Opportunities and challenges of macrogenetic studies
1.Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science 243, 1145–1150 (1989).CAS
Article
Google Scholar
2.Gaston, K. J., Robinson, D. & Chown, S. L. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).Article
Google Scholar
3.Chown, S. L. & Gaston, K. J. Macrophysiology–progress and prospects. Funct. Ecol. 30, 330–344 (2016).Article
Google Scholar
4.Avise, J. C. Phylogeography: the History and Formation of Species (Harvard University Press, 2000).5.Ebach, M. C. Origins of Biogeography. Vol. 13 (Springer, 2015).6.Brundin, L. On the real nature of transantarctic relationships. Evolution 19, 496–505 (1965).
Google Scholar
7.Beheregaray, L. B. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol. Ecol. 17, 3754–3774 (2008).PubMed
PubMed Central
Google Scholar
8.Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Gaston, K. J. & Blackburn, T. M. A critique for macroecology. Oikos 84, 353–368 (1999).Article
Google Scholar
10.Lovegrove, B. G. The zoogeography of mammalian basal metabolic rate. Am. Nat. 156, 201–219 (2000).PubMed
Article
PubMed Central
Google Scholar
11.Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Chown, S. L. & Gaston, K. J. Macrophysiology for a changing world. Proc. Biol. Sci. 275, 1469–1478 (2008).PubMed
PubMed Central
Google Scholar
13.Kerr, J. T., Kharouba, H. M. & Currie, D. J. The macroecological contribution to global change solutions. Science 316, 1581–1584 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: Emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017). This study coined the term ‘macrogenetics’ and illustrated, through three study examples, how shifting toward macrogenetics should generate new perspectives and theories concerning genetic diversity patterns.CAS
PubMed
Article
PubMed Central
Google Scholar
15.Blanchet, S. et al. A river runs through it: the causes, consequences, and management of intraspecific diversity in river networks. Evol. Appl. 13, 1195–1213 (2020).PubMed
PubMed Central
Article
Google Scholar
16.Frankham, R. Resolving conceptual issues in conservation genetics: the roles of laboratory species and meta-analyses. Hereditas 130, 195–201 (2004).Article
Google Scholar
17.Arnqvist, G. & Wooster, D. Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10, 236–240 (1995).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. Biol. Sci. 285, 20172746 (2018).PubMed
PubMed Central
Google Scholar
19.Pelletier, T. A. & Carstens, B. C. Geographical range size and latitude predict population genetic structure in a global survey. Biol. Lett. 14, 20170566 (2018).PubMed
PubMed Central
Article
Google Scholar
20.Miraldo, A. et al. An anthropocene map of genetic diversity. Science 353, 1532–1535 (2016). This paper is thought to be the first published study to massively repurpose public mtDNA sequences to explore global genetic patterns (100,791 sequences from >4,500 terrestrial mammal and amphibian species).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Yiming, L. et al. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206–218 (2021). This study found that adaptive IGV is higher at low latitudes and in smaller mammal species using repurposed MHC gene data from 93 mammal species.Article
Google Scholar
22.Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 692 (2020). This study repurposed 58,565 public mtDNA sequences from 5,912 freshwater and marine fish to explore the effects of environmental drivers (temperature, species diversity) on intraspecific genetic diversity.CAS
PubMed
PubMed Central
Article
Google Scholar
23.Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020). This study revealed a negative effect of past rapid climate change and a positive effect of interannual precipitation variability in shaping the genetic diversity of terrestrial mammals using 46,965 mtDNA sequences.CAS
PubMed
PubMed Central
Article
Google Scholar
24.Barrow, L. N., da Fonseca, E. M., Thompson, C. E. P. & Carstens, B. C. Predicting amphibian intraspecific diversity with machine learning: Challenges and prospects for integrating traits, geography, and genetic data. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13303 (2020).Article
PubMed
PubMed Central
Google Scholar
25.De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021). This study found weak support for latitudinal IGV gradients, taxonomic-specific effects of temperature stability and life-history traits, and higher IGV in animals compared to plants using microsatellite and amplified fragment length polymorphism data from 8,386 local populations from 727 animal and plant species.PubMed
PubMed Central
Article
CAS
Google Scholar
26.Schmidt, C., Domaratzki, M., Kinnunen, R. P., Bowman, J. & Garroway, C. J. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. Biol. Sci. 287, 20192497 (2020). This study used archived microsatellite data from 85 studies (66 species) to explore the effects of urbanization in mammals and birds.CAS
PubMed
PubMed Central
Google Scholar
27.Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020). The authors of this article conducted spatial and temporal analysis of the effects of humans on animal genetic diversity worldwide, by repurposing 175,247 mtDNA sequences from >17,000 animal species.PubMed
Article
PubMed Central
Google Scholar
28.Taberlet, P. et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439–1448 (2012). This paper reports a Class I macrogenetic study based on amplified fragment length polymorphism genetic data from 27 alpine plant species that tested whether genetic and species diversities co-vary.PubMed
Article
PubMed Central
Google Scholar
29.Manel, S. et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 21, 3729–3738 (2012).PubMed
PubMed Central
Article
Google Scholar
30.Gugerli, F. et al. Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation – a project synopsis. Perspect. Plant. Ecol. Evol. Syst. 10, 259–281 (2008).Article
Google Scholar
31.Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).Article
Google Scholar
32.González, A. V., Gómez-Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34, 711–720 (2020).PubMed
Article
Google Scholar
33.Ratnasingham, S. & Hebert, P. D. N. Bold: the barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
35.Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article
Google Scholar
36.Theodoridis, S., Rahbek, C. & Nogues-Bravo, D. Exposure of mammal genetic diversity to mid-21st century global change. Ecography 44, 817–831 (2021).Article
Google Scholar
37.Rissler, L. J. Union of phylogeography and landscape genetics. Proc. Natl Acad. Sci. USA 113, 8079–8086 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Hubbell, S. P. The unified neutral theory of biodiversity and biogeography (Princeton University Press, 2001).39.Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23, 838–844 (1927).Article
Google Scholar
40.Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Fisher, R. A. On the dominance ratio. Proc. R. Soc. Edinburgh 42, 321–341 (1922).Article
Google Scholar
42.Kimura, M. & Weiss, G. H. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576 (1964).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Kingman, J. F. C. The coalescent. Stoch. Process. Their Appl. 13, 235–248 (1982).Article
Google Scholar
44.Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).CAS
PubMed
Article
Google Scholar
45.Soulé, M. E. in Molecular Evolution (ed. Ayala, F. J.) 60–77 (Sinauer Associates, 1976).46.Brown, A. H. Isozymes, plant population genetic structure and genetic conservation. Tag. Theor. Appl. Genet. Theor. Angew. Genet. 52, 145–157 (1978).CAS
Article
Google Scholar
47.Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).CAS
PubMed
Article
Google Scholar
48.Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240–248 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Carroll, E. L. et al. Genetic and genomic monitoring with minimally invasive sampling methods. Evol. Appl. 11, 1094–1119 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Gauthier, J. et al. Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Mol. Ecol. Resour. 20, 1191–1205 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Wandeler, P., Hoeck, P. E. A. & Keller, L. F. Back to the future: museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).PubMed
Article
PubMed Central
Google Scholar
55.Strasser, B. J. The experimenter’s museum: GenBank, natural history, and the moral economies of biomedicine. Isis 102, 60–96 (2011).PubMed
Article
PubMed Central
Google Scholar
56.Whitlock, M. C. Data archiving in ecology and evolution: best practices. Trends Ecol. Evol. 26, 61–65 (2011).PubMed
Article
PubMed Central
Google Scholar
57.Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).PubMed
PubMed Central
Article
Google Scholar
58.Deck, J. et al. The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples. PLoS Biol. 15, e2002925 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
59.R Core Team. R: a language and environment for statistical computing, R Foundation for Statistical Computing http://www.r-project.org/index.html (2021).60.Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends Ecol. Evol. 28, 614–621 (2013).PubMed
Article
PubMed Central
Google Scholar
61.Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F. & Flamand, M. C. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol. Ecol. 24, 263–283 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Stanley, R. R. E. et al. A climate-associated multispecies cryptic cline in the northwest Atlantic. Sci. Adv. 4, eaaq0929 (2018).PubMed
PubMed Central
Article
Google Scholar
63.Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).PubMed
Article
PubMed Central
Google Scholar
64.Daza, J. M., Castoe, T. A. & Parkinson, C. L. Using regional comparative phylogeographic data from snake lineages to infer historical processes in middle America. Ecography 33, 343–354 (2010).
Google Scholar
65.Riddle, B. R. Comparative phylogeography clarifies the complexity and problems of continental distribution that drove A. R. Wallace to favor islands. Proc. Natl Acad. Sci. USA 113, 7970–7977 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Carstens, B. C., Morales, A. E., Field, K. & Pelletier, T. A. A global analysis of bats using automated comparative phylogeography uncovers a surprising impact of Pleistocene glaciation. J. Biogeogr. 45, 1795–1805 (2018).Article
Google Scholar
67.Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
68.Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Ballin, M., Barcaroli, G., Masselli, M. & Scarnó, M. Redesign Sample for Land Use/Cover Area Frame Survey (LUCAS) 2018 (EU Publications, 2018).70.Buchhorn, M. et al. Copernicus global land cover layers — Collection 2. Remote. Sens. 12, 1044 (2020).Article
Google Scholar
71.Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090-184. Ecology 90, 2648–2648 (2009).Article
Google Scholar
72.Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).PubMed
PubMed Central
Article
Google Scholar
73.Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity: species diversity and genetic diversity. Ecol. Lett. 8, 767–781 (2005).Article
Google Scholar
74.Fourtune, L., Paz-Vinas, I., Loot, G., Prunier, J. G. & Blanchet, S. Lessons from the fish: a multi-species analysis reveals common processes underlying similar species-genetic diversity correlations. Freshw. Biol. 61, 1830–1845 (2016).Article
Google Scholar
75.Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).PubMed
Article
PubMed Central
Google Scholar
76.Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).Article
Google Scholar
77.Schmidt, C., Dray, S. & Garroway, C. J. Genetic and species-level biodiversity patterns are linked by demography and ecological opportunity. bioRxiv https://doi.org/10.1101/2020.06.03.132092 (2021).Article
PubMed
PubMed Central
Google Scholar
78.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed
Article
PubMed Central
Google Scholar
79.Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).PubMed
Article
PubMed Central
Google Scholar
80.Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Schmidt, C. & Garroway, C. J. The conservation utility of mitochondrial genetic diversity in macrogenetic research. Conserv. Genet. 22, 323–327 (2021).Article
Google Scholar
82.Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017). This response to Miraldo et al.20 identified a limitation of that article in that it did not account for the decay of genetic similarity with distance and represents the first critique of the downsides of the macrogenetic approach and the need for rigorous statistics.PubMed
Article
PubMed Central
Google Scholar
83.Loveless, M. D. & Hamrick, J. L. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15, 65–95 (1984).Article
Google Scholar
84.Hu, Y. et al. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci. Adv. 7, eabd5725 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
86.Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).PubMed
Article
PubMed Central
Google Scholar
87.Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).PubMed
Article
PubMed Central
Google Scholar
88.Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–1512 (2019). This study estimated the magnitude of the loss of genetic variation over a century-scale using microsatellite data from 91 species.PubMed
PubMed Central
Article
Google Scholar
89.Schmidt, C. & Garroway, C. J. The population genetics of urban and rural amphibians in north America. Mol. Ecol. https://doi.org/10.1111/mec.16005 (2021).Article
PubMed
PubMed Central
Google Scholar
90.Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
91.Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18, 4541–4550 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
92.Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
93.Almeida-Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: a global meta-analysis. Mol. Ecol. 29, 4812–4822 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
94.Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
95.Paz-Vinas, I. et al. Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecol. Lett. 24, 1282–1284 (2021).PubMed
Article
PubMed Central
Google Scholar
96.Crandall, E. D. et al. The molecular biogeography of the Indo-Pacific: testing hypotheses with multispecies genetic patterns. Glob. Ecol. Biogeogr. 28, 943–960 (2019).Article
Google Scholar
97.Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
98.Guillaume, F. & Rougemont, J. Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22, 2556–2557 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
99.Phillips, J. D., French, S. H., Hanner, R. H. & Gillis, D. J. HACSim: an R package to estimate intraspecific sample sizes for genetic diversity assessment using haplotype accumulation curves. PeerJ Comput. Sci. 6, e243 (2020).PubMed
PubMed Central
Article
Google Scholar
100.Gratton, P. et al. A world of sequences: can we use georeferenced nucleotide databases for a robust automated phylogeography? J. Biogeogr. 44, 475–486 (2017).Article
Google Scholar
101.Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).CAS
PubMed
PubMed Central
Article
Google Scholar
102.Baguette, M. & Van Dyck, H. Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc. Ecol. 22, 1117–1129 (2007).Article
Google Scholar
103.Crow, J. F. & Aoki, K. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl Acad. Sci. USA 81, 6073–6077 (1984).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Lanner, R. Why do trees live so long? Ageing Res. Rev. 1, 653–671 (2002).PubMed
Article
PubMed Central
Google Scholar
105.Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).PubMed
PubMed Central
Article
Google Scholar
106.Lasne, C., Heerwaarden, B., Sgrò, C. M. & Connallon, T. Quantifying the relative contributions of the X chromosome, autosomes, and mitochondrial genome to local adaptation. Evolution 73, 262–277 (2019).PubMed
Article
PubMed Central
Google Scholar
107.Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: implications for DNA barcoding. Ecol. Evol. 9, 2996–3010 (2019).PubMed
PubMed Central
Article
Google Scholar
108.Humphries, P. & Winemiller, K. O. Historical impacts on river fauna, shifting baselines, and challenges for restoration. BioScience 59, 673–684 (2009).Article
Google Scholar
109.Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 4836 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
110.Collier-Robinson, L., Rayne, A., Rupene, M., Thoms, C. & Steeves, T. Embedding indigenous principles in genomic research of culturally significant species: a conservation genomics case study. N. Z. J. Ecol. 43, 3389 (2019).
Google Scholar
111.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed
Article
PubMed Central
Google Scholar
112.Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).PubMed
Article
PubMed Central
Google Scholar
113.Pope, L. C., Liggins, L., Keyse, J., Carvalho, S. B. & Riginos, C. Not the time or the place: the missing spatio-temporal link in publicly available genetic data. Mol. Ecol. 24, 3802–3809 (2015).PubMed
Article
PubMed Central
Google Scholar
114.Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
115.Sibbett, B., Rieseberg, L. H. & Narum, S. The genomic observatories metadatabase. Mol. Ecol. Resour. 20, 1453–1454 (2020).PubMed
Article
PubMed Central
Google Scholar
116.Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2020).Article
Google Scholar
117.Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).Article
Google Scholar
118.Li, X. et al. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166 (2015).PubMed
Article
PubMed Central
Google Scholar
119.Vasquez-Gross, H. A. et al. CartograTree: connecting tree genomes, phenotypes and environment. Mol. Ecol. Resour. 13, 528–537 (2013).PubMed
Article
PubMed Central
Google Scholar
120.Lawrence, E. R. et al. Geo-referenced population-specific microsatellite data across American continents, the MacroPopGen Database. Sci. Data 6, 14 (2019). This paper reports a compilation of georeferenced vertebrate microsatellite data, summary statistics and meta-data across the Americas for 897 species and 9,090 genetically distinct populations.PubMed
PubMed Central
Article
Google Scholar
121.Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).PubMed
Article
PubMed Central
Google Scholar
122.Barber, P. H. et al. Advancing biodiversity research in developing countries: the need for changing paradigms. Bull. Mar. Sci. 90, 187–210 (2014).Article
Google Scholar
123.Bork, P. et al. Tara Oceans. Tara Oceans studies plankton at planetary scale. Introduction. Science 348, 873–873 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
124.Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).PubMed
Article
PubMed Central
Google Scholar
125.Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article
Google Scholar
126.Holmes, M. W. et al. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25, 864–881 (2016).PubMed
PubMed Central
Article
Google Scholar
127.Boukhdoud, L. et al. First DNA sequence reference library for mammals and plants of the Eastern Mediterranean Region. Genome 64, 39–49 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
128.Colella, J. P. et al. The Open-Specimen movement. BioScience 71, 405–414 (2020).Article
Google Scholar
129.Wright, S. Correlation and causation. J. Agric. Res. 20, 557–585 (1921).
Google Scholar
130.Fourtune, L. et al. Inferring causalities in landscape genetics: an extension of Wright’s causal modeling to distance matrices. Am. Nat. 191, 491–508 (2018).PubMed
Article
PubMed Central
Google Scholar
131.Paz-Vinas, I., Loot, G., Stevens, V. M. & Blanchet, S. Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Mol. Ecol. 24, 4586–4604 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
132.Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).PubMed
PubMed Central
Article
Google Scholar
133.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article
Google Scholar
134.Proença, V. et al. Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biol. Conserv. 213, 256–263 (2017).Article
Google Scholar
135.Ve˅trovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
136.Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).Article
Google Scholar
137.Xuereb, A., D’Aloia, C. C., Andrello, M., Bernatchez, L. & Fortin, M. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conserv. Biol. 35, 909–920 (2021).PubMed
Article
PubMed Central
Google Scholar
138.Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).Article
Google Scholar
139.Adams, W. M. & Sandbrook, C. Conservation, evidence and policy. Oryx 47, 329–335 (2013).Article
Google Scholar
140.Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083.2–1085 (2020).Article
CAS
Google Scholar
141.Thomson, A. I. et al. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol. Appl. 14, 1497–1518 (2021).PubMed
PubMed Central
Article
Google Scholar
142.Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet. Resour. 5, 593–598 (2013).Article
Google Scholar
143.Carroll, S. R. et al. The CARE principles for indigenous data governance. Data Sci. J. 19, 43 (2020).Article
Google Scholar
144.Fargeot, L. et al. Patterns of epigenetic diversity in two sympatric fish species: genetic vs. environmental determinants. Genes 12, 107 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
145.Gaggiotti, O. E. et al. Diversity from genes to ecosystems: a unifying framework to study variation across biological metrics and scales. Evol. Appl. 11, 1176–1193 (2018).PubMed
PubMed Central
Article
Google Scholar
146.Waples, R. S., Antao, T. & Luikart, G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197, 769–780 (2014).PubMed
PubMed Central
Article
Google Scholar
147.Waples, R. S. & Yokota, M. Temporal estimates of effective population size in species with overlapping generations. Genetics 175, 219–233 (2007).PubMed
PubMed Central
Article
Google Scholar
148.Antao, T., Pérez-Figueroa, A. & Luikart, G. Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evol. Appl. 4, 144–154 (2011).PubMed
Article
PubMed Central
Google Scholar
149.Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS
PubMed
PubMed Central
Article
Google Scholar
150.Phillips, J. D., Gwiazdowski, R. A., Ashlock, D. & Hanner, R. An exploration of sufficient sampling effort to describe intraspecific DNA barcode haplotype diversity: examples from the ray-finned fishes (Chordata: Actinopterygii). DNA Barcodes 3, 66–73 (2015).Article
Google Scholar
151.Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
152.Jordan, R., Breed, M. F., Prober, S. M., Miller, A. D. & Hoffmann, A. A. How well do revegetation plantings capture genetic diversity? Biol. Lett. 15, 20190460 (2019).PubMed
PubMed Central
Article
Google Scholar
153.Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic. Appl. Ecol. 11, 522–531 (2010).Article
Google Scholar
154.Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7, e45170 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
155.Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).CAS
PubMed
Article
Google Scholar
156.Hoban, S. et al. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol. Appl. 7, 984–998 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
157.Anderson, C. N. K., Ramakrishnan, U., Chan, Y. L. & Hadly, E. A. Serial SimCoal: a population genetics model for data from multiple populations and points in time. Bioinformatics 21, 1733–1734 (2005).CAS
PubMed
Article
Google Scholar
158.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article
Google Scholar
159.Elbrecht, V., Vamos, E. E., Steinke, D. & Leese, F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 6, e4644 (2018).PubMed
PubMed Central
Article
Google Scholar
160.Shum, P. & Palumbi, S. R. Testing small-scale ecological gradients and intraspecific differentiation for hundreds of kelp forest species using haplotypes from metabarcoding. Mol. Ecol. https://doi.org/10.1111/mec.15851 (2021).Article
PubMed
Google Scholar
161.Yamahara, K. M. et al. In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle. Front. Mar. Sci. 6, 373 (2019).Article
Google Scholar
162.Breed, M. F. et al. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity 115, 108–114 (2015).CAS
PubMed
Article
Google Scholar
163.Hoban, S., Gaggiotti, O. & Bertorelle, G. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods Ecol. Evol. 4, 299–303 (2013).Article
Google Scholar
164.Peck, S. L. Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol. Evol. 19, 530–534 (2004).PubMed
Article
PubMed Central
Google Scholar
165.Reid, B. N., Naro-Maciel, E., Hahn, A. T., FitzSimmons, N. N. & Gehara, M. Geography best explains global patterns of genetic diversity and postglacial co-expansion in marine turtles. Mol. Ecol. 28, 3358–3370 (2019).PubMed
PubMed Central
Google Scholar
166.Kardos, M., Luikart, G. & Allendorf, F. W. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115, 63–72 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
167.Willing, E.-M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One 7, e42649 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
168.Shafer, A. B. A. et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 8, 907–917 (2017).Article
Google Scholar
169.Cariou, M., Duret, L. & Charlat, S. How and how much does RAD-seq bias genetic diversity estimates? BMC Evol. Biol. 16, 240 (2016).PubMed
PubMed Central
Article
Google Scholar
170.De-Kayne, R. et al. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol. Ecol. Resour. 21, 653–660 (2021).PubMed
Article
CAS
Google Scholar
171.Leigh, D. M., Lischer, H. E. L., Grossen, C. & Keller, L. F. Batch effects in a multiyear sequencing study: false biological trends due to changes in read lengths. Mol. Ecol. Resour. 18, 778–788 (2018).CAS
PubMed
Article
Google Scholar
172.Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).CAS
PubMed
Article
Google Scholar
173.Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).PubMed
Article
Google Scholar
174.Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
175.Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).CAS
PubMed Central
Article
Google Scholar More