Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent
1.Kossin, J. P., Knapp, K. R., Olander, T. L. & Velden, C. S. Global increase in major tropical cyclone exceedance probability over the past four decades. Atmos. Planet. Sci. 117, (2020).2.Smith, T. J. et al. Cumulative impacts of hurricanes on florida mangrove ecosystems: sediment deposition, storm surges and land crabs of corcovado national park view project hydrologic response to increased water management capability at the great dismal swamp National Wildl. Wetlands https://doi.org/10.1672/08-40.1 (2009).Article
Google Scholar
3.Kumar, S., Lal, P. & Kumar, A. Turbulence of tropical cyclone ‘Fani’ in the Bay of Bengal and Indian subcontinent. Nat. Hazards 103, 1613–1622 (2020).Article
Google Scholar
4.Jayanta, B. South Bengal ravaged by Cyclone Amphan. DownToEarth (2020).5.Castañeda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U. S. A. 117, 4831–4841 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
6.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).ADS
CAS
Article
Google Scholar
7.Lovelock, C. E. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11, 342–354 (2008).CAS
Article
Google Scholar
8.Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).ADS
Article
Google Scholar
9.Lovelock, C. E., Ruess, R. W. & Feller, I. C. Co2 efflux from cleared mangrove peat. PLoS ONE 6, 1–4 (2011).Article
CAS
Google Scholar
10.FSI. India State of Forest Report, Ministry of Environment, Forest & Climate Change. (2019).11.Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49, 131–146 (2008).
Google Scholar
12.Ragavan, P. et al. A review of the mangrove floristics of India. Taiwania 61, 224–242 (2016).
Google Scholar
13.Blasco, F., Janodet, E. & Bellan, M. F. Natural Hazards and Mangroves in the Bay of Bengal. Source: Journal of Coastal Research (1994).14.Kathiresan, K. & Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 65, 601–606 (2005).ADS
Article
Google Scholar
15.Suresh, H.S., Mangrove area assessment in India: Implications of loss of mangroves. J. Earth Sci. Clim. Change 06, (2015).16.Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).Article
Google Scholar
17.Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. U. S. A. 106, 7357–7360 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
18.Rathore, L. S., Mohapatra, M. & Geetha, B. Collaborative mechanism for tropical cyclone monitoring and prediction over north Indian ocean. in Tropical Cyclone Activity over the North Indian Ocean 3–27 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-40576-6_119.Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9, (2018).20.Silva Pedro, M., Rammer, W. & Seidl, R. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 31, 989–1004 (2016).Article
Google Scholar
21.Matayaya, G., Wuta, M. & Nyamadzawo, G. Effects of different disturbance regimes on grass and herbaceous plant diversity and biomass in Zimbabwean dambo systems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13, 181–190 (2017).Article
Google Scholar
22.Galeano, A., Urrego, L. E., Botero, V. & Bernal, G. Mangrove resilience to climate extreme events in a Colombian Caribbean Island. Wetl. Ecol. Manag. 25, 743–760 (2017).Article
Google Scholar
23.Capdeville, C. et al. Mangrove facies drives resistance and resilience of sediment microbes exposed to anthropic disturbance. Front. Microbiol. 9, 10 (2019).Article
Google Scholar
24.Banerjee, K. et al. High blue carbon stock in mangrove forests of Eastern India. Trop. Ecol. 61, 150–167 (2020).CAS
Article
Google Scholar
25.Murthy, T. V. R. Biophysical characterisation and site suitability analysis for Indian mangroves. (2019).26.Whelan, K. R., Smith, T. J., Anderson, G. H., & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23 (2009).Article
Google Scholar
27.Smoak, J. M., Breithaupt, J. L., Smith, T. J. & Sanders, C. J. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. CATENA 104, 58–66 (2013).CAS
Article
Google Scholar
28.Bala Krishna Prasad, M. Nutrient stoichiometry and eutrophication in Indian mangroves. Environ. Earth Sci. 67, 293–299 (2012).CAS
Article
Google Scholar
29.Reddy, Y. et al. Assessment of bioavailable nitrogen and phosphorus content in the sediments of Indian mangroves. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-13638-7 (2021).Article
Google Scholar
30.Bala Krishna Prasad, M., Ramanathan, A. L., Alongi, D. M. & Kannan, L. Seasonal variations and decadal trends in concentrations of dissolved inorganic nutrients in Pichavaram mangrove waters Southeast India. Bull. Mar. Sci. 79, 287–300 (2006).
Google Scholar
31.Nandy Datta, P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans. India. J. Plant Biol. 44, 213–219 (2001).Article
Google Scholar
32.Ball, M. C. & Critchley, C. Photosynthetic responses to irradiance by the grey mangrove, avicennia marina, grown under different light regimes. Plant Physiol. 70, 1101–1106 (1982).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Cheeseman, J. M. et al. The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynth. Res. 29, 11–22 (1991).CAS
PubMed
PubMed Central
Google Scholar
34.Rajkumar, R., Shaijumon, C. S., Gopakumar, B. & Gopalakrishnan, D. Extreme rainfall and drought events in Tamil Nadu India. Clim. Res. 80, 175–188 (2020).Article
Google Scholar
35.Lakshmi, S., Nivethaa, E. A. K., Ibrahim, S. N. A., Ramachandran, A. & Palanivelu, K. Prediction of future extremes during the Northeast Monsoon in the coastal districts of Tamil Nadu State in India Based on ENSO. Pure Appl. Geophys. https://doi.org/10.1007/s00024-021-02768-1 (2021).Article
Google Scholar
36.Aung, T. T., Mochida, Y. & Than, M. M. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manage. 293, 103–113 (2013).Article
Google Scholar
37.Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island China. Funct. Ecol. 35, 774–786 (2021).Article
Google Scholar
38.Rasquinha, D. N. & Mishra, D. R. Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in India. Estuar. Coast. Shelf Sci. 248, 106974 (2021).Article
Google Scholar
39.Ranjan, R. K., Ramanathan, A. L., Chauhan, R. & Singh, G. Phosphorus fractionation in sediments of the Pichavaram mangrove ecosystem, south-eastern coast of India. Environ. Earth Sci. 62, 1779–1787 (2011).CAS
Article
Google Scholar
40.Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).Article
Google Scholar
41.Prasad, M. B. K., Singh, G. & Ramanathan, A. L. Nutrient biogeochemistry and net ecosystem metabolism in a tropical coastal mangrove ecosystem. Indian J. Geo-Marine Sci. 45, 1499–1511 (2016).
Google Scholar
42.Lovelock, C. E., Friess, D. A. & Krauss, K. W. the vulnerability of Indo-Paci & c mangrove forests to sea-level rise. (2015).43.Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).Article
Google Scholar
44.Banerjee, K., Gatti, R. C. & Mitra, A. Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio 46, 492–499 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Chang. 3, 83–87 (2013).ADS
Article
Google Scholar
46.Eslami-Andargoli, L., Dale, P., Sipe, N. & Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland Australia. Estuar. Coast. Shelf Sci. 85, 292–298 (2009).ADS
Article
Google Scholar
47.Gilman, E., Ellison, J. & Coleman, R. Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ. Monit. Assess. 124, 105–130 (2007).PubMed
Article
PubMed Central
Google Scholar
48.Field, C. D. Impact of expected climate change on mangroves. in Asia-Pacific Symposium on Mangrove Ecosystems 75–81 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-0289-6_1049.Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article
Google Scholar
50.Smith, T. J. & Duke, N. C. Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. J. Biogeogr. 14, 9 (1987).Article
Google Scholar
51.Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clüsener-Godt, M., Adeel, Z. Policy brief: Securing the future of mangroves. (2012).52.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).Article
Google Scholar
53.Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. https://doi.org/10.1073/pnas.120051910954.Barr, J. G., Fuentes, J. D., Engel, V. & Zieman, J. C. Physiological responses of red mangroves to the climate in the Florida Everglades. J. Geophys. Res. Biogeosciences. 114, 1-13 (2009).Article
CAS
Google Scholar
55.Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The international best track archive for climate stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 91, 363–376 (2010).ADS
Article
Google Scholar
56.Tao, J. et al. A comparison between the MODIS product (MOD17A2) and a tide-robust empirical GPP model evaluated in a Georgia Wetland. Remote Sens. 10, 1831 (2018).ADS
Article
Google Scholar
57.Hutley, L. B. et al. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions. Environ. Res. Lett. 8, 045023 (2013).ADS
Article
Google Scholar
58.Sannigrahi, S., Sen, S. & Paul, S. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India. Geophysi. Res. Abstracts 18, (2016). More