More stories

  • in

    A meta-analysis of the ecological and economic outcomes of mangrove restoration

    1.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: a global meta-analysis. Fish Fish 18, 79–93 (2017).Article 

    Google Scholar 
    3.Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).Article 

    Google Scholar 
    5.Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human‐driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).ADS 
    Article 

    Google Scholar 
    6.Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Maiti, S. K. & Chowdhury, A. Effects of anthropogenic pollution on mangrove biodiversity: a review. J. Environ. Prot. 4, 1428–1434 (2013).Article 

    Google Scholar 
    8.Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting A Critical Opportunity (Apollo – University of Cambridge Repository, 2018).10.Bosire, J. O. et al. Functionality of restored mangroves: a review. Aquat. Bot. 89, 251–259 (2008).Article 

    Google Scholar 
    11.Lewis, R. R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418 (2005).Article 

    Google Scholar 
    12.Howard, R. J. et al. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone: hydrologic restoration in a mangrove-marsh ecotone. Restor. Ecol. 25, 471–482 (2017).Article 

    Google Scholar 
    13.Kamali, B. & Hashim, R. Mangrove restoration without planting. Ecol. Eng. 37, 387–391 (2011).Article 

    Google Scholar 
    14.Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. Ecol. Manag. 380, 31–40 (2016).Article 

    Google Scholar 
    15.Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).Article 

    Google Scholar 
    16.Deng, J. et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China. Ecotoxicol. Environ. Saf. 180, 501–508 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Rahman, M. M. & Mahmud, Md. A. Economic feasibility of mangrove restoration in the Southeastern Coast of Bangladesh. Ocean Coast. Manag. 161, 211–221 (2018).Article 

    Google Scholar 
    18.Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).PubMed 
    Article 

    Google Scholar 
    19.Ellison, A. M. Mangrove restoration: do we know enough? Restor. Ecol. 8, 219–229 (2000).Article 

    Google Scholar 
    20.Iftekhar. Functions and development of reforested mangrove areas: a review. Int. J. Biodivers. Sci. Manag. 4, 1–14 (2008).Article 

    Google Scholar 
    21.Lewis, R. Mangrove Restoration: Costs And Benefits Of Successful Ecological Restoration. p. 4–8 (Beijer International Institute of Ecological Economics, Stockholm, 2001).22.Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–282 (2016).PubMed 
    Article 

    Google Scholar 
    23.Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).Article 

    Google Scholar 
    24.Chowdhury, A., Naz, A., Bhattacharyya, S. & Sanyal, P. Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon. Manag. 9, 575–586 (2018).CAS 
    Article 

    Google Scholar 
    25.Sillanpää, M., Vantellingen, J. & Friess, D. A. Vegetation regeneration in a sustainably harvested mangrove forest in West Papua, Indonesia. Ecol. Manag. 390, 137–146 (2017).Article 

    Google Scholar 
    26.Sasmito, S. D. et al. Effect of land‐use and land‐cover change on mangrove blue carbon: a systematic review. Glob. Change Biol. 25, 4291–4302 (2019).ADS 
    Article 

    Google Scholar 
    27.Meli, P., Rey Benayas, J. M., Balvanera, P. & Martínez Ramos, M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLoS ONE 9, e93507 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Barral, M. P., Rey Benayas, J. M., Meli, P. & Maceira, N. O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agric. Ecosyst. Environ. 202, 223–231 (2015).Article 

    Google Scholar 
    29.Ren, Y., Lü, Y. & Fu, B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: a meta-analysis. Ecol. Eng. 95, 542–550 (2016).Article 

    Google Scholar 
    30.Lu, W. et al. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE 9, e91238 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Li, W. et al. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary. For. Ecosyst. 2, 21 (2015).Article 

    Google Scholar 
    32.Zhang, J., Shen, C., Ren, H., Wang, J. & Han, W. Estimating change in sedimentary organic carbon content during mangrove restoration in southern china using carbon isotopic measurements. Pedosphere 22, 58–66 (2012).Article 

    Google Scholar 
    33.Feng, J. et al. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. CATENA 180, 1–7 (2019).CAS 
    Article 

    Google Scholar 
    34.Leung, J. Y. S. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: implication for the impact of restoration and afforestation. Glob. Ecol. Conserv. 4, 423–433 (2015).Article 

    Google Scholar 
    35.Peters, J. R., Yeager, L. A. & Layman, C. A. Comparison of fish assemblages in restored and natural mangrove habitats along an urban shoreline. Bull. Mar. Sci. 91, 125–139 (2015).Article 

    Google Scholar 
    36.Chen, G., Gao, M., Pang, B., Chen, S. & Ye, Y. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Ecol. Manag. 422, 87–94 (2018).Article 

    Google Scholar 
    37.Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecol. Appl. 29, e01810 (2019).38.Ashton, E. C., Hogarth, P. J. & Macintosh, D. J. A comparison of brachyuran crab community structure at four mangrove locations under different management systems along the Melaka Straits-Andaman Sea Coast of Malaysia and Thailand. Estuaries 26, 1461–1471 (2003).Article 

    Google Scholar 
    39.Peralta-Milan, S. A. & Salmo, S. G. III Evaluating patterns of fish assemblage changes from different-aged reforested mangroves in lingayen gulf. J. Environ. Sci. Manag. 16, 11–19 (2013).
    Google Scholar 
    40.Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).Article 

    Google Scholar 
    41.Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).PubMed 
    Article 

    Google Scholar 
    42.Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol. 35, 774–786 (2021).Article 

    Google Scholar 
    43.Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).ADS 
    Article 

    Google Scholar 
    44.Zimmer, M. In Threats to Mangrove Forests. (eds Makowski, C. & Finkl, C. W.) (Springer Berlin Heidelberg, New York, 2018).45.Fazlioglu, F. & Chen, L. Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Sci. Rep. 10, 3854 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.He, Z. et al. Colonization by native species enhances the carbon storage capacity of exotic mangrove monocultures. Carbon Balance Manag. 15, 28 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kodikara, K. A. S., Mukherjee, N., Jayatissa, L. P., Dahdouh-Guebas, F. & Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka: evaluation of mangrove restoration in Sri Lanka. Restor. Ecol. 25, 705–716 (2017).Article 

    Google Scholar 
    48.Thornton, A. Publication bias in meta-analysis its causes and consequences. J. Clin. Epidemiol. 53, 207–216 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Song, F., Hooper & Loke, Y. Publication bias: what is it? How do we measure it? How do we avoid it? Open Access J. Clin. Trials 5, 71–81 (2013).50.Møller, A. P. & Jennions, M. D. Testing and adjusting for publication bias. Trends Ecol. Evol. 16, 580–586 (2001).Article 

    Google Scholar 
    51.Salem, M. E. & Mercer, D. E. The economic value of mangroves: a meta-analysis. Sustainability 4, 359–383 (2012).Article 

    Google Scholar 
    52.Lahjie, A. M., Nouval, B., Lahjie, A. A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Research 8, 9 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Hutchison, J., Spalding, M. & zu Ermgassen, P. The Role of Mangroves in Fisheries Enhancement (The Nature Conservancy and Wetlands International, 2014).54.Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).PubMed 
    Article 

    Google Scholar 
    55.Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).PubMed 
    Article 

    Google Scholar 
    56.De Groot, R. S. et al. Benefits of investing in ecosystem restoration: investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).Article 

    Google Scholar 
    57.Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).Article 

    Google Scholar 
    58.Jakovac, C. C. et al. Costs and carbon benefits of mangrove conservation and restoration: a global analysis. Ecol. Econ. 176, 106758 (2020).Article 

    Google Scholar 
    59.Waltham, N. J. et al. UN decade on ecosystem restoration 2021–2030—what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).Article 

    Google Scholar 
    60.United Nations. Sustainable Development. Blue Economy Concept Paper (2014).61.UNEP. Blue Economy: Sharing Success Stories to Inspire Change (UNEP Regional Seas Report and Studies, 2015).62.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    63.CBD. Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).64.Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.IUCN & Ramsar. The Community of Ocean Action for Mangroves –Towards the Implementation of SDG14 (Department of Economic and Social Affairs, United Nations, 2019).66.International Council for Science (ICSU). A Guide to SDG Interactions: From Science To Implementation (International Council for Science, Paris, 2017).67.Spalding, M. D. et al. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).Article 

    Google Scholar 
    68.Aronson, J. et al. Are socioeconomic benefits of restoration adequately quantified? a meta-analysis of recent papers (2000-2008) in Restoration Ecology and 12 other scientific Journals. Restor. Ecol. 18, 143–154 (2010).Article 

    Google Scholar 
    69.Cooke, S. J. et al. Evidence-based restoration in the Anthropocene-from acting with purpose to acting for impact: evidence-based restoration. Restor. Ecol. 26, 201–205 (2018).Article 

    Google Scholar 
    70.Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135–1135 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Thompson, B. S., Clubbe, C. P., Primavera, J. H., Curnick, D. & Koldewey, H. J. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosyst. Serv. 8, 128–140 (2014).Article 

    Google Scholar 
    72.Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).Article 

    Google Scholar 
    73.Peng, Y., Li, X., Wu, K., Peng, Y. & Chen, G. Effect of an integrated mangrove-aquaculture system on aquacultural health. Front. Biol. China 4, 579–584 (2009).Article 

    Google Scholar 
    74.Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Betran, A. P. et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod. Health 12, 57 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Mupepele, A. C., Walsh, J. C., Sutherland, W. J. & Dormann, C. F. An evidence assessment tool for ecosystem services and conservation studies. Ecol. Appl. 26, 1295–1301 (2016).PubMed 
    Article 

    Google Scholar 
    77.Field, C. B. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3 (1998).Article 

    Google Scholar 
    78.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    79.Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    80.Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).PubMed 
    Article 

    Google Scholar 
    81.Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Hoekstra, R., Finch, S., Kiers, H. A. L. & Johnson, A. Probability as certainty: dichotomous thinking and the misuse of p values. Psychon. Bull. Rev. 13, 1033–1037 (2006).PubMed 
    Article 

    Google Scholar 
    83.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 

    Google Scholar 
    84.Hedges, L. & Olkin, I. Statistical Methods For Meta-analysis (Academic Press, Orlando, 1985).85.Thompson, S. G. & Higgins, J. P. T. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21, 1559–1573 (2002).PubMed 
    Article 

    Google Scholar 
    86.Cook, R. D. & Weisberg, S. Residuals and Influence in Regression (Chapman and Hall, New York, 1982).87.Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).90.van der Ploeg, S., De Groot, D. & Wang, Y. The TEEB Valuation Database: Overview Of Structure, Data And Results (Foundation for Sustainable Development, Wageningen, 2010).91.Mukherjee, N. et al. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS ONE 9, e107706 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).PubMed 
    Article 

    Google Scholar 
    93.Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    94.Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration. Res. Front. Mar. Sci. 7, 484 (2020).Article 

    Google Scholar 
    95.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.van Aert, R. C. M., Wicherts, J. M. & van Assen, M. A. L. M. Conducting meta-analyses based on p values: reservations and recommendations for applying p-Uniform and p-Curve. Perspect. Psychol. Sci. 11, 713–729 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Terrin, N., Schmid, C. H., Lau, J. & Olkin, I. Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 22, 2113–2126 (2003).PubMed 
    Article 

    Google Scholar 
    98.Giri, C. et al. Global Distribution of Mangroves USGS. UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) https://doi.org/10.34892/1411-W728 (2011).99.Cook, B. G., Cook, L. & Therrien, W. J. Group-difference effect sizes: gauging the practical importance of findings from group-experimental research. Learn. Disabil. Res. Pract. 33, 56–63 (2018).Article 

    Google Scholar  More

  • in

    Short-term heat shock perturbation affects populations of Daphnia magna and Eurytemora carolleeae: a warning to the water thermal pollution

    1.Orr, J. A. et al. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proc. R. Soc. B 287(1926), 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.de Oliveira Naliato, D. A., Nogueira, M. G. & Perbiche-Neves, G. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag. 14(4), 301–314 (2009).Article 
    CAS 

    Google Scholar 
    3.Brenden, T. O., Wang, L. & Su, Z. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ Manage. 42(5), 821–832 (2008).ADS 
    Article 

    Google Scholar 
    4.Raptis, C. E., van Vliet, M. T. & Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011 (2016).ADS 
    Article 

    Google Scholar 
    5.Evans, M. S., Warren, G. J. & Page, D. I. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook Nuclear Plant. Water Res. 20(6), 725–734 (1986).CAS 

    Google Scholar 
    6.Jiang, Z. et al. Tolerance of copepods to short-term thermal stress caused by coastal power stations. J. Therm. Biol. 33(7), 419–423 (2008).Article 

    Google Scholar 
    7.Dziuba, M. K. et al. Temperature increase altered Daphnia community structure in artificially heated lakes: A potential scenario for a warmer future. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    8.Graf, R. & Wrzesiński, D. Detecting patterns of changes in river water temperature in Poland. Water 12(5), 1327 (2020).Article 

    Google Scholar 
    9.Lee, P. W., Tseng, L. C. & Hwang, J. S. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Mar. Pollut. Bull. 136, 114–124 (2018).Article 
    CAS 

    Google Scholar 
    10.Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: An analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006. https://doi.org/10.1088/1748-9326/8/3/035006 (2013).ADS 
    Article 

    Google Scholar 
    11.Łabęcka, A. M., Domagala, J. & Pilecka-Rapacz, M. First record of Corbicula fluminalis (OF Muller, 1774) (Bivalvia: corbiculidae)–in Poland. Folia Malacol. 13(1), 25–27 (2005).Article 

    Google Scholar 
    12.Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci. 8(1), 18–29 (2013).Article 

    Google Scholar 
    13.Yousey, A. E. M. et al. Resurrected ancient Daphnia genotypes show reduced thermal stress tolerance compared to modern descendants. R. Soc. Open Sci. 5, 172193. https://doi.org/10.1098/rsos.172193 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    14.Van Urk, G. The effects of a temperature shock on zooplankton. Hydrobiol. Bull. 13(2–3), 101–105 (1979).Article 

    Google Scholar 
    15.Shelford, V. E. Some concepts of bioecology. Ecology 12(3), 455–467 (1931).Article 

    Google Scholar 
    16.Halsband-Lenk, C., Hirche, H. J. & Carlotti, F. Temperature impact on reproduction and development of congener copepod populations. J. Exp. Mar. Biol. Ecol. 271(2), 121–153 (2002).Article 

    Google Scholar 
    17.Hopkin, R. S., Qari, S., Bowler, K., Hyde, D. & Cuculescu, M. Seasonal thermal tolerance in marine Crustacea. J. Exp. Mar. Biol. Ecol. 331(1), 74–81 (2006).Article 

    Google Scholar 
    18.McCauley, E. M. W. W., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Funct. Ecol. 5, 505–514 (1990).Article 

    Google Scholar 
    19.Lürling, M., Roozen, F., Van Donk, E. & Goser, B. Response of Daphnia to substances released from crowded congeners and conspecifics. J. Plankton Res. 25(8), 967–978 (2003).Article 

    Google Scholar 
    20.Gliwicz, Z. M., Maszczyk, P. & Uszko, W. Enhanced growth at low population density in Daphnia: The absence of crowding effects or relief from visual predation?. Freshw. Biol. 57(6), 1166–1179 (2012).Article 

    Google Scholar 
    21.Macarthur, J. W. & Baillie, W. H. T. Metabolic activity and duration of life. J. Exp. Zool. 53(2), 221–242 (1929).Article 

    Google Scholar 
    22.Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 7(1), 15–19 (1992).MathSciNet 
    Article 

    Google Scholar 
    23.Mitchell, E., Halves, S. J. & Lampert, W. Coexistence of similar genotypes of Daphnia magna in intermittent populations: Response to thermal stress. Oikos 106(3), 469–478 (2004).Article 

    Google Scholar 
    24.Svetlichny, L., Hubareva, E. & Uttieri, M. Ecophysiological and behavioural responses to salinity and temperature stress in cyclopoid copepod Oithona davisae with comments on gender differences. Mediterr. Mar. Sci. 22(1), 80–101 (2021).
    Google Scholar 
    25.Rahlff, J. et al. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp. Biochem. Physiol. Part A Mol. Integr. 203, 348–358 (2017).Article 
    CAS 

    Google Scholar 
    26.Bradley, B. P., Hakimzadeh, R. & Vincent, J. S. Rapid responses to stress in Eurytemora affinis. In Biology of Copepods: Developments in Hydrobiology Vol. 47 (eds Boxshall, G. A. & Schminke, H. K.) 197–200 (Springer, 1988).Chapter 

    Google Scholar 
    27.Bartholmeé, S., Samchyshyna, L., Santer, B. & Lampert, W. Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnol. Oceanogr. 50(3), 923–929 (2005).ADS 
    Article 

    Google Scholar 
    28.Belmonte, G. The suspected contradictory role of parental care in the adaption of planktonic calanoida to temporary freshwater. Water 13(1), 100 (2021).Article 

    Google Scholar 
    29.Hoffmeyer, M. S., Biancalana, F. & Berasategui, A. Impact of a power plant cooling system on copepod and meroplankton survival (Bahía Blanca estuary, Argentina). Iheringia Ser. Zool. 95(3), 311–318 (2005).Article 

    Google Scholar 
    30.Williams, P. J., Dick, K. B. & Yampolsky, L. Y. Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol. Ecol. 26(3), 591–609 (2012).Article 

    Google Scholar 
    31.Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322(5902), 690–692 (2008).Article 

    Google Scholar 
    32.Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91(5), 807–819 (2006).Article 
    CAS 

    Google Scholar 
    33.Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol. 22(16), 622–626 (2012).Article 
    CAS 

    Google Scholar 
    34.Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: A specialized but essential protein-folding tool. The J. Cell Biol. 154(2), 267–274 (2001).Article 
    CAS 

    Google Scholar 
    35.Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92(19), 1564–1572 (2000).Article 
    CAS 

    Google Scholar 
    36.Mikulski, A., Bernatowicz, P., Grzesiuk, M., Kloc, M. & Pijanowska, J. Differential levels of stress proteins (HSPs) in male and female Daphnia magna in response to thermal stress: A consequence of sex-related behavioral differences?. J. Chem. Ecol. 37(7), 670–676 (2011).Article 
    CAS 

    Google Scholar 
    37.Schumpert, C., Handy, I., Dudycha, J. L. & Patel, R. C. Relationship between heat shock protein 70 expression and life span in Daphnia. Mech. Ageing Dev. 139, 1–10 (2014).Article 
    CAS 

    Google Scholar 
    38.Alekseev, V. R. & Souissi, A. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa 2767(1), 41–56 (2011).Article 

    Google Scholar 
    39.Sługocki, Ł., Rymaszewska, A., & Kirczuk, L. To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe). Aquat. Invasions 16(3), 443–460 (2021).Article 

    Google Scholar 
    40.Müller, M. F., Colomer, J. & Serra, T. Temperature-driven response reversibility and short-term quasi-acclimation of Daphnia magna. PLoS ONE 13(12), e0209705. https://doi.org/10.1371/journal.pone.0209705 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar  More

  • in

    Crag Martin neontology complements taphonomy at the Gorham's Cave Complex

    We carried out monitoring of ECM wintering at a roost in Gibraltar that consists of a series of caves alongside each other at sea level, primarily during the autumn–winter period of 2019-2020. The monitoring consisted of weekly counts of birds returning to roost, and of regular ringing and measuring sessions. The ringing data for 2019–2020 were augmented with data collected at the site between 2016 and 2018.The eight caves at the site are all micro-sites within a single ECM roost and three of them, which lie just above the current sea level and are the only ones accessible from land, were studied: Gorham’s Cave (36° 07′ 13.86″ N 5° 20′ 32.57″ W UTM 30 N 289190.5 3999856.5), Vanguard Cave (36° 07′ 18.89″ N, 005° 20′ 31.62″ W UTM 30 N 289218.0 4000011.0) and Cave F (36° 07′ 19.8″ N, 005° 20′ 30.088″ W UTM 30 N 289257.0 4000038.1) (Figs. 4 and 5).Figure 4The position of Gorham’s Cave (1), Vanguard Cave (2) and Cave F (3) at the Gorham’s Cave Complex UNESCO World Heritage Site.Full size imageFigure 5Plan map of Gorham’s Cave, Vanguard Cave and Cave F at the Gorham’s Cave Complex UNESCO World Heritage Site, indicating key roosting areas for ECM and the position of the mist nets at each cave.Full size imageTwenty-three weekly evening counts were conducted of birds returning to the roosting site during the period 4th October, 2019 to 12th March, 2020, from a fixed point overlooking the study site. We attempted to space these evenly in time, but adjustments were made due to unfavorable weather (mean number of days between counts = 6.96 ± 1.45 SE). The approach of the birds as they return to roost is described elsewhere12. It occurs along a fixed trajectory and our vantage point optimized the viewing of these movements. All ECM returned to the site along a common trajectory and birds only broke up and headed towards the different caves once at the site, so that in principle, every bird had equivalent opportunities to access each cave on arrival to the site.We used a combination of the results of the counts and the Schnabel Index for mark-release-recapture data from a series of dates33 to estimate the total roosting population size of ECM at the site during the 2019–2020 period. The latter was achieved by estimating the number of birds roosting at each cave and then combining these for a total population size, although we recognize that birds also use other micro-sites7; (pers. obs.). Due to differences in sample sizes of birds recaptured, 95% confidence limits for the estimated roosting population size at each cave were drawn from the t-distribution for Gorham’s Cave and the Poisson distribution for Vanguard Cave and Cave F33.Trapping and ringing were carried out at the three caves at least once a week. All licences required under the laws of Gibraltar were obtained and protocols were approved by the Ethics Committee of the University of Gibraltar. Ringing and handling of birds was carried out under the auspices of the Gibraltar Ornithological & Natural History Society (GONHS), which carries out its bird ringing under licence from the Ministry for the Environment, HM Government of Gibraltar, under the 1991 Nature Protection Act. Gibraltar-based ringers are licensed by the British Trust for Ornithology (BTO), and we adhered closely to the technical and ethical standards of the BTO for handling and ringing birds34. Routinely, birds are released without ringing when their condition is poor. One bird was captured in a condition that was too poor for it to be ringed. The reporting recommendations of the ARRIVE guidelines35 were followed.The majority of the data used in this study were collected between October 29th 2019 and March 4th 2020. In addition, trapping and ringing had taken place intermittently at Vanguard and Cave F during the winter since 2016, and trapping took place at the site throughout autumn 2020. We used the BTO A-sized rings, in accordance with guidelines for other European hirundines34. Due to the different dimensions of the caves, we used different mist net sizes at each one. A 6m-length net was used at Vanguard Cave, 12 m and 3 m nets at Cave F, and 3 × 6 m nets mounted vertically on triple high poles at Gorham’s Cave.The number of trapping sessions, and the range of dates of these at each cave during the 2019–2020 autumn-winter season, was: 10 Gorham’s Cave (29/10/2019–04/03/2020; mean number of days between sessions 14.11 ± 2.23 SE), 11 Vanguard Cave (13/11/2019–04/03/2020; mean number of days between sessions 11.20 ± 1.81 SE), 11 Cave F (13/11/2019–04/03/2020; mean number of days between sessions 11.20 ± 1.81 SE). Seven extra trapping sessions took place at Vanguard Cave and Cave F before the 2019-2020 autumn-winter season, on: 01/28/2016, 02/16/2016, 02/13/2018, 02/21/2018, 12/04/2018, 01/08/2019 and 02/21/2019. There were eight additional trapping sessions during the autumn of 2020, on: 10/29/2020, 11/02/2020, 11/12/2020, 11/15/2020, 11/19/2020, 11/24/2020, 12/02/2020 and 12/03/2020. 1511 different birds were processed between 2016–2020, of which 156 were captured at least twice. 796 individuals were processed during the 2019–2020 autumn-winter season, the period for which most of our analyses are based: 369 at Gorham’s Cave, 221 at Vanguard Cave and 206 at Cave F. Of the birds recaptured that had been ringed at the site during previous seasons, eighteen were from the 2019–2020 season (ten ringed at Gorham’s Cave, two at Vanguard Cave, seven at Cave F), fifteen were from the 2018–2019 season (eight at Vanguard Cave, six at Cave F), four were from the 2017–2018 season (three at Vanguard Cave, one at Cave F), and one was from the 2015–2016 season (from either Vanguard Cave or Cave F; unspecified and excluded from the analysis). A bird was recaptured that had been ringed elsewhere in Gibraltar (the GONHS Jews’ Gate Field Centre) on the 14/01/2014, 2233 days before it was captured again on the 25/02/2020.Biometric measurement of all birds was carried out by a single person (CP) in order to maximize consistency. We followed the standard processing procedure of the BTO34, which includes recording the weight of birds in grams (g) to 0.1 g and length of wing in millimeters (mm) to 0.5 mm. Birds were aged whenever this was possible but ageing of ECM became increasingly difficult towards the end of the winter period, increasing the possibility of confusion with adults9. For this reason, age was excluded from most of the analyses. Birds could not be sexed because sexes are similar in appearance, including size4,36. We captured birds only during the evening, to ensure that condition of birds was not a factor of weight-loss whilst roosting, since ECM at the site are known to weigh less during mornings than the evenings13. Birds captured were roosted in boxes and released at the site the following morning.Although Elkins & Etheridge12 assumed that movement of birds between different parts of the roost at Gibraltar is considerable, this was never tested. The proximity of different parts of the roost from each other means that all micro-sites are potentially equally accessible to ECM using the site. It is expected that they should be able to use micro-sites interchangeably, given especially their approach during evenings along a fixed narrow route. Any fidelity to micro-sites must thus be explained by factors other than distance between individual micro-sites. The multiple cavities at the roosting site, and the ease with which we were able to access these, allowed a unique opportunity to test whether individual birds repeatedly used the same micro-sites within the roost, both within and between winters. We used the data gathered to test the following hypotheses: (1) that a degree of fidelity to different spaces within the roost (‘micro-sites’) exists among ECM, with individuals more likely to be recaptured at the same cave than in a different cave, (2) that any fidelity observed will translate to a difference in quality of roosting sites, as indicated by differences in condition of birds according to micro-site, and (3) that the incidence of recapture should be highest at the cave at which birds are in the best condition.Statistical analyses followed Sokal & Rohlf37 and were carried out on SPSS statistical software (IBM). We used a binomial Z test to analyze whether recaptured birds that were initially ringed during the 2019–2020 season were returning to the cave where they were first trapped/ringed, (1) within the 2019–2020 season and (2) between this and separate seasons. We also used a 3 × 2 Fisher’s exact test to test for differences, between caves, in the frequency with which birds ringed at one cave were captured at another. Multiple recaptures of birds were excluded from all of these analyses on fidelity in order to avoid bias.We explored the relationship between wing length and weight using linear regression analysis, to control for the possible effect of body size on weight—on the basis that wing length provides a good measure of body size in passerines38—using only data collected during the 2019–2020 season. For individual birds that were trapped more than once, we used wing length and weight on the date of first capture. We then grouped, by cave, the residuals of the regression and used a one-way ANOVA to explore differences in mean condition of birds between caves, with condition expressed as the relationship between wing length and weight. We also used linear regression to explore the relationship between daily recapture rate at all caves and the number of days from the first day of trapping at each cave, with the latter as the explanatory factor. Again, we segregated the residuals of the regression by cave and used a one-way ANOVA to explore differences in recapture rates between caves. We used Pearson’s chi-squared test with Yates’s correction for small sample sizes39 to explore differences in the likelihood of recapture of birds on more than one occasion at each cave. Because differences in weight and wing length have been recorded between adult and juvenile ECM in Gibraltar13, we used Pearson’s chi-squared test to explore the relationship between age and use of the different micro-sites for all the birds that we were able to age (n = 395 of 796 birds processed), to see whether this was consistent with our other findings. More

  • in

    Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination

    Active ingredients detected in bee collected pollenAll 188 pollen samples had at least 12 active ingredients detected in each sample, with a maximum of 31 AIs and an average of 22.0 ± 0.3 per sample. Over both years, 80 of the 259 screened pesticide active ingredients were detected in the pollen. These included 28 fungicides, 26 insecticides, 21 herbicides, two miticides, and one rodenticide. We also detected one synthetic antioxidant and one pesticide synergist (Table S1). We detected approximately twice as many AIs in pollen collected by honey bees (68 AIs) in 2019 than in pollen collected by bumble bees (32). All AIs detected in pollen from bumble bees were also collected by honey bees in either 2018 or 2019. Honey bee collected pollen also had significantly more AIs on average detected at each site (35.0 ± 0.9 S.E. AIs per site) compared to bumble bees (18.6 ± 0.6) in 2019 (R2m = 0.73; X2 = 68.2, df = 1, p  More

  • in

    Short-term cell death in tissues of Pulsatilla vernalis seeds from natural and ex situ conserved populations

    1.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Rewicz, A. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands. Sci. Rep. https://doi.org/10.1038/srep31913 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Tomczyk, P. P. Anthropogenic sites maintain the last individuals during the rapid decline of the lowland refugium of the alpine-arctic plant Pulsatilla vernalis (L.) Mill. Pak. J. Bot. 50, 211–215 (2018).3.Grzyl, A. & Ronikier, M. Pulsatilla vernalis (Ranunculaceae) in the Polish lowlands: Current population resources of a declining species. Pol. Bot. J. 56, 185–194 (2011).
    Google Scholar 
    4.Åström, S. & Stridh, B. The present status of Pulsatilla vernalis in Sweden. Sven. Bot. Tidskr. 97, 117–126 (2003).
    Google Scholar 
    5.Chappuis, E. Pulsatilla vernalis. The IUCN Red List of Threatened Species 2014: e.T55730086A55730098. (2014). https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T55730086A55730098.en. Downloaded on 02 December 2020 >.6.Ronikier, M. et al. Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): Chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J. Biogeogr. 35, 1650–1664. https://doi.org/10.1111/j.1365-2699.2008.01907.x (2008).7.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827. https://doi.org/10.1007/s10682-017-9913-4 (2017).Article 

    Google Scholar 
    8.Betz, C., Scheuerer, M. & Reisch, C. Population reinforcement—A glimmer of hope for the conservation of the highly endangered Spring Pasque flower (Pulsatilla vernalis). Biol. Conserv. 168, 161–167. https://doi.org/10.1016/j.biocon.2013.10.004 (2013).Article 

    Google Scholar 
    9.Nawrocka-Grześkowiak, U. & Frydel, K. Spring pasque-flower (Pulsatilla vernalis (L.) Miller) localities in the Kaliska Forest District. Zarządzanie Ochroną Przyrody w Lasach 6, 77–84 (2012).10.Gutterman, Y. In Seeds: The Ecology of Regeneration in Plant Communities (ed M. Fenner) 59–84 (CAB International, 2000).11.Luzuriaga, A. L., Escudero, A. & Perez-Garcia, F. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 46, 163–174. https://doi.org/10.1111/j.1365-3180.2006.00496.x (2006).Article 

    Google Scholar 
    12.Rao, N. K., Dulloo, M. E. & Engels, J. M. M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061–1074. https://doi.org/10.1007/s10722-016-0425-9 (2017).CAS 
    Article 

    Google Scholar 
    13.Doniak, M., Barciszewska, M. Z., Kaźmierczak, J. & Kaźmierczak, A. The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Rep. 33, 2063–2076. https://doi.org/10.1007/s00299-014-1681-9 (2014).14.Doniak, M., Byczkowska, A. & Kaźmierczak, A. Kinetin-induced programmed death of cortex cells is mediated by ethylene and calcium ions in roots of Vicia faba ssp minor. Plant Growth Regul. 78, 335–343. https://doi.org/10.1007/s10725-015-0096-0 (2016).CAS 
    Article 

    Google Scholar 
    15.Doniak, M., Kaźmierczak, A., Byczkowska, A. & Glińska, S. Reactive oxygen species and sugars may be the messengers in kinetin-induced death of field bean root cortex cells. Biol. Plant. 61, 178–186. https://doi.org/10.1007/s10535-016-0654-y (2017).CAS 
    Article 

    Google Scholar 
    16.Tudela-Isanta, M. et al. Habitat-related seed germination traits in alpine habitats. Ecol. Evol. 8, 150–161. https://doi.org/10.1002/ece3.3539 (2018).Article 
    PubMed 

    Google Scholar 
    17.Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci. Res. 14, 1–16. https://doi.org/10.1079/ssr2003150 (2004).ADS 
    Article 

    Google Scholar 
    18.Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Latrasse, D., Benhamed, M., Bergounioux, C., Raynaud, C. & Delarue, M. Plant programmed cell death from a chromatin point of view. J. Exp. Bot. 20, 5887–5900 (2016).Article 

    Google Scholar 
    20.Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152. https://doi.org/10.1046/j.1442-1984.2000.00034.x (2000).Article 

    Google Scholar 
    21.Grzyl, A. Biology and Ecology of Isolated Populations of Pulsatilla vernalis (L.) Mill. on the Eastern Limits of its RANGE in Poland. (PhD thesis. University of Lodz, Department of Geobotany and Plant Ecology, 2012).22.Grzyl, A., Kiedrzynski, M., Zielinska, K. M. & Rewicz, A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: The last breath of a relict plant or a fluctuating cycle of regeneration?. Plant Ecol. 215, 457–466. https://doi.org/10.1007/s11258-014-0316-0 (2014).Article 

    Google Scholar 
    23.Oostermeijer, J. G. B., Vaneijck, M. W. & Dennijs, J. C. M. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97, 289–296. https://doi.org/10.1007/bf00317317 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Ouborg, N. J. & Vantreuren, R. Variation in fitness-related characters among small and large populations of Salvia pratensis. J. Ecol. 83, 369–380. https://doi.org/10.2307/2261591 (1995).Article 

    Google Scholar 
    25.Fischer, M. & Matthies, D. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am. J. Bot. 85, 811–819. https://doi.org/10.2307/2446416 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics. (Cambridge University Press, 2002).27.Hensen, I., Oberprieler, C. & Wesche, K. Genetic structure, population size, and seed production of Pulsatilla vulgaris Mill. (Ranunculaceae) in Central Germany. Flora 200, 3–14. https://doi.org/10.1016/j.flora.2004.05.001 (2005).28.Jakobsson, A. & Eriksson, O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494–502. https://doi.org/10.1034/j.1600-0706.2000.880304.x (2000).Article 

    Google Scholar 
    29.Melser, C. & Klinkhamer, P. G. L. Selective seed abortion increases offspring survival in Cynoglossum officinale (Boraginaceae). Am. J. Bot. 88, 1033–1040. https://doi.org/10.2307/2657085 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Meyer, K. M., Soldaat, L. L., Auge, H. & Thulke, H. H. Adaptive and selective seed abortion reveals complex conditional decision making in plants. Am. Nat. 183, 376–383. https://doi.org/10.1086/675063 (2014).Article 
    PubMed 

    Google Scholar 
    31.Bochenková, M., Hejcman, M. & Karlík, P. Effect of plant community on recruitment of Pulsatilla pratensis in dry grassland. Sci. Agric. Bohem. 2012, 127–133. https://doi.org/10.7160/sab.2012.430402 (2012).Article 

    Google Scholar 
    32.Ghazoul, J. & Satake, A. Nonviable seed set enhances plant fitness: The sacrificial sibling hypothesis. Ecology 90, 369–377. https://doi.org/10.1890/07-1436.1 (2009).Article 
    PubMed 

    Google Scholar 
    33.Laitinen, P. The Effects of Forest Fires on the Persistence of Pulsatilla vernalis (L.) Mill. edn, (Ms. thesis, University of Jyväskylä, Faculty of Mathematics and Science, Department of Biological and Environmental Science, 2008) [in Finnish with an English abstract].34.Skalická, R., Karlík, P., Hejcman, M. & Bochenková, M. In 17th Symposium of the European Grassland Federation. 388–390.35.Arathi, H. S., Ganeshaiah, K. N., Shaanker, R. U. & Hedge, S. G. Seed abortion in Pongamia pinnata (Fabaceae). Am. J. Bot. 86, 659–662. https://doi.org/10.2307/2656574 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Brookes, R. H., Jesson, L. K. & Burd, M. A test of simultaneous resource and pollen limitation in Stylidium armeria. New Phytol. 179, 557–565. https://doi.org/10.1111/j.1469-8137.2008.02453.x (2008).Article 
    PubMed 

    Google Scholar 
    37.Yang, C. F., Sun, S. G. & Guo, Y. H. Resource limitation and pollen source (self and outcross) affecting seed production in two louseworts, Pedicularis siphonantha and P. longiflora (Orobanchaceae). Bot. J. Linn. Soc. 147, 83–89. https://doi.org/10.1111/j.1095-8339.2005.00363.x (2005).38.Cendán, C., Sampedro, L. & Zas, R. The maternal environment determines the timing of germination in Pinus pinaster. Environ. Exp. Bot. 94, 66–72. https://doi.org/10.1016/j.envexpbot.2011.11.022 (2013).Article 

    Google Scholar 
    39.Li, R. et al. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01411 (2017).40.Valencia-Diaz, S. & Montaña, C. Temporal variability in the maternal environment and its effect on seed size and seed quality in Flourensia cernua DC. (Asteraceae). J. Arid Environ. 63, 686–695. https://doi.org/10.1016/j.jaridenv.2005.03.024 (2005).41.Chinnusamy, V., Gong, Z. Z. & Zhu, J. K. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 50, 1187–1195. https://doi.org/10.1111/j.1744-7909.2008.00727.x (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Butuzova, O. G. Peculiarities of seed formation in Pulsatilla vulgaris and Helleborus niger (Ranunculaceae) with embryo postdevelopment. Botanicheskii Zhurnal (St. Petersburg) 103, 313—330 (2018) [in Russian].43.Duncan, C., Schultz, N., Lewandrowski, W., Good, M. K. & Cook, S. Lower dormancy with rapid germination is an important strategy for seeds in an arid zone with unpredictable rainfall. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0218421 (2019).44.Gremer, J. R., Kimball, S. & Venable, D. L. Within and among year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment. Ecol. Lett. 19, 1209–1218. https://doi.org/10.1111/ele.12655 (2016).Article 
    PubMed 

    Google Scholar 
    45.Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090. https://doi.org/10.1890/06-1495 (2007).Article 
    PubMed 

    Google Scholar 
    46.Evans, M. E. K. & Dennehy, J. J. Germ banking: Bet-hedging and variable release from egg and seed dormancy. Q. R. Biol. 80, 431–451. https://doi.org/10.1086/498282 (2005).Article 

    Google Scholar 
    47.Goldberg, R. B., de Paiva, G. & Yadegari, R. Plant embryogenesis – zygote to seed. Science 266, 605–614. https://doi.org/10.1126/science.266.5185.605 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Lester, R. N. & Kang, J. H. Embryo and endosperm function and failure in Solanum species and hybrids. Ann. Bot. 82, 445–453. https://doi.org/10.1006/anbo.1998.0695 (1998).Article 

    Google Scholar 
    49.Lopes, M. A. & Larkins, B. A. Endosperm origin, development, and function. Plant Cell 5, 1383–1399. https://doi.org/10.1105/tpc.5.10.1383 (1993).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Yan, D. W., Duermeyer, L., Leoveanu, C. & Nambara, E. The functions of the endosperm during seed germination. Plant Cell Physiol. 55, 1521–1533. https://doi.org/10.1093/pcp/pcu089 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Willis, C. G. et al. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309. https://doi.org/10.1111/nph.12782 (2014).Article 
    PubMed 

    Google Scholar 
    52.Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851. https://doi.org/10.1111/j.1461-0248.2011.01645.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Pfeifer, E., Holderegger, R., Matthies, D. & Rutishauser, R. Investigation on the population biology of a flagship species of dry meadows: Pulsatilla vulgaris Mill. in north-eastern Switzerland. Bot. Helvet. 112, 153–171 (2002).54.Gargiulo, R. et al. Conservation of the threatened species, Pulsatilla vulgaris Mill. (Pasqueflower), is aided by reproductive system and polyploidy. J. Hered. 110, 618–628. https://doi.org/10.1093/jhered/esz035 (2019).55.Seglias, A. E., Williams, E., Bilge, A. & Kramer, A. T. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0191931 (2018).56.Byczkowska, A., Kunikowska, A. & Kaźmierczak, A. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250, 121–128. https://doi.org/10.1007/s00709-012-0383-9 (2013).57.Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20. https://doi.org/10.18637/jss.v022.i04 (2007).58.Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).59.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).61.Fox, F. & Weisberg, S. An {R} Companion to Applied Regression, Third Edition. (Sage, 2019). https://socialsciences.mcmaster.ca/jfox/Books/Companion/. More

  • in

    An example of DNA methylation as a means to quantify stress in wildlife using killer whales

    1.Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240 (2006).Article 

    Google Scholar 
    3.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, 6471 (2019).Article 
    CAS 

    Google Scholar 
    4.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: Reframing the co-occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
    Google Scholar 
    5.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and Health. Proc. Natl. Acad. Sci. USA. 113, 3203–3208 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Grant, E. H. C. et al. Identifying management-relevant research priorities for responding to disease-associated amphibian declines. Glob. Ecol. Conserv. 16, 00441 (2018).
    Google Scholar 
    9.Schindler, D. W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18–29 (2001).Article 

    Google Scholar 
    10.Cumulative Effects in Wildlife Management: Impact Mitigation. https://doi.org/10.1017/CBO9781107415324.004 (CRC Press, 2011). 11.Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    12.Rolland, R. M., Hunt, K. E., Kraus, S. D. & Wasser, S. K. Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. Gen. Comp. Endocrinol. 142, 308–317 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    14.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    15.Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental epigenomics and its applications in marine organisms. in Population Genomics: Marine Organisms (eds. Oleksiak, M. F. & Rajora, O. P.) 325–359. https://doi.org/10.1007/13836_2018_28 (Springer, 2018). 16.Eirin-Lopez, J. M. & Putnam, H. M. Marine environmental epigenetics. Ann. Rev. Mar. Sci. 11, 335–368 (2019).PubMed 
    Article 

    Google Scholar 
    17.Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Matosin, N., Cruceanu, C. & Binder, E. B. Preclinical and clinical evidence of DNA methylation changes in response to trauma and chronic stress. Chronic Stress 1, 247054701771076 (2017).Article 

    Google Scholar 
    21.Radtke, K. M. et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1, e21–e26 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mueller, B. R. & Bale, T. L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13, 1351–1353 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Boersma, G. J. et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437–447 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Turecki, G. & Meaney, M. J. Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biol. Psychiatry 79, 87–96 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sterrenburg, L. et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS ONE 6, 1–14 (2011).Article 
    CAS 

    Google Scholar 
    27.Reeder, D. A. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).Article 

    Google Scholar 
    28.Jeanneteau, F. D. et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc. Natl. Acad. Sci. USA. 109, 1305–1310 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Turner, J. D. & Muller, C. P. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol. 35, 283–292 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Bakusic, J., Schaufeli, W., Claes, S. & Godderis, L. Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 92, 34–44 (2017).PubMed 
    Article 

    Google Scholar 
    32.Center for Whale Research. Population. https://www.whaleresearch.com. Accessed 11 Jan 2021 (2020).33.Fisheries and Oceans Canada. Recovery Strategy for the Northern and Southern Resident Killer Whales (Orcinus orca) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series, Fisheries & Oceans Canada, Ottawa, x + 84 pp.(2018).34.DFO. Population Status Update for the Northern Resident Killer Whale (Orcinus orca) in 2018. DFO Can. Sci. Advis. Sec. Sci. Resp. 2019/025. (2019).35.Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Reports Int. Whal. Comm. 12, 383–405 (1990).
    Google Scholar 
    36.Ford, J. K. B. & Ellis, G. M. Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Mar. Ecol. Prog. Ser. 316, 185–199 (2006).ADS 
    Article 

    Google Scholar 
    37.Chen, I.-H. et al. Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas). PeerJ 4, e1810 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Hoelzel, A. R., Dahlheim, M. E. & Stern, S. J. Low genetic variation among killer whales (Orcinus orca) in the eastern north Pacific and genetic differentiation between foraging specialists. J. Hered. 89, 121–128 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Yao, M., Stenzel-Poore, M. & Denver, R. J. Structural and functional conservation of vertebrate corticotropin- releasing factor genes: Evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148, 2518–2531 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Aguiniga, L. M., Yang, W., Yaggie, R. E., Schaeffer, A. J. & Klumpp, D. J. Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R289–R300 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Lundin, J. I. et al. Pre-oil spill baseline profiling for contaminants in Southern Resident killer whale fecal samples indicates possible exposure to vessel exhaust. Mar. Pollut. Bull. 136, 448–453 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.MacDonald, L. H. Evaluating and managing cumulative effects: Process and constraints. Environ. Manag. 26, 299–315 (2000).CAS 
    Article 

    Google Scholar 
    45.National Academies of Sciences Engineering and Medicine. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals. https://doi.org/10.17226/23479 (National Academies Press, 2017). 46.Barrett-Lennard, L. G., Smith, T. G. & Ellis, G. M. A cetacean biopsy system using lightweight pneumatic darts, and its effect on the behavior of killer whales. Mar. Mammal Sci. 12, 14–27 (1996).Article 

    Google Scholar 
    47.Sambrook, J., Fritsch, E. F. & Maniatis, H. Molecular Cloning: A Laboratory Manual (Cold Springs Harbor Laboratory Press, 1989).
    Google Scholar 
    48.Illumina. 16S Metagenomic Sequencing Library Preparation. Illumina.com 1–28 (2013).49.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.j 17, 10–12 (2011).Article 

    Google Scholar 
    50.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Field measurements of a massive Porites coral at Goolboodi (Orpheus Island), Great Barrier Reef

    The location, diameter, height and circumference of the coral were measured (Table 1, Fig. 2). The Porites was brown to cream in colour and hemispherical in shape (Fig. 2). It was identified as either Porites lutea (Hump or Pore coral) or P. lobata (Lobe coral)14.The primary habitat on the Porites was live coral (70%), followed by sponge, live coral rock and a small amount of macroalgae (Table 2). No recently dead coral, coral rubble or sand was recorded (Table 2). We observed competition between the Porites and other species of coral and invertebrate including encrusting sponge, plating and branching Acropora spp., Montipora, Chlorodesmis, soft coral and zoanthids (Table 2, Figs. 3, 4).Table 2 Reef Health Impact Survey (RHIS) of habitat and species categories on Porites sp.Full size tableFigure 3Detail of the sub-habitats and competitive interactions Porites sp. and boring sponge Cliona viridis (left) and live coral Porites sp. and Montipora sp. (right) along interspecific contact zones.Full size imageFigure 4Detail of Reef Health Impact Survey (RHIS) of Porites.Full size imageThe boring sponge, Cliona viridis, is abundant on the Great Barrier Reef15. It is a common bioeroding species advancing laterally at around 1 cm and to a depth of 1.2 cm per annum15. Abundance of Cliona viridis is often correlated to substrate availability and water energy with the greatest abundance often on the windward side of bommies15. This correlates to our observations as the large proportion of the substrate estimated to cover the bommie (15%) was on the windward side. The sponge’s advances will likely continue to compromise the colony size and health.We recorded marine debris at the base of the Porites. The debris was 2–3 m of rope that appeared to have been wrapped around the base of an adjacent coral. Adjacent to the bommie were three concrete blocks.How big is the Porites coral at Goolboodi compared to other big corals in the GBR, and the world? Potts et al.6 reported a very large, rounded Porites colony, 6.9 m in diameter which is 3.1 m smaller than this study. Lough et al.16 reported coral cores from colonies between 1.6–8.0 m in height with the largest corals of 6.0 m at Havannah, North Molle and Masthead Islands, 7.5 m at Abraham Reef and 8.0 m at Sanctuary Reef. Recognising the limitations of published data, the Porites coral at Goolboodi is the largest diameter coral that has been measured, and the 6th tallest in the GBR. It is unknown if the other corals are still alive or dead.Other comparatively large massive Porites have previously been located throughout the Pacific. These have included multiple bommies measuring more than 10 m4 and one exceptionally large colony observed measuring 17 m × 12 m in American Samoa17. Additionally, large Porites sp. bommies have been observed at Green Island, 30 km east of Taiwan18 as well as an 11 m diameter Porites australiensis at Sesoko Island, Okinawa, Japan19.How old is this massive Porites? In discussions with the Australian Institute of Marine Science (AIMS), there is a robust, linear relationship ( > 80% variance explained) between Porites average linear extension rate and average annual sea surface temperature (SST)20,21 that provides an estimate of colony age from its height. Using average annual SST at 18.5S, 146.5E of 26.12C (from HadiSST data set), the estimated linear extension rate is determined by (2.97 × 26.12) − 65.46 = 1.21 cm/year. Given the colony height of 5.1–5.3 m, this gives an estimated age of 421–438 years. This is well before European exploration and settlement of Australia. AIMS has investigated over 328 colonies of massive Porites corals from 69 reefs along the GBR and has aged them as being from 10–436 years21. AIMS has not investigated this coral (pers. comm Neal Cantin). Based on limitations of published data, the Porites coral at Goolboodi is one of the oldest corals on the GBR.Why is the Porites partially dead on top and living on the side? The proportion of live coral tissue on a colony reflects the cumulative, integrated effect of both beneficial and adverse environmental factors. Substantial portions of coral tissue can die from exposure to sun at low tides or warm water without lethal consequences to the colony as a whole10. Partial mortality of large bommies provides available real estate for opportunistic, fast growing sessile organisms. In this instance, multiple species of tabulate and branching Acropora sp., encrusting Montipora sp. and encrusting sponges are among the benthic organisms to have colonised 30% of the coral bommies’ surface area. Intraspecific competition is also evident from the skeletal barriers created along contact zones22 (Fig. 3). There was no observation of disease or coral bleaching.The Porites is located in a relatively remote, rarely visited and highly protected Marine National Park (green) zone. Its location had not been previously reported and there is no existing database for significant corals in Australia or globally. Cataloguing the location of massive and long-lived corals can have multiple benefits. Scientific benefits include geochemical and isotopic analyses in coral skeletal cores which can help understand century-scale changes in oceanographic events and can be used to verify climate models. Social and economic benefits can include diving tourism, citizen science23 culture and stewardship. Perhaps the Significant Trees Register, which was designed by the National Trust24 to protect and celebrate Australia’s heritage could be considered as a model. There are risks of cataloguing the location of massive corals. It could be damaged by direct and indirect human uses including anchoring, research and pollution.Indigenous languages are an integral part of Indigenous culture, spirituality, and connection to country. We consulted Manbarra Traditional Owners about protocol and an appropriate cultural name for the Porites and they considered: Big (Muga), Home (Wanga), Coral reef (Muugar), Coral (Dhambi), Old (Anki, Gurgu), Old man (Gulula) and Old person (Gurgurbu)25. The recommendation by Manbarra Traditional Owners is that the Porites is named as Muga dhambi (Big coral). The feedback from the process of consultation was very positive with acknowledgement of the respect that the scientists have demonstrated to acknowledge Traditional Owners in this way.The large Porites coral at Goolboodi (Orpheus) Island is unusually rare and resilient. It has survived coral bleaching, invasive species, cyclones, severely low tides and human activities for almost 500 years. In an attempt to contextualise the resilience of these individual Porites we have reviewed major historic disturbances such as coral bleaching which has occurred since at least 1575 and potentially 99 bleaching events in the GBR over the past 400 plus years26. Other indicators such as high-density ‘stress bands’ were recorded from 1877 and are significantly more frequent in the late twentieth and early twenty-first centuries in accordance with rising temperatures from anthropogenic global warming27. In addition there have been an average of 1–2 tropical cyclones per decade (40–80 in total) that have potentially impacted the coral adjacent to Goolboodi Island28,29; 46 tropical cyclones impacted the area between Ingham and Townsville from 1858 to 200830. The cumulative impact of almost 100 bleaching events and up to 80 major cyclones over a period of four centuries, plus declining nearshore water quality contextualise the high resilience of this Porites coral. Looking to the future there is real concern for corals in the GBR due to many impacts including climate change, declining water quality, overfishing and coastal development31,32. This field note provides important geospatial, environmental, and cultural information of a rare coral that can be monitored, appreciated, potentially restored and hopefully inspire future generations to care more for our reefs and culture. More

  • in

    Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean

    1.Irwin AJ, Oliver MJ. Are ocean deserts getting larger? Geophys Res Lett. 2009;36:L18609.Article 

    Google Scholar 
    2.McClain CR, Signorini SR, Christian JR. Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res Part II Topical Stud Oceanogr. 2004;51:281–301.CAS 
    Article 

    Google Scholar 
    3.Signorini SR, Franz BA, McClain CR. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front Mar Sci. 2015;2:1–11.Article 

    Google Scholar 
    4.Polovina JJ, Howell EA, Abecassis M. Ocean’s least productive waters are expanding. Geophys Res Lett. 2008;35:L03618.Article 

    Google Scholar 
    5.Sharma P, Marinov I, Cabre A, Kostadinov T, Singh A. Increasing biomass in the warm oceans: unexpected new insights from SeaWIFS. Geophys Res Lett. 2019;46:3900–10.Article 

    Google Scholar 
    6.Flombaum P, Wang W-L, Primeau FW, Martiny AC. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat Geosci. 2020;13:116–20.CAS 
    Article 

    Google Scholar 
    7.Carr M-E, Friedrichs MAM, Schmeltz M, Noguchi Aita M, Antoine D, Arrigo KR, et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res Part II Topical Stud Oceanogr. 2006;53:741–70.Article 

    Google Scholar 
    8.Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.DeVries T, Primeau F, Deutsch C. The sequestration efficiency of the biological pump. Geophys Res Lett. 2012;39:L13601.Article 
    CAS 

    Google Scholar 
    10.Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim Dyn. 2015;45:1253–80.Article 

    Google Scholar 
    11.Behrenfeld MJ, O’Malley RT, Boss ES, Westberry TK, Graff JR, Halsey KH, et al. Revaluating ocean warming impacts on global phytoplankton. Nat Clim Change. 2015;6:323–30.Article 

    Google Scholar 
    12.Richardson K, Bendtsen J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar Ecol Prog Ser. 2019;620:33–46.CAS 
    Article 

    Google Scholar 
    13.Roshan S, DeVries T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat Commun. 2017;8:1–8.CAS 
    Article 

    Google Scholar 
    14.Marañón E, Holligan PM, Barciela R, González N, Mouriño B, Pazó MJ, et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser. 2001;216:43–56.Article 

    Google Scholar 
    15.Pérez V, Fernández E, Marañón E, Morán XAG, Zubkov MV. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res Part I Oceanographic Res Pap. 2006;53:1616–34.Article 

    Google Scholar 
    16.Teira E, Mouriño B, Marañón E, Pérez V, Pazó MJ, Serret P, et al. Variability of chlorophyll and primary production in the Eastern North Atlantic subtropical gyre: potential factors affecting phytoplankton activity. Deep Sea Res Part I Oceanographic Res Pap. 2005;52:569–88.CAS 
    Article 

    Google Scholar 
    17.Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, et al. Prochlorococcus marinus nov. Gen. Nov. Sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol. 1992;157:297–300.CAS 
    Article 

    Google Scholar 
    18.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Li WK. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.CAS 
    Article 

    Google Scholar 
    21.Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical Northeast Atlantic Ocean. ISME J. 2010;4:1180–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:1–14.Article 
    CAS 

    Google Scholar 
    23.Liu K, Suzuki K, Chen B, Liu H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical Northwest Pacific? Limnol Oceanogr. 2020;66:639–51.Article 
    CAS 

    Google Scholar 
    24.D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, et al. Subseafloor sedimentary life in the South Pacific gyre. PNAS. 2009;106:11651–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 1995;17:1245–71.Article 

    Google Scholar 
    26.Morel A, Gentili B, Claustre H, Babin M, Bricaud A, Ras J, et al. Optical properties of the “clearest” natural waters. Limnol Oceanogr. 2007;52:217–29.CAS 
    Article 

    Google Scholar 
    27.Halm H, Lam P, Ferdelman TG, Lavik G, Dittmar T, LaRoche J, et al. Heterotrophic organisms dominate nitrogen fixation in the south pacific gyre. ISME J. 2012;6:1238–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Raimbault P, Garcia N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences. 2008;5:323–38.CAS 
    Article 

    Google Scholar 
    29.Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, et al. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob Biogeochem Cyc. 2018;32:1028–44.CAS 
    Article 

    Google Scholar 
    30.Reintjes G, Tegetmeyer HE, Bürgisser M, Orlić S, Tews I, Zubkov M, et al. On-site analysis of bacterial communities of the ultraoligotrophic South Pacific gyre. Appl Environ Microbiol. 2019;85:e00184–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zielinski O, Henkel R, Voß D, Ferdelman TG. Physical oceanography during Sonne cruise SO245 (Ultrapac). PANGAEA. 2018. https://doi.org/10.1594/PANGAEA.890394.32.Ferdelman TG, Klockgether G, Downes P, Lavik G. Nutrient data from CTD Nisken bottles from Sonne expedition SO-245 “Ultrapac”. PANGAEA. 2019. https://doi.org/10.1594/PANGAEA.899228.33.Arar EJ, Collins GB. Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence: U.S. Environmental Protection Agency, Washington, DC; 1997. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=309417.34.Welschmeyer N, Naughton S. Improved chlorophyll a analysis: single fluorometric measurement with no acidification. Lake Reserv Manag. 1994;9:123.
    Google Scholar 
    35.Osterholz H, Kilgour D, Storey DS, Lavik G, Ferdelman T, Niggemann J, et al. Accumulation of DOC in the South Pacific subtropical gyre from a molecular perspective. Mar Chem. 2021;231:103955.CAS 
    Article 

    Google Scholar 
    36.Voß D, Henkel R, Wollschläger J, Zielinski O. Hyperspectral underwater light field measured during the cruise SO245 with R/V Sonne. PANGAEA. 2020. https://doi.org/10.1594/PANGAEA.911558.37.Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:1–7.Article 
    CAS 

    Google Scholar 
    38.Marra J. Net and gross productivity: weighing in with 14C. Aquat Microb Ecol. 2009;56:123–31.Article 

    Google Scholar 
    39.Ribeiro CG, Marie D, Santos ALD, Brandini FP, Vaulot D. Estimating microbial populations by flow cytometry: comparison between instruments. Limnol Oceanogr Methods. 2016;14:750–8.Article 

    Google Scholar 
    40.Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, et al. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16 S rRNA-targeted oligonucleotides. Microbiology. 2001;147:1731–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr. 1992;37:1434–46.CAS 
    Article 

    Google Scholar 
    44.Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:AEM00493–19.Article 

    Google Scholar 
    45.Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16 S rRNA gene (v4 and v4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems. 2016;1:e00009–15.PubMed 
    Article 

    Google Scholar 
    46.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Comeau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems. 2017;2:e00127–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DW. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Zhang J, Kobert K, Flouri T, Stamatakis A. Pear: a fast and accurate Illumina paired-end read merger. Bioinformatics. 2013;30:614–20.51.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. Vsearch: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kopylova E, Noé L, Touzet H. Sortmerna: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Mercier C, Boyer F, Bonin A, Coissac E (eds). Sumatra and Sumaclust: fast and exact comparison and clustering of sequences. SeqBio 2013 Workshop 2013: (abstract).54.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: A reference database of the plastidial 16 S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molec Ecol Res. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    57.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;4:D597–604.Article 
    CAS 

    Google Scholar 
    58.Del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 2018;16:e2005849.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Gruber-Vodicka HR, Seah BK, Pruesse E. Phyloflash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. Msystems. 2020;5:e00920.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS. 2016;113:E3365–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Oggerin de Orube M, Fuchs BM. Personal communication: Unpublished shotgun metagenomes collected from in situ pump samples during R/V Sonne expedition SO245. Bremen, Germany. 2021.63.Schlitzer R. Ocean Data View. Bremerhaven, Germany. 2021. https://odv.awi.de.64.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, Austria. 2017. https://www.R-project.org/.65.Wickham H. Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. 2016.66.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package: community ecology package. R package version 2.5–7. 2019. https://CRAN.R-project.org/package=vegan.68.Chaigneau A, Pizarro O. Surface circulation and fronts of the South Pacific Ocean, east of 120°W. Geophys Res Lett. 2005;32:L08605.69.Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16 S rRNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Shi XL, Lepère C, Scanlan DJ, Vaulot D. Plastid 16 s rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLOS ONE. 2011;6:e18979.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Le Gall F, et al. Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a pcr biased towards marine algal plastids. Aquat Micro Ecol. 2006;43:79–93.Article 

    Google Scholar 
    72.Raes EJ, Bodrossy L, Kamp JVD, Bissett A, Ostrowski M, Brown MV, et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. PNAS. 2018;115:E8266–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Campbell L, Liu H, Nolla HA, Vaulot D. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at station ALOHA during the 1991-4 ENSO event. Deep Sea Res Part I Oceanogr Res Pap. 1997;44:167–92.CAS 
    Article 

    Google Scholar 
    74.Viviani DA, Church MJ. Decoupling between bacterial production and primary production over multiple time scales in the North Pacific subtropical gyre. Deep Sea Res Part I Oceanogr Res Pap. 2017;121:132–42.CAS 
    Article 

    Google Scholar 
    75.Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the south east pacific ocean. Limnol Oceanogr. 2016;61:806–24.Article 

    Google Scholar 
    76.Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLOS ONE. 2009;4:e7657.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Kirkham AR, Lepere C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Lepère C, Vaulot D, Scanlan DJ. Photosynthetic picoeukaryote community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on earth. Environ Microbiol. 2009;11:3105–17.PubMed 
    Article 
    CAS 

    Google Scholar 
    79.Bender ML, Jönsson B. Is seasonal net community production in the South Pacific subtropical gyre anomalously low? Geophys Res Lett. 2016;43:9757–63.Article 

    Google Scholar 
    80.Montégut CDB, Madec G, Fischer AS, Lazar A, Iudicone D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans. 2004;109:C12003.Article 

    Google Scholar 
    81.Liu Q, Lu Y. Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific. Adv Atmospher Sci. 2016;33:442–51.Article 

    Google Scholar 
    82.Sato K, Suga T. Structure and modification of the South Pacific eastern subtropical mode water. J Phys Oceanogr. 2009;39:1700–14.Article 

    Google Scholar 
    83.Jung J, Furutani H, Uematsu M. Atmospheric inorganic nitrogen in marine aerosol and precipitation and its deposition to the north and south pacific oceans. J Atmospher Chem. 2011;68:157–81.CAS 
    Article 

    Google Scholar 
    84.Pavia FJ, Anderson RF, Winckler G, Fleisher MQ. Atmospheric dust inputs, iron cycling, and biogeochemical connections in the South Pacific Ocean from thorium isotopes. Glob Biogeochem Cycles. 2020;34:e2020GB006562.CAS 

    Google Scholar 
    85.Bonnet S, Guieu C, Bruyant F, Prášil O, Van Wambeke F, Raimbault P, et al. Nutrient limitation of primary productivity in the Southeast Pacific (Biosope Cruise). Biogeosciences. 2008;5:215–25.CAS 
    Article 

    Google Scholar 
    86.Mahaffey C, Björkman KM, Karl DM. Phytoplankton response to deep seawater nutrient addition in the North Pacific subtropical gyre. Mar Ecol Prog Ser. 2012;460:13–34.CAS 
    Article 

    Google Scholar 
    87.Grob C, Jardillier L, Hartmann M, Ostrowski M, Zubkov MV, Scanlan DJ. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition. Environ Microbiol Rep. 2015;7:211–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Vaulot D, Marie D, Olson RJ, Chisholm SW. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean. Science. 1995;268:1480–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Grob C, Hartmann M, Zubkov MV, Scanlan DJ. Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean. Environ Microbiol. 2011;13:3266–74.PubMed 
    Article 

    Google Scholar 
    90.Berthelot H, Duhamel S, L’Helguen S, Maguer J-F, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651.CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol. 2003;69:1299–304.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 2020;14:1065–73.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Timmermans K, Van der Wagt B, Veldhuis M, Maatman A, De Baar H. Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res. 2005;53:109–20.CAS 
    Article 

    Google Scholar 
    94.Vaulot D, Eikrem W, Viprey M, Moreau H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol Rev. 2008;32:795–820.CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Le Gall F, Rigaut-Jalabert F, Marie D, Garczarek L, Viprey M, Gobet A, et al. Picoplankton diversity in the South-east Pacific Ocean from cultures. Biogeosciences. 2008;5:203–14.Article 

    Google Scholar 
    97.NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. 2018. https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3M/CHL/2018/ Accessed 2019/08/01. More