Priority effects in microbiome assembly
1.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Naturalist 111, 1119–1144 (1977).Article
Google Scholar
2.Shulman, M. J. et al. Priority effects in the recruitment of juvenile coral reef fishes. Ecology 64, 1508–1513 (1983).Article
Google Scholar
3.Alford, R. A. & Wilbur, H. M. Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66, 1097–1105 (1985).Article
Google Scholar
4.Grman, E. & Suding, K. N. Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor. Ecol. 18, 664–670 (2010).Article
Google Scholar
5.Almany, G. R. Priority effects in coral reef fish communities. Ecology 84, 1920–1935 (2003).Article
Google Scholar
6.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015). This study defines mechanisms by which early-arriving species affect late-arriving species (niche pre-emption and niche modification) and describes how and when they are expected to influence community assembly outcomes.Article
Google Scholar
7.Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed
Article
Google Scholar
8.Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).PubMed
Article
Google Scholar
9.Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).PubMed
PubMed Central
Article
Google Scholar
10.Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).PubMed
Article
Google Scholar
11.Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013). Uncovered the molecular mechanism underlying priority effects between strains of Bacteroides in the mouse gut microbiota.CAS
PubMed
PubMed Central
Article
Google Scholar
12.Martínez, I. et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7, e36521 (2018). Inoculated mice with donor communities at different time points; the mature communities most resembled whichever donor community was inoculated first.PubMed
PubMed Central
Article
Google Scholar
13.Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
14.Cheong, J. Z. A. et al. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME J. https://doi.org/10.1038/s41396-021-00901-5 (2021).Article
PubMed
PubMed Central
Google Scholar
15.Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol. Evol. 3, 1445–1454 (2019). This study experimentally manipulated the assembly sequence of strains in a complex synthetic community in the plant phyllosphere.PubMed
PubMed Central
Article
Google Scholar
17.Halliday, F. W. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat. Ecol. Evol. 4, 1510–1521 (2020).PubMed
Article
Google Scholar
18.Peay, K. G., Belisle, M. & Fukami, T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Biol. Sci. 279, 749–758 (2012).PubMed
Google Scholar
19.Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015). Showed that priority effects between commensal and pathogenic bacteria in the plant rhizosphere can be predicted based on overlap in resource consumption in vitro.CAS
PubMed
Article
Google Scholar
20.Kennedy, P. G., Peay, K. G. & Bruns, T. D. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 90, 2098–2107 (2009).PubMed
Article
Google Scholar
21.Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).PubMed
Article
Google Scholar
22.Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535 (2019).CAS
PubMed
Article
Google Scholar
23.Svoboda, P., Lindström, E. S., Ahmed Osman, O. & Langenheder, S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 12, 644–646 (2018). Demonstrated that the strength of priority effects in an aquatic community was a product of how well each community was adapted to the habitat and the amount of time between their dispersal events.PubMed
Article
Google Scholar
24.Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS
PubMed
Article
Google Scholar
25.Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Long, Z. T. & Karel, I. Resource specialization determines whether history influences community structure. Oikos 96, 62–69 (2002).Article
Google Scholar
27.Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93, 1164–1172 (2012).PubMed
Article
Google Scholar
28.Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5, e00682–13 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
29.Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl Med. 8, 343ra81 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
30.Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).CAS
Article
Google Scholar
31.Tucker, C. M. & Fukami, T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc. Biol. Sci. 281, 20132637 (2014).PubMed
PubMed Central
Google Scholar
32.Poza-Carrion, C., Suslow, T. & Lindow, S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 103, 341–351 (2013).PubMed
Article
Google Scholar
33.Monier, J.-M. & Lindow, S. E. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49, 343–352 (2005).PubMed
Article
Google Scholar
34.Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Potnis, N. et al. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80, 3173–3180 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Zhang, Y., Kastman, E. K., Guasto, J. S. & Wolfe, B. E. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat. Commun. 9, 336 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
37.Chang, P. V. Chemical mechanisms of colonization resistance by the gut microbial metabolome. ACS Chem. Biol. 15, 1119–1126 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Borton, M. A. et al. Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome 5, 47 (2017).PubMed
PubMed Central
Article
Google Scholar
39.Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Foster, J. L. & Fogleman, J. C. Bacterial succession in necrotic tissue of agria cactus (Stenocereus gummosus). Appl. Environ. Microbiol. 60, 619–625 (1994).CAS
PubMed
PubMed Central
Article
Google Scholar
41.O’Keeffe, K. R., Halliday, F. W., Jones, C. D., Carbone, I. & Mitchell, C. E. Parasites, niche modification, and the host microbiome: a field survey of multiple parasites. Mol. Ecol. 30, 2404–2416 (2021).PubMed
Article
Google Scholar
42.Joo, J. et al. Bacteriophage-mediated competition in Bordetella bacteria. Proc. Biol. Sci. 273, 1843–1848 (2006).PubMed
PubMed Central
Google Scholar
43.Fernández, L., Rodríguez, A. & García, P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 12, 1171–1179 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
44.Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Veiga, P. et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl Acad. Sci. USA 107, 18132–18137 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Topisirovic, L. et al. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int. J. Food Microbiol. 112, 230–235 (2006).CAS
PubMed
Article
Google Scholar
47.De Vuyst, L. & Leroy, F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194–199 (2007).PubMed
Article
CAS
Google Scholar
48.ten Cate, J. M. Biofilms, a new approach to the microbiology of dental plaque. Odontology 94, 1–9 (2006).PubMed
Article
Google Scholar
49.Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13, e1005364 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
50.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed
Article
Google Scholar
52.The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).PubMed Central
Article
CAS
PubMed
Google Scholar
53.Zhang, Q.-G. & Zhang, D.-Y. Colonization sequence influences selection and complementarity effects on biomass production in experimental algal microcosms. Oikos 116, 1748–1758 (2007).Article
Google Scholar
54.Dickie, I. A., Fukami, T., Wilkie, J. P., Allen, R. B. & Buchanan, P. K. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol. Lett. 15, 133–141 (2012).PubMed
Article
Google Scholar
55.Bittleston, L. S., Gralka, M., Leventhal, G. E., Mizrahi, I. & Cordero, O. X. Context-dependent dynamics lead to the assembly of functionally distinct microbial communities. Nat. Commun. 11, 1440 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Boyle, J. A., Simonsen, A. K., Frederickson, M. E. & Stinchcombe, J. R. Priority effects alter interaction outcomes in a legume-rhizobium mutualism. Proc. Biol. Sci. 288, 20202753 (2021).PubMed
PubMed Central
Google Scholar
57.Fukami, T. & Morin, P. J. Productivity–biodiversity relationships depend on the history of community assembly. Nature 424, 423–426 (2003).CAS
PubMed
Article
Google Scholar
58.Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005).CAS
PubMed
Article
Google Scholar
59.Wagg, C., Schlaeppi, K., Banerjee, S., Juramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
60.Rummens, K., De Meester, L. & Souffreau, C. Inoculation history affects community composition in experimental freshwater bacterioplankton communities. Environ. Microbiol. 20, 1120–1133 (2018).PubMed
Article
Google Scholar
61.Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).PubMed
PubMed Central
Article
Google Scholar
62.Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
63.D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
64.Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016). This study identified features of the resident microbiome (bacterial taxa and genes) that predicted variation in the persistence of a probiotic among subjects in a clinical trial.PubMed
Article
CAS
Google Scholar
65.Christian, N., Herre, E. A., Mejia, L. C. & Clay, K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc. Biol. Sci. 284, 20170641 (2017).PubMed
PubMed Central
Google Scholar
66.Alavi, S. et al. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181, 1533–1546 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Hiscox, J. et al. Priority effects during fungal community establishment in beech wood. ISME J. 9, 2246–2260 (2015).PubMed
PubMed Central
Article
Google Scholar
68.Losos, J. B. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).CAS
PubMed
Article
Google Scholar
69.Glitzenstein, J. S., Harcombe, P. A. & Streng, D. R. Disturbance, succession, and maintenance of species diversity in an east texas forest. Ecol. Monogr. 56, 243–258 (1986).Article
Google Scholar
70.Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).PubMed
PubMed Central
Article
Google Scholar
71.Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 852 (2015).PubMed
Article
CAS
Google Scholar
72.Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
73.Chappell, C. R. & Fukami, T. Nectar yeasts: a natural microcosm for ecology. Yeast 35, 417–423 (2018).CAS
PubMed
Article
Google Scholar
74.Loeuille, N. & Leibold, M. A. Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. Am. Nat. 171, 788–799 (2008).PubMed
Article
Google Scholar
75.Vallespir Lowery, N. & Ursell, T. Structured environments fundamentally alter dynamics and stability of ecological communities. Proc. Natl Acad. Sci. USA 116, 379–388 (2019).PubMed
Article
CAS
Google Scholar
76.Wittmann, M. J. & Fukami, T. Eco-evolutionary buffering: rapid evolution facilitates regional species coexistence despite local priority effects. Am. Nat. 191, E171–E184 (2018).PubMed
Article
Google Scholar
77.Eitam, A., Blaustein, L. & Mangel, M. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146, 36–42 (2005).PubMed
Article
Google Scholar
78.Woody, S. T., Ives, A. R., Nordheim, E. V. & Andrews, J. H. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. Ecology 88, 1513–1524 (2007).PubMed
Article
Google Scholar
79.Wein, T. et al. Carrying capacity and colonization dynamics of Curvibacter in the hydra host habitat. Front. Microbiol. 9, 443 (2018).PubMed
PubMed Central
Article
Google Scholar
80.Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).CAS
PubMed
Article
Google Scholar
81.Tewksbury, J. J. & Lloyd, J. D. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127, 425–434 (2001).PubMed
Article
Google Scholar
82.Monier, J.-M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl Acad. Sci. USA 100, 15977–15982 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
83.LaSarre, B., McCully, A. L., Lennon, J. T. & McKinlay, J. B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 11, 337–348 (2017).CAS
PubMed
Article
Google Scholar
84.McCully, A. L., LaSarre, B. & McKinlay, J. B. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism. Environ. Microbiol. 19, 3538–3550 (2017).CAS
PubMed
Article
Google Scholar
85.Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).PubMed
Article
Google Scholar
86.Fürst, U. et al. Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nat. Plants 6, 22–27 (2020).PubMed
Article
CAS
Google Scholar
87.Lu, P., Bian, G., Pan, X. & Xi, Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl. Trop. Dis. 6, e1754 (2012).PubMed
PubMed Central
Article
Google Scholar
88.Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).PubMed
Article
Google Scholar
89.Onoda, Y. et al. Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. J. Ecol. 102, 167–175 (2014).Article
Google Scholar
90.Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).PubMed
Article
Google Scholar
91.Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M., Beardall, J. & Marshall, D. J. Cell size, photosynthesis and the package effect: an artificial selection approach. N. Phytol. 219, 449–461 (2018).CAS
Article
Google Scholar
92.Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
93.Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed
Article
Google Scholar
94.Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69, 5443–5452 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
95.Tecon, R., Ebrahimi, A., Kleyer, H., Erev Levi, S. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA 115, 9791–9796 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
96.van der Wal, A., Tecon, R., Kreft, J.-U., Mooij, W. M. & Leveau, J. H. J. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PLoS ONE 8, e75633 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
97.Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 10, 1413–1423 (2016).PubMed
Article
Google Scholar
98.Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
99.Hol, F. J. H., Galajda, P., Woolthuis, R. G., Dekker, C. & Keymer, J. E. The idiosyncrasy of spatial structure in bacterial competition. BMC Res. Notes 8, 245 (2015).PubMed
PubMed Central
Article
Google Scholar
100.Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).PubMed
Article
Google Scholar
101.Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 12, 843–850 (2019).CAS
PubMed
Article
Google Scholar
102.Morella, N. M., Zhang, X. & Koskella, B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 3, 177–190 (2019).Article
Google Scholar
103.Scharschmidt, T. C. et al. A wave of regulatory t cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Sadd, B. M., Kleinlogel, Y., Schmid-Hempel, R. & Schmid-Hempel, P. Trans-generational immune priming in a social insect. Biol. Lett. 1, 386–388 (2005).PubMed
PubMed Central
Article
Google Scholar
105.Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00002-17 (2017).Article
PubMed
PubMed Central
Google Scholar
106.Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).PubMed
Article
Google Scholar
107.Meadow, J. F., Bateman, A. C., Herkert, K. M., O’Connor, T. K. & Green, J. L. Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1, e53 (2013).PubMed
PubMed Central
Article
Google Scholar
108.Vannette, R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51, 363–386 (2020).Article
Google Scholar
109.Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
110.Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
111.Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
112.Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
113.Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).PubMed
PubMed Central
Article
Google Scholar
114.Braga, L. P. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8, 52 (2020).PubMed
PubMed Central
Article
Google Scholar
115.Rao, C. et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591, 633–638 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
116.Schluter, D., Price, T. D. & Grant, P. R. Ecological character displacement in Darwin’s finches. Science 227, 1056–1059 (1985).CAS
PubMed
Article
Google Scholar
117.Zee, P. C. & Fukami, T. Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc. R. Soc. Lond. B Biol. Sci. 285, 20171722 (2018).
Google Scholar
118.Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
119.Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 (2018).CAS
PubMed
Article
Google Scholar
120.Urban, M. C. & De Meester, L. Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc. R. Soc. Lond. B Biol. Sci. 276, 4129–4138 (2009).
Google Scholar
121.De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016). This study describes how evolutionary changes in early-arriving strains or species can limit colonization by later-arriving strains or species.PubMed
Article
Google Scholar
122.Madi, N., Vos, M., Murall, C. L., Legendre, P. & Shapiro, B. J. Does diversity beget diversity in microbiomes? eLife 9, e58999 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
123.Castledine, M., Padfield, D. & Buckling, A. Experimental (co)evolution in a multi-species microbial community results in local maladaptation. Ecol. Lett. 23, 1673–1681 (2020).PubMed
Article
Google Scholar
124.von Gillhaussen, P. et al. Priority effects of time of arrival of plant functional groups override sowing interval or density effects: a grassland experiment. PLoS ONE 9, e86906 (2014).Article
CAS
Google Scholar
125.Ferrero, A. F. Effect of compaction simulating cattle trampling on soil physical characteristics in woodland. Soil. Tillage Res. 19, 319–329 (1991).Article
Google Scholar
126.Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80, 443–454 (1999).Article
Google Scholar
127.Eng, T. et al. Iron supplementation eliminates antagonistic interactions between root-associated bacteria. Front. Microbiol. 11, 1742 (2020).PubMed
PubMed Central
Article
Google Scholar
128.Gong, B.-Q. et al. Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host Microbe 26, 810–822 (2019).CAS
PubMed
Article
Google Scholar
129.Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
130.Lindemann, J. Competition between ice nucleation-active wild type and ice nucleation-deficient deletion mutant strains of Pseudomonas syringae and P. fluorescens biovar I and biological control of frost injury on strawberry blossoms. Phytopathology 77, 882 (1987). This study showed that the effects of delivery mode on the assembly of the cow rumen microbiome extend beyond initial exposure to different microbiota and they continue to affect bacterial species that arrive throughout the first few years of life.Article
Google Scholar
131.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nat. Commun. 10, 512 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
132.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
133.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
134.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS
PubMed
Article
Google Scholar
135.O’Hanlon, D. E., Moench, T. R. & Cone, R. A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8, e80074 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
136.Pantel, J. H., Duvivier, C. & Meester, L. D. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18, 992–1000 (2015).PubMed
Article
Google Scholar
137.Fukami, T., Beaumont, H. J. E., Zhang, X.-X. & Rainey, P. B. Immigration history controls diversification in experimental adaptive radiation. Nature 446, 436–439 (2007).CAS
PubMed
Article
Google Scholar
138.Rigby, M. C., Hechinger, R. F. & Stevens, L. Why should parasite resistance be costly? Trends Parasitol. 18, 116–120 (2002).PubMed
Article
Google Scholar
139.Koskella, B. Phage-mediated selection on microbiota of a long-lived host. Curr. Biol. 23, 1256–1260 (2013).CAS
PubMed
Article
Google Scholar More