More stories

  • in

    Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor

    1.Köhler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 341(6147), 759–765 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418(6898), 671–677 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A. & Siddiqui, Z. H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 110, 194–209 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Monica, R. C. & Cremonini, R. Nanoparticles and higher plants. Caryologia 62(2), 161–165 (2009).Article 

    Google Scholar 
    5.Zheng, L., Hong, F., Lu, S. & Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104(1), 83–91 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Lin, D. & Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front. Chem. 3, 64 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7(3), 219–242 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Selvarajan, V., Obuobi, S. & Ee, P. L. R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 8, 602 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lykov, A. et al. Silica Nanoparticles as a Basis for Efficacy of Antimicrobial Drugs. Nanostruct. Antimicrob. Therapy 1, 551–575 (2017).Article 

    Google Scholar 
    11.Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007).CAS 
    Article 

    Google Scholar 
    12.Sharma, A., Patni, B., Shankhdhar, D. & Shankhdhar, S. C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 19(1), 11–20 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Kawachi, M. et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol. 50(6), 1156–1170 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Yan, A. & Chen, Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 20(5), 1003 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    15.Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: the mealworm beetle Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Renukadevi, K. P., Saravana, P. S. & Angayarkanni, J. Antimicrobial and antioxidant activity of Chlamydomonas reinhardtii sp. Int. J. Pharm. Sci. Res. 2(6), 1467 (2011).
    Google Scholar 
    17.Jayshree, A., Jayashree, S. & Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 78(5), 575–581 (2016).CAS 
    Article 

    Google Scholar 
    18.Kamble, P., Cheriyamundath, S., Lopus, M. & Sirisha, V. L. Chemical characteristics, antioxidant and anticancer potential of sulfated polysaccharides from Chlamydomonas reinhardtii. J. Appl. Phycol. 30(3), 1641–1653 (2018).CAS 
    Article 

    Google Scholar 
    19.Vishwakarma, J., Parmar, V. & Vavilala, S. L. Nitrate stress-induced bioactive sulfated polysaccharides from Chlamydomonas reinhardtii. Biomed. Res. J. 6(1), 7 (2019).
    Google Scholar 
    20.Burghardt, M., Schreiber, L. & Riederer, M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 46(4), 1593–1602 (1998).CAS 
    Article 

    Google Scholar 
    21.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    22.Debnath, N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 84(1), 99–105 (2011).Article 

    Google Scholar 
    23.Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Majumder, D. D. et al. Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology. In 2007 International Conference on Computing: Theory and Applications (ICCTA’07), 563–573 (2007).25.Rahman, A. et al. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96(1), 31–38 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pérez-de-Luque, A. & Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci.: Formerly Pesticide Sci. 65(5), 540–545 (2009).Article 
    CAS 

    Google Scholar 
    27.Chakravarthy, A. K. et al. Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica 6(3), 271–281 (2012).
    Google Scholar 
    28.Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 25(13), 12329–12341 (2018).CAS 
    Article 

    Google Scholar 
    29.Karthiga, P., Rajeshkumar, S. & Annadurai, G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J. Cluster Sci. 29(6), 1233–1241 (2018).CAS 
    Article 

    Google Scholar 
    30.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 72(4), 590 (2012).Article 

    Google Scholar 
    31.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F(Col: Bruchidae). J. Entomol. Res. 4(4), 297–305 (2013).
    Google Scholar 
    32.Sabbour, M. M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Novel Appl. Sci. 1(4), 103–108 (2012).
    Google Scholar 
    33.Stadler, T., Buteler, M. & Weaver, D. K. Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci.: Formerly Pesticide Sci. 66(6), 577–579 (2010).CAS 
    Article 

    Google Scholar 
    34.Xu, R. ISO International standards for particle sizing. China Particuol. 2(4), 164–167 (2004).CAS 
    Article 

    Google Scholar 
    35.Lee, Y. S., Kang, M. H., Cho, S. Y. & Jeong, C. S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch. Pharmacal Res. 30(4), 436–443 (2007).CAS 
    Article 

    Google Scholar 
    36.Hussein, H. A. et al. Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour. Bioprocess. 7(1), 1–17 (2020).MathSciNet 
    Article 

    Google Scholar 
    37.Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Servin, A. et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17(2), 1–21 (2015).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    39.Barik, T. K., Kamaraju, R. & Gowswami, A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol. Res. 111(3), 1075–1083 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Gao, Y. et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 383, 1269 (2020).
    Google Scholar 
    41.Debnath, N., Das, S., Patra, P., Mitra, S. & Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 94(5), 944–951 (2012).CAS 
    Article 

    Google Scholar 
    42.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS 
    Article 

    Google Scholar 
    43.Chang, J. S., Chang, K. L. B., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6), 2064–2068 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60(39), 9781–9792 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mondal, K. K. & Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62(2), 889–893 (2012).CAS 
    Article 

    Google Scholar 
    46.Norman, D. J. & Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46(3), 426–428 (2011).CAS 
    Article 

    Google Scholar 
    47.Salem, H. F., Kam, E. & Sharaf, M. A. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. Int. J. Drug Deliv. 3(2), 293 (2011).CAS 

    Google Scholar 
    48.Lamsa, K. et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1), 26–32 (2011).Article 
    CAS 

    Google Scholar 
    49.Schofield, R. M. S. Metals in cuticular structures. Scorp. Biol. Res. 1, 234–256 (2001).
    Google Scholar 
    50.Oonincx, D. G. A. B. & Van der Poel, A. F. B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 30(1), 9–16 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Van Broekhoven, S., Oonincx, D. G., Van Huis, A. & Van Loon, J. J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 73, 1–10 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Locke, M. & Nichol, H. Iron economy in insects: transport, metabolism, and storage. Annu. Rev. Entomol. 37(1), 195–215 (1992).CAS 
    Article 

    Google Scholar 
    53.Jones, M. W., de Jonge, M. D., James, S. A. & Burke, R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J. Biol. Inorg. Chem. 20(6), 979–987 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Mir, A. H., Qamar, A., Qadir, I., Naqvi, A. H. & Begum, R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 10(1), 1–14 (2020).Article 
    CAS 

    Google Scholar 
    55.Zhang, X. F., Shen, W. & Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 17(10), 1603 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett. Appl. Microbiol. 25(4), 279–283 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Matsumura, Y., Yoshikata, K., Kunisaki, S. I. & Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gupta, A., Maynes, M. & Silver, S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64(12), 5042–5045 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lee, J. H. et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10(1), 1–14 (2013).Article 
    CAS 

    Google Scholar 
    60.Vinluan, R. D. III. & Zheng, J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine 10(17), 2781–2794 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K. & Duttaroy, A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 8(1), 53186 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    62.Chun, J. P., Choi, J. S. & Ahn, Y. J. Utilization of fruit bags coated with nano-silver for controlling black stain on fruit skin of ‘niitaka’pear (Pyrus pyrifolia). Hortic. Environ. Biotechnol. 51(4), 245–248 (2010).
    Google Scholar 
    63.Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10), 1037–1043 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The rate and fate of N2 and C fixation by marine diatom-diazotroph symbioses

    Abundances of N2 fixing symbioses in the WTNATo date, the various marine symbiotic diatoms are notoriously understudied, and hence our understanding of their abundances and distribution patterns is limited [7]. In general, these symbiotic populations are capable of forming expansive blooms, but largely co-occur at low densities in tropical and subtropical waters with a few rare reports in temperate waters [26,27,28,29, 39,40,41,42]. The Rhizosolenia-Richelia symbioses have been more commonly reported in the North Pacific gyre [26, 27, 31], and the western tropical North Atlantic (WTNA) near the Amazon and Orinoco River plumes is an area where widespread blooms of the H. hauckii-Richelia symbioses are consistently recorded [28, 29, 42,43,44,45,46,47].In the summer of 2010, bloom densities (105−106 cells L−1) of the H. hauckii-Richelia symbioses were encountered at multiple stations with mesohaline (30–35 PSU) surface salinities (Supplementary Table 1). The R. clevei-Richelia symbioses were less abundant (2–30 cells L−1). Similar densities of H. hauckii-Richelia have been reported in the WTNA during spring (April–May) and summer seasons (June–July) (28–29; 46). In fall 2011, less dense symbiotic populations (0–50 cells L−1) were observed, and the dominant symbioses was the larger cell diameter (30–50 µm) H. membranaceus associated with Richelia. Previous observations of H. membranaeus-Richelia in this region are limited and reported as total cells (i.e., 12-218 cells) and highest numbers recorded in Aug–Sept in waters near the Bahama Islands [43]. On the other hand, Rhizosolenia-Richelia are even less reported in the WTNA, and most studies by quantitative PCR assays based on the nifH gene (for nitrogenase enzyme for N2 fixation) of the symbiont (44; 46–7). Unlike qPCR which cannot resolve if the populations are symbiotic or active for N2 fixation, the densities and activity reported here represent quantitative counts and measures of activity for symbiotic Rhizosolenia.The WTNA is largely influenced by both riverine and atmospheric dust deposition (e.g., Saharan dust) [48], including the silica necessary for the host diatom frustules, and trace metals (e.g., iron) necessary for photosynthesis by both partners and the nitrogenase enzyme (for N2 fixation) of the symbiont. We observed similar hydrographic conditions (i.e., low to immeasurable concentrations of dissolved N, sufficient concentrations of dissolved inorganic P and silicates, and variable surface salinities; 22; 28–29; 40–47) as reported earlier that favor high densities of H. hauckii-Richelia blooms. Unfortunately our data is too sparse to determine if these conditions are in fact priming and favoring the observed blooms of the H.hauckii-Richelia symbioses in summer 2010, and to a lesser extent in the Fall 2011.A biometric relationship between C and N activity and host biovolumeThe diatom-Richelia symbioses are considered highly host specific [10, 11], however, the driver of the specificity between partners remains unknown. We initially hypothesized that host selectivity could be related to the N2 fixation capacity of the symbiont. Moreover, it would be expected that the larger H. membranaceus and R. clevei hosts which are ~2–2.5 and 3.5–5 times, respectively, larger in cell dimensions than the H. hauckii cells would have higher N requirements (Supplementary Table 2). In fact, recently it was reported that the filament length of Richelia is positively correlated with the diameter of their respective hosts [22]. Thus, to determine if there is also a size dependent relationship between activity and cell biovolume, the enrichment of both 15N and 13C measured by SIMS was plotted as a function of symbiotic cell biovolume.Given the long incubation times (12 h) and previous work [32] that show fixation and transfer of reduced N to the host is rapid (i.e., within 30 min), we expected most if not all of the reduced N, or enrichment of 15N, to be transferred to the host diatom during the experiment (Fig. 1). Therefore, we measured and report the enrichment for the whole symbiotic cell, rather than the enrichment in the individual partners (Supplementary Table 2; Fig. 2). The enrichment of both 13C/12C and 15N/14N was significantly higher in the larger H. membranaceus-Richelia cells (atom % 13C: 1.5628–2.0500; atom % 15N: 0.8645–1.0200) than the enrichment measured in the smaller H. hauckii-Richelia cells (atom % 13C: 1.0700–1.3078; atom % 15N: 0.3642–0.7925) (Fig. 2) (13C, Mann–Whitney p = 0.009; 15N, Mann–Whitney p 50 symbiotic cells in a chain) were reported at station 2 with fully intact symbiotic Richelia filaments (2–3 vegetative cells and terminal heterocyst), and at station 25 chains were short (1–2 symbiotic cells) and associated with short Richelia filaments (only terminal heterocyst). Moreover, the symbiotic H. hauckii hosts possessed poor chloroplast auto-fluorescence at station 25 [46]. Given that the cells selected for NanoSIMS were largely single cells, rather than chains, we suspect that these cells were in a less than optimal cell state, which was also reflected in the low 13C/12C enrichment ratios and low estimated C-based growth rates (0.30–57 div d−1). These are particularly reduced compared to the growth rates recently reported for enrichment cultures of H. hauckii-Richelia (0.74–93 div d−1§) (Supplementary Table 2) [33].In 2011, higher cellular N2 fixation rates (15.4–27.2 fmols N cell−1 h−1) were measured for the large cell diameter H. membranaceus-Richelia, symbioses. Despite high rates of fixation, cell abundances were low (4–19 cells L−1), and resulted in a low overall contribution of the symbiotic diatoms to the whole water N2 ( >1%) and C-fixation ( >0.01%). The estimated C-based growth rates for H. membranaceus were high (1.9–3.5 div d−1), whereas estimated N-based growth rates (0.3–4 div d−1) were lower than previously published (33; 52–53). Hence the populations in 2011 were likely in a pre-bloom condition given the low cell densities.Estimating symbiotically derived reduced N to surface oceanTo date, determining the fate of the newly fixed N from these highly active but fragile symbiotic populations has been difficult. Thus, we attempted to estimate the excess N fixed and potentially available for release to the surround by using the numerous single cell-specific rates of N2 fixation determined by SIMS on the Hemiaulus spp.-Richelia symbioses (Supplementary Materials). Because the populations form chains during blooms and additionally sink, we calculated the size-dependent sinking rates for both single cells and chains ( >50 cells). Initially we hypothesized that sinking rates of the symbiotic associations would be more rapid than the N excretion rates, such that most newly fixed N would contribute less to the upper water column (sunlit).The sinking velocities were plotted (Fig. 5) as a function of cell radius at a range (min, max) of densities and included two different form resistances (∅ = 0.3 and 1.5). As expected, the combination of form resistance and density has a large impact on the sinking velocity. For example, a H. hauckii cell of similar radius (10 μm) and density (3300 kg m−3) but higher form resistance (0.3 vs. 1.5) sinks twice as fast at the lower form resistance (Fig. 5). This points to chain formation (e.g., increased form resistance) as a potential ecological adaptation to reduce sinking rates. Recently, colony formation was identified as an important phenotypic trait that could be traced back ancestrally amongst both free-living and symbiotic diatoms that presumably functions for maintaining buoyancy and enhancing light capture [22].Fig. 5: The influence of cell characteristics on estimated sinking velocity for symbiotic Hemiaulus spp.The range of diatom sinking speed predicted using the modified Stokes approximation for diatoms [74] and accounting for the symbioses (cylinders) having varying cell size characteristics (form resistance by altering chain length, density; Supplementary Table 4). Note that form resistance increases with chain length and that the longest chains would have sinking speeds less than 10 m d−1.Full size imageThe concentration of fixed N surrounding a H. hauckii and H. membranaceus cell were modeled (Supplementary Materials; Supplementary Table 4; Fig. 6). First, the cellular N requirement (QN, mol N cell−1) for a cell of known volume, V, as per the allometric formulation of Menden-Deuer and Lessard [71] is calculated by the following.$${{{{{{{mathrm{Q}}}}}}}}_{{{{{{{mathrm{N}}}}}}}} = (10^{ – 12}/12) times 0.76 ;times, {{{{{{{mathrm{V}}}}}}}}^{^{0.189}}$$
    (1)
    Fig. 6: The simplified case of diffusive nitrogen (N) exudate plumes for non-motile symbioses.The concentration of dissolved N (nmol L−1) is presented at of varying cell sizes (3 µm and 30 µm) for H. hauckii-Richelia (A and B, respectively) and H. membranaceus-Richelia (C and D, respectively) growing at specific growth rates of 0.4 d−1 (dashed red lines) or 0.68 d−1 (solid black lines). Exudation follows the same principle as diffusive uptake as per Kiorboe [72] in the absence of turbulence.Full size imageVolume calculations assume a cylindrical shape; whereas exudation assumes an equivalent spherical volume. Then, using published growth rates of 0.4 d−1 and 0.68 d−1 for the symbioses [52, 53], N uptake rate (VN) necessary to sustain the QN was determined. N loss was assumed to be a constant fraction (f) of the VN; this fraction was assumed to be 7.5% and 11% for H. hauckii and H. membranaceus, respectively, or the estimated excess N which was fixed given the assumed growth rate [31]. The excretion rate (EN) of the individual cells was then calculated as$${{{{{{{mathrm{E}}}}}}}}_{{{{{{{mathrm{N}}}}}}}} = {{{{{{{mathrm{fQ}}}}}}}}_{{{{{{{mathrm{N}}}}}}}}$$
    (2)
    The concentration of fixed N surrounding the cell (Cr) was iteratively calculated by the following:$${{{{{{{mathrm{C}}}}}}}}_{{{{{{{mathrm{r}}}}}}}} = {{{{{{{mathrm{E}}}}}}}}_{{{{{{{mathrm{N}}}}}}}}/(4pi * {{{{{mathrm{D}}}}}}* {{{{{mathrm{r}}}}}}_{{{{{mathrm{{x}}}}}}}) + {{{{{{{mathrm{C}}}}}}}}_{{{{{{{mathrm{i}}}}}}}}$$
    (3)
    The concentric radius (rx) as per Kiørboe [72] uses a diffusivity of N assumed to be 1.860 × 10−5 cm2 sec−1 and the background concentration of N (Ci) is assumed to be negligible. Figure 5 presents the results for the two symbioses: H. membranaceus and H. hauckii at the two growth rates and as chains or singlets. Mean sinking rates for cells with a high form resistance (e.g., chains) are More

  • in

    Climatic windows for human migration out of Africa in the past 300,000 years

    Late Quaternary climate reconstructionsPrecipitationOur reconstructions of Late Quaternary precipitation are based on outputs from a statistical emulator of the HadCM3 general circulation model62. The emulator was developed using 72 3.75° × 2.5° resolution snapshot climate simulations of HadCM3, covering the last 120k years and in 2k year time steps from 120k to 22k years ago and 1k-year time steps from 21k years ago to the present, where each time slice represents climatic conditions averaged across a 30-year post-spin-up period28,63. The emulator is based on grid-cell-specific linear regressions between the local time series of HadCM3 climate data and four time-dependent forcings, given by the mean global atmospheric CO2 concentration and three orbital parameters: eccentricity, obliquity, and precession. The values of these four predictors are known well beyond the last 120k years; thus, applying them to the calibrated grid-cell-specific linear regressions allows for the statistical extrapolation of global climate up to 800k years into the past62. The emulated climate data have been shown to correspond closely to the original HadCM3 simulations for the last 120k years, and to match long-term empirical climate reconstructions well62.Here, we used precipitation data from the emulator, denoted ({bar{{{{bf{P}}}}}}_{{{{{rm{HadCM3}}}}}_{{{{rm{em}}}}}}(t)), of the last 300k years at 1k-year time steps, (tin {{{{bf{T}}}}}_{300k}). The data were spatially downscaled from their native 3.75° × 2.5° grid resolution, and subsequently bias-corrected, in two steps, similar to the approach described in ref. 64, whose description we follow here. Both steps use variations of the delta method65, under which a high-resolution, bias-corrected reconstruction of precipitation at sometime t is obtained by applying the difference between lower-resolution present-day simulated and high-resolution present-day observed climate—the correction term—to the simulated climate at time t. The delta method has been used to downscale and bias-correct palaeoclimate simulations before (e.g. for the WorldClim database66), and, despite its conceptual simplicity, has been shown to outperform alternative methods commonly used for downscaling and bias-correction67.A key limitation of the delta method is that it assumes the present-day correction term to be representative of past correction terms. This assumption is substantially relaxed in the dynamic delta method used in the first step of our approach to downscale ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) to a ~1° resolution. This method involves the use of a set of high-resolution climate simulations that were run for a smaller but climatically diverse subset of T300k. Simulations at this resolution are computationally very expensive, and therefore running substantially larger sets of simulations is not feasible; however, these selected data can be very effectively used to generate a suitable time-dependent correction term for each (tin {{{{bf{T}}}}}_{300k}). In this way, we can increase the resolution of the original climate simulations by a factor of ∼9, while simultaneously allowing for the temporal variability of the correction term. In the following, we describe the approach in detail.We used high-resolution precipitation simulations from the HadAM3H model63, generated for the last 21,000 years in 9 snapshots (2k year time intervals from 12k to 6k years ago, and 3k year time intervals otherwise) at a 1.25° × .83° grid resolution, denoted ({bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(t)), where (tin {{{{bf{T}}}}}_{21k},)represents the nine time slices for which simulations are available. These data were used to downscale ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) to a 1.25° × 0.83° resolution by means of the multiplicative dynamic delta method, yielding$${bar{{{{bf{P}}}}}}_{ sim 1^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(t)cdot frac{{bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})}{{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})}.$$
    (1)
    The ⊞-notation indicates that the coarser-resolution data were interpolated to the grid of the higher-resolution data, for which we used an Akima cubic Hermite interpolant68, which, unlike the bilinear interpolation, is continuously differentiable but, unlike the bicubic interpolation, avoids overshoots. The time (hat{t}in {{{{bf{T}}}}}_{21k}) is chosen as the time at which climate was, in a sense specified below, close to that at time (tin {{{{bf{T}}}}}_{300k}). In contrast to the classical delta method (for which (hat{t}=0) for all (t)), this approach does not assume that the resolution correction term, ((frac{{bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})}{{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})})), is constant over time. Instead, the finescale heterogeneities that are applied to the coarser-resolution ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) are chosen from the wide range of patterns simulated for the last 21k years. The strength of the approach lies in the fact that the last 21k years account for a substantial portion of the glacial-interglacial range of climatic conditions present during the whole Late Quaternary. Following ref. 64, we used global CO2, a key indicator of the global climatic state, as the metric according to which (hat{t}) is chosen; i.e. among the times for which HadAM3H simulations are available, (hat{t}) is the time at which global CO2 was closest to the respective value at the time of interest, t.In the second step of our approach, we used the classical multiplicative delta method to bias-correct and further downscale ({{{{bf{P}}}}}_{ sim 1^circ }(t)) to a hexagonal grid69 with an internode spacing of ~55 km (~0.5°),$${bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{ sim 1^circ }^{ boxplus }(t)cdot frac{{bar{{{{bf{P}}}}}}_{{{{rm{obs}}}}}(0)}{{bar{{{{bf{P}}}}}}_{ sim 1^circ }^{ boxplus }(0)},$$
    (2)
    where ({{{{bf{P}}}}}_{{{{rm{obs}}}}}(0)) denotes present-era (1960–1990) observed precipitation70.We reconstructed land configurations for the last 300k years using present-day elevation71 and a time series of Red Sea sea level72. For locations that are currently below sea level, the delta method does not work. For these locations, precipitation was extrapolated using a inverse distance weighting approach. With the exception of a brief window from 124–126k years ago, sea level in the past was lower than it is today; thus, present-day coastal patterns are spatially extended as coastlines move, but not removed. For all (tin {{{{bf{T}}}}}_{300k}), maps of annual precipitation ({bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)) with the appropriate land configuration are available as Supplementary Movie 1.Based on these data representing 30-year climatological normals at 1k-year time steps between 300k years ago and the present, we generated, for each millennium, 100 maps representing 10-year average climatologies as follows. We used 3.75° × 2.5° climate simulations from the HadCM3B-M2.1 model, providing a 1000-years-long annual time series of annual precipitation for each millennium between 21k years ago and the present73. Millennia were simulated in parallel; thus, the 1000-years-long time series representing each millennium is in itself continuous, but the beginnings and ends of the time series of successive millennia generally do not coincide. For (tin {{{{bf{T}}}}}_{21k}), we denote the available 1000 successive maps of annual precipitation by ({{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(1)}(t),ldots ,{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(1000)}(t)). We used these data to compute the relative deviation of the climatic average of each decade within a given millennium, and the climatic average of the 30-year period containing the specific decade as$${{{{boldsymbol{epsilon }}}}}_{HM}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{{sum }_{i=1+(d-1)cdot 10}^{dcdot 10}{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(i)}(t)}{{sum }_{n=1+(d-2)cdot 10}^{(d+1)cdot 10}{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(n)}(t)},d=1,ldots ,100$$
    (3)
    Finally, we applied these ratios of 10-year to 30-year climatic averages to the previously derived 1k-year time step climatologies to obtain, for each (tin ,{{{{bf{T}}}}}_{300k}), 100 sets of 10-year average annual precipitation,$${{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)cdot {{{{boldsymbol{epsilon }}}}}_{HM}^{(d), boxplus }(hat{t}),,d=1,ldots ,100$$
    (4)
    where, analogous to our approach in Eq. (1),(, boxplus ) denotes the interpolation to the ~55 km hexagonal grid, and where (hat{t}) is chosen as the time at which global CO2 was closest to the respective value at time t.AridityThe Köppen aridity index used here is defined as the ratio of annual precipitation (in mm) to the sum of mean annual temperature (in °C) and a constant of 33 °C (cf. Eq. (8)). This measure of aridity was found to be the most reliable one of a set of alternative indices in palaeoclimate contexts30.Decadal-scale mean annual temperature data between 300k years ago and the present were created using analogous methods to those previously applied to reconstruct precipitation. 3.75° × 2.5° resolution emulator-derived simulations of mean annual temperature of the past 300k years at 1k time steps62, denoted ({bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)), were first downscaled by means of the additive dynamic delta method, using 1.25° × 0.83° HadAM3H simulations of mean annual temperature of the past 21k years, denoted ({bar{{{{bf{T}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(t)), yielding, analogous to Eq. (1),$${bar{{{{bf{T}}}}}}_{ sim 1^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(t)+left({bar{{{{bf{T}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})-{bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})right).$$
    (5)
    Analogous to Eq. (2), Next, present-day observed mean annual temperature, ({bar{{{{bf{T}}}}}}_{{{{rm{obs}}}}}(0)), was used to further downscale and bias-correct the data by means of the additive delta method to obtain$${bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{ sim 1^circ }^{ boxplus }(t)+left({bar{{{{bf{T}}}}}}_{{{{rm{obs}}}}}(0)-{bar{{{{bf{T}}}}}}_{ sim 1^circ }^{ boxplus }(hat{t})right).$$
    (6)
    For all (tin {{{{bf{T}}}}}_{300k}), maps of mean annual temperature ({bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)) with the appropriate land configuration are available as Supplementary Movie 1.Finally, we incorporated HadCM3B-M2 simulations of mean annual temperature of the past 21k years, ({{{{bf{T}}}}}_{{{{rm{HM}}}}}^{(1)}(t),ldots ,{{{{bf{T}}}}}_{{{{rm{HM}}}}}^{(1000)}(t)) for (tin {{{{bf{T}}}}}_{21k}), to obtain 10-year average mean annual temperature,$$begin{array}{c}{{{{bf{T}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)+{left(mathop{sum }limits_{i=1+(d-1)cdot 10}^{dcdot 10}{bar{{{{bf{T}}}}}}_{{{{rm{HM}}}}}^{(i)}(t)-mathop{sum }limits_{n=1+(d-2)cdot 10}^{(d+1)cdot 10}{bar{{{{bf{T}}}}}}_{{{{rm{HM}}}}}^{(n)}(t)right)}^{ boxplus },\ d=1,ldots ,100end{array}$$
    (7)
    Based on these data, the Köppen aridity index at the same spatial and temporal resolution is calculated as$${{{{bf{A}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{{{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)}{{{{{bf{T}}}}}_{ sim 0.5^circ }^{(d)}(t)+33}.$$
    (8)
    Comparison with empirical proxiesLong-term proxy records
    Long-term proxy records allow us to assess whether simulations capture key qualitative dynamics observed in the empirical data. The lack of direct long-term time series reconstructions of annual precipitation and mean annual temperature makes it necessary to use proxies related to these two climate variables. Proxies providing temporal coverage beyond the last glacial maximum are not only extremely sparse in North Africa and Southwest Asia, but even the few records that exist are affected by environmental factors other than the specific climate variables considered here. For example, reconstructions of past wetness and aridity use proxies that reflect not only rainfall conditions but also the interaction of precipitation with other local and non-local hydro-climatic variables, e.g. river discharge or hydrological catchment across a larger area. Here, we have not attempted to correct for such processes, but assumed that the simulated climate at the site where the empirical record was taken provide a suitable approximation of the potentially broader climatic conditions relevant for the proxy data. Realistic climate simulations would therefore be expected to match major qualitative trends of the empirical records, rather than exhibit a perfect correlation with the data. We compared our precipitation simulations against three long-term humidity-related empirical proxies (Fig. 4a). Proxy 174 provides a time series of Dead Sea lake levels, for which wet and dry periods are associated with high-stand and low-stand conditions, respectively. Proxy 219 from the southern tip of the Arabian Peninsula was obtained from a marine sediment core that allows for reconstructing past changes in aridity over land from the stable hydrogen isotopic composition of leaf waxes (δDwax). Proxy 318 is an XRF-derived humidity index from a core near the Northwest African coast. Temperature simulations were compared against two long-term records of δ18O, which varies over time as a result of temperature fluctuations (in addition to other factors), from the Peqiin and Soreq caves in Northern Israel75 (Fig. 4e). Overall, the simulated data capture key phases observed in the empirical records well for both precipitation (Fig. 4b–d) and temperature proxies (Fig. 4f–h).Fig. 4: Comparison of our data to long-term proxy records.a Geographical locations of empirical proxies on a map of present-day annual precipitation. b–d Comparisons of simulated annual precipitation against the three wetness proxies. e Geographical locations of empirical proxies on a map of present-day mean annual temperature. f, g Comparisons of simulated mean annual temperature against the two δ18O records. Black lines represent the simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)), grey shades represent the 10th and 90th percentile of the decadal simulations (n = 100; Eqs. (4) and (7)).Full size image

    Pollen-based reconstructions
    Pollen records used to empirically reconstruct past climate do not reach as far back in time as the above-described proxy records and are not available at the same temporal resolution; however, in contrast to those proxies, they can be used to quantitatively estimate local annual precipitation and mean annual temperature directly. Here, we used the dataset of pollen-based reconstructions of precipitation and temperature for the mid-Holocene (6k years ago) and the last glacial maximum (21k years ago)76 (Fig. 5a). Our precipitation and temperature data are overall in good agreement with the empirical reconstructions (Fig. 5b–e). During the mid-Holocene, our simulations suggest slightly less precipitation at low levels than most of the empirical records (Fig. 5d), while our data match the empirical reconstruction available from a very arid location during the last glacial maximum very well (Fig. 5e).Fig. 5: Comparison of our data to pollen-based climate reconstructions from the mid-Holocene and the last interglacial period.a Geographical locations and timings of pollen records. b–e Comparisons of our data against empirical reconstructions. Vertical centre measures and error bars represent the empirical reconstructed values and their uncertainties, respectively; horizontal centre measures and error bars represent simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)) and the 10th and 90th percentile of the simulated decadal data (n = 100; Eqs. (4) and (7)), respectively.Full size image

    Interglacial palaeolakes on the Arabian Peninsula
    Finally, we plotted time series of our precipitation simulations in three locations in which palaeolakes have been dated to the last interglacial period, following the approach in ref. 24, in which the authors tested whether their climate simulations predicted higher rainfall during the last interglacial period than at present at palaeolake sites on the Arabian Peninsula. Figure 6 shows the locations of three palaeolakes in the northeast (western Nefud near Taymal; proxy 1), the centre (at Khujaymah; proxy 2), and the southwest (at Saiwan; proxy 3) of the peninsula24 (described in detail in refs. 23,77), and our precipitation data in these locations. In two out of the three locations, our data predict that more rainfall occurred at the estimated timings of the palaeolakes than at any point in time since; in the third location, slightly more rainfall than during the dated time interval is simulated only for a period around 8k years ago.Fig. 6: Comparison of our data against the dates of three palaeolakes on the Arabian peninusla.a Geographical locations of the lakes. b–d Time series of our precipitation data. Black lines represent the simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)), grey shades represent the 10th and 90th percentile of the decadal simulations (n = 100; Eq. (4)). Horizontal error bars represent the estimated dates of the lakes24.Full size image
    Determining the minimum precipitation and aridity tolerance required for out-of-Africa exitsWe denote by ({{{bf{X}}}}={({lambda }_{1},{phi }_{1}),({lambda }_{2},{phi }_{2}),ldots },)the set of longitude and latitude coordinates of the hexagonal grid with an internode spacing of ~55 km (~0.5°)69 that are contained in the longitude window [15°E, 70°E] and the latitude window [5°N, 43°N] (shown in Fig. 3). We denote by ({{{bf{E}}}}) the set of the present-day elevation values of the coordinates in ({{{bf{X}}}}) (in meters)78, i.e. ({{{bf{E}}}}({x}_{i})) is a positive number in a point ({x}_{i}=({lambda }_{i},{phi }_{i})) if ({x}_{i}) is currently above sea level, and negative if ({x}_{i}) is currently below sea level. We denote by (s(t)) the sea level (in meters) at the time (tin {{{{bf{T}}}}}_{300k}) (where ({{{{bf{T}}}}}_{300k}) represents the last 300k years in 1k time steps), for which we used a long-term reconstruction of Red Sea sea level72. In particular, we have (s(0)=0) at present day. For each millennium (tin {{{{bf{T}}}}}_{300k}), we denote by (bar{{{{bf{X}}}}}(t)) the subset of points in (X) that are above sea level:$$bar{{{{bf{X}}}}}(t)mathop{=}limits^{{{{rm{def}}}}}{xin {{{bf{X}}}}:{{{bf{E}}}}(x), > , s(t)}$$
    (9)
    Based on the precipitation map ({{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)) for a decade (d=1,ldots ,100) in millennium (t) (Eq. (4)), and a given precipitation threshold value (p) (in mm year−1), we denote by ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) the subset of (bar{{{{bf{X}}}}}(t)) that would be suitable grid cells for humans assuming that they cannot survive in areas where precipitation levels are below (p):$${mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}left{xin bar{{{{bf{X}}}}}(t):{{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)ge pright}$$
    (10)
    We then determined whether there was a connected path in ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) between an initial point, for which we used ({x}_{{{{rm{start}}}}}=(32.6^circ {{{rm{E}}}},10.2^circ {{{rm{N}}}})), and any point in a set of coordinates outside of Africa, defined as ({{{{bf{X}}}}}_{{{{rm{end}}}}}mathop{=}limits^{{{{rm{def}}}}}{(lambda ,phi )in {{{bf{X}}}}:lambda, > , 65^circ {{{rm{E}}}},{{{rm{or}}}},phi , > , 37^circ N}). This was defined to be the case if there was a finite sequence$${x}_{{{{rm{start}}}}}to {x}_{1}to {x}_{2}to ldots to {x}_{n}in {{{{bf{X}}}}}_{{{{rm{end}}}}}$$
    (11)
    of points ({x}_{i}in {mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) such that the distance between any two successive points ({x}_{i}) and ({x}_{i+1}) was less or equal to the maximum internode spacing of the grid (X). Based on this approach, the critical precipitation threshold below which no connected path exists for the precipitation map ({{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)) was determined using the following bisection method. Beginning with ({hat{p}}_{0}=1000) mm y−1 and ({check{p}}_{0}=0) mm y−1, for which a connected path between ({x}_{{{{rm{start}}}}}) and ({{{{bf{X}}}}}_{{{{rm{end}}}}}) exists, respectively, for all and for no (t) and (d), the values ({hat{p}}_{k}) and ({check{p}}_{k}) were iteratively defined as$$ , left.begin{array}{c}{check{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}\ {hat{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}{hat{p}}_{k}hfillend{array}right},{{{rm{if}}}},{{{rm{a}}}},{{{rm{connected}}}},{{{rm{path}}}},{{{rm{exists}}}},{{{rm{for}}}},p=frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}\ , left.begin{array}{c}{check{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}{check{p}}_{k}hfill\ {hat{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}end{array}right}, {{{rm{else}}}}$$
    (12)
    For all (k), the sought critical precipitation threshold, denoted ({p}_{{{{rm{crit}}}}}^{(d)}(t)), is bounded above by ({hat{p}}_{k}) and bounded below by ({check{p}}_{k}). For (kto infty ), both values converge to ({p}_{{{{rm{crit}}}}}^{(d)}(t)). Here, we defined$${p}_{{{{rm{crit}}}}}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{,{hat{p}}_{10}+{check{p}}_{10}}{2},$$
    (13)
    which lies within 1 mm y−1 of the true limit value.To specifically determine the precipitation tolerance required for a northern (Fig. 1a) or southern (Fig. 1b) exit, we rendered the passage of the respective other route impassable by removing appropriate cells from the grid. When investigating the southern route, we additionally assumed that no sea level and precipitation constraints applied within a ~40 km radius around the centre of the Bab al-Mandab strait.For aridity, the procedure is identical, with the exception that ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) is defined based on the relevant aridity map, ({{{{bf{A}}}}}_{ sim 0.5^circ }^{(d)}(t)), and the value 4.0 is used for the initial upper threshold (denoted ({hat{p}}_{0}) above).Width of the Strait of Bab al-MandabSimilar to ref. 52, we reconstructed the minimum distance required to cover on water in order to reach the Arabian peninsula (present-day west coast of Yemen) from Africa (present-day Djibouti and southeast Eritrea). We used a 0.0083° (~1 km at the equator) map of elevation and bathymetry78 and a time series of Red Sea sea level72 to reconstruct very-high-resolution land masks for the last 300k years. For each point in time, we determined the set of connected land masses, and the distances between the closest points of any two land masses. The result can be graph-theoretically represented by a complete graph whose nodes represent connected land masses and whose edge weights correspond to the minimum distances between land masses. The path involving the minimum continuous distance on water was then determined by solving the minmax path problem whose solution is the path between the two nodes representing Africa and the Arabian Peninsula that minimises the maximum weight of any of its edges (Fig. 1b grey shades).Analyses were conducted using Matlab R2019a79.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Occurrence of Mycoplasma spp. in wild birds: phylogenetic analysis and potential factors affecting distribution

    1.Luttrell, M. P. & Fischer, J. R. Mycoplasmosis. In Infectious Diseases of Wild Birds (eds Thomas, N. J. et al.) 317–331 (Blackwell Publishing Ltd, 2007).Chapter 

    Google Scholar 
    2.Luttrell, M. P., Kleven, S. H. & Mahnke, G. M. Mycoplasma synoviae in a released pen-raised wild turkey. Avian Dis. 36, 169–171 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Forrester, C. A. et al. Mycoplasma gallisepticum in pheasants and the efficacy of tylvalosin to treat the disease. Avian Pathol. 40, 581–587 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Welchman, D. D. E. B., Bradbury, J. M., Cavanagh, D. & Aebischer, N. J. Infectious agents associated with respiratory disease in pheasants. Vet. Rec. 150, 658–664 (2002).Article 

    Google Scholar 
    5.de Welchman, D. B. et al. Demonstration of Ornithobacterium rhinotracheale in pheasants (Phasianus colchicus) with pneumonia and airsacculitis. Avian Pathol. 42, 171–178 (2013).Article 

    Google Scholar 
    6.Cookson, K. C. & Shivaprasad, H. L. Mycoplasma gallisepticum infection in chukar partridges, pheasants, and peafowl. Avian Dis. 38, 914–921 (2016).Article 

    Google Scholar 
    7.Bencina, D., Mrzel, O., Rois Zorman, O., Bidovec, A. & Dovc, A. Characterisation of Mycoplasma gallisepticum strains involved in respiratory disease in pheasants and peafowl. Vet. Rec. 152, 230–234 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Bradbury, J. M., Yavari, C. A. & Dare, C. M. Mycoplasmas and respiratory disease in pheasants and partridges. Avian Pathol. 30, 391–396 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bradbury, J. M., Yavari, C. A. & Dare, C. M. Detection of Mycoplasma synoviae in clinically normal pheasants. Vet. Rec. 148, 72–74 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Wrobel, E. R., Wilcoxen, T. E., Nuzzo, J. T. & Seitz, J. Seroprevalence of avian pox and Mycoplasma gallisepticum in raptors in central Illinois. J. Raptor Res. 50, 289–294 (2016).Article 

    Google Scholar 
    11.Sawicka, A., Durkalec, M., Tomczyk, G. & Kursa, O. Occurrence of Mycoplasma gallisepticum in wild birds: A systematic review and meta-analysis. PLoS ONE 15, e0231545 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hartup, B. K., Kollias, G. V. & Ley, D. H. Mycoplasmal conjunctivitis in songbirds from New York. J. Wildl. Dis. 36, 257–264 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ley, D. H., Berkhoff, J. E. & Mclaren, J. M. Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis. 40, 480–483 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: The spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Farmer, K. L., Hill, G. E. & Roberts, S. R. Susceptibility of wild songbirds to the house finch strain of Mycoplasma gallisepticum. J. Wildl. Dis. 41, 317–325 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Dhondt, A. A., Dhondt, K. V., Hochachka, W. M. & Schat, K. A. Can American goldfinches function as reservoirs for Mycoplasma gallisepticum? J. Wildl. Dis. 49, 49–54 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Fry, M. A. Effects of Mycoplasma gallisepticum on experimentally infected Eastern bluebirds (Sialia sialis). Honors Theses 1116 (2019). https://egrove.olemiss.edu/hon_thesis/1116. (Accessed 10 November 2020).18.Balenger, S. L. Costs associated with Mycoplasma gallisepticum infection of Eastern bluebirds (Sialia sialis). Integr. Comp. Biol. 59, e1–e260 (2019).Article 

    Google Scholar 
    19.Forsyth, M. H. et al. Mycoplasma sturni sp. nov., from the conjunctiva of a European starling (Sturnus vulgaris). Int. J. Syst. Bacteriol. 46, 716–719 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ley, D. H., Geary, S. J., Edward Berkhoff, J., McLaren, J. M. & Levisohn, S. Mycoplasma sturni from blue jays and northern mockingbirds with conjunctivitis in Florida. J. Wildl. Dis. 34, 403–406 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Ley, D. H., Anderson, N., Dhondt, K. V. & Dhondt, A. A. Mycoplasma sturni from a California house finch with conjunctivitis did not cause disease in experimentally infected house finches. J. Wildl. Dis. 46, 994–999 (2010).PubMed 
    Article 

    Google Scholar 
    22.Ley, D. H., Moresco, A. & Frasca, S. Conjunctivitis, rhinitis, and sinusitis in cliff swallows (Petrochelidon pyrrhonota) found in association with Mycoplasma sturni infection and cryptosporidiosis. Avian Pathol. 41, 395–401 (2012).PubMed 
    Article 

    Google Scholar 
    23.Wellehan, J. F. X. et al. Mycoplasmosis in captive crows and robins from Minnesota. J. Wildl. Dis. 37, 547–555 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Poveda, J. B., Giebel, J., Flossdorf, J., Meier, J. & Kirchhoff, H. Mycoplasma buteonis sp. nov., Mycoplasma falconis sp. nov., and Mycoplasma gypis sp. nov., three species from birds of prey. Int. J. Syst. Bacteriol. 44, 94–98 (1994).Article 

    Google Scholar 
    25.Ruder, M. G., Feldman, S. H., Wünschmann, A. & Mcruer, L. Association of Mycoplasma corogypsi and polyarthritis in a black vulture (Coragyps atratus) in Virginia. J. Wildl. Dis. 45, 808–816 (2009).PubMed 
    Article 

    Google Scholar 
    26.Van Wettere, A. J., Ley, D. H., Scott, D. E., Buckanoff, H. D. & Degernes, L. A. Mycoplasma corogypsi associated polyarthritis and tenosynovitis in black vultures (Coragyps atratus). Vet. Pathol. 50, 291–298 (2013).PubMed 
    Article 

    Google Scholar 
    27.Erdélyi, K., Tenk, M. & Dán, Á. Mycoplasmosis associated perosis type skeletal deformity in a saker falcon nestling in Hungary. J. Wildl. Dis. 35, 586–590 (1999).PubMed 
    Article 

    Google Scholar 
    28.Fischer, L. et al. Description, occurrence and significance of Mycoplasma seminis sp. nov. isolated from semen of a gyrfalcon (Falco rusticolus). Vet. Microbiol. 247, 108789 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Ziegler, L. et al. Mycoplasma hafezii sp. nov., isolated from the trachea of a peregrine falcon (Falco peregrinus). Int. J. Syst. Evol. Microbiol. 69, 773–777 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Lecis, R. et al. Identification and characterization of novel Mycoplasma spp. belonging to the hominis group from griffon vultures. Res. Vet. Sci. 89, 58–64 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lierz, M., Hagen, N., Hernadez-Divers, S. J. & Hafez, H. M. Occurrence of mycoplasmas in freeranging birds of prey in Germany. J. Wildl. Dis. 44, 845–850 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Volokhov, D. V. et al. Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese (Anser anser domesticus) with reproductive pathology. Int. J. Syst. Evol. Microbiol. 70, 2369–2381 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Dobos-Kovács, M., Varga, Z., Czifra, G. & Stipkovits, L. Salpingitis in geese associated with Mycoplasma sp. strain 1220. Avian Pathol. 38, 239–243 (2009).PubMed 
    Article 

    Google Scholar 
    34.Gyuranecz, M. et al. Isolation of Mycoplasma anserisalpingitidis from swan goose (Anser cygnoides) in China. BMC Vet. Res. 16, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    35.Kovács, Á. B. et al. The core genome multi-locus sequence typing of Mycoplasma anserisalpingitidis. BMC Genomics 21, 403 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Carnaccini, S. et al. A novel Mycoplasma sp. associated with phallus disease in goose breeders: Pathological and bacteriological findings. Avian Dis. 60, 437–443 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Landman, W. J. M. Is Mycoplasma synoviae outrunning Mycoplasma gallisepticum? A viewpoint from the Netherlands. Avian Pathol. 43, 2–8 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Kursa, O., Tomczyk, G. & Sawicka, A. Prevalence and phylogenetic analysis of Mycoplasma synoviae strains isolated from Polish chicken layer flocks. J. Vet. Res. 63, 41–49 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Catania, S. et al. Two strains of Mycoplasma synoviae from chicken flocks on the same layer farm differ in their ability to produce eggshell apex abnormality. Vet. Microbiol. 193, 60–66 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Kang, M. S., Gazdzinski, P. & Kleven, S. H. Virulence of recent isolates of Mycoplasma synoviae in turkeys. Avian Dis. 46, 102–110 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lin, M. Y. & Kleven, S. H. Pathogenicity of two strains of Mycoplasma gallisepticum in turkeys. Avian Dis. 26, 360–364 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kleven, S. H. Mycoplasmas in the etiology of multifactorial respiratory disease. Poult. Sci. 77, 1146–1149 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Stallknecht, D. E., Johnson, D. C., Emory, W. H. & Kleven, S. H. Wildlife surveillance during a Mycoplasma gallisepticum epornitic in domestic turkeys. Avian Dis. 26, 883–890 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Gharaibeh, S. & Hailat, A. Mycoplasma gallisepticum experimental infection and tissue distribution in chickens, sparrows and pigeons. Avian Pathol. 40, 349–354 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Benčina, D., Dorrer, D. & Tadina, T. Mycoplasma species isolated from six avian species. Avian Pathol. 16, 653–664 (1987).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Tsai, H. J. & Lee, C. Y. Serological survey of racing pigeons for selected pathogens in Taiwan. Acta Vet. Hung. 54, 179–189 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Michiels, T. et al. Prevalence of Mycoplasma gallisepticum and Mycoplasma synoviae in commercial poultry, racing pigeons and wild birds in Belgium. Avian Pathol. 45, 244–252 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.May, M., Balish, M. & Blanchard, A. The Order Mycoplasmatales. In The Prokaryotes (eds Rosenberg, E. et al.) 515–550 (Springer, 2004).
    Google Scholar 
    49.Lierz, M., Obon, E., Schink, B., Carbonell, F. & Hafez, H. M. The role of Mycoplasmas in a conservation project of the lesser kestrel (Falco naumanni). Avian Dis. 52, 641–645 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Bolske, G. & Morner, T. Isolation of a Mycoplasma sp. from three buzzards (Buteo spp.). Avian Dis. 26, 406–411 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Kempf, I., Chastel, C., Ferris, S., Gesbert, F. & Blanchard, A. Isolation and characterisation of a mycoplasma from a kittiwake (Rissa tridactyla). Vet. Rec. https://doi.org/10.1136/vr.146.6.168 (2000).Article 
    PubMed 

    Google Scholar 
    52.Cockerham, S. et al. Microbial ecology of the western gull (Larus occidentalis). Microb. Ecol. 78, 665–676 (2019).PubMed 
    Article 

    Google Scholar 
    53.Liao, F. et al. Characteristics of microbial communities and intestinal pathogenic bacteria for migrated Larus ridibundus in southwest China. Microbiology https://doi.org/10.1002/mbo3.693 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Shimizu, T., Ern, H. & Nagatomo, H. Isolation and characterization of Mycoplasma columbinum and Mycoplasma columborale, two new species from pigeons. Int. J. Syst. Bacteriol. 28, 538–546 (1978).Article 

    Google Scholar 
    55.Nagatomo, H., Kato, H., Shimizu, T. & Katayama, B. Isolation of mycoplasmas from fantail pigeons. J. Vet. Med. Sci. 59, 461–462 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Sawicka, A., Tomczyk, G., Kursa, O. & Stenzel, T. Occurrence and relevance of Mycoplasma spp. in racing and ornamental pigeons in Poland. Avian Dis. 63, 468 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Möller Palau-Ribes, F. et al. Description and prevalence of Mycoplasma ciconiae sp. nov. isolated from white stork nestlings (Ciconia ciconia). Int. J. Syst. Evol. Microbiol. 66, 3477–3484 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    58.Goldberg, D. R. et al. The occurrence of mycoplasmas in selected wild North American waterfowl. J. Wildl. Dis. 31, 364–371 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Bradbury, J. M. et al. Isolation of mycoplasma cloacale from a number of different avian hosts in great Britain and France. Avian Pathol. 16, 183–186 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Poveda, J. B. et al. An epizootiological study of avian mycoplasmas in Southern Spain. Avian Pathol. 19, 627–633 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Brown, D. R., Whitcomb, R. F. & Bradbury, J. M. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int. J. Syst. Evol. Microbiol. 57, 2703–2719 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Volokhov, D. V., Simonyan, V., Davidson, M. K. & Chizhikov, V. E. RNA polymerase beta subunit (rpoB) gene and the 16S–23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Mol. Phylogenet. Evol. 62, 515–528 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Hartup, B. K. & Kollias, G. V. Field investigation of Mycoplasma gallisepticum infections in house finch (Carpodacus mexicanus) eggs and nestlings. Avian Dis. 43, 572 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Paessler, M. et al. Disseminated Mycoplasma orale infection in a patient with common variable immunodeficiency syndrome. Diagn. Microbiol. Infect. Dis. 44, 201–204 (2002).PubMed 
    Article 

    Google Scholar 
    65.Nikfarjam, L. & Farzaneh, P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J. 13, 203–212 (2012).PubMed 

    Google Scholar 
    66.Trinh, P., Zaneveld, J. R., Safranek, S. & Rabinowitz, P. M. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front. Public Health 6, 1–9 (2018).Article 

    Google Scholar 
    67.Baron, S. A., Diene, S. M. & Rolain, J. Human microbiomes and antibiotic resistance. Hum. Microbiome J. 10, 43–52 (2018).Article 

    Google Scholar 
    68.Diaz-torres, M. L. et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol. Lett. 258, 257–262 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Atterby, C. et al. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect. Ecol. Epidemiol. 6, 32334 (2016).PubMed 

    Google Scholar 
    71.Allen, H. K., Donato, J., Wang, H. H. & Cloud-hansen, K. A. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Wang, J. et al. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 38, 55–80 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Brittingham, M. C., Temple, S. A. & Duncan, R. M. A survey of the prevalence of selected bacteria in wild birds. J. Wildl. Dis. 24, 299–307 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Škaraban, J., Matjašič, T., Janžekovič, F., Wilharm, G. & Trček, J. Cultivable bacterial microbiota from choanae of free-living birds captured in Slovenia. Folia Biol. Geol. 58, 105 (2017).Article 

    Google Scholar 
    75.Stenkat, J., Krautwald-Junghanns, E., Schmitz Ornes, A., Eilers, A. & Schmidt, V. Aerobic cloacal and pharyngeal bacterial flora in six species of free-living birds. J. Appl. Microbiol. https://doi.org/10.1111/jam.12636 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Ferguson-Noel, N., Armour, N. K., Noormohammadi, A. H., El-Gazzar, M. & Bradbury, J. M. Mycoplasmosis. In Diseases of Poultry (ed. Swayne, D. E.) (Wiley, 2020).
    Google Scholar 
    77.Ely, C. R. et al. Circumpolar variation in morphological characteristics of greater white-fronted geese Anser albifrons. Bird Study 52, 104–119 (2005).Article 

    Google Scholar 
    78.Deng, X. et al. Spring migration duration exceeds that of autumn migration in far east asian greater white-fronted geese (Anser albifrons). Avian Res. 10, 1–11 (2019).Article 

    Google Scholar 
    79.Kölzsch, A. et al. Towards a new understanding of migration timing : slower spring than autumn migration in geese refl ects different decision rules for stopover use and departure. Oikos https://doi.org/10.1111/oik.03121 (2016).Article 

    Google Scholar 
    80.Gonzalez, L. M. Origin and formation of the Spanish imperial eagle (Aquila adalberti). J. Ornithol. 149, 151–159 (2008).Article 

    Google Scholar 
    81.Shamoun-Baranes, J. et al. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 34, 97–104 (2003).Article 

    Google Scholar 
    82.Birds of the World. Cornell Laboratory of Ornithology (2020). https://birdsoftheworld.org/bow/home. (Accessed 17 August 2020).83.Lierz, M. et al. Prevalence of mycoplasmas in eggs from birds of prey using culture and a genus-specific mycoplasma polymerase chain reaction. Avian Pathol. 36, 145–150 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Raviv, Z. & Kleven, S. H. The development of diagnostic real-time Taqman PCRs for the four pathogenic avian mycoplasmas. Avian Dis. 53, 103–107 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Mangiafico, S. rcompanion: Functions to support extension education program evaluation. R package version 2.3.26. (2020).87.Wickham, H., Romain, F., Lionel, H. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.8.1. (2019).88.Wickham, H. ggplot2 Vol. 35 (Springer, 2016).MATH 
    Book 

    Google Scholar 
    89.R Core Team. R: A Language and Environment for Statistical Computing. Version 4.0.4. (Foundation for Statistical Computing, 2021). https://www.r-project.org/. (Accessed 20 October 2020).90.Fair, J. M. et al. (eds) Guidelines to the Use of Wild Birds in Research 3rd edn. (The Ornithological Council, 2010).
    Google Scholar  More

  • in

    Conservation needs to break free from global priority mapping

    1.Evans, M. Environ. Conserv. https://doi.org/10.1017/S0376892921000114 (2021).2.Brooks, T. M. et al. Science 313, 58–61 (2006).CAS 
    Article 

    Google Scholar 
    3.Margules, C. R. & Pressey, R. L. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    4.Myers, N. Bioscience 53, 916–917 (2003).Article 

    Google Scholar 
    5.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    6.Hulme, M. Glob. Environ. Change 20, 558–564 (2010).Article 

    Google Scholar 
    7.Kullberg, P. & Moilanen, A. Nat. Conserv. 12, 3–10 (2014).Article 

    Google Scholar 
    8.McIntosh, E. J., Pressey, R. L., Lloyd, S., Smith, R. J. & Grenyer, R. Annu. Rev. Environ. Resour. 42, 677–697 (2017).Article 

    Google Scholar 
    9.Turnhout, E., Dewulf, A. & Hulme, M. Curr. Opin. Environ. Sustain. 18, 65–72 (2016).Article 

    Google Scholar 
    10.Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Nat. Ecol. Evol. 1, 1588 (2017).Article 

    Google Scholar 
    11.Halpern, B. S., Regan, H. M., Possingham, H. P. & McCarthy, M. A. Ecol. Lett. 9, 2–11 (2006).Article 

    Google Scholar 
    12.Mokany, K. et al. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).CAS 
    Article 

    Google Scholar 
    13.Moffette, F., Alix-Garcia, J., Shea, K. & Pickens, A. H. Nat. Clim. Change 11, 172–178 (2021).Article 

    Google Scholar 
    14.zu Ermgassen, E. K. H. J. et al. Environ. Res. Lett. 15, 035003 (2020).Article 

    Google Scholar 
    15.Schmidt-Traub, G. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01533-w (2021).16.Obermeister, N. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    17.Sinclair, S. P. et al. Conserv. Lett. 11, e12459 (2018).Article 

    Google Scholar 
    18.Mammides, C. et al. Biol. Conserv. 198, 78–83 (2016).Article 

    Google Scholar 
    19.Turnhout, E. & Boonman-Berson, S. Ecol. Soc. 16, 35 (2011).Article 

    Google Scholar 
    20.Malavasi, M. Biol. Conserv. 252, 108843 (2020).Article 

    Google Scholar 
    21.Lahsen, M. & Turnhout, E. Environ. Res. Lett. 16, 025008 (2021).Article 

    Google Scholar 
    22.Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Nat. Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    23.Popkin, G. Science https://doi.org/gpzx (24 October 2019).24.Tengö, M. et al. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).Article 

    Google Scholar 
    25.Temper, L., del Bene, D. & Martinez-Alier, J. J. Political Ecol. 22, 255–278 (2015).
    Google Scholar  More

  • in

    Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies

    1.Spoor, F., Wood, B. A. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Braga, J. et al. Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10, e0127780 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Urciuoli, A. et al. The evolution of the vestibular apparatus in apes and humans. Elife 9, e51261 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ward, D. L. et al. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat. Rec. https://doi.org/10.1002/ar.24601 (2021).Article 

    Google Scholar 
    5.Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Grohé, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: A case study of Musteloidea. J. Anat. 228, 366–383 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Vater, M. & Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Manoussaki, D. et al. The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. U.S.A. 105, 6162–6166 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wannaprasert, T. & Jeffery, N. Variations of mammalian cochlear shape in relation to hearing frequency and skull size. Trop. Nat. Hist. 15, 41–54 (2015).
    Google Scholar 
    11.Beaudet, A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. Am. J. Phys. Anthropol. 170, 439–446 (2019).PubMed 
    Article 

    Google Scholar 
    12.Kendall, D. G. Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    13.Srivastava, A. & Klassen, E. Functional and Shape Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    14.Braga, J. et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Hum. Evol. 130, 21–35 (2019).PubMed 
    Article 

    Google Scholar 
    15.Braga, J. et al. Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci. Rep. 9, 10889 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Grine, F. E. The alpha taxonomy of Australopithecus africanus. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 73–104 (Springer, 2013).Chapter 

    Google Scholar 
    18.Grine, F. E., Delanty, M. M. & Wood, B. A. Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 125–146 (Springer, 2013).Chapter 

    Google Scholar 
    19.Clarke, R. J. Australopithecus from Sterkfontein caves, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 105–123 (Springer, 2013).Chapter 

    Google Scholar 
    20.Wood, B. A. & Boyle, E. K. Hominin taxic diversity: Fact or fantasy?. Yearb. Phys. Anthropol. 159, S37–S78 (2016).Article 

    Google Scholar 
    21.Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2020).PubMed 
    Article 

    Google Scholar 
    22.Rak, Y., Kimbel, W. H., Moggi-Cecchi, J., Lockwood, C. A. & Menter, C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry). South Africa. J. Hum. Evol. 151, 102913 (2021).PubMed 

    Google Scholar 
    23.Moggi-Cecchi, J., Tobias, P. V. & Beynon, A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein South Africa. Am. J. Phys. Anthropol. 106, 425–465 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Curnoe, D. & Tobias, P. V. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. J. Hum. Evol. 50, 36–77 (2006).PubMed 
    Article 

    Google Scholar 
    25.Clarke, R. J. Latest information on Sterkfontein’s Australopithecus skeleton and a new look at Australopithecus. S. Afr. J. Sci. 104, 443–449 (2008).ADS 
    Article 

    Google Scholar 
    26.Braga, J. et al. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa). J. Hum. Evol. 65, 447–456 (2013).PubMed 
    Article 

    Google Scholar 
    27.Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evol. 30, 314–334 (1976).Article 

    Google Scholar 
    28.Bookstein, F. & Mitteroecker, P. Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology. Evol. Biol. 41, 336–350 (2014).Article 

    Google Scholar 
    29.Le Maitre, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article 

    Google Scholar 
    30.Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evol. 66, 2369–2383 (2012).Article 

    Google Scholar 
    31.Quam, R. et al. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 8847–8851 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2020).Article 

    Google Scholar 
    33.Sponheimer, M. & Lee-Thorp, J. A. Biogeochemical evidence for the environments of early Homo in South Africa. In The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 185–194 (Springer, 2009).Chapter 

    Google Scholar 
    34.Ni, G., Elliott, S. J., Ayat, M. & Teal, P. D. Modelling cochlear mechanics. Biomed. Res. Int. 2, 150637 (2014).
    Google Scholar 
    35.Cai, H., Manoussaki, D. & Chadwick, R. Effects of coiling on the micromechanics of the mammalian cochlea. J. R. Soc. Interface 2, 341–348 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Tang, Z. et al. Research on the characteristics of dynamic behavior of basilar membrane in spiral cochlea. J. Vibroengineering 19, 3809–3821 (2017).Article 

    Google Scholar 
    37.Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Quam, R. M. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kojima, S. Comparison of auditory functions in the chimpanzee and human. Folia Primatol. 55, 62–72 (1990).CAS 
    Article 

    Google Scholar 
    40.Machens, C. K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zoloth, S. R. et al. Species-specific perceptual processing of vocal sounds by monkeys. Science 204, 870–873 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205, 581–598 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Broom, R. The Pleistocene anthropoid apes of South Africa. Nature 142, 377–379 (1938).ADS 
    Article 

    Google Scholar 
    44.Coqueugniot, H. et al. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299–302 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Carayon, D., Vaysse, F., Tramini, P., Dumoncel, J. & Esclassan, R. The age-related maturational pattern of the human subarcuate fossa. C. R. Palevol. 14, 139–145 (2015).Article 

    Google Scholar 
    46.Clarke, R.J. The cranium of the Swartkrans hominid SK 847 and its relevance to human origins. Ph.D. Thesis (University of the Witwatersrand,1977).47.Spoor, F. The comparative morphology and phylogeny of the human bony labyrinth. Ph.D. Thesis. (Utrecht University, 1993).48.Boyer, D. M. et al. Algorithms to automatically quantify the geometric similarity of anatomical surface. Proc. Natl. Acad. Sci. U.S.A. 108, 18221–18226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Durrleman, S., Pennec, X., Trouvé, A., Ayache, N. & Braga, J. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Kim, K., Kim, P. T., Koo, J. & Pierrynowski, M. R. Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Top. Sig. Process. 7, 646–654 (2013).ADS 
    Article 

    Google Scholar 
    51.Pietsch, M. et al. Spiral form of the human cochlea results from spatial constraints. Sci. Rep. 7, 7500 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Huang, W., Absil, P.-A., Gallivan, K. & Hand, P. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds (2016). https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html53.Dryden, I.L. & Mardia, K.V. Statistical Shape analysis, with Applications in R. Second Edition (John Wiley and Sons, 2016). R package version 1.2.6. https://cran.r-project.org/web/packages/shapes/index.html54.Kuhn, M. & Vaughan, D. Package ‘yardstick’. Tidy Characterizations of Model Performance. R package version 0.0.7. https://CRAN.R-project.org/package=yardstick (2020).55.Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 410–420 (2007).56.Nowosad, J. & Stepinski., T.F. ,. Spatial association between regionalizations using the information-theoretical V-measure. Int. J. Geogr. Inf. Sci. 32, 1–16 (2018).Article 

    Google Scholar 
    57.Schlager, S. & Morpho, R. Shape analysis in R. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic Press, 2017).Chapter 

    Google Scholar 
    58.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).59.Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: Spurious patterns from between group PCA. Evol. Biol. 46, 303–316 (2019).Article 

    Google Scholar 
    60.Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Pääbo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: A review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Near-daily reconstruction of tropical intertidal limpet life-history using secondary-ion mass spectrometry

    Ecology of Yellowfoot limpetIn the Tropical Pacific, sympatric limpets (Cellana melanostoma, Cellana exarata, Cellana sandwicensis, Cellana talcosa) inhabit the Hawaiian rocky intertidal ecosystem, where they graze on crustose coralline algae (CCA) and epibenthic microorganisms. Distribution ranges from the splash zone (upper-intertidal) to subtidal zone, and across the entire Hawaiian Archipelago26. They are dispersed across the majority of seamounts, atolls, and islands, however, not all species are present in every rocky intertidal locality, which reflects species-specific micro-habitat preferences.The reproduction cycles for each species appears to vary in time and space, and on-going long-term monitoring efforts are in progress to define this critical life-history trait. Previous studies on the yellowfoot limpet C. sandwicensis, reveal that reproduction is highly synchronized from December to March27,29. Gametogenesis also occurs from June to August, however, the level synchronicity and intensity of this second spawn period are inconsistent.These limpets are gonochoristic and considered to be sequential hermaphrodites44. The sex ratio is near 1:1(M:F) during spawning season, however, we have directly observed populations to maintain disproportionate sex ratios.Development of this broad-cast spawning limpet has been described from egg to post-larvae, where settlement occurs in less than 4 days post-fertilization29. This short larval duration ensures recruitment to the same localized intertidal environment, and reduces likelihood of hybridization between sympatric species with similar life-histories26.For wild limpets, growth rates shift through ontogeny—average monthly growth decreasing from 4–5 mm shell length (SL) as juveniles to 2–3 mm SL as adults27. Limpets also exhibit seasonal growth patterns—influenced by temperature and feeding28,37. Currently, growth rates of large individuals ( >50 mm SL) and species longevity are absent in the literature.Regional climate and coastal oceanographyKa’alawai is located on the south-facing shoreline of Oahu Island, Hawai’i (21°15’20.7“N 157°47’30.8“W). This area, defined as a rocky intertidal zone, is primarily comprised of basalt outcrops, boulders and benches, and supports a diverse community of epibenthic flora and fauna. The area is relatively easy to access by foot, and has been continuously exposed to various anthropogenic factors, which includes development, urban run-off, and subsistence fishing.The microclimate of the region is characterized by mild, wet winters (January to March) and dry, hot summers (July to September). The mean daily atmospheric temperature range and mean daily sea-surface temperature range are 18.44–31.38 °C and 22.67–30.18 °C, respectively. The annual precipitation is low relative to windward sides of the island, with maximum rainfall of 6.35 cm (data sources: US climate station USC00519397: Waikiki 717.2; PacIOOS Nearshore Sensor 04 (NS04): Waikiki Aquarium). Although freshwater input from precipitation along this coastline is considered to be marginal, the mixing of submarine groundwater discharge generates a unique geochemical profile for surface seawater at Ka’alawai. In particular, the mean surface salinity for this study site has been reported to be 25.4 ‰, which reflects this highly localized land-sea interaction45.The coastal oceanography of this region is predominantly influenced by wave, wind, and tidal forces. The south-shore region experiences a mixed tidal cycle—having both diurnal and semi-diurnal sinusoidal constituents per lunar day—with a tidal range of 58 cm and 91 cm during neap tide and spring tide, respectively; The trade winds from north-easterly direction (between 22.5°–67.5°) account for ~63% of the year with mean annual intensity around 5 m/s;46 and South swells with wave amplitudes of ~3 m are generated by storms in the Tasmanian Sea during Northern Hemisphere Summer47,48.Modern and historical specimensOn June 28th of 2018, live Yellowfoot limpet (Cellana sandwicensis) specimens CW1 and CW2 were collected from the rocky intertidal zone at Ka’alawai, Oahu, Hawai’i (Fig. 7). The animals were immediately sacrificed/dissected using scalpel blade, and measured for shell dimensions using a caliper. Limpets were weighed to determine gonadosomatic index, and gonads were preserved for histological examination. Shells were rinsed in an ultrasonic bath and air-dried.Fig. 7: Study site map.Hawaiian limpet specimens (Cellana sandwicensis) were collected along the rocky intertidal shoreline of Ka’alawai (Oahu, Hawaii). Instrumental sea-surface temperatures were measured in-situ by PacIOOS Nearshore Sensor 04 (NS04) at the Waikiki Aquarium.Full size imageA historical specimen BPBM (identification number 250851-200492) was loaned from the Bernice Pauahi Bishop Museum Malacology Department Collection. This specimen’s geographical and ecological origin is unknown, but was identified as C. sandwicensis by its characteristic shell morphology49. This specimen was selected for its large size to estimate life-expectancy of this limpet species, as well as to evaluate this method for paleoclimatology studies.Permission was not required to obtain specimens used in this study, and limpets were collected at a size exceeds the legal minimum shell length of 31.8 mm (Hawaii State Law is enforced by Department of Land and Natural Resources). Ethical approval was not required to conduct analysis.Characterization of shell microstructureShell microstructure was identified before isotopic analysis could be attempted. Each shell was cross-sectioned from anterior to posterior direction using a low speed saw (Isomet 1000, Buehler) equipped with a 0.5 mm diamond coated blade. Parallel cuts were made at the apex or maximal growth-axis to obtain two replicate 1.3 mm thick-sections per specimen. The first replicate thick-sections, prepared for micro-sampling, were further cut into More

  • in

    Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning

    1.Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73. https://doi.org/10.1038/nature04514.CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Stocker TF, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2013.3.Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7. https://doi.org/10.1126/science.1097396.CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Trumbore SE. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA. 1997;94:8284–91. https://doi.org/10.1073/pnas.94.16.8284.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7–20. https://doi.org/10.1023/A:1006247623877.CAS 
    Article 

    Google Scholar 
    6.Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90. https://doi.org/10.1038/nrmicro2439.CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541 https://doi.org/10.1038/ncomms10541.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Liu Y-R, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41. https://doi.org/10.1016/j.soilbio.2017.12.003.9.McGuire KL, Treseder KK. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol Biochem. 2010;42:529–35. https://doi.org/10.1016/j.soilbio.2009.11.016.10.Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature. 2006;439:711–4. https://doi.org/10.1038/nature04555.CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Clim Change. 2013;3:909–12. https://doi.org/10.1038/nclimate1951.12.Delgado‐Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr. 2016;86:373–90.Article 

    Google Scholar 
    13.Maaroufi NI, Long JR de. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front For Glob Change. 2020;3. https://doi.org/10.3389/ffgc.2020.00016.14.Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol. 2019;9:12113–27. https://doi.org/10.1002/ece3.5665.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Durán J, Delgado-Baquerizo M. Vegetation structure determines the spatial variability of soil biodiversity across biomes. Sci Rep. 2020;10:21500. https://doi.org/10.1038/s41598-020-78483-z.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Beugnon R, et al. Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration (in press).17.Pei Z, Eichenberg D, Bruelheide H, Kröber W, Kühn P, Li Y, et al. Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biol Biochem. 2016;96:180–90. https://doi.org/10.1016/j.soilbio.2016.02.004.18.Xu S, Eisenhauer N, Ferlian O, Zhang J, Zhou G, Lu X. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc Biol Sci. 2020;287:20202063. https://doi.org/10.1098/rspb.2020.2063.CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:6707. https://doi.org/10.1038/ncomms7707.CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. https://doi.org/10.1038/nature10386.CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641. https://doi.org/10.1038/srep44641.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J Plant Ecol. 2017;10:28–35. https://doi.org/10.1093/jpe/rtw115.Article 

    Google Scholar 
    23.Fornara DA, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol. 2008;96:314–22. https://doi.org/10.1111/j.1365-2745.2007.01345.x.CAS 
    Article 

    Google Scholar 
    24.Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332. https://doi.org/10.1038/s41467-019-09258-y.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem. 2010;42:1558–65. https://doi.org/10.1016/j.soilbio.2010.05.030.CAS 
    Article 

    Google Scholar 
    26.Rousk J, Brookes PC, Bååth E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem. 2010;42:926–34. https://doi.org/10.1016/j.soilbio.2010.02.009.27.Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. https://doi.org/10.1007/s10533-011-9658-z.CAS 
    Article 

    Google Scholar 
    28.Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE. et al. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19:1176–88. https://doi.org/10.1111/1462-2920.13642.CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Fanin N, Barantal S, Fromin N, Schimann H, Schevin P, Hättenschwiler S. Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS ONE. 2012;7:e49990. https://doi.org/10.1371/journal.pone.0049990.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7. https://doi.org/10.1126/science.aaf4507.CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155:103647. https://doi.org/10.1016/j.apsoil.2020.103647.Article 

    Google Scholar 
    32.Bao Y, Guo Z, Chen R, Wu M, Li Z, Lin X. et al. Functional community composition has less environmental variability than taxonomic composition in straw-degrading bacteria. Biol Fertil Soils. 2020;56:869–74. https://doi.org/10.1007/s00374-020-01455-y.CAS 
    Article 

    Google Scholar 
    33.Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8. https://doi.org/10.1038/s41396-018-0158-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016;10:1527–39. https://doi.org/10.1038/ismej.2015.201.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function—The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Roy S, editors. Biodiversity in Ecosystems—Linking Structure and Function. Rijeka, Croatia, InTech; 2015.36.Chen Q-L, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479. https://doi.org/10.1016/j.scitotenv.2020.139479.CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604. https://doi.org/10.1038/ismej.2016.65.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hale L, Feng W, Yin H, Guo X, Zhou X, Bracho R. et al. Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME J. 2019;13:2901–15. https://doi.org/10.1038/s41396-019-0485-x.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen J, Sinsabaugh RL. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Glob Change Biol. 2021;27:1322–5. https://doi.org/10.1111/gcb.15506.Article 

    Google Scholar 
    40.Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40. https://doi.org/10.1038/ngeo846.41.Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology. 2010;91:485–96. https://doi.org/10.1890/08-2338.1.CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Bonner MT, Shoo LP, Brackin R, Schmidt S. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma. 2018;315:96–103. https://doi.org/10.1016/j.geoderma.2017.11.026.CAS 
    Article 

    Google Scholar 
    43.Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K, Borsodi AK. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung. 2014;61:347–61. https://doi.org/10.1556/AMicr.61.2014.3.8.CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Chodak M, Klimek B, Niklińska M. Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils. 2016;52:1093–104. https://doi.org/10.1007/s00374-016-1144-2.CAS 
    Article 

    Google Scholar 
    45.Lagomarsino A, Knapp BA, Moscatelli MC, De Angelis P, Grego S, Insam H. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments. 2007;7:399–405. https://doi.org/10.1065/jss2007.04.223.46.Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365. https://doi.org/10.1126/science.aav0550.47.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB. et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82. https://doi.org/10.1038/s41564-018-0201-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Malik AA, Martiny J, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9. https://doi.org/10.1038/s41396-019-0510-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun. 2021;12:810. https://doi.org/10.1038/s41467-021-21079-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical C hina. Methods Ecol Evol. 2014;5:74–89. https://doi.org/10.1111/2041-210X.12126.Article 

    Google Scholar 
    51.Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q. et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910–5. https://doi.org/10.1073/pnas.1317065111.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bradstreet RB. Determination of Nitro Nitrogen by Kjeldahl Method. Anal Chem. 1954;26:235–6.CAS 
    Article 

    Google Scholar 
    53.Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods. 1991;14:151–63. https://doi.org/10.1016/0167-7012(91)90018-L.54.Ruess L, Chamberlain PM. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem. 2010;42:1898–910. https://doi.org/10.1016/j.soilbio.2010.07.020.55.Scheu S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem. 1992;24:1113–8. https://doi.org/10.1016/0038-0717(92)90061-2.Article 

    Google Scholar 
    56.Schöps R, Goldmann K, Herz K, Lentendu G, Schöning I, Bruelheide H. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front Microbiol. 2018;9:2711. https://doi.org/10.3389/fmicb.2018.02711.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Nawaz A, et al. DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms. 2019;7. https://doi.org/10.3390/microorganisms7090341.58.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.60.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lahti L, Shetty S, Blake T, Salojarvi J. Microbiome R package. Tools Microbiome Anal R. 2017;1:504.63.Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. Environ Sci Technol. 2017;51:12164–74. https://doi.org/10.1021/acs.est.7b03521.CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62. https://doi.org/10.1007/s11427-018-9364-7.CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69:3593–9. https://doi.org/10.1128/aem.69.6.3593-3599.2003.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Rosseel Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw. 2012;48:1–36.Article 

    Google Scholar 
    67.Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem. 2008;40:1103–13. https://doi.org/10.1016/j.soilbio.2007.12.003.68.Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D. et al. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Front Microbiol. 2016;7:1524. https://doi.org/10.3389/fmicb.2016.01524.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. https://doi.org/10.1016/S0378-1127(99)00294-7.Article 

    Google Scholar 
    70.Moretto AS, Distel RA, Didoné NG. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol. 2001;18:31–7. https://doi.org/10.1016/S0929-1393(01)00151-2.Article 

    Google Scholar 
    71.Kyker-Snowman E, Wieder WR, Frey SD, Grandy AS. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci Model Dev. 2020;13:4413–34. https://doi.org/10.5194/gmd-13-4413-2020.CAS 
    Article 

    Google Scholar 
    72.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36. https://doi.org/10.1038/s43247-020-00031-4.Article 

    Google Scholar 
    73.Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Hector A, et al.. Biotic and abiotic drivers of soil microbial functions across tree diversity experiments. bioRXiv 2020. https://doi.org/10.1101/2020.01.30.927277.74.Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–62. https://doi.org/10.1038/ismej.2015.116.CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–3. https://doi.org/10.1126/science.aat6405.CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE. 2013;8:e62671. https://doi.org/10.1371/journal.pone.0062671.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA. 2013;110:6889–94. https://doi.org/10.1073/pnas.1217382110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM. Modelling microbial adaptation to changing availability of substrates. Water Res. 2004;38:1003–13. https://doi.org/10.1016/j.watres.2003.09.037.CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Hooper DU, BIGNELL DE, BROWN VK, BRUSSARD L, MARK DANGERFIELD J, WALL DH, et al. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience. 2000;50:1049.Article 

    Google Scholar 
    80.Domke GM, Oswalt SN, Walters BF, Morin RS. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci USA. 2020;117:24649–51. https://doi.org/10.1073/pnas.2010840117.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M, Penuelas J. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat Commun. 2020;11:129. https://doi.org/10.1038/s41467-019-13798-8.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Veldkamp E, Schmidt M, Powers JS, Corre MD. Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ. 2020;1:590–605. https://doi.org/10.1038/s43017-020-0091-5.Article 

    Google Scholar 
    83.Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–8. https://doi.org/10.1038/d41586-019-01026-8.CAS 
    Article 
    PubMed 

    Google Scholar  More