Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor
1.Köhler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 341(6147), 759–765 (2013).ADS
PubMed
Article
CAS
Google Scholar
2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418(6898), 671–677 (2002).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
3.Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A. & Siddiqui, Z. H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 110, 194–209 (2017).CAS
PubMed
Article
Google Scholar
4.Monica, R. C. & Cremonini, R. Nanoparticles and higher plants. Caryologia 62(2), 161–165 (2009).Article
Google Scholar
5.Zheng, L., Hong, F., Lu, S. & Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104(1), 83–91 (2005).CAS
PubMed
Article
Google Scholar
6.Lin, D. & Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).CAS
PubMed
Article
Google Scholar
7.Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front. Chem. 3, 64 (2015).PubMed
PubMed Central
Article
Google Scholar
8.Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7(3), 219–242 (2015).CAS
PubMed
Article
Google Scholar
9.Selvarajan, V., Obuobi, S. & Ee, P. L. R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 8, 602 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Lykov, A. et al. Silica Nanoparticles as a Basis for Efficacy of Antimicrobial Drugs. Nanostruct. Antimicrob. Therapy 1, 551–575 (2017).Article
Google Scholar
11.Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007).CAS
Article
Google Scholar
12.Sharma, A., Patni, B., Shankhdhar, D. & Shankhdhar, S. C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 19(1), 11–20 (2013).CAS
PubMed
Article
Google Scholar
13.Kawachi, M. et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol. 50(6), 1156–1170 (2009).CAS
PubMed
Article
Google Scholar
14.Yan, A. & Chen, Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 20(5), 1003 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
15.Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: the mealworm beetle Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed
PubMed Central
Article
Google Scholar
16.Renukadevi, K. P., Saravana, P. S. & Angayarkanni, J. Antimicrobial and antioxidant activity of Chlamydomonas reinhardtii sp. Int. J. Pharm. Sci. Res. 2(6), 1467 (2011).
Google Scholar
17.Jayshree, A., Jayashree, S. & Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 78(5), 575–581 (2016).CAS
Article
Google Scholar
18.Kamble, P., Cheriyamundath, S., Lopus, M. & Sirisha, V. L. Chemical characteristics, antioxidant and anticancer potential of sulfated polysaccharides from Chlamydomonas reinhardtii. J. Appl. Phycol. 30(3), 1641–1653 (2018).CAS
Article
Google Scholar
19.Vishwakarma, J., Parmar, V. & Vavilala, S. L. Nitrate stress-induced bioactive sulfated polysaccharides from Chlamydomonas reinhardtii. Biomed. Res. J. 6(1), 7 (2019).
Google Scholar
20.Burghardt, M., Schreiber, L. & Riederer, M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 46(4), 1593–1602 (1998).CAS
Article
Google Scholar
21.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS
Article
Google Scholar
22.Debnath, N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 84(1), 99–105 (2011).Article
Google Scholar
23.Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1 (2009).PubMed
PubMed Central
Article
Google Scholar
24.Majumder, D. D. et al. Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology. In 2007 International Conference on Computing: Theory and Applications (ICCTA’07), 563–573 (2007).25.Rahman, A. et al. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96(1), 31–38 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
26.Pérez-de-Luque, A. & Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci.: Formerly Pesticide Sci. 65(5), 540–545 (2009).Article
CAS
Google Scholar
27.Chakravarthy, A. K. et al. Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica 6(3), 271–281 (2012).
Google Scholar
28.Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 25(13), 12329–12341 (2018).CAS
Article
Google Scholar
29.Karthiga, P., Rajeshkumar, S. & Annadurai, G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J. Cluster Sci. 29(6), 1233–1241 (2018).CAS
Article
Google Scholar
30.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 72(4), 590 (2012).Article
Google Scholar
31.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F(Col: Bruchidae). J. Entomol. Res. 4(4), 297–305 (2013).
Google Scholar
32.Sabbour, M. M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Novel Appl. Sci. 1(4), 103–108 (2012).
Google Scholar
33.Stadler, T., Buteler, M. & Weaver, D. K. Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci.: Formerly Pesticide Sci. 66(6), 577–579 (2010).CAS
Article
Google Scholar
34.Xu, R. ISO International standards for particle sizing. China Particuol. 2(4), 164–167 (2004).CAS
Article
Google Scholar
35.Lee, Y. S., Kang, M. H., Cho, S. Y. & Jeong, C. S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch. Pharmacal Res. 30(4), 436–443 (2007).CAS
Article
Google Scholar
36.Hussein, H. A. et al. Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour. Bioprocess. 7(1), 1–17 (2020).MathSciNet
Article
Google Scholar
37.Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Servin, A. et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17(2), 1–21 (2015).MathSciNet
CAS
Article
Google Scholar
39.Barik, T. K., Kamaraju, R. & Gowswami, A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol. Res. 111(3), 1075–1083 (2012).PubMed
Article
PubMed Central
Google Scholar
40.Gao, Y. et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 383, 1269 (2020).
Google Scholar
41.Debnath, N., Das, S., Patra, P., Mitra, S. & Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 94(5), 944–951 (2012).CAS
Article
Google Scholar
42.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS
Article
Google Scholar
43.Chang, J. S., Chang, K. L. B., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6), 2064–2068 (2007).ADS
CAS
PubMed
Article
Google Scholar
44.Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60(39), 9781–9792 (2012).CAS
PubMed
Article
Google Scholar
45.Mondal, K. K. & Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62(2), 889–893 (2012).CAS
Article
Google Scholar
46.Norman, D. J. & Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46(3), 426–428 (2011).CAS
Article
Google Scholar
47.Salem, H. F., Kam, E. & Sharaf, M. A. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. Int. J. Drug Deliv. 3(2), 293 (2011).CAS
Google Scholar
48.Lamsa, K. et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1), 26–32 (2011).Article
CAS
Google Scholar
49.Schofield, R. M. S. Metals in cuticular structures. Scorp. Biol. Res. 1, 234–256 (2001).
Google Scholar
50.Oonincx, D. G. A. B. & Van der Poel, A. F. B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 30(1), 9–16 (2011).CAS
PubMed
PubMed Central
Google Scholar
51.Van Broekhoven, S., Oonincx, D. G., Van Huis, A. & Van Loon, J. J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 73, 1–10 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
52.Locke, M. & Nichol, H. Iron economy in insects: transport, metabolism, and storage. Annu. Rev. Entomol. 37(1), 195–215 (1992).CAS
Article
Google Scholar
53.Jones, M. W., de Jonge, M. D., James, S. A. & Burke, R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J. Biol. Inorg. Chem. 20(6), 979–987 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Mir, A. H., Qamar, A., Qadir, I., Naqvi, A. H. & Begum, R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 10(1), 1–14 (2020).Article
CAS
Google Scholar
55.Zhang, X. F., Shen, W. & Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 17(10), 1603 (2016).PubMed Central
Article
CAS
Google Scholar
56.Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett. Appl. Microbiol. 25(4), 279–283 (1997).CAS
PubMed
Article
Google Scholar
57.Matsumura, Y., Yoshikata, K., Kunisaki, S. I. & Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
58.Gupta, A., Maynes, M. & Silver, S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64(12), 5042–5045 (1998).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
59.Lee, J. H. et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10(1), 1–14 (2013).Article
CAS
Google Scholar
60.Vinluan, R. D. III. & Zheng, J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine 10(17), 2781–2794 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K. & Duttaroy, A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 8(1), 53186 (2013).ADS
Article
CAS
Google Scholar
62.Chun, J. P., Choi, J. S. & Ahn, Y. J. Utilization of fruit bags coated with nano-silver for controlling black stain on fruit skin of ‘niitaka’pear (Pyrus pyrifolia). Hortic. Environ. Biotechnol. 51(4), 245–248 (2010).
Google Scholar
63.Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10), 1037–1043 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar More