1.Huang Y, Liu Q, Jia WQ, Yan CR, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
2.Li WF, Wufuer R, Duo J, Wang SZ, Luo YM, Zhang DY, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci Total Environ. 2020;749:141420.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
3.Weithmann N, Moller JN, Loder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018;4:eaap8060.PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
4.Jiang JH, Wang XW, Ren HY, Cao GL, Xie GJ, Xing DF, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ. 2020;746:141378.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
5.Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun. 2020;11:3381.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
6.Roblin B, Ryan M, Vreugdenhil A, Aherne J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ Sci Technol. 2020;54:11100â8.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
7.Xu CY, Zhang BB, Gu CJ, Shen CS, Yin SS, Aamir M, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater. 2020;400:123228.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
8.Machado AAD, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 2018;24:1405â16.ArticleÂ
Google ScholarÂ
9.Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368:1430â1.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
10.Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol. 2016;50:5774â80.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
11.Boots B, Russell CW, Green DS. Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol. 2019;53:11496â506.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
12.Li H-Z, Zhu D, Lindhardt JH, Lin S-M, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol. 2021;55:4658â68.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
13.Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53:6044â52.ArticleÂ
CASÂ
Google ScholarÂ
14.Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem. 2018;116:302â10.CASÂ
ArticleÂ
Google ScholarÂ
15.Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139â51.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
16.Arias-Andres M. Who is where in the plastisphere, and why does it matter? Mol Ecol Resour. 2020;20:617â9.ArticleÂ
Google ScholarÂ
17.Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the plastisphere. ISME J. 2020;15:789â806.PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
18.Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biot. 2020;104:6501â11.CASÂ
ArticleÂ
Google ScholarÂ
19.Bhagwat G, Zhu Q, OâConnor W, Subashchandrabose S, Grainge I, Knight R, et al. Exploring the composition and functions of plastic microbiome using whole-genome sequencing. Environ Sci Technol. 2021;55:4899â913.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
20.Arias-Andres M, Klumper U, Rojas-Jimenez K, Grossart HP. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut. 2018;237:253â61.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
21.Zhou J, Gui H, Banfield CC, Wen Y, Zang H, Dippold MA, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem. 2021;156:108211.CASÂ
ArticleÂ
Google ScholarÂ
22.Hernando-Amado S, Coquet TM, Baquero F, Martinez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4:1432â42.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
23.Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186â200.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
24.Zhu Y-G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, et al. Soil biota, antimicrobial resistance and planetary health. Environ Int. 2019;131:105059.PubMedÂ
ArticleÂ
Google ScholarÂ
25.Bank MS, Ok YS, Swarzenski PW. Microplasticâs role in antibiotic resistance. Science. 2020;369:1315.PubMedÂ
ArticleÂ
CASÂ
Google ScholarÂ
26.Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165:114979.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
27.Yang K, Chen Q-L, Chen M-L, Li H-Z, Liao H, Pu Q, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ Sci Technol. 2020;54:11322â32.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
28.Yang YY, Liu GH, Song WJ, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79â86.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
29.Lu X-M, Lu P-Z, Liu X-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709:136276.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
30.Yan XY, Yang XY, Tang Z, Fu JJ, Chen FM, Zhao Y, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ Pollut. 2020;262:114270.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
31.Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233â7.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
32.Zhu D, Ding J, Yin Y, Ke X, OâConnor P, Zhu Y-G. Effects of earthworms on the microbiomes and antibiotic resistomes of detritus fauna and phyllospheres. Environ Sci Technol. 2020;54:6000â8.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
33.Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
34.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol R 2017;81:e00002â17.ArticleÂ
Google ScholarÂ
35.Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796â808.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
36.Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 2019;366:886â90.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
37.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Change Biol. 2020;26:3221â9.ArticleÂ
Google ScholarÂ
38.de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005â15.ArticleÂ
Google ScholarÂ
39.Li MM, Ray P, Teets C, Pruden A, Xia K, Knowlton KF. Short communication: Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J Dairy Sci. 2020;103:2877â82.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
40.Luo T, Wang Y, Pandey P. The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. Environ Sci Pollut R. 2021;28:6675â83.CASÂ
ArticleÂ
Google ScholarÂ
41.Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, et al. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Res. 2021;194:116926.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
42.Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
43.Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435â40.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
44.Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130:104912.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
45.Zhou S-Y-D, Zhu D, Giles M, Daniell T, Neilson R, Yang X-R. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environ Int. 2020;136:105359.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
46.Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut. 2020;257:113449.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
47.Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fateâA review. Crit Rev Env Sci Tec. 2020;50:2175â222.CASÂ
ArticleÂ
Google ScholarÂ
48.Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296â9.PubMedÂ
ArticleÂ
Google ScholarÂ
49.Zhu D, An X-L, Chen Q-L, Yang X-R, Christie P, Ke X, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ Sci Technol. 2018;52:3081â90.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
50.Zhu D, Delgado-Baquerizo M, Su J-Q, Ding J, Li H, Gillings MR, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ Sci Technol. 2021;55:7445â55.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
51.Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 2016;10:1998â2009.PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
52.Liu C, Li H, Zhang Y, Si D, Chen Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour Technol. 2016;216:87â94.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
53.Zhu D, Xiang Q, Yang X-R, Ke X, OâConnor P, Zhu Y-G. Trophic transfer of antibiotic resistance genes in a soil detritus food chain. Environ Sci Technol. 2019;53:7770â81.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
54.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996â8.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
55.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2âs q2-feature-classifier plugin. Microbiome 2018;6:90.PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
56.Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1â10.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
57.Li H, Zhou X-Y, Yang X-R, Zhu Y-G, Hong Y-W, Su J-Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ. 2019;665:61â8.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
58.Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:884â90.ArticleÂ
CASÂ
Google ScholarÂ
59.Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623â30.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
60.Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732â40.PubMedÂ
ArticleÂ
Google ScholarÂ
61.Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, et al. Interval estimation for a binomial proportionâcommentârejoinder. Stat Sci. 2001;16:101â33.ArticleÂ
Google ScholarÂ
62.Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655â64.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
63.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927â30.ArticleÂ
Google ScholarÂ
64.Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome. 2020;15:11.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
65.Frere L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614â25.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
66.Parrish K, Fahrenfeld NL. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ Sci-Wat Res. 2019;5:495â505.CASÂ
Google ScholarÂ
67.Hossain MR, Jiang M, Wei Q, Leff LG. Microplastic surface properties affect bacterial colonization in freshwater. J Basic Micro. 2019;59:54â61.CASÂ
ArticleÂ
Google ScholarÂ
68.Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760â62.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
69.Hesse E, OâBrien S, LujĂĄn AM, Sanders D, Bayer F, van Veen EM, et al. Stress causes interspecific facilitation within a compost community. Ecol Lett. 2021;00:1â9.
Google ScholarÂ
70.Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
71.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449â54.CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
72.Adair KL, Wilson M, Bost A, Douglas AE. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018;12:959â72.PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
73.Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. Msystems. 2016;1:e00024â16.PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
74.Kwon J-H, Chang S, Hong SH, Shim WJ. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. Integr Environ Assess. 2017;13:494â9.ArticleÂ
Google ScholarÂ
75.Xiang Q, Zhu D, Chen Q-L, OâConnor P, Yang X-R, Qiao M, et al. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (similar to 2 mm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environ Sci Technol. 2019;53:12823â34.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
76.Virsek MK, Lovsin MN, Koren S, Krzan A, Peterlin M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull. 2017;125:301â9.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
77.Caruso G. Microplastics as vectors of contaminants. Mar Pollut Bull. 2019;146:921â4.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
78.MacLean RC, San Millan A. The evolution of antibiotic resistance. Science. 2019;365:1082â3.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
79.Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460â7.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
80.Zhang H, Wang J, Zhou B, Zhou Y, Dai Z, Zhou Q, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ Pollut. 2018;243:1550â7.CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
81.Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959â64.CASÂ
PubMedÂ
ArticleÂ
Google Scholar More