. This transformation aimed to increase the influence of nonzero incidence values; values that are not pronounced, but still hint at a nonzero infection risk. Its effect is demonstrated in the right plot of Fig. 5, where the positive skewness of the original data is reduced, i.e., low incidence values are spread to higher values, resulting to more uniform bin heights in the range [0.05, 0.95] after the transformation. Formally, in this case the log-transformation achieves a more uniform distribution for the non-extreme incidence values.For the binarization, we performed unsupervised clustering of the log-transformed incidence, separately for each district, applying the function KBinsDiscretizer of the scikit-learn package29. Our selected strategy was the k-means clustering with two bins, because it does not require a pre-defined threshold, and it can operate with the same fixed number of bins for every district, by automatically adjusting the cluster centroids accordingly.Classification methodWe concentrated only on those variable combinations that led to a linear decision boundary for the classification of our selected target. We selected support vector machines (SVM)35 with a linear kernel, because they combine high performance with low model complexity, in that they return the decision boundary as a linear equation of the variables. In addition, SVM is geometrically motivated36 and expected to be less prone to outliers and overfitting than other machine-learning classification algorithms, such as the logistic regression. For the complete modelling process, the regularization parameter C was set to 1, that is the default value in the applied SVC method of the scikit-learn package29, and the weights for both risk classes were also set to 1.Feature selectionOur aim was to use the smallest possible number of weather parameters as variables for a classification model with sufficient performance. To identify the optimal variable combination, we first applied an SVM with a linear kernel for all 2-variable combinations of the monthly weather variables from V2 and V1, i.e., 168 variables (7 weather parameters × 2 years × 12 months). Only for this step, the variables were scaled to their minimum and maximum values, which significantly reduced the processing time. For all the following steps, the scaler was omitted, because the unscaled support vectors were required for the final model. From the total 14,028 models for each unique pair ((frac{168!}{2!cdot left(168-2right)!})), we kept the 100 models with the best F1-score, i.e., of the harmonic mean of sensitivity and precision, and counted the occurrences of each year-month combination in the variables. The best F1-score was 0.752 for the pair (V1_Tmean_9 and V2_Tmax_4); and the best sensitivity was 83% for the pair (V2_Tmax_9 and V1_ST_9).The year-month combinations with more than 10% occurrences were: V1_9 (September of the previous year, with 49% occurrences), V2_9 (September of two years before, with 12%) and V2_4 (April of two years before, with 10%). To avoid sets with highly correlated variables, we formed 3-variable combinations, with exactly one variable from each year-month combination (threefold Cartesian product). From the total 343 models (73 combinations, i.e., 7 weather parameters for 3 year-month combinations), we selected the model with the best sensitivity and at least 70% precision, i.e., the variable set (V2_ST_4, V2_SD_9, and V1_ST_9). We consider that the criteria for this selection are not particularly crucial; and we expect comparable performance for most variable sets with a high F1-score, because the variables for each dimension of the Cartesian product were highly correlated. The eight variable sets with at least 70% precision and at least 80% sensitivity are shown in Supplementary Table 2.The SVM classifier has two hyperparameters: the regularization parameter C and the class weights. By decreasing C, the decision boundary becomes softer and more misclassifications are allowed. On the other hand, increasing the high-risk class weight, the misclassifications of high-risk observations are penalized higher, which is expected to increase the sensitivity and decrease the precision. The simultaneous adjustment of both hyperparameters ensures that the resulting model has the optimal performance with respect to the preferred metric. However, in order to avoid overfitting, we considered redundant a further model optimization with these two hyperparameters. For completeness, we examined SVM models for different values of the hyperparameters and found that the global maximum for the F1-score is in the region of 0.001 for C and 1.5 for the high-risk class weight. Our selected values C = 1 and high-risk class weight equal to 1 give the second best F1-score, which is a local maximum with comparable performance, mostly insensitive to the selection of C from the range [0.2, 5.5].The addition of a fourth variable from V1_6 (June of the previous year) resulted in a model with higher sensitivity but lower precision and specificity (for V1_Pr_6). The highest F1-score was achieved for the quadruple (V2_ST_4, V2_SD_9, V1_ST_9, V1_Pr_6). Because of the increased complexity without significant improvement in the performance, we considered unnecessary a further expansion of our variable triplet. More

  • in

    Integrating multiple plant functional traits to predict ecosystem productivity

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv.3, e1602244 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapin, F. S. III Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann. Bot. 91, 455–463 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chu, C. et al. Does climate directly influence NPP globally? Global Chan. Biol. 22, 12–24 (2016).Article 

    Google Scholar 
    Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Chan. Biol. 24, 184–196 (2018).Article 

    Google Scholar 
    Fang, J., Lutz, J. A., Wang, L., Shugart, H. H. & Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Global Chan. Biol. 26, 6974–6988 (2020).Article 

    Google Scholar 
    Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Global Chan. Biol. 26, 7067–7078 (2020).Article 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. 111, 13697–13702 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).Article 
    PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Fun. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research 52 (eds Samraat P, Guy W, & Anthony I. D) 249–318 (Academic Press, 2015).Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol. Biogeogr. 26, 1357–1373 (2017).Article 

    Google Scholar 
    Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20, 730–740 (2017).Article 
    PubMed 

    Google Scholar 
    Van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).Article 
    PubMed 

    Google Scholar 
    Ali, A., Yan, E.-R., Chang, S. X., Cheng, J.-Y. & Liu, X.-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci. Total Environ. 574, 654–662 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yang, J., Cao, M. & Swenson, N. G. Why Functional Traits Do Not Predict Tree Demographic Rates. Trend Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    Šímová, I. et al. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. J. Ecol. 107, 2278–2290 (2019).Article 

    Google Scholar 
    Li, Y. et al. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol. Lett. 23, 1003–1013 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, N. et al. Ecosystem Traits Linking Functional Traits to Macroecology. Trend. Ecol. Evol. 34, 200–210 (2019).Article 

    Google Scholar 
    Rubio, V. E., Zambrano, J., Iida, Y., Umaña, M. N. & Swenson, N. G. Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. J. Ecol. 109, 1331–1343 (2021).Article 

    Google Scholar 
    Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).Article 
    PubMed 

    Google Scholar 
    Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. Plant growth: the What, the How, and the Why. New Phytol. 232, 25–41 (2021).Article 
    PubMed 

    Google Scholar 
    Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. 112, 2788–2793 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Chan. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Liu, C., Li, Y., Yan, P. & He, N. How to Improve the Predictions of Plant Functional Traits on Ecosystem Functioning? Front. Plant Sci. 12, 622260 (2021).Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. of Sci. 94, 13730–13734 (1997).Article 
    CAS 

    Google Scholar 
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    Monteith, J. L. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B. Biol. Sci. 281, 277–294 (1977).
    Google Scholar 
    Garnier, E. Resource capture, biomass allocation and growth in herbaceous plants. Trend. Ecol. Evol. 6, 126–131 (1991).Article 
    CAS 

    Google Scholar 
    Farnsworth, K. D., Albantakis, L. & Caruso, T. Unifying concepts of biological function from molecules to ecosystems. Oikos 126, 1367–1376 (2017).Article 

    Google Scholar 
    Zhang, R. et al. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta-analysis. Global Ecol. Biogeogr. 31, 155–167 (2022).Article 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).Article 

    Google Scholar 
    Jing, X. et al. The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecol. Biogeogr. 31, 486–500 (2022).Article 

    Google Scholar 
    Jing, X. et al. Above-and belowground complementarity rather than selection drives tree diversity-productivity relationships in European forests. Funct Ecol. 35, 1756–1767 (2021).He, N. et al. Predicting ecosystem productivity based on plant community traits. Trend. Plant Sci. 28, 43–53 (2023).Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 1–12 (2022).Article 

    Google Scholar 
    Michaletz, S. T., Kerkhoff, A. J. & Enquist, B. J. Drivers of terrestrial plant production across broad geographical gradients. Global Ecol. Biogeogr. 27, 166–174 (2018).Article 

    Google Scholar 
    Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 20, 565–574 (2006).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).Article 

    Google Scholar 
    McGill, B. J. Matters of Scale. Science 328, 575 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communi. Biol. 3, 1–11 (2020).
    Google Scholar 
    Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl. Acad. Sci. 114, 10160–10165 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).Article 
    PubMed 

    Google Scholar 
    Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).Article 
    CAS 

    Google Scholar 
    Zhao, N. et al. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecol. Biogeogr. 25, 359–367 (2016).Article 

    Google Scholar 
    Zhang, J. et al. C: N: P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Dirk Nikolaus, K. et al. Climatologies at high resolution for the earth’s land surface areas. EnviDat. https://doi.org/10.16904/envidat.332 (2021).Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol. Biogeogr. 14, 585–598 (2005).Article 

    Google Scholar 
    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data 4, 170165 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016).Article 

    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Method Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Bürkner, P.-C. Advanced bayesian multilevel modeling with the R Package brms. R J. 10, 395–411 (2018).Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Software 80, 1–28 (2017).Article 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2, 1003 (2019).
    Google Scholar 
    Gabry, J. & Mahr, T. bayesplot: Plotting for Bayesian models. R package version 1 (2017).Mac Nally, R. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659 (2004).Article 

    Google Scholar 
    Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).Article 
    PubMed 

    Google Scholar 
    Yan, P., He, N., Yu, K., Xu, L. & Van Meerbeek, K. Integrating multiple functional traits to predict ecosystem productivity. figshare (2023). Dataset. https://doi.org/10.6084/m9.figshare.22081634.v1. More

  • in

    Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment

    Acropora Biological Review Team. Atlantic Acropora Status Review: Report to National Marine Fisheries Service (Acropora Biological Review Team, 2005).
    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean Corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jackson, E. J., Donovan, M., Cramer, K. & Lam, V. Status and Trends of Caribbean Coral Reefs: 1970–2012 306 (International Union for the Conservation of Nature, 2012).
    Google Scholar 
    Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).ADS 

    Google Scholar 
    Lirman, D. et al. Propagation of the threatened staghorn coral Acropora cervicornis: Methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 29, 729–735 (2010).ADS 

    Google Scholar 
    Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. J. Nat. Conserv. 24, 17–23 (2015).
    Google Scholar 
    Young, C., Schopmeyer, S. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).
    Google Scholar 
    Carne, L., Kaufman, L. & Scavo, K. Measuring success for Caribbean acroporid restoration: key results from ten years of work in southern Belize. In Proc. 13th International Coral Reef Symposium, Honolulu (Abstract No. 27909) (2016).Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaver, E. C. et al. A roadmap to integrating resilience into the practice of coral reef restoration. Glob. Change Biol. 28, 4751–4764 (2022).CAS 

    Google Scholar 
    DeFilippo, L. B. et al. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. Ecol. Appl. 32, e2650 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: A 3-decade study. Mar. Biol. 166, 108 (2019).
    Google Scholar 
    Montenero, K. A. Florida Keys Integrated Ecosystem Assessment Ecosystem Status Report. https://doi.org/10.25923/F7CE-ST38.Palacio-Castro, A. M., Dennison, C. E., Rosales, S. M. & Baker, A. C. Variation in susceptibility among three Caribbean coral species and their algal symbionts indicates the threatened staghorn coral, Acropora cervicornis, is particularly susceptible to elevated nutrients and heat stress. Coral Reefs 40, 1601–1613 (2021).
    Google Scholar 
    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).ADS 

    Google Scholar 
    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2012).ADS 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).PubMed 

    Google Scholar 
    Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).PubMed 

    Google Scholar 
    Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems 23, 798–811 (2020).CAS 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).CAS 
    PubMed 

    Google Scholar 
    Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).
    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).CAS 
    PubMed 

    Google Scholar 
    Krediet, C. J., Ritchie, K. B., Paul, V. J. & Teplitski, M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280, 20122328 (2013).
    Google Scholar 
    Mao-Jones, J., Ritchie, K. B., Jones, L. E. & Ellner, S. P. How microbial community composition regulates coral disease development. PLoS Biol. 8, e1000345 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).CAS 
    PubMed 

    Google Scholar 
    West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).
    Google Scholar 
    Ritchie, K. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).ADS 
    CAS 

    Google Scholar 
    Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 

    Google Scholar 
    Klinges, G., Maher, R. L., Thurber, R. L. V. & Muller, E. M. Parasitic ‘Candidatus aquarickettsia rohweri’ is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ. Microbiol. 22, 5341–5355 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, S. D. et al. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida’s Coral Reef. PeerJ 10, e13574 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Klinges, J. G., Patel, S. H., Duke, W. C., Muller, E. M. & Vega Thurber, R. L. Phosphate enrichment induces increased dominance of the parasite Aquarickettsia in the coral Acropora cervicornis. FEMS Microbiol. Ecol. 98, 013 (2022).
    Google Scholar 
    Rosales, S. M. et al. Microbiome differences in disease-resistant vs susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gignoux-Wolfsohn, S., Precht, W., Peters, E., Gintert, B. & Kaufman, L. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. Dis. Aquat. Org. 137, 217–237 (2020).
    Google Scholar 
    Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Aguirre, E. G., Million, W. C., Bartels, E., Krediet, C. J. & Kenkel, C. D. Host-specific epibiomes of distinct Acropora cervicornis genotypes persist after field transplantation. Coral Reefs. https://doi.org/10.1007/s00338-022-02218-x (2022).Article 

    Google Scholar 
    Shaver, E. C. et al. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral. Ecology 98, 830–839 (2017).PubMed 

    Google Scholar 
    Muller, E. M., Bartels, E. & Baums, I. B. Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife 7, e35066 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. W. et al. Genotypic variation in disease susceptibility among cultured stocks of Elkhorn and Staghorn corals. PeerJ 7, e6751 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sunagawa, S., Woodley, C. M. & Medina, M. Threatened corals provide underexplored microbial habitats. PLoS ONE 5, e9554 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pantos, O. et al. The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ. Microbiol. 5, 370–382 (2003).CAS 
    PubMed 

    Google Scholar 
    Sheu, S.-Y., Liu, L.-P., Tang, S.-L. & Chen, W.-M. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens. Int. J. Syst. Evol. Microbiol. 66, 5039–5045 (2016).CAS 
    PubMed 

    Google Scholar 
    Nakagawa, T., Iino, T., Suzuki, K.-I. & Harayama, S. Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay. Int. J. Syst. Evol. Microbiol. 56, 2639–2645 (2006).CAS 
    PubMed 

    Google Scholar 
    Maher, R. L. et al. Coral microbiomes demonstrate flexibility and resilience through a reduction in community diversity following a thermal stress event. Front. Ecol. Evol. 8, 1 (2020).ADS 

    Google Scholar 
    Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).CAS 
    PubMed 

    Google Scholar 
    Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDevitt-Irwin, J. M. et al. Responses of coral-associated bacterial communities to local and global stressors. Front. Mar. Sci. 4, 262 (2017).
    Google Scholar 
    Klinges, J. G. et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 13, 2938–2953 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B 236, 311–324 (1989).ADS 

    Google Scholar 
    Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front. Microbiol. 8, 682 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Waite, D. W. et al. Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front. Microbiol. 9, 772 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Rosales, S. M. et al. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front. Mar. Sci. 8, 776859 (2022).
    Google Scholar 
    Ricci, F. et al. Beneath the surface: Community assembly and functions of the coral skeleton microbiome. Microbiome 7, 159 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, S.-H. et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7, 3 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Cai, L. et al. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci. Rep. 7, 9320 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: Consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).ADS 

    Google Scholar 
    Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 296–307 (2020).ADS 
    CAS 

    Google Scholar 
    Miura, N. et al. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar. Biotechnol. 21, 1–8 (2019).CAS 

    Google Scholar 
    Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
    Google Scholar 
    Ezzat, L. et al. Thermal stress interacts with surgeonfish feces to increase coral susceptibility to dysbiosis and reduce tissue regeneration. Front. Microbiol. 12, 620458 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Gajigan, A. P., Diaz, L. A. & Conaco, C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiol. Open 6, e00478 (2017).
    Google Scholar 
    MacKnight, N. J. et al. Microbial dysbiosis reflects disease resistance in diverse coral species. Commun. Biol. 4, 679 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Palacio-Castro, A. M., Rosales, S. M., Dennison, C. E. & Baker, A. C. Microbiome signatures in Acropora cervicornis are associated with genotypic resistance to elevated nutrients and heat stress. Coral Reefs 41, 1389–1403 (2022).
    Google Scholar 
    Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, e3718 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parkinson, J. E. et al. Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Mol. Ecol. 27, 1103–1119 (2018).CAS 
    PubMed 

    Google Scholar 
    Siebeck, U. E., Logan, D. & Marshall, N. J. CoralWatch—A flexible coral bleaching monitoring tool for you and your group. In Proc. 11th Int. Coral Reef Symp. Ft Lauderdale, Florida, 7–11 July, Vol. 1392, 5 (2008).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Messyasz, A., Maher, R. L., Meiling, S. S. & Thurber, R. V. Nutrient enrichment predominantly affects low diversity microbiomes in a marine trophic symbiosis between algal farming fish and corals. Microorganisms 9, 1873 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).
    Google Scholar 
    Lahti, L. & Shetty, S. Microbiome R Package.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2019).Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R Package Version 0.0.1 (2017).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Sand fly population dynamics in areas of American cutaneous leishmaniasis, Municipality of Paraty, Rio de Janeiro, Brazil

    Owing to drastic changes in the environment caused by human interference, wild mammals that are reservoirs of Leishmania have invaded residential areas where species of sand flies with eclectic feeding habits are found, and established a transmission cycle that eventually reaches humans23,24,25. In the study area, it was observed that the largest frequency of specimens over the years was captured in the residential environment, which are represented by residential and peridomicile areas. The lowest frequency was captured in the borders of the forest.The municipality of Paraty, located on the southern coast in the state of Rio de Janeiro, where the study was conducted, has many preserved areas of the Atlantic Forest and its climate is wet with no dry season13, which was confirmed during the three years of the present study, where the relative air humidity stayed high every month. The highest average rainfalls occur in summer and fall (autumn). The average temperature during the hottest months of the year was between approximately 25 °C and 26 °C, with a maximum of 31 °C, and in the coldest months, the temperature averaged between 20 and 21 °C, with a minimum of 16 °C, exhibiting an ideal environment for the activity of sand flies throughout the year.Barretto26 noted that atmospheric conditions, such as relative humidity, rainfall, and temperature directly influence the activity of these sand fly species. Migonemyia migonei and Ny. whitmani had lower activity at temperatures below 15 °C, Pi. fischeri below 10 °C, and Ny. intermedia at temperatures below 9.5 °C. The author also reported that heavy rains prevent sand flies from leaving their shelters; however, this can increase their density within residences, especially for species located next to residential areas. Light rain will not impede their activity, but in these conditions, they are not as frequently observed as they usually are. However, during rain periods, especially in the hot and humid summer period, the density of sand flies increases considerably.In the present study, four key vector species of Leishmania braziliensis Vianna, 1911, the etiologic agent of tegumentary leishmaniasis, were captured throughout the year. The most frequent was Ny. intermedia, followed by Pi. fischeri, Mg. migonei, and Ny. whitmani. Carvalho et al.27, in the State of Pernambuco, northeast region of Brazil, reported having found Mg. migonei infected with Leishmania infantum Nicolle, 1908, the etiologic agent of visceral leishmaniasis.According to Forattini28, there are sand fly species that are essentially resistant to climate changes throughout the seasons. Several are found, albeit in lower densities, during the cooler, dry months, while others disappear during this period. However, other factors also influence the incidence of sand flies in the same location, even under the same temperature and humidity conditions. Thus, to study the seasonality of sand fly species, it is important to perform systematized captures, for a period exceeding two years, to minimize the effects of these additional factors, for example, atypical years with a longer period of drought or humidity, more or less high temperatures, months with higher than expected rainfall or control measures applied by the municipality.In studies carried out in the Northeast region of Brazil, in a study carried out in the municipality of Codó, in the State of Maranhão, an inversely proportional correlation of the captured sandflies was observed in relation to relative air humidity, a direct correlation in relation to temperature and precipitation, a correlation directly proportional29. In the municipality of Sobral, State of Ceará, in the first year of the study, observed a negative correlation with temperature and a high positive correlation with humidity and precipitation, however, in the following year, there was no correlation between the density of captured sandflies and climatic variables30. The same occurred in this study, in the municipality of Paraty, in relation to relative air humidity and precipitation, but in relation to temperature, a strong positive correlation was obtained.In the studied area Ny. intermedia occurred in greater numbers in every month of the year, except in June and July, when it was less frequent than Pi. fischeri. The same pattern was observed for these two species, i.e., a gradual increase in abundance beginning in August, peak abundance in summer (January), followed by a decrease until winter (July). Brito et al.31, when researching the northern coast of the state of São Paulo, municipality of São Sebastião, noted the opposite, that Ny. intermedia had the highest abundance peaks during the driest and coldest period of the year, i.e., from May to August. However, the authors also emphasized the presence of this species throughout the year, mainly in the residential environment, and they stressed the importance of seasonal analyses for periods longer than a year.In the São Francisco River region, in the state of Minas Gerais, on the banks of the Rio Velhas, Saraiva et al.32, in a study over a two-year period, observed a different pattern. In the first year of study, after the rainy season from February to May, with high humidity and high temperature, Ny. intermedia was captured in greater numbers than during other months of the year. In the second year, peaks occurred in October, March, and June, with the highest peak in March, when there was elevated rainfall, high humidity, and high temperatures.In the state of Rio de Janeiro, in Serra dos Órgãos National Park, Aguiar and Soucasaux33 analyzed the monthly frequency in human bait and observed that Ny. fischeri was captured in every month except November. In the hot and humid period, from December to February, there was a gradual increase in the average abundances of this species, and then a slight decrease began in March and continued into April. During the cold and dry period of May and June, abundances started to increase, then decreased in July, and peaked in August. During August, Pi. fischeri was the dominant species of wildlife, and in September, abundances began to decline again.Mayo et al.34, studying the southeastern region of the state of São Paulo, observed that there was a seasonal trend in the abundance for species Mg. migonei, Ny. whitmani, Ny. intermedia, and Pi. fischeri, with abundance peaks recorded during the cooler, drier season (April to September) and low abundances during the warmer, wetter season (October to March). The authors revealed that the occurrence of intense fires in the study area in October, which caused severe environmental change, possibly interfered with the population dynamics of the species. In the present study, the opposite trend of seasonality was shown for the four key species, Ny. intermedia, Pi. fischeri, Mg. migonei, and Ny. whitmani, then what was observed by the above authors, the highest abundances occurred during the hottest period, increasing gradually until a maximum peak in January, and lowest abundances were seen during the coldest period, in July for the first three species, and in June for Ny. whitmani.In the neighboring municipality of this study in Angra dos Reis, in the Ilha Grande, Carvalho et al.35 reinforced the epidemiological importance of Ny. intermedia in the State of Rio de Janeiro and highlighted the role of Mg. migonei in the transmission of cutaneous leishmaniasis with its high rate of infection natural by Leishmania. Still in the same region, along the southern coast of the State of Rio de Janeiro, Aguiar et al.8 conducted systematic catches for two years, with the aim being to analyze the monthly frequency of sand flies in residential and forest environments. The authors discovered results like what occurred in this study in Paraty, that the four most important species caught, Ny. intermedia, Pi. fischeri, Mg. migonei, and Ny. whitmani, had higher average numbers during the hot and humid period of the year, i.e., between October and January, with a maximum peak in December for Ny. intermedia and Pi. fischeri, and January for Mg. migonei. The prevalence of Ny. intermedia was evident in every month, both inside the residence and around the residential area. In the colder and drier season, from May to August, there was a balance with Pi. fischeri, but from August, inside the residence, and from September, around the residence, the frequency increased until it reached its peak in December. There was a gradual increase in the frequency of this species in the warmer and wetter period (between October and January), with average temperatures ranging from 26 to 29 °C and relative air humidity between 84 and 87%.Condino et al.36, when studying the southwestern region of the state of São Paulo, observed that Ny. intermedia and Ny. whitmani had the highest frequencies during the months of May, September, and December with temperatures ranging from 21 to 25.7 °C and rainfall between 66.7 and 195.1 mm. In June, the lowest frequency of sand flies was observed, which then increased until a maximum peak in September. Temperature data and rainfall index were not correlated with the density of specimens, especially as the study was carried out over only one year. In this study, the opposite was observed for Ny. intermedia and Ny. whitmani in the month of May, one of the months with the lowest density.In the city of Petrópolis, state of Rio de Janeiro, Souza et al.24 observed a prevalence of Ny. intermedia and Ny. whitmani, with the latter species prevailing around the residence. Migonemyia migonei and Pi. fischeri were also present but to a lesser extent. In the forest, Ny. whitmani was more abundant, followed by Pi. fischeri, while Ny. intermedia was found at lower abundances. However, Ny. intermedia and Pi. fischeri were present during every month of the year. The authors also found a significant correlation between the number of sand flies and environmental changes such as temperature, relative humidity, and rainfall. The same was observed, in this study, in the forest with Ny. intermedia, however, in this environment the number of Pi. fischeri specimens was higher than that of Ny. whitmani.In the north of Espírito Santo, Virgens et al.37 observed that Ny. intermedia was present in almost every month of the study period, with peaks in the warmer and wetter months. The authors highlighted that the low numbers of this species were recorded during and after high rainfall periods, suggesting that heavy rain is unfavorable for the development of immature forms, as breeding sites in altered habitats suffered a greater impact because of extreme weather conditions.In a study carried out by Guimarães et al.38 to observe the competence of Mg. Migonei to Leishmania infantum, concluded that this species is highly susceptible to the development of this parasite and that in addition to its anthropophilia and abundance in areas with an active focus of visceral leishmaniasis, it can act as a vector of this disease in Latin America.In the studied area, Ny. intermedia, one of the main vectors of the etiological agent of tegumentary leishmaniasis in the region2, was present in significant numbers in the home environment throughout all months of the year. The species Pi. fischeri was present over the months in expressive numbers in all types and locations of capture, that is, both in the environment altered by human activity and in the natural environment where leishmaniasis occurs in its natural enzootic cycle. Migonemyia migonei, present throughout the year in the peridomestic environment, showed its association with the dog, where it was prevalent throughout the year in the kennel, being an important vector of the etiological agent of tegumentary leishmaniasis, as well as being suspected in areas of visceral leishmaniasis transmission, where the main vector of this disease is not found. And Ny. whitmani present in the peridomicile, mainly in the hottest months of the year, in addition to the forest and forest margins, it was observed that in this study region the species is emerging through a selective process of adaptation in environments that were negatively affected by the increase of human activity. Thus, despite observing a period of greater frequency of sand flies in the hottest months of the year, a period with high rainfall, the high relative humidity is observed throughout the year, as well as the presence of species of epidemiological importance Ny. intermedia, Pi. fischeri, Mg. migonei and Ny. whitmani, who are involved in the propagation of the etiological agent of tegumentary leishmaniasis to humans and animals, causing greater contact between the region’s inhabitants with these dipterans and thus, a greater risk of contracting the disease. More