More stories

  • in

    Migrations of cancer cells through the lens of phylogenetic biogeography

    Conceptualization of organismal to tumor biogeography through clone phylogeniesWe first map organismal biogeographic concepts and models to the process of migration and colonization of cancer cells during metastasis. Tumors are populations consisting of a diversity of cancer cells with different genetic profiles that may represent different lineages in the clone phylogeny. We use the example in Fig. 1, which contains a phylogeny of 17 clones found in one primary tumor (P) and four metastases (M1–M4). Events occurring along a branch in a phylogeny are anagenetic events, which include diversification, extinction, and expansion12,14. In organismal evolutionary biology, anagenetic events are not directly observed except through the fossil record. However, one can map the collection of genetic variants that likely arose on individual lineage in a phylogeny. In many cancers, sequencing of temporally sampled biopsies’ can directly reveal anagenetic events similar to the sequencing of ancient DNA in paleogenomics.The other types of evolutionary events in the phylogeny are cladogenetic, including genetic divergences and dispersals (Fig. 1). Genetic differences observed among species and populations are the key to detect cladogenetic events reconstructed in molecular phylogenies of living descendants. In cancer, temporal sampling of biopsies can reveal cladogenetic events that produced extinct descendants.In biogeography, genetic divergence results in the diversification of lineages within an area. Sometimes, the term duplication is used, but we avoid its further use because of the confusion it may cause in evolutionary genomics. Divergence events are also observed in a clone phylogeny, particularly when clone lineages diverge from each other within a tumor or across tumors. The exact opposite of genetic diversification can also be observed when lineages partially or fully disappear from the phylogeny. Extinction can occur due to random chance, selection, or environmental pressures. Even though extinction is rarely discussed in tumor clone phylogenetics, it happens frequently.Phylogenies also reveal movements of lineages between locations (geographic areas or body parts) when the locations of individual cells, species, or populations are known5,6,7,8,9,15. When lineages accumulate genetic differences along a branch in the phylogeny, and the evolved lineages migrate to a new area, we observe an expansion event. Expansions differ from dispersals in such that the growth of a population occurs in the same place. This movement of cells of a clone from one location to another, where they would potentially form a metastasis, results in the dispersal of  these cells of that clone to additional areas, which is modeled by a dispersal rate (d) in organismal biogeography. When a clone genetically diverges following its migration, then a distant dispersal event is said to have occurred. Similarly, when a clone diverges from the rest of the clones within a tumor and disperses to another tumor, we have observed an expansion event. Thus, clone phylogenies can give insights into the origin and trajectory of cancer cells between tumors.When a clone is no longer present at a location, it is extinct at that location. Extinctions are modeled by an extinction rate (e) in biogeographic models. As a result of extinction, the range of descendent clones on a phylogeny can be smaller than the ancestors. Biogeography models also have a parameter (J) to consider founder events that establish new populations from a few individuals. In phylogenies, founder events can be detected if only one or a few cells are found to have moved from one location to another to start diversifying in a new area. Both distant dispersal and founder events may result in forming a new colony of cells, i.e., a new metastasis in the case of cancer cell migrations. The primary distinction between dispersal and founder events is the relative number of migrating cells. Founder events are due to one or a few cells, whereas dispersal events involve a larger number of migrating cells. Founder events are expected to be more common in tumor evolution because metastases are thought to be formed by the spread of only one or a few cancer cells. These biogeographic events have been mathematically modeled and implemented in various approaches to infer species migration events12, which are directly applicable in the inference of cancer cell migrations between tumors.Model fitsWe began by analyzing the statistical fits of six biogeographic models (Table 1) to 80 computer-simulated tumor evolutionary datasets. Simulations enable us to assess the performance of computational approaches and reveal potential caveats associated with their use because the ground truth is known. These datasets were simulated using four main clone migration schemes defined by the different number of migrating clones (1–3), the small and large number of tumor areas (5–7 tumors, m5 datasets; 8–11 tumors, m8 datasets), and the different types of source areas of migration (primary or metastasis). The following seeding scenarios reflect this complexity of the clone migration schemes: monoclonal single-source seeding (mS), polyclonal single-source seeding (pS), polyclonal multisource seeding (pM), and polyclonal reseeding (pR) (see “Methods” section).Table 1 Phylogenetic and biogeographic events considered in seven biogeographic models used for analysis.Full size tableWe considered biogeographic models that weigh genetic divergence, dispersal/expansion, and extinction events differently (Table 1). We also explored the provision of including founder events in our models on the accuracy of detecting clone migrations. The parameterization of the aforementioned events results in models with two free parameters, i.e., dispersal rate (d) and extinction rate (e), and models with three free parameters by adding the founder-event speciation (J); see “Methods” section for more details.Overall, we tested six biogeographic models for their fit to the tumor data, three models with two free parameters and three others with three free parameters. BAYAREALIKE, DEC, and DIVALIKE models have two parameters each. They are nested within their respective models that add the founder effect, resulting in a model with three free parameters (hereinafter +J models). We used the BioGeoBEARS software for all model fit analyses. In data analysis, we first inferred phylogeny of cancer cell populations (clone phylogeny) using an existing method16, followed by the use of BioGeoBEARS to infer the clone migration history in which the clone phylogeny is used along with the location of tumor sites in which each clone is observed (Fig. 2). BioGeoBEARS estimates the probabilities of annotating internal nodes with tumor locations. These annotations are then used to derive cancer cell migration paths when two adjacent nodes are annotated with different tumor locations. In these analyses, we assumed the correct clone phylogeny because our focus was not assessing the impact of errors in a phylogeny on the accuracy of clone migration inferences. We also compared the accuracy of migration histories reconstructed using biogeographic models in BioGeoBEARS with those obtained from the approaches that do not model biogeographic processes (BBM9, MACHINA5, and PathFinder7).Figure 2Data analysis pipeline using BioGeoBEARS in R14 to infer clonal migration histories.Full size imageWe first conducted Likelihood Ratio Tests (LRTs) to examine the improvement offered by considering founder events in modeling tumor migrations. In this case, the fit of the BAYAREALIKE, DEC, and DIVALIKE models was compared to their +J counterparts, respectively. The null hypothesis was rejected for more than 50% of the datasets (BAYAREALIKE: 71.25%, DEC: 60%, and DIVALIKE: 53.75%; P  More

  • in

    T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer

    The Fur-regulated T6SS1 plays an important role in iron acquisition in C. necator
    To explore the function of T6SS1 (Reut_A1713 to Reut_A1733) in C. necator (Fig. S1A), we analyzed the T6SS1 promoter and identified a Fur binding site (AGAAATA) upstream of gene reut_A1733. This Fur binding site was highly similar to the Fur-box reported in E. coli [38], with a probability score of 2.25 (out of a maximum score = 2.45) (Fig. S1B), which was calculated by applying the position weight matrix to a sequence [39]. Incubation of the T6SS1 promoter probe with purified Fur protein led to decreased mobility of the probe in the electrophoretic mobility shift assay, suggesting a direct interaction between Fur and the T6SS1 promoter (Fig. 1A). To further determine the function of Fur on the expression of T6SS1, a single-copy PT6SS1::lacZ fusion reporter was introduced into the chromosomes of C. necator wild-type (WT), Δfur deletion mutant, and the Δfur(fur) complementary strain. Compared to WT, the PT6SS1::lacZ promoter activity was significantly increased in the Δfur mutant (about 2.2-fold), and this increase could be restored by introducing the complementary plasmid pBBR1MCS-5-fur (Fig. 1B). Similar results were obtained by analyzing the expression of T6SS1 core component genes (hcp1, clpV1, vgrG1, and tssM1) with qRT-PCR (Fig. S1C). These results demonstrate that the expression of T6SS1 in C. necator is directly repressed by Fur, the master regulator of genes involved in iron homeostasis in many prokaryotes [40, 41].Fig. 1: Regulation of T6SS1 expression by Fur.A The interactions between His6-Fur and the T6SS1 promoter examined by EMSA. Increasing amounts of Fur (0, 0.03, 0.06, 0.13, 0.25, and 1.0 μM) and 10 nM DNA fragments were used in the assay. A 500 bp unrelated DNA fragment (Control A) and 1 µM BSA (Control B) were included in the assay as negative controls. B Fur represses the expression of T6SS1. β-galactosidase activities of T6SS1 promoter from chromosomal lacZ fusions in relevant C. necator strains were measured. C Iron uptake requires T6SS1. Stationary-phase C. necator strains were washed twice with M9 medium. Iron associated with indicated bacterial cells were measured with ICP-MS. The vector corresponds to the plasmid pBBR1MCS-5 (B) and pBBR1MCS-2 (C), respectively. Data are represented as mean values ± SD of three biological replicates, each with three technical replicates. **p  More

  • in

    Publisher Correction: Principles, drivers and opportunities of a circular bioeconomy

    AffiliationsAnimal Production Systems group, Wageningen University & Research, Wageningen, The NetherlandsAbigail Muscat, Evelien M. de Olde, Raimon Ripoll-Bosch & Imke J. M. de BoerFarming Systems Ecology group, Wageningen University & Research, Wageningen, The NetherlandsHannah H. E. Van ZantenPublic Administration and Policy group, Wageningen University & Research, Wageningen, The NetherlandsTamara A. P. Metze & Catrien J. A. M. TermeerPlant Production Systems group, Wageningen University & Research, Wageningen, The NetherlandsMartin K. van IttersumAuthorsAbigail MuscatEvelien M. de OldeRaimon Ripoll-BoschHannah H. E. Van ZantenTamara A. P. MetzeCatrien J. A. M. TermeerMartin K. van IttersumImke J. M. de BoerCorresponding authorCorrespondence to
    Imke J. M. de Boer. More

  • in

    Comparing recurrent convolutional neural networks for large scale bird species classification

    1.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Inger, R. et al. Common European birds are declining rapidly while less abundant species numbers are rising. Ecol. Lett. 18, 28–36 (2015).Article 

    Google Scholar 
    3.Leach, E. C., Burwell, C. J., Ashton, L. A., Jones, D. N. & Kitching, R. L. Comparison of point counts and automated acoustic monitoring: Detecting birds in a rainforest biodiversity survey. Emu 116, 305–309 (2016).Article 

    Google Scholar 
    4.Drake, K. L., Frey, M., Hogan, D. & Hedley, R. Using digital recordings and sonogram analysis to obtain counts of yellow rails. Wildl. Soc. Bull. 40, 346–354 (2016).Article 

    Google Scholar 
    5.Lambert, K. T. & McDonald, P. G. A low-cost, yet simple and highly repeatable system for acoustically surveying cryptic species. Austral. Ecol. 39, 779–785 (2014).Article 

    Google Scholar 
    6.Burnett, K. Distribution, abundance, and acoustic characteristics of Kohala forest birds. Ph.D. thesis, University of Hawaii at Hilo (2020).7.Owen, K. et al. Bioacoustic analyses reveal that bird communities recover with forest succession in tropical dry forests. Avian Conserv. Ecol. 15, 25 (2020).Article 

    Google Scholar 
    8.Furnas, B. J., Landers, R. H. & Bowie, R. C. Wildfires and mass effects of dispersal disrupt the local uniformity of type I songs of hermit warblers in California. Auk 137, ukaa031 (2020).Article 

    Google Scholar 
    9.Aide, T. M. et al. Real-time bioacoustics monitoring and automated species identification. PeerJ 1, e103 (2013).Article 

    Google Scholar 
    10.Potamitis, I., Ntalampiras, S., Jahn, O. & Riede, K. Automatic bird sound detection in long real-field recordings: Applications and tools. Appl. Acoust. 80, 1–9 (2014).Article 

    Google Scholar 
    11.Stowell, D. & Plumbley, M. D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2, e488 (2014).Article 

    Google Scholar 
    12.Tachibana, R. O., Oosugi, N. & Okanoya, K. Semi-automatic classification of birdsong elements using a linear support vector machine. PLoS ONE 9, e92584 (2014).ADS 
    Article 

    Google Scholar 
    13.Zheng, A. & Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (OReilly, London, 2018).
    Google Scholar 
    14.Najafabadi, M. M. et al. Deep learning applications and challenges in big data analytics. J. Big Data 2, 1 (2015).Article 

    Google Scholar 
    15.Dieleman, S., Brakel, P. & Schrauwen, B. Audio-based music classification with a pretrained convolutional network. In ISMIR (2011).16.Lee, H., Pham, P., Largman, Y. & Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in Neural Information Processing Systems22 (2009).17.Bergler, C. et al. Orca-spot: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997 (2019).ADS 
    Article 

    Google Scholar 
    18.Zhong, M. et al. Beluga whale acoustic signal classification using deep learning neural network models. J. Acoust. Soc. Am. 147, 1834–1841 (2020).ADS 
    Article 

    Google Scholar 
    19.Strout, J. et al. Anuran call classification with deep learning. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2662–2665 (2017).20.Salamon, J., Bello, J. P., Farnsworth, A. & Kelling, S. Fusing shallow and deep learning for bioacoustic bird species classification. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2017).21.Stowell, D., Wood, M. D., Pamuła, H., Stylianou, Y. & Glotin, H. Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge. Methods Ecol. Evol. 10, 368–380. https://doi.org/10.1111/2041-210X.13103 (2019).Article 

    Google Scholar 
    22.[Dataset] Cornell Lab of Ornithology. Cornell birdcall identification. https://www.kaggle.com/c/birdsong-recognition (accessed 15 Jun 2020).23.McFee, B. et al. librosa: Audio and music signal analysis in python. In Proceedings of the 14th Python in Science Conference 8 (2015).24.Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR (2015).25.He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In CVPR 770–778 (2016).26.Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (eds.) Birds of the World Cornell Laboratory of Ornithology, Ithaca, NY, USA, 2020). https://birdsoftheworld.org/bow/home.27.Gu, A., Dao, T., Ermon, S., Rudra, A. & Re, C. Hippo: Recurrent memory with optimal polynomial projections (2020). arXiv:2008.07669.28.Molau, S., Pitz, M., Schluter, R. & Ney, H. Computing mel-frequency cepstral coefficients on the power spectrum. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221) 1, 73–76 (2001). https://doi.org/10.1109/ICASSP.2001.940770.29.Choi, K., Fazekas, G. & Sandler, M. Automatic tagging using deep convolutional neural networks (2016). arXiv:1606.00298.30.Dieleman, S. & Schrauwen, B. End-to-end learning for music audio. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 6964–6968 (2014).31.Voelker, A., Kajic, I. & Eliasmith, C. Legendre memory units: Continuous-time representation in recurrent neural networks. In NeurIPS (2019).32.Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In CVPR 4700–4708 (2017).33.Doriana, C., Leforta, R., Bonnela, J., Zaraderb, J.-L. & Adam, O. Bi-class classification of humpback whale sound units against complex background noise with deep convolution neural network (2017). arXiv:1702.02741.34.Narasimhan, R., Fern, X. Z. & Raich, R. Simultaneous segmentation and classification of bird song using cnn. In Proc. Int. Conf. Acoust. Speech, Signal Process 146–150 (2017).35.Sankupellay, M. & Konovalov, D. Bird call recognition using deep convolutional neural network, resnet-50 (2018).36.Zhang, L., Wang, D., Bao, C., Wang, Y. & Xu, K. Large-scale whale-call classification by transfer learning on multi-scale waveforms and time-frequency features. Appl. Sci. 9, 1020 (2019).Article 

    Google Scholar 
    37.Berman, P. C., Bronstein, M. M., Wood, R. J., Gero, S. & Gruber, D. F. Deep machine learning techniques for the detection and classification of sperm whale bioacoustics. Sci. Rep. 9, 12588 (2019).ADS 
    Article 

    Google Scholar 
    38.Zhong, M. et al. Improving passive acoustic monitoring applications to the endangered cook inlet beluga whale. J. Acoust. Soc. Am. 146, 3089–3089 (2019).ADS 
    Article 

    Google Scholar 
    39.Efremova, D. B., Sankupellay, M. & Konovalov, D. A. Data-efficient classification of birdcall through convolutional neural networks transfer learning. In 2019 Digital Image Computing: Techniques and Applications (DICTA) 1–8 (2019).40.Zhong, M. et al. Multispecies bioacoustic classification using transfer learning of deep convolutional neural networks with pseudo-labeling. Appl. Acoust. 166, 107375 (2020).Article 

    Google Scholar 
    41.Thakura, A., Thapar, D., Rajan, P. & Nigam, A. Deep metric learning for bioacoustic classification: Overcoming training data scarcity using dynamic triplet loss. J. Acoust. Soc. Am. 146, 534 (2019).ADS 
    Article 

    Google Scholar 
    42.Wang, Z., Yan, W. & Oates, T. Time series classification from scratch with deep neural networks: A strong baseline (2016). arXiv:1611.06455.43.Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989).Article 

    Google Scholar 
    44.Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).ADS 
    Article 

    Google Scholar 
    45.Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).CAS 
    Article 

    Google Scholar 
    46.Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).CAS 
    Article 

    Google Scholar 
    47.Cho, K., Van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder–decoder approaches (2014). arXiv:1409.1259.48.Zeng, Y., Mao, H., Peng, D. & Yi, Z. Spectrogram based multi-task audio classification. Multimed. Tools Appl. 78, 3705–3722 (2019).Article 

    Google Scholar 
    49.Voelker, A. R. & Eliasmith, C. Improving spiking dynamical networks: Accurate delays, higher-order synapses, and time cells. Neural Comput. 30, 569–609 (2018).MathSciNet 
    Article 

    Google Scholar 
    50.Xu, Y., Kong, Q., Huang, Q., Wang, W. & Plumbley, M. D. Convolutional gated recurrent neural network incorporating spatial features for audio tagging (2017). arXiv:1702.07787.51.Keren, G. & Schuller, B. Convolutional RNN: An enhanced model for extracting features from sequential data (2016). arXiv:1602.05875.52.Lai, G., Chang, W.-C., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks (2017). arXiv:1703.07015.53.Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Espi, M., Fujimoto, M., Kubo, Y. & Nakatani, T. Spectrogram patch based acoustic event detection and classification in speech overlapping conditions. In 2014 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA) 117–121 (2014).55.Feng, L., Liu, S. & Yao, J. Music genre classification with paralleling recurrent convolutional neural network (2017). arXiv:1712.08370.56.Choi, K., Fazekas, G., Sandler, M. & Cho, K. Convolutional recurrent neural networks for music classification (2016). arXiv:1609.04243.57.Himawan, I., Towsey, M. & Roe, P. 3d convolution recurrent neural networks for bird sound detection. In Wood, M., Glotin, H., Stowell, D. & Stylianou, Y. (eds.) Proceedings of the 3rd Workshop on Detection and Classification of Acoustic Scenes and Events 1–4 (Detection and Classification of Acoustic Scenes and Events, 2018).58.Cakir, E., Adavanne, S., Parascandolo, G., Drossos, K. & Virtanen, T. Convolutional recurrent neural networks for bird audio detection. In 2017 25th European Signal Processing Conference (EUSIPCO) 1744–1748 (2017). More

  • in

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages

    1.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Waterbury JB, Valois FW. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol. 1993;59:3393–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Marston MF, Sallee JL. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island’s coastal waters. Appl Environ Microbiol. 2003;69:4639–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Clokie MRJ, Mann NH. Marine cyanophages and light. Environ Microbiol. 2006;8:2074–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus -virus coexistence. Nature. 2011;474:604–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Fuhrman JA. Marine virueses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.9.Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Suttle CA, Chan AM. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser. 1993;92:99–109.Article 

    Google Scholar 
    12.Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 
    Article 

    Google Scholar 
    14.Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, et al. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol. 2007;9:1675–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ghai R, Martin-Cuadrado AB, Molto AG, Heredia IG, Cabrera R, Martin J, et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 2010;4:1154–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. Environ Microbiol Rep. 2014;6:583–94.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA. 2012;109:2037–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:1–17.
    Google Scholar 
    23.Ignacio-espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBHH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution. Environ Microbiol. 2009;11:2370–87.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741–741.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA. 2004;101:11013–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr Biol. 2016;26:1585–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kelly L, Ding H, Huang KH, Osburne MS, Chisholm SW. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 2013;7:1827–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Yin Y, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics. 2008;9:24.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Clokie MR, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Rihtman B, Bowman‐Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environ Microbiol Rep. 2019;11:448–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol. 2008;18:442–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roitman S, Hornung E, Flores-Uribe J, Sharon I, Feussner I, Béjà O. Cyanophage-encoded lipid desaturases: Oceanic distribution, diversity and function. ISME J. 2018;12:343–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Puxty RJ, Perez-Sepulveda B, Rihtman B, Evans DJ, Millard AD, Scanlan DJ. Spontaneous deletion of an “ORFanage” region facilitates host adaptation in a “photosynthetic” cyanophage. PLoS One. 2015;10:e0132642.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Ranade K, Poteete AR. Superinfection exclusion (sieB) genes of bacteriophages P22 and λ. J Bacteriol. 1993;175:4712–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Fogg PCM, Allison HE, Saunders JR, McCarthy AJ. Bacteriophage Lambda: a paradigm revisited. J Virol. 2010;84:6876–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Tuttle MJ, Buchan A. Lysogeny in the oceans: lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol. 2020;22:4919–33.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guëmes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Touchon M, Bernheim A, Rocha EPC. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. Elife. 2015;4:e08490.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    45.Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA. virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 2006;16:1099–108.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011;85:2406–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Flores-Uribe J, Philosof A, Sharon I, Fridman S, Larom S, Béjà O. A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine Synechococcus ‘relic’ prophage. Environ Microbiol Rep. 2019;11:598–604.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 2013;7:184–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11:42–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Sarkis GJ, Jacobs WR, Hatfull GF. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995;15:1055–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol. 2004;114:11–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol. 1996;62:1747–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 2009;295:211–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Le S, He X, Tan Y, Huang G, Zhang L, Lux R, et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One. 2013;8:e68562.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Murphy KC. Phage recombinases and their applications. Adv Virus Res. 2012;83:367–414.60.Bujarski JJ. Recombination of viruses. In: Encyclopedia of Virology. Elsevier; 1999. p. 1446–53.61.Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 2016;80:523–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 2006;103:19039–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Selick HE, Kreuzer KN, Alberts BM. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem. 1988;263:11336–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42:9504–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Dale JW, Greenaway PJ. Identification of recombinant phages by plaque hybridization. In: Walker JM, editor. Nucleic Acids. Totowa, NJ: Humana Press; 1984. p. 285–8.Chapter 

    Google Scholar 
    66.Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Doron S, Fedida A, Hernndez-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann NY Acad Sci. 2015;1341:41–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol. 2020;5:1011–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol. 2015;17:76–90.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in bacteriophage lambda development. Annu Rev Genet. 2005;39:409–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ray U, Sakalka A. Lysogenization of Escherichia coli by bacteriophage Lambda: complementary activity of the host’s DNA polymerase I and ligase and bacteriophage replication proteins Q and P. J Virol. 1976;18:511–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Greengrass E. Resistance of marine Synechococcus to podovirus infection: genetic basis and phenotypic characterization. M.Sc. thesis. Technion – Israel Inst Technol. 2013.75.Fedida A, Lindell D. Two Synechococcus genes, two different effects on cyanophage infection. Viruses. 2017;9:136.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Shao Q, Trinh JT, McIntosh CS, Christenson B, Balázsi G, Zeng L. Lysis-lysogeny coexistence: prophage integration during lytic development. Microbiol Open. 2017;6:e00395.Article 
    CAS 

    Google Scholar 
    77.Chen F, Lu J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Pratama AA, van Elsas JD. The ‘neglected’ soil virome—potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008;159:349–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:1–11.Article 
    CAS 

    Google Scholar 
    85.Wyman M, Gregory RPF, Carr NG. Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science. 1985;230:818–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lindell D, Padan E, Post AF. Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803. J Bacteriol. 1998;180:1878–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.CAS 
    Article 

    Google Scholar 
    88.Lindell D. The genus Prochlorococcus, phylum cyanobacteria. In: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer-Verlag Berlin Heidelberg; 2014. p. 829–45.89.Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Wolk CP, Fan Q, Zhou R, Huang G, Lechno-Yossef S, Kuritz T, et al. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol. 2007;188:551–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Bryksin A, Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques. 2010;48:463–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–91.CAS 
    Article 

    Google Scholar 
    93.Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L, et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One. 2010;5:e9083.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, et al. Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl Environ Microbiol. 2006;72:723–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Mitra RD, Church GM. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 1999;27:e34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME J. 2017;11:1836–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, et al. Exceptional convergent evolution in a virus. Genetics. 1997;147:1497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Quinlan AR. BEDTools: the Swiss-army Tool for genome feature analysis. Curr Protoc Bioinform. 2014;47:1–34. 11.12.Article 

    Google Scholar 
    100.Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Haro-Moreno JM, López-Pérez M, de la Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome. 2018;6:128.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol. 2017;2:17118.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    105.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014;URL: https://www.osti.gov/servlets/purl/1241166.106.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303:3997.
    Google Scholar 
    107.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    High efficacy of microbial larvicides for malaria vectors control in the city of Yaounde Cameroon following a cluster randomized trial

    1.Guengant, J.-P. & May, J. F. African demography. Glob. J. Emerg. Mark. Econ. 5, 215–267 (2013).
    Google Scholar 
    2.Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5, 27060 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Eder, M. et al. Scoping review on vector-borne diseases in urban areas: Transmission dynamics, vectorial capacity and co-infection. Infect. Dis. Poverty 7, 1–24 (2018).Article 

    Google Scholar 
    4.Keiser, J. et al. Urbanization in sub-Saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Tusting, L. S. et al. Environmental temperature and growth faltering in African children: A cross-sectional study. Lancet Planet. Health 4, e116–e123. https://doi.org/10.1016/S2542-5196(20)30037-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hay, S. I. et al. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 21, 52–53 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211. https://doi.org/10.1038/nature15535 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Kamau, A., Mogeni, P., Okiro, E. A., Snow, R. W. & Bejon, P. A systematic review of changing malaria disease burden in sub-Saharan Africa since 2000: Comparing model predictions and empirical observations. BMC Med. 18, 1–11 (2020).Article 

    Google Scholar 
    9.Nkumama, I. N., O’Meara, W. P. & Osier, F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020).Book 

    Google Scholar 
    11.World Health Organization. World Malaria Report 2012 (World Health Organization, 2012).Book 

    Google Scholar 
    12.Report, W. M. . Licence: CC BY-NC-SA 3.0 IGO (World Health Organization, 2019).
    Google Scholar 
    13.Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98. https://doi.org/10.1016/j.pt.2010.08.004 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Moyes, C. L. et al. Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc. Natl. Acad. Sci. 117, 22042–22050 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Tropi. Dis. 11, e0005625 (2017).Article 
    CAS 

    Google Scholar 
    17.Staedke, S. G. et al. LLIN evaluation in Uganda Project (LLINEUP)—Impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: Study protocol for a cluster-randomised trial. Trials 20, 1–13 (2019).Article 

    Google Scholar 
    18.Hemingway, J. et al. Country-level operational implementation of the global plan for insecticide resistance management. Proc. Natl. Acad. Sci. 110, 9397–9402. https://doi.org/10.1073/pnas.1307656110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Chanda, E. et al. Scale-up of integrated malaria vector control: Lessons from Malawi. Bull. World Health Organ. 94, 475 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Derua, Y. A., Kweka, E. J., Kisinza, W. N., Githeko, A. K. & Mosha, F. W. Bacterial larvicides used for malaria vector control in sub-Saharan Africa: Review of their effectiveness and operational feasibility. Parasit. Vectors 12, 1–18 (2019).Article 

    Google Scholar 
    21.WHO. Larval Source Management: A Supplementary Measure for Malaria Vector Control (World Health Organization, 2013).
    Google Scholar 
    22.Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar. J. 18, 1–9 (2019).Article 

    Google Scholar 
    23.Fillinger, U. & Lindsay, S. W. Larval source management for malaria control in Africa: Myths and reality. Malar J. https://doi.org/10.1186/1475-2875-10-353 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Shousha, A. T. Species-eradication: The eradication of Anopheles gambioe from Upper Egypt, 1942–1945. Bull. World Health Organ. 1, 309 (1948).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Utzinger, J., Tozan, Y. & Singer, B. H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med. Int. Health 6, 677–687. https://doi.org/10.1046/j.1365-3156.2001.00769.x (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fillinger, U., Ndenga, B., Githeko, A. & Lindsay, S. W. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: A controlled trial. Bull. World Health Organ. 87, 655–665 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Choi, L., Majambere, S. & Wilson, A. L. Larviciding to prevent malaria transmission. Cochrane Database Syst. Rev. 8, CD012736 (2019).
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Tusting, L. S. et al. Socioeconomic development as an intervention against malaria: A systematic review and meta-analysis. Lancet 382, 963–972. https://doi.org/10.1016/s0140-6736(13)60851-x (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Choi, L. & Wilson, A. Larviciding to control malaria. Cochrane Database Syst. Rev. 2017, CD012736. https://doi.org/10.1002/14651858.CD012736 (2017).Article 
    PubMed Central 

    Google Scholar 
    30.Tusting, L. S. et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 8, CD008923 (2013).
    Google Scholar 
    31.Geissbuhler, Y. et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam. Tanzania. PLoS One. 4, e5107. https://doi.org/10.1371/journal.pone.0005107 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Castro C. M. et al. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania. Malar J. 8, 57 (2009)PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Maheu-Giroux, M. & Castro, M. C. Impact of community-based larviciding on the prevalence of malaria infection in Dar es Salaam, Tanzania. PLoS ONE 8, e71638. https://doi.org/10.1371/journal.pone.0071638 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.World Health Organization. A Framework for Malaria Elimination (World Health Organization, 2017).
    Google Scholar 
    35.Wold Health Organization. 11th World Malaria Day “Ready to Beat Malaria” We are the Generation that can End Malaria (ed. World Health Organization). (World Health Oraganization, 2018).
    Google Scholar 
    36.Institut National de Statistiques and IFC. Enquête Démographique et de Santé du Cameroun (ed. INS. ICF.) 1–515 (INS, 2020).
    Google Scholar 
    37.Barbazan, P. et al. Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. J. Am. Mosq. Control Assoc. 13, 263–269 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hougard, J.-M. et al. Lutte contre Culex quinquefasciatus par Bacillus sphaericus: résultats d’une campagne pilote dans une agglomération urbaine d’Afrique équatoriale. Bulletin de l’organisation mondiale de la santé 71, 367–375 (1994).
    Google Scholar 
    39.Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): Influence of urban agriculture and pollution. Malar J. https://doi.org/10.1186/1475-2875-10-154 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012, 1–10. https://doi.org/10.1155/2012/429817 (2012).Article 

    Google Scholar 
    41.Fondjo, E., Robert, V., Le Goff, G., Toto, J. & Carnevale, P. Urban malaria transmission in Yaounde (Cameroon). 2. Entomologic study in 2 semi urban districts. Bull. Soc. Pathol. Exot. 85, 57–63 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Manga, L., Robert, V., Messi, J., Desfontaines, M. & Le Carnevale, P. paludisme urbain à Yaoundé, Cameroun. 1-Etude entomologique dans deux quartiers centraux. Mém. Soc. R Belge Entomol. 35, 155–162 (1992).
    Google Scholar 
    43.Doumbe-Belisse, P. et al. High malaria transmission sustained by Anopheles gambiae sl occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res. 3, 164 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Talipouo, A. et al. Malaria prevention in the city of Yaoundé: Knowledge and practices of urban dwellers. Malar. J. 18, 167. https://doi.org/10.1186/s12936-019-2799-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon. Parasite 27, 10 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 1–15 (2019).Article 

    Google Scholar 
    47.Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    49.Ngadjeu, C. S. et al. Influence of house characteristics on mosquito distribution and malaria transmission in the city of Yaoundé, Cameroon. Malar. J. 19, 53 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Nkahe, D. L. et al. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res. 5, 171 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Historique-Meteo. https://www.historique-meteo.net/afrique/cameroun/ (2020).52.Govella, N. et al. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar. J. 8, 157. https://doi.org/10.1186/1475-2875-8-157 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Wilson, A. L. et al. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 31, 380–390 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Fillinger, U., Sonye, G., Killeen, G. F., Knols, B. G. & Becker, N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: Operational observations from a rural town in western Kenya. Trop. Med. Int. Health 9, 1274–1289 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malar. J. 6, 1–14 (2007).Article 

    Google Scholar 
    56.Gillies, M. T. & Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region) (South African Institute for Medical Research, 1987).
    Google Scholar 
    57.Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Fossog Tene, B. et al. Resistance to DDT in an urban setting: Common mechanisms implicated in both M and S forms of Anopheles gambiae in the City of Yaoundé, Cameroon. PLoS ONE 8, e61408. https://doi.org/10.1371/journal.pone.0061408 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar. J. 15, 424. https://doi.org/10.1186/s12936-016-1483-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155. https://doi.org/10.1186/s12936-015-0675-6 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Bamou, R. et al. Assessment of the Anophelinae blood seeking bionomic and pyrethroids resistance of local malaria vectors in the forest region of Southern Cameroon. JEZS 8, 1054–1062 (2020).
    Google Scholar 
    62.World Health Organization. The Role of Larviciding for Malaria Control in Sub-Saharan Africa: Interim Position Statement (World Health Organization, 2012).
    Google Scholar 
    63.Talipouo, A. et al. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci. Rep. 11, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    64.Haines, A. et al. Promoting health and advancing development through improved housing in low-income settings. J. Urban Health 90, 810–831 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Tusting, L. S. et al. Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 14, e1002234. https://doi.org/10.1371/journal.pmed.1002234 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Tusting, L. S. et al. The evidence for improving housing to reduce malaria: A systematic review and meta-analysis. Malar. J. 14, 209. https://doi.org/10.1186/s12936-015-0724-1 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Organization, W. H. Report of the Nineteenth WHOPES Working Group Meeting: WHO/HQ, Geneva, 8–11 February 2016: Review of Veeralin LN, VectoMax GR, Bactivec SC.(World Health Organization, 2016).68.Service M. Mosquito Ecology. Field Sampling Methods (Elsevier Applied Science, 1993).Book 

    Google Scholar 
    69.Edwards, F. W. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae. Mosquitoes of the Ethiopian Region. HI.-Culicine Adults and Pupae (1941).70.Edwards, F. W. Mosquitoes of the Ethiopian region. III, Culicine adults and pupae (Brit. Mus. Nat. Hist., 1941).71.Gillies, M. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Pub South Afr Inst Med Res 55, 143 (1987).
    Google Scholar 
    72.Wagtech, P. Water Quality Testing 1–139. https://www.palintest.com/product-categories/wagtech/ (Wagtech, 2012).73.Gillies, M. T. & DeMeillon, B. The Anopheline of Africa, south of the Sahara (Ethiopian zoogeographical region) Johannesburg: publication of south African Institute of Medical Research no. 54. (SAIMR, 1968).74.Gillies, T. & Coetzee, M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region) (Publication of the South African Institute of Medical Research, 1987).
    Google Scholar 
    75.Santolamazza, F. et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar. J. 7, 74 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Koekemoer, L., Kamau, L., Hunt, R. & Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: culicidae) group. Am. J. Trop. Med. Hyg. 66, 804–811 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Livak, K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107, 611–634 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Wirtz, R., Burkot, T., Graves, P. & Andre, R. Field evaluation of enzymelinked immunosorbent assays for P. falciparum and P. vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua, new Guinea. J. Med. Entomol. 24, 433–437. https://doi.org/10.1093/jmedent/24.4.433 (1987).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Bass, C. et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malar. J. 7, 177 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes (WHO, 2013). https://doi.org/10.1371/journal.pone.0013140.Book 

    Google Scholar 
    81.Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: A comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14. https://doi.org/10.1186/1475-2875-6-111 (2007).CAS 
    Article 

    Google Scholar 
    82.Mulla, M. S., Norland, L. R., Fanara, D. M., Darwazeh, H. A. & McKean, D. W. Control of chironomid midges in recreational lakes. J. Econ. Entomol. 64, 300–307 (1971).CAS 
    Article 

    Google Scholar  More

  • in

    Non-lethal effects of entomopathogenic nematode infection

    1.Gaugler, R. Entomopathogenic nematology (2002).2.Gaugler, R. Entomopathogenic Nematodes in Biological Control (CRC Press, 2018).Book 

    Google Scholar 
    3.Grewal, P. S., Ehlers, R.-U. & Shapiro-Ilan, D. I. Nematodes as Biocontrol Agents (CABI, 2005).Book 

    Google Scholar 
    4.Duncan, L. & McCoy, C. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (coleoptera: Curculionidae) of two species of entomogenous nematodes (rhabditida: Steinernematidae; heterorhabditidae). Environ. Entomol. 25, 174–178 (1996).Article 

    Google Scholar 
    5.Duncan, L., McCoy, C. & Terranova, A. Estimating sample size and persistence of entomogenous nematodes in sandy soils and their efficacy against the larvae of Diaprepes abbreviatus in Florida. J. Nematol. 28, 56 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bullock, R., Pelosi, R. & Killer, E. Management of citrus root weevils (coleoptera: Curculionidae) on florida citrus with soil-applied entomopathogenic nematodes (nematoda: Rhabditida). Florida Entomologist 1–7 (1999).7.Koppenhöfer, A. M. & Fuzy, E. M. Steinernema scarabaei for the control of white grubs. Biol. Control 28, 47–59 (2003).Article 

    Google Scholar 
    8.Grewal, P., Power, K., Grewal, S., Suggars, A. & Haupricht, S. Enhanced consistency in biological control of white grubs (coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30, 73–82 (2004).Article 

    Google Scholar 
    9.Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).Article 

    Google Scholar 
    10.Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).Article 

    Google Scholar 
    11.Li, X.-Y., Cowles, R., Cowles, E., Gaugler, R. & Cox-Foster, D. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374 (2007).CAS 
    Article 

    Google Scholar 
    12.Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).CAS 
    Article 

    Google Scholar 
    13.Ribeiro, C. et al. Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45, 677–685 (1999).CAS 
    Article 

    Google Scholar 
    14.Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M. F. Immune response of drosophila suzukii larvae to infection with the nematobacterial complex steinernema carpocapsae-xenorhabdus nematophila. Insects 11, 210 (2020).Article 

    Google Scholar 
    15.Ebrahimi, L., Niknam, G., Dunphy, G. & Toorchi, M. Side effects of immune response of colorado potato beetle, leptinotarsa decemlineata against the entomopathogenic nematode, steinernema carpocapsae infection. Invertebr. Surviv. J. 11, 132–142 (2014).
    Google Scholar 
    16.Ebrahimi, L., Niknam, G. & Lewis, E. Lethal and sublethal effects of iranian isolates of steinernema feltiae and heterorhabditis bacteriophora on the colorado potato beetle, leptinotarsa decemlineata. Biocontrol 56, 781–788 (2011).Article 

    Google Scholar 
    17.Chen, S., Li, J., Han, X. & Moens, M. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to delia radicum. Biocontrol 48, 713–724 (2003).Article 

    Google Scholar 
    18.Mastore, M., Quadroni, S., Toscano, A., Mottadelli, N. & Brivio, M. F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol 79, 15–23 (2019).CAS 
    Article 

    Google Scholar 
    19.Wojda, I. Temperature stress and insect immunity. J. Therm. Biol 68, 96–103 (2017).CAS 
    Article 

    Google Scholar 
    20.Lee, J. H., Dillman, A. R. & Hallem, E. A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 14, 1–17 (2016).Article 

    Google Scholar 
    21.Girling, R., Ennis, D., Dillon, A. & Griffin, C. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (coleoptera: Curculionidae). J. Invertebr. Pathol. 104, 195–202 (2010).CAS 
    Article 

    Google Scholar 
    22.Mastore, M., Arizza, V., Manachini, B. & Brivio, M. F. Modulation of immune responses of Rhynchophorus ferrugineus (insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (nematoda: Rhabditida). Insect Sci. 22, 748–760 (2015).CAS 
    Article 

    Google Scholar 
    23.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Attract and kill: spinosad containing spheres to control onion maggot (Delia antiqua). Pest Manag. Sci. 76, 2720–2725 (2020).CAS 
    Article 

    Google Scholar 
    24.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. J. Appl. Entomol. 144, 382–387 (2020).Article 

    Google Scholar 
    25.Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, 281–324 (Elsevier, 1997).26.White, G. et al. A method for obtaining infective nematode larvae from cultures. Science (Washington) 66, 302–303 (1927).ADS 
    CAS 
    Article 

    Google Scholar 
    27.R Core Team. R: A. Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2021).28.Wickham, H. et al. Welcome to the tidyverse. J. Open Sour. Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686ADS 
    Article 

    Google Scholar 
    29.Fox, J. & Weisberg, S. An R Companion to Applied Regression third. (Sage, 2019).
    Google Scholar 
    30.Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021). R package version 1.5.5-1.31.Franceschi, C. et al. Genes involved in immune response/inflammation, igf1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 126, 351–361 (2005).CAS 
    Article 

    Google Scholar 
    32.Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49, 100–117 (2019).CAS 
    Article 

    Google Scholar 
    33.Bruno, P. et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    34.Stock, S. P., Campos-Herrera, R., El-Borai, F. & Duncan, L. Steinernema khuongi n. sp. (panagrolaimomorpha, steinernematidae), a new entomopathogenic nematode species from Florida, USA. J. Helminthol. 93, 226–241 (2019).CAS 
    Article 

    Google Scholar 
    35.Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor

    1.Köhler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 341(6147), 759–765 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418(6898), 671–677 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A. & Siddiqui, Z. H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 110, 194–209 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Monica, R. C. & Cremonini, R. Nanoparticles and higher plants. Caryologia 62(2), 161–165 (2009).Article 

    Google Scholar 
    5.Zheng, L., Hong, F., Lu, S. & Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104(1), 83–91 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Lin, D. & Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front. Chem. 3, 64 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7(3), 219–242 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Selvarajan, V., Obuobi, S. & Ee, P. L. R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 8, 602 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lykov, A. et al. Silica Nanoparticles as a Basis for Efficacy of Antimicrobial Drugs. Nanostruct. Antimicrob. Therapy 1, 551–575 (2017).Article 

    Google Scholar 
    11.Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007).CAS 
    Article 

    Google Scholar 
    12.Sharma, A., Patni, B., Shankhdhar, D. & Shankhdhar, S. C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 19(1), 11–20 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Kawachi, M. et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol. 50(6), 1156–1170 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Yan, A. & Chen, Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 20(5), 1003 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    15.Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: the mealworm beetle Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Renukadevi, K. P., Saravana, P. S. & Angayarkanni, J. Antimicrobial and antioxidant activity of Chlamydomonas reinhardtii sp. Int. J. Pharm. Sci. Res. 2(6), 1467 (2011).
    Google Scholar 
    17.Jayshree, A., Jayashree, S. & Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 78(5), 575–581 (2016).CAS 
    Article 

    Google Scholar 
    18.Kamble, P., Cheriyamundath, S., Lopus, M. & Sirisha, V. L. Chemical characteristics, antioxidant and anticancer potential of sulfated polysaccharides from Chlamydomonas reinhardtii. J. Appl. Phycol. 30(3), 1641–1653 (2018).CAS 
    Article 

    Google Scholar 
    19.Vishwakarma, J., Parmar, V. & Vavilala, S. L. Nitrate stress-induced bioactive sulfated polysaccharides from Chlamydomonas reinhardtii. Biomed. Res. J. 6(1), 7 (2019).
    Google Scholar 
    20.Burghardt, M., Schreiber, L. & Riederer, M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 46(4), 1593–1602 (1998).CAS 
    Article 

    Google Scholar 
    21.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    22.Debnath, N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 84(1), 99–105 (2011).Article 

    Google Scholar 
    23.Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Majumder, D. D. et al. Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology. In 2007 International Conference on Computing: Theory and Applications (ICCTA’07), 563–573 (2007).25.Rahman, A. et al. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96(1), 31–38 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pérez-de-Luque, A. & Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci.: Formerly Pesticide Sci. 65(5), 540–545 (2009).Article 
    CAS 

    Google Scholar 
    27.Chakravarthy, A. K. et al. Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica 6(3), 271–281 (2012).
    Google Scholar 
    28.Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 25(13), 12329–12341 (2018).CAS 
    Article 

    Google Scholar 
    29.Karthiga, P., Rajeshkumar, S. & Annadurai, G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J. Cluster Sci. 29(6), 1233–1241 (2018).CAS 
    Article 

    Google Scholar 
    30.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 72(4), 590 (2012).Article 

    Google Scholar 
    31.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F(Col: Bruchidae). J. Entomol. Res. 4(4), 297–305 (2013).
    Google Scholar 
    32.Sabbour, M. M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Novel Appl. Sci. 1(4), 103–108 (2012).
    Google Scholar 
    33.Stadler, T., Buteler, M. & Weaver, D. K. Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci.: Formerly Pesticide Sci. 66(6), 577–579 (2010).CAS 
    Article 

    Google Scholar 
    34.Xu, R. ISO International standards for particle sizing. China Particuol. 2(4), 164–167 (2004).CAS 
    Article 

    Google Scholar 
    35.Lee, Y. S., Kang, M. H., Cho, S. Y. & Jeong, C. S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch. Pharmacal Res. 30(4), 436–443 (2007).CAS 
    Article 

    Google Scholar 
    36.Hussein, H. A. et al. Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour. Bioprocess. 7(1), 1–17 (2020).MathSciNet 
    Article 

    Google Scholar 
    37.Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Servin, A. et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17(2), 1–21 (2015).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    39.Barik, T. K., Kamaraju, R. & Gowswami, A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol. Res. 111(3), 1075–1083 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Gao, Y. et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 383, 1269 (2020).
    Google Scholar 
    41.Debnath, N., Das, S., Patra, P., Mitra, S. & Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 94(5), 944–951 (2012).CAS 
    Article 

    Google Scholar 
    42.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS 
    Article 

    Google Scholar 
    43.Chang, J. S., Chang, K. L. B., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6), 2064–2068 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60(39), 9781–9792 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mondal, K. K. & Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62(2), 889–893 (2012).CAS 
    Article 

    Google Scholar 
    46.Norman, D. J. & Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46(3), 426–428 (2011).CAS 
    Article 

    Google Scholar 
    47.Salem, H. F., Kam, E. & Sharaf, M. A. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. Int. J. Drug Deliv. 3(2), 293 (2011).CAS 

    Google Scholar 
    48.Lamsa, K. et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1), 26–32 (2011).Article 
    CAS 

    Google Scholar 
    49.Schofield, R. M. S. Metals in cuticular structures. Scorp. Biol. Res. 1, 234–256 (2001).
    Google Scholar 
    50.Oonincx, D. G. A. B. & Van der Poel, A. F. B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 30(1), 9–16 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Van Broekhoven, S., Oonincx, D. G., Van Huis, A. & Van Loon, J. J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 73, 1–10 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Locke, M. & Nichol, H. Iron economy in insects: transport, metabolism, and storage. Annu. Rev. Entomol. 37(1), 195–215 (1992).CAS 
    Article 

    Google Scholar 
    53.Jones, M. W., de Jonge, M. D., James, S. A. & Burke, R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J. Biol. Inorg. Chem. 20(6), 979–987 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Mir, A. H., Qamar, A., Qadir, I., Naqvi, A. H. & Begum, R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 10(1), 1–14 (2020).Article 
    CAS 

    Google Scholar 
    55.Zhang, X. F., Shen, W. & Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 17(10), 1603 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett. Appl. Microbiol. 25(4), 279–283 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Matsumura, Y., Yoshikata, K., Kunisaki, S. I. & Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gupta, A., Maynes, M. & Silver, S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64(12), 5042–5045 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lee, J. H. et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10(1), 1–14 (2013).Article 
    CAS 

    Google Scholar 
    60.Vinluan, R. D. III. & Zheng, J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine 10(17), 2781–2794 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K. & Duttaroy, A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 8(1), 53186 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    62.Chun, J. P., Choi, J. S. & Ahn, Y. J. Utilization of fruit bags coated with nano-silver for controlling black stain on fruit skin of ‘niitaka’pear (Pyrus pyrifolia). Hortic. Environ. Biotechnol. 51(4), 245–248 (2010).
    Google Scholar 
    63.Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10), 1037–1043 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More