Predation by avian predators may have initiated the evolution of myrmecomorph spiders
1.McIver, D. J. & Stonedahl, G. Myrmecomorphy: Morphological and behavioral mimicry of ants. Annual Rev. Entomol. 38, 351–377. https://doi.org/10.1146/annurev.en.38.010193.002031 (1993).Article
Google Scholar
2.Cushing, P. E. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche 2012, 151989. https://doi.org/10.1155/2012/151989 (2012).Article
Google Scholar
3.Jackson, R. R., Nelson, X. J. & Salm, K. The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. N. Z. J. Zool. 35, 225–235. https://doi.org/10.1080/03014220809510118 (2008).Article
Google Scholar
4.Nelson, J. X., Jackson, R. R., Li, D., Barrion, T. A. & Edwards, B. G. Innate aversion to ants (Hymenoptera: Formicidae) and ant mimics: Experimental findings from mantises (Mantodea). Biol. J. Linnean Soc. 88, 23–32. https://doi.org/10.1111/j.1095-8312.2006.00598.x (2006).Article
Google Scholar
5.Pekár, S. & Jarab, M. Life-history constraints in inaccurate Batesian myrmecomorphic spiders (Araneae: Corinnidae, Gnaphosidae). Eur. J. Entomol. 108, 255–260. https://doi.org/10.14411/eje.2011.034 (2011).Article
Google Scholar
6.Pekár, S. & Jarab, M. Assessment of color and behavioral resemblance to models by inaccurate myrmecomorphic spiders (Araneae). Invertebr. Biol. 130, 83–90. https://doi.org/10.1111/j.1744-7410.2010.00217.x (2011).Article
Google Scholar
7.Pekár, S. & Král, J. Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): How Zodarion deceives ants. Biol. J. Linnean Soc. 75, 517–532. https://doi.org/10.1046/j.1095-8312.2002.00043.x (2002).Article
Google Scholar
8.Hölldobler, B. Communication between ants and their guests. Sci. Am. 224, 86–95 (1971).Article
Google Scholar
9.Jackson, R. R. & Wilcox, R. S. Aggressive mimicry, prey-specific predatory behaviour and predator recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav. Ecol. Sociobiol. 26, 111–119. https://doi.org/10.1007/BF00171580 (1990).Article
Google Scholar
10.Hölldobler, B. Host finding by odor in the myrmecophilic beetle Atemeles pubicollis Bris. (Staphylinidae). Science 166, 757–758. https://doi.org/10.1126/science.166.3906.757 (1969).ADS
Article
PubMed
Google Scholar
11.Elgar, A. M. & Allan, A. R. Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: Is it colony-specific?. J. Ethol. 24, 239–246. https://doi.org/10.1007/s10164-005-0188-9 (2006).Article
Google Scholar
12.von Beeren, C., Hashim, R. & Witte, V. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J. Chem. Ecol. 38, 262–271. https://doi.org/10.1007/s10886-012-0083-0 (2012).CAS
Article
Google Scholar
13.Nelson, X. J. & Jackson, R. R. Vision-based innate aversion to ants and ant mimics. Behav. Ecol. 17, 676–681. https://doi.org/10.1093/beheco/ark017 (2006).Article
Google Scholar
14.Edmunds, M. Does mimicry of ants reduce predation by wasps on salticid spiders?. Mem. Queensl. Mus. 33, 23–32 (1993).
Google Scholar
15.Huang, J. N., Cheng, R. C., Li, D. & Tso, I. M. Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proc. R. Soc. B 278, 1356–1364. https://doi.org/10.1098/rspb.2010.1896 (2011).Article
PubMed
Google Scholar
16.Lindström, L. Experimental approaches to studying the initial evolution of conspicuous aposematic signalling. Evol. Ecol. 13, 605–618. https://doi.org/10.1023/A:1011004129607 (1999).Article
Google Scholar
17.Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).
Google Scholar
18.Veselý, P. & Fuchs, R. Newly emerged Batesian mimicry protects only unfamiliar prey. Evol. Ecol. 23, 919–929. https://doi.org/10.1007/s10682-008-9281-1 (2009).Article
Google Scholar
19.Nelson, X. J. & Jackson, R. R. Collective Batesian mimicry of ant groups by aggregating spiders. Anim. Behav. 78, 123–129. https://doi.org/10.1016/j.anbehav.2009.04.005 (2009).Article
Google Scholar
20.Cramp, S. & Brooks, D. J. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Warbles Vol. VI (Oxford University Press, 1992).
Google Scholar
21.Cramp, S. & Perrins, C. M. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Flycatchers to Shrikes Vol. VII (Oxford University Press, 1993).
Google Scholar
22.Cramp, S. & Simmons, K. E. L. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Terns to woodpeckers Vol. IV (Oxford University Press, 1985).
Google Scholar
23.Cramp, S., Perrins, C. M. & Brooks, D. J. Handbook of the birds of Europe, the Middle East, and North Africa: The birds of the Western Palearctic. Crows to finches Vol. VIII (Oxford University Press, 1994).
Google Scholar
24.Veselý, P., Luhanová, D., Prášková, M. & Fuchs, R. Generalization of mimics imperfect in colour patterns: The point of view of wild avian predators. Ethology 119, 138–145. https://doi.org/10.1111/j.1095-8312.2010.01463.x (2013).Article
Google Scholar
25.Průchová, A., Nedvěd, O., Veselý, P., Ernestová, B. & Fuchs, R. Visual warning signals of the ladybird Harmonia axyridis: The avian predators’ point of view. Entomol. Exp. Appl. 151, 128–134. https://doi.org/10.1111/eea.12176 (2014).Article
Google Scholar
26.Kevan, P. G., Chittka, L. & Dyer, A. G. Limits to the salience of ultraviolet: Lessons from colour vision in bees and birds. J. Exp. Biol. 204, 2571–2580 (2001).CAS
Article
Google Scholar
27.Pekár, S., Petráková, L., Bulbert, M. W., Whiting, M. J. & Herberstein, M. E. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. Elife 6, e22089. https://doi.org/10.7554/eLife.22089 (2017).Article
PubMed
PubMed Central
Google Scholar
28.Uma, D., Durkee, C., Herzner, G. & Weiss, M. Double deception: Ant-mimicking spiders elude both visually-and chemically-oriented predators. PLoS ONE 8, e79660. https://doi.org/10.1371/journal.pone.0079660 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
29.Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries. Evolution 58, 1294–1302. https://doi.org/10.1111/j.0014-3820.2004.tb01708.x (2004).Article
PubMed
Google Scholar
30.McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. Lond. 203, 485–510. https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).Article
Google Scholar
31.Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214. https://doi.org/10.1034/j.1600-048X.2000.310212.x (2000).Article
Google Scholar
32.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).Article
Google Scholar
33.Svádová, K. et al. Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. Anim. Behav. 77, 327–336. https://doi.org/10.1016/j.anbehav.2008.09.034 (2009).Article
Google Scholar
34.Sendoya, S. F., Freitas, A. V. & Oliveira, P. S. Egg-laying butterflies distinguish predaceous ants by sight. Am. Nat. 174, 134–140. https://doi.org/10.1086/599302 (2009).Article
PubMed
Google Scholar
35.Exnerová, A. et al. Different reactions to aposematic prey in 2 geographically distant populations of great tits. Behav. Ecol. 26, 1361–1370. https://doi.org/10.1093/beheco/arv086 (2015).Article
Google Scholar
36.Harrap, S. & Quinn, D. Chickadees, Tits, Nuthatches & Treecreepers (Princeton University Press, 1995).
Google Scholar
37.Pagani-Núñez, E., Ruiz, Í., Quesada, J., Negro, J. J. & Senar, J. C. The diet of Great Tit Parus major nestlings in a Mediterranean Iberian forest: The important role of spiders. Anim. Biodivers. Conserv. 34, 355–361 (2011).
Google Scholar
38.Exnerová, A. et al. Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus; Heteroptera). Biol. J. Linnean Soc. 78, 517–525. https://doi.org/10.1046/j.0024-4066.2002.00161.x (2003).Article
Google Scholar
39.Exnerová, A. et al. Importance of colour in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linnean Soc. 88, 143–153. https://doi.org/10.1111/j.1095-8312.2006.00611.x (2006).Article
Google Scholar
40.Cibulková, A., Veselý, P. & Fuchs, R. Importance of conspicuous colours in warning signals: The great tit’s (Parus major) point of view. Evol. Ecol. 28, 427–439. https://doi.org/10.1007/s10682-014-9690-2 (2014).Article
Google Scholar
41.Prokopová, M., Veselý, P., Fuchs, R. & Zrzavý, J. The role of size and colour pattern in protection of developmental stages of the red firebug (Pyrrhocoris apterus) against avian predators. Biol. J. Linnean Soc. 100, 890–898. https://doi.org/10.1111/j.1095-8312.2010.01463.x (2010).Article
Google Scholar
42.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org.43.Yamasaki, T. Studies on taxonomy, biogeography and mimicry of the genus Myrmarachne in Southeast Asia. Acta Arachnol. 64, 49–56 (2015).Article
Google Scholar
44.Nelson, X. J. & Jackson, R. R. How spiders practice aggressive and Batesian mimicry. Curr. Zool. 58, 620–629. https://doi.org/10.1093/czoolo/58.4.620 (2012).Article
Google Scholar More