More stories

  • in

    Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination

    Active ingredients detected in bee collected pollenAll 188 pollen samples had at least 12 active ingredients detected in each sample, with a maximum of 31 AIs and an average of 22.0 ± 0.3 per sample. Over both years, 80 of the 259 screened pesticide active ingredients were detected in the pollen. These included 28 fungicides, 26 insecticides, 21 herbicides, two miticides, and one rodenticide. We also detected one synthetic antioxidant and one pesticide synergist (Table S1). We detected approximately twice as many AIs in pollen collected by honey bees (68 AIs) in 2019 than in pollen collected by bumble bees (32). All AIs detected in pollen from bumble bees were also collected by honey bees in either 2018 or 2019. Honey bee collected pollen also had significantly more AIs on average detected at each site (35.0 ± 0.9 S.E. AIs per site) compared to bumble bees (18.6 ± 0.6) in 2019 (R2m = 0.73; X2 = 68.2, df = 1, p  More

  • in

    Short-term cell death in tissues of Pulsatilla vernalis seeds from natural and ex situ conserved populations

    1.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Rewicz, A. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands. Sci. Rep. https://doi.org/10.1038/srep31913 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Tomczyk, P. P. Anthropogenic sites maintain the last individuals during the rapid decline of the lowland refugium of the alpine-arctic plant Pulsatilla vernalis (L.) Mill. Pak. J. Bot. 50, 211–215 (2018).3.Grzyl, A. & Ronikier, M. Pulsatilla vernalis (Ranunculaceae) in the Polish lowlands: Current population resources of a declining species. Pol. Bot. J. 56, 185–194 (2011).
    Google Scholar 
    4.Åström, S. & Stridh, B. The present status of Pulsatilla vernalis in Sweden. Sven. Bot. Tidskr. 97, 117–126 (2003).
    Google Scholar 
    5.Chappuis, E. Pulsatilla vernalis. The IUCN Red List of Threatened Species 2014: e.T55730086A55730098. (2014). https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T55730086A55730098.en. Downloaded on 02 December 2020 >.6.Ronikier, M. et al. Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): Chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J. Biogeogr. 35, 1650–1664. https://doi.org/10.1111/j.1365-2699.2008.01907.x (2008).7.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827. https://doi.org/10.1007/s10682-017-9913-4 (2017).Article 

    Google Scholar 
    8.Betz, C., Scheuerer, M. & Reisch, C. Population reinforcement—A glimmer of hope for the conservation of the highly endangered Spring Pasque flower (Pulsatilla vernalis). Biol. Conserv. 168, 161–167. https://doi.org/10.1016/j.biocon.2013.10.004 (2013).Article 

    Google Scholar 
    9.Nawrocka-Grześkowiak, U. & Frydel, K. Spring pasque-flower (Pulsatilla vernalis (L.) Miller) localities in the Kaliska Forest District. Zarządzanie Ochroną Przyrody w Lasach 6, 77–84 (2012).10.Gutterman, Y. In Seeds: The Ecology of Regeneration in Plant Communities (ed M. Fenner) 59–84 (CAB International, 2000).11.Luzuriaga, A. L., Escudero, A. & Perez-Garcia, F. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 46, 163–174. https://doi.org/10.1111/j.1365-3180.2006.00496.x (2006).Article 

    Google Scholar 
    12.Rao, N. K., Dulloo, M. E. & Engels, J. M. M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061–1074. https://doi.org/10.1007/s10722-016-0425-9 (2017).CAS 
    Article 

    Google Scholar 
    13.Doniak, M., Barciszewska, M. Z., Kaźmierczak, J. & Kaźmierczak, A. The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Rep. 33, 2063–2076. https://doi.org/10.1007/s00299-014-1681-9 (2014).14.Doniak, M., Byczkowska, A. & Kaźmierczak, A. Kinetin-induced programmed death of cortex cells is mediated by ethylene and calcium ions in roots of Vicia faba ssp minor. Plant Growth Regul. 78, 335–343. https://doi.org/10.1007/s10725-015-0096-0 (2016).CAS 
    Article 

    Google Scholar 
    15.Doniak, M., Kaźmierczak, A., Byczkowska, A. & Glińska, S. Reactive oxygen species and sugars may be the messengers in kinetin-induced death of field bean root cortex cells. Biol. Plant. 61, 178–186. https://doi.org/10.1007/s10535-016-0654-y (2017).CAS 
    Article 

    Google Scholar 
    16.Tudela-Isanta, M. et al. Habitat-related seed germination traits in alpine habitats. Ecol. Evol. 8, 150–161. https://doi.org/10.1002/ece3.3539 (2018).Article 
    PubMed 

    Google Scholar 
    17.Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci. Res. 14, 1–16. https://doi.org/10.1079/ssr2003150 (2004).ADS 
    Article 

    Google Scholar 
    18.Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Latrasse, D., Benhamed, M., Bergounioux, C., Raynaud, C. & Delarue, M. Plant programmed cell death from a chromatin point of view. J. Exp. Bot. 20, 5887–5900 (2016).Article 

    Google Scholar 
    20.Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152. https://doi.org/10.1046/j.1442-1984.2000.00034.x (2000).Article 

    Google Scholar 
    21.Grzyl, A. Biology and Ecology of Isolated Populations of Pulsatilla vernalis (L.) Mill. on the Eastern Limits of its RANGE in Poland. (PhD thesis. University of Lodz, Department of Geobotany and Plant Ecology, 2012).22.Grzyl, A., Kiedrzynski, M., Zielinska, K. M. & Rewicz, A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: The last breath of a relict plant or a fluctuating cycle of regeneration?. Plant Ecol. 215, 457–466. https://doi.org/10.1007/s11258-014-0316-0 (2014).Article 

    Google Scholar 
    23.Oostermeijer, J. G. B., Vaneijck, M. W. & Dennijs, J. C. M. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97, 289–296. https://doi.org/10.1007/bf00317317 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Ouborg, N. J. & Vantreuren, R. Variation in fitness-related characters among small and large populations of Salvia pratensis. J. Ecol. 83, 369–380. https://doi.org/10.2307/2261591 (1995).Article 

    Google Scholar 
    25.Fischer, M. & Matthies, D. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am. J. Bot. 85, 811–819. https://doi.org/10.2307/2446416 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics. (Cambridge University Press, 2002).27.Hensen, I., Oberprieler, C. & Wesche, K. Genetic structure, population size, and seed production of Pulsatilla vulgaris Mill. (Ranunculaceae) in Central Germany. Flora 200, 3–14. https://doi.org/10.1016/j.flora.2004.05.001 (2005).28.Jakobsson, A. & Eriksson, O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494–502. https://doi.org/10.1034/j.1600-0706.2000.880304.x (2000).Article 

    Google Scholar 
    29.Melser, C. & Klinkhamer, P. G. L. Selective seed abortion increases offspring survival in Cynoglossum officinale (Boraginaceae). Am. J. Bot. 88, 1033–1040. https://doi.org/10.2307/2657085 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Meyer, K. M., Soldaat, L. L., Auge, H. & Thulke, H. H. Adaptive and selective seed abortion reveals complex conditional decision making in plants. Am. Nat. 183, 376–383. https://doi.org/10.1086/675063 (2014).Article 
    PubMed 

    Google Scholar 
    31.Bochenková, M., Hejcman, M. & Karlík, P. Effect of plant community on recruitment of Pulsatilla pratensis in dry grassland. Sci. Agric. Bohem. 2012, 127–133. https://doi.org/10.7160/sab.2012.430402 (2012).Article 

    Google Scholar 
    32.Ghazoul, J. & Satake, A. Nonviable seed set enhances plant fitness: The sacrificial sibling hypothesis. Ecology 90, 369–377. https://doi.org/10.1890/07-1436.1 (2009).Article 
    PubMed 

    Google Scholar 
    33.Laitinen, P. The Effects of Forest Fires on the Persistence of Pulsatilla vernalis (L.) Mill. edn, (Ms. thesis, University of Jyväskylä, Faculty of Mathematics and Science, Department of Biological and Environmental Science, 2008) [in Finnish with an English abstract].34.Skalická, R., Karlík, P., Hejcman, M. & Bochenková, M. In 17th Symposium of the European Grassland Federation. 388–390.35.Arathi, H. S., Ganeshaiah, K. N., Shaanker, R. U. & Hedge, S. G. Seed abortion in Pongamia pinnata (Fabaceae). Am. J. Bot. 86, 659–662. https://doi.org/10.2307/2656574 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Brookes, R. H., Jesson, L. K. & Burd, M. A test of simultaneous resource and pollen limitation in Stylidium armeria. New Phytol. 179, 557–565. https://doi.org/10.1111/j.1469-8137.2008.02453.x (2008).Article 
    PubMed 

    Google Scholar 
    37.Yang, C. F., Sun, S. G. & Guo, Y. H. Resource limitation and pollen source (self and outcross) affecting seed production in two louseworts, Pedicularis siphonantha and P. longiflora (Orobanchaceae). Bot. J. Linn. Soc. 147, 83–89. https://doi.org/10.1111/j.1095-8339.2005.00363.x (2005).38.Cendán, C., Sampedro, L. & Zas, R. The maternal environment determines the timing of germination in Pinus pinaster. Environ. Exp. Bot. 94, 66–72. https://doi.org/10.1016/j.envexpbot.2011.11.022 (2013).Article 

    Google Scholar 
    39.Li, R. et al. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01411 (2017).40.Valencia-Diaz, S. & Montaña, C. Temporal variability in the maternal environment and its effect on seed size and seed quality in Flourensia cernua DC. (Asteraceae). J. Arid Environ. 63, 686–695. https://doi.org/10.1016/j.jaridenv.2005.03.024 (2005).41.Chinnusamy, V., Gong, Z. Z. & Zhu, J. K. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 50, 1187–1195. https://doi.org/10.1111/j.1744-7909.2008.00727.x (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Butuzova, O. G. Peculiarities of seed formation in Pulsatilla vulgaris and Helleborus niger (Ranunculaceae) with embryo postdevelopment. Botanicheskii Zhurnal (St. Petersburg) 103, 313—330 (2018) [in Russian].43.Duncan, C., Schultz, N., Lewandrowski, W., Good, M. K. & Cook, S. Lower dormancy with rapid germination is an important strategy for seeds in an arid zone with unpredictable rainfall. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0218421 (2019).44.Gremer, J. R., Kimball, S. & Venable, D. L. Within and among year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment. Ecol. Lett. 19, 1209–1218. https://doi.org/10.1111/ele.12655 (2016).Article 
    PubMed 

    Google Scholar 
    45.Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090. https://doi.org/10.1890/06-1495 (2007).Article 
    PubMed 

    Google Scholar 
    46.Evans, M. E. K. & Dennehy, J. J. Germ banking: Bet-hedging and variable release from egg and seed dormancy. Q. R. Biol. 80, 431–451. https://doi.org/10.1086/498282 (2005).Article 

    Google Scholar 
    47.Goldberg, R. B., de Paiva, G. & Yadegari, R. Plant embryogenesis – zygote to seed. Science 266, 605–614. https://doi.org/10.1126/science.266.5185.605 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Lester, R. N. & Kang, J. H. Embryo and endosperm function and failure in Solanum species and hybrids. Ann. Bot. 82, 445–453. https://doi.org/10.1006/anbo.1998.0695 (1998).Article 

    Google Scholar 
    49.Lopes, M. A. & Larkins, B. A. Endosperm origin, development, and function. Plant Cell 5, 1383–1399. https://doi.org/10.1105/tpc.5.10.1383 (1993).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Yan, D. W., Duermeyer, L., Leoveanu, C. & Nambara, E. The functions of the endosperm during seed germination. Plant Cell Physiol. 55, 1521–1533. https://doi.org/10.1093/pcp/pcu089 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Willis, C. G. et al. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309. https://doi.org/10.1111/nph.12782 (2014).Article 
    PubMed 

    Google Scholar 
    52.Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851. https://doi.org/10.1111/j.1461-0248.2011.01645.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Pfeifer, E., Holderegger, R., Matthies, D. & Rutishauser, R. Investigation on the population biology of a flagship species of dry meadows: Pulsatilla vulgaris Mill. in north-eastern Switzerland. Bot. Helvet. 112, 153–171 (2002).54.Gargiulo, R. et al. Conservation of the threatened species, Pulsatilla vulgaris Mill. (Pasqueflower), is aided by reproductive system and polyploidy. J. Hered. 110, 618–628. https://doi.org/10.1093/jhered/esz035 (2019).55.Seglias, A. E., Williams, E., Bilge, A. & Kramer, A. T. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0191931 (2018).56.Byczkowska, A., Kunikowska, A. & Kaźmierczak, A. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250, 121–128. https://doi.org/10.1007/s00709-012-0383-9 (2013).57.Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20. https://doi.org/10.18637/jss.v022.i04 (2007).58.Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).59.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).61.Fox, F. & Weisberg, S. An {R} Companion to Applied Regression, Third Edition. (Sage, 2019). https://socialsciences.mcmaster.ca/jfox/Books/Companion/. More

  • in

    An example of DNA methylation as a means to quantify stress in wildlife using killer whales

    1.Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240 (2006).Article 

    Google Scholar 
    3.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, 6471 (2019).Article 
    CAS 

    Google Scholar 
    4.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: Reframing the co-occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
    Google Scholar 
    5.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and Health. Proc. Natl. Acad. Sci. USA. 113, 3203–3208 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Grant, E. H. C. et al. Identifying management-relevant research priorities for responding to disease-associated amphibian declines. Glob. Ecol. Conserv. 16, 00441 (2018).
    Google Scholar 
    9.Schindler, D. W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18–29 (2001).Article 

    Google Scholar 
    10.Cumulative Effects in Wildlife Management: Impact Mitigation. https://doi.org/10.1017/CBO9781107415324.004 (CRC Press, 2011). 11.Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    12.Rolland, R. M., Hunt, K. E., Kraus, S. D. & Wasser, S. K. Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. Gen. Comp. Endocrinol. 142, 308–317 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    14.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    15.Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental epigenomics and its applications in marine organisms. in Population Genomics: Marine Organisms (eds. Oleksiak, M. F. & Rajora, O. P.) 325–359. https://doi.org/10.1007/13836_2018_28 (Springer, 2018). 16.Eirin-Lopez, J. M. & Putnam, H. M. Marine environmental epigenetics. Ann. Rev. Mar. Sci. 11, 335–368 (2019).PubMed 
    Article 

    Google Scholar 
    17.Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Matosin, N., Cruceanu, C. & Binder, E. B. Preclinical and clinical evidence of DNA methylation changes in response to trauma and chronic stress. Chronic Stress 1, 247054701771076 (2017).Article 

    Google Scholar 
    21.Radtke, K. M. et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1, e21–e26 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mueller, B. R. & Bale, T. L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13, 1351–1353 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Boersma, G. J. et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437–447 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Turecki, G. & Meaney, M. J. Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biol. Psychiatry 79, 87–96 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sterrenburg, L. et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS ONE 6, 1–14 (2011).Article 
    CAS 

    Google Scholar 
    27.Reeder, D. A. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).Article 

    Google Scholar 
    28.Jeanneteau, F. D. et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc. Natl. Acad. Sci. USA. 109, 1305–1310 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Turner, J. D. & Muller, C. P. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol. 35, 283–292 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Bakusic, J., Schaufeli, W., Claes, S. & Godderis, L. Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 92, 34–44 (2017).PubMed 
    Article 

    Google Scholar 
    32.Center for Whale Research. Population. https://www.whaleresearch.com. Accessed 11 Jan 2021 (2020).33.Fisheries and Oceans Canada. Recovery Strategy for the Northern and Southern Resident Killer Whales (Orcinus orca) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series, Fisheries & Oceans Canada, Ottawa, x + 84 pp.(2018).34.DFO. Population Status Update for the Northern Resident Killer Whale (Orcinus orca) in 2018. DFO Can. Sci. Advis. Sec. Sci. Resp. 2019/025. (2019).35.Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Reports Int. Whal. Comm. 12, 383–405 (1990).
    Google Scholar 
    36.Ford, J. K. B. & Ellis, G. M. Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Mar. Ecol. Prog. Ser. 316, 185–199 (2006).ADS 
    Article 

    Google Scholar 
    37.Chen, I.-H. et al. Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas). PeerJ 4, e1810 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Hoelzel, A. R., Dahlheim, M. E. & Stern, S. J. Low genetic variation among killer whales (Orcinus orca) in the eastern north Pacific and genetic differentiation between foraging specialists. J. Hered. 89, 121–128 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Yao, M., Stenzel-Poore, M. & Denver, R. J. Structural and functional conservation of vertebrate corticotropin- releasing factor genes: Evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148, 2518–2531 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Aguiniga, L. M., Yang, W., Yaggie, R. E., Schaeffer, A. J. & Klumpp, D. J. Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R289–R300 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Lundin, J. I. et al. Pre-oil spill baseline profiling for contaminants in Southern Resident killer whale fecal samples indicates possible exposure to vessel exhaust. Mar. Pollut. Bull. 136, 448–453 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.MacDonald, L. H. Evaluating and managing cumulative effects: Process and constraints. Environ. Manag. 26, 299–315 (2000).CAS 
    Article 

    Google Scholar 
    45.National Academies of Sciences Engineering and Medicine. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals. https://doi.org/10.17226/23479 (National Academies Press, 2017). 46.Barrett-Lennard, L. G., Smith, T. G. & Ellis, G. M. A cetacean biopsy system using lightweight pneumatic darts, and its effect on the behavior of killer whales. Mar. Mammal Sci. 12, 14–27 (1996).Article 

    Google Scholar 
    47.Sambrook, J., Fritsch, E. F. & Maniatis, H. Molecular Cloning: A Laboratory Manual (Cold Springs Harbor Laboratory Press, 1989).
    Google Scholar 
    48.Illumina. 16S Metagenomic Sequencing Library Preparation. Illumina.com 1–28 (2013).49.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.j 17, 10–12 (2011).Article 

    Google Scholar 
    50.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Field measurements of a massive Porites coral at Goolboodi (Orpheus Island), Great Barrier Reef

    The location, diameter, height and circumference of the coral were measured (Table 1, Fig. 2). The Porites was brown to cream in colour and hemispherical in shape (Fig. 2). It was identified as either Porites lutea (Hump or Pore coral) or P. lobata (Lobe coral)14.The primary habitat on the Porites was live coral (70%), followed by sponge, live coral rock and a small amount of macroalgae (Table 2). No recently dead coral, coral rubble or sand was recorded (Table 2). We observed competition between the Porites and other species of coral and invertebrate including encrusting sponge, plating and branching Acropora spp., Montipora, Chlorodesmis, soft coral and zoanthids (Table 2, Figs. 3, 4).Table 2 Reef Health Impact Survey (RHIS) of habitat and species categories on Porites sp.Full size tableFigure 3Detail of the sub-habitats and competitive interactions Porites sp. and boring sponge Cliona viridis (left) and live coral Porites sp. and Montipora sp. (right) along interspecific contact zones.Full size imageFigure 4Detail of Reef Health Impact Survey (RHIS) of Porites.Full size imageThe boring sponge, Cliona viridis, is abundant on the Great Barrier Reef15. It is a common bioeroding species advancing laterally at around 1 cm and to a depth of 1.2 cm per annum15. Abundance of Cliona viridis is often correlated to substrate availability and water energy with the greatest abundance often on the windward side of bommies15. This correlates to our observations as the large proportion of the substrate estimated to cover the bommie (15%) was on the windward side. The sponge’s advances will likely continue to compromise the colony size and health.We recorded marine debris at the base of the Porites. The debris was 2–3 m of rope that appeared to have been wrapped around the base of an adjacent coral. Adjacent to the bommie were three concrete blocks.How big is the Porites coral at Goolboodi compared to other big corals in the GBR, and the world? Potts et al.6 reported a very large, rounded Porites colony, 6.9 m in diameter which is 3.1 m smaller than this study. Lough et al.16 reported coral cores from colonies between 1.6–8.0 m in height with the largest corals of 6.0 m at Havannah, North Molle and Masthead Islands, 7.5 m at Abraham Reef and 8.0 m at Sanctuary Reef. Recognising the limitations of published data, the Porites coral at Goolboodi is the largest diameter coral that has been measured, and the 6th tallest in the GBR. It is unknown if the other corals are still alive or dead.Other comparatively large massive Porites have previously been located throughout the Pacific. These have included multiple bommies measuring more than 10 m4 and one exceptionally large colony observed measuring 17 m × 12 m in American Samoa17. Additionally, large Porites sp. bommies have been observed at Green Island, 30 km east of Taiwan18 as well as an 11 m diameter Porites australiensis at Sesoko Island, Okinawa, Japan19.How old is this massive Porites? In discussions with the Australian Institute of Marine Science (AIMS), there is a robust, linear relationship ( > 80% variance explained) between Porites average linear extension rate and average annual sea surface temperature (SST)20,21 that provides an estimate of colony age from its height. Using average annual SST at 18.5S, 146.5E of 26.12C (from HadiSST data set), the estimated linear extension rate is determined by (2.97 × 26.12) − 65.46 = 1.21 cm/year. Given the colony height of 5.1–5.3 m, this gives an estimated age of 421–438 years. This is well before European exploration and settlement of Australia. AIMS has investigated over 328 colonies of massive Porites corals from 69 reefs along the GBR and has aged them as being from 10–436 years21. AIMS has not investigated this coral (pers. comm Neal Cantin). Based on limitations of published data, the Porites coral at Goolboodi is one of the oldest corals on the GBR.Why is the Porites partially dead on top and living on the side? The proportion of live coral tissue on a colony reflects the cumulative, integrated effect of both beneficial and adverse environmental factors. Substantial portions of coral tissue can die from exposure to sun at low tides or warm water without lethal consequences to the colony as a whole10. Partial mortality of large bommies provides available real estate for opportunistic, fast growing sessile organisms. In this instance, multiple species of tabulate and branching Acropora sp., encrusting Montipora sp. and encrusting sponges are among the benthic organisms to have colonised 30% of the coral bommies’ surface area. Intraspecific competition is also evident from the skeletal barriers created along contact zones22 (Fig. 3). There was no observation of disease or coral bleaching.The Porites is located in a relatively remote, rarely visited and highly protected Marine National Park (green) zone. Its location had not been previously reported and there is no existing database for significant corals in Australia or globally. Cataloguing the location of massive and long-lived corals can have multiple benefits. Scientific benefits include geochemical and isotopic analyses in coral skeletal cores which can help understand century-scale changes in oceanographic events and can be used to verify climate models. Social and economic benefits can include diving tourism, citizen science23 culture and stewardship. Perhaps the Significant Trees Register, which was designed by the National Trust24 to protect and celebrate Australia’s heritage could be considered as a model. There are risks of cataloguing the location of massive corals. It could be damaged by direct and indirect human uses including anchoring, research and pollution.Indigenous languages are an integral part of Indigenous culture, spirituality, and connection to country. We consulted Manbarra Traditional Owners about protocol and an appropriate cultural name for the Porites and they considered: Big (Muga), Home (Wanga), Coral reef (Muugar), Coral (Dhambi), Old (Anki, Gurgu), Old man (Gulula) and Old person (Gurgurbu)25. The recommendation by Manbarra Traditional Owners is that the Porites is named as Muga dhambi (Big coral). The feedback from the process of consultation was very positive with acknowledgement of the respect that the scientists have demonstrated to acknowledge Traditional Owners in this way.The large Porites coral at Goolboodi (Orpheus) Island is unusually rare and resilient. It has survived coral bleaching, invasive species, cyclones, severely low tides and human activities for almost 500 years. In an attempt to contextualise the resilience of these individual Porites we have reviewed major historic disturbances such as coral bleaching which has occurred since at least 1575 and potentially 99 bleaching events in the GBR over the past 400 plus years26. Other indicators such as high-density ‘stress bands’ were recorded from 1877 and are significantly more frequent in the late twentieth and early twenty-first centuries in accordance with rising temperatures from anthropogenic global warming27. In addition there have been an average of 1–2 tropical cyclones per decade (40–80 in total) that have potentially impacted the coral adjacent to Goolboodi Island28,29; 46 tropical cyclones impacted the area between Ingham and Townsville from 1858 to 200830. The cumulative impact of almost 100 bleaching events and up to 80 major cyclones over a period of four centuries, plus declining nearshore water quality contextualise the high resilience of this Porites coral. Looking to the future there is real concern for corals in the GBR due to many impacts including climate change, declining water quality, overfishing and coastal development31,32. This field note provides important geospatial, environmental, and cultural information of a rare coral that can be monitored, appreciated, potentially restored and hopefully inspire future generations to care more for our reefs and culture. More

  • in

    Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean

    1.Irwin AJ, Oliver MJ. Are ocean deserts getting larger? Geophys Res Lett. 2009;36:L18609.Article 

    Google Scholar 
    2.McClain CR, Signorini SR, Christian JR. Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res Part II Topical Stud Oceanogr. 2004;51:281–301.CAS 
    Article 

    Google Scholar 
    3.Signorini SR, Franz BA, McClain CR. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front Mar Sci. 2015;2:1–11.Article 

    Google Scholar 
    4.Polovina JJ, Howell EA, Abecassis M. Ocean’s least productive waters are expanding. Geophys Res Lett. 2008;35:L03618.Article 

    Google Scholar 
    5.Sharma P, Marinov I, Cabre A, Kostadinov T, Singh A. Increasing biomass in the warm oceans: unexpected new insights from SeaWIFS. Geophys Res Lett. 2019;46:3900–10.Article 

    Google Scholar 
    6.Flombaum P, Wang W-L, Primeau FW, Martiny AC. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat Geosci. 2020;13:116–20.CAS 
    Article 

    Google Scholar 
    7.Carr M-E, Friedrichs MAM, Schmeltz M, Noguchi Aita M, Antoine D, Arrigo KR, et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res Part II Topical Stud Oceanogr. 2006;53:741–70.Article 

    Google Scholar 
    8.Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.DeVries T, Primeau F, Deutsch C. The sequestration efficiency of the biological pump. Geophys Res Lett. 2012;39:L13601.Article 
    CAS 

    Google Scholar 
    10.Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim Dyn. 2015;45:1253–80.Article 

    Google Scholar 
    11.Behrenfeld MJ, O’Malley RT, Boss ES, Westberry TK, Graff JR, Halsey KH, et al. Revaluating ocean warming impacts on global phytoplankton. Nat Clim Change. 2015;6:323–30.Article 

    Google Scholar 
    12.Richardson K, Bendtsen J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar Ecol Prog Ser. 2019;620:33–46.CAS 
    Article 

    Google Scholar 
    13.Roshan S, DeVries T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat Commun. 2017;8:1–8.CAS 
    Article 

    Google Scholar 
    14.Marañón E, Holligan PM, Barciela R, González N, Mouriño B, Pazó MJ, et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser. 2001;216:43–56.Article 

    Google Scholar 
    15.Pérez V, Fernández E, Marañón E, Morán XAG, Zubkov MV. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res Part I Oceanographic Res Pap. 2006;53:1616–34.Article 

    Google Scholar 
    16.Teira E, Mouriño B, Marañón E, Pérez V, Pazó MJ, Serret P, et al. Variability of chlorophyll and primary production in the Eastern North Atlantic subtropical gyre: potential factors affecting phytoplankton activity. Deep Sea Res Part I Oceanographic Res Pap. 2005;52:569–88.CAS 
    Article 

    Google Scholar 
    17.Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, et al. Prochlorococcus marinus nov. Gen. Nov. Sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol. 1992;157:297–300.CAS 
    Article 

    Google Scholar 
    18.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Li WK. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.CAS 
    Article 

    Google Scholar 
    21.Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical Northeast Atlantic Ocean. ISME J. 2010;4:1180–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:1–14.Article 
    CAS 

    Google Scholar 
    23.Liu K, Suzuki K, Chen B, Liu H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical Northwest Pacific? Limnol Oceanogr. 2020;66:639–51.Article 
    CAS 

    Google Scholar 
    24.D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, et al. Subseafloor sedimentary life in the South Pacific gyre. PNAS. 2009;106:11651–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 1995;17:1245–71.Article 

    Google Scholar 
    26.Morel A, Gentili B, Claustre H, Babin M, Bricaud A, Ras J, et al. Optical properties of the “clearest” natural waters. Limnol Oceanogr. 2007;52:217–29.CAS 
    Article 

    Google Scholar 
    27.Halm H, Lam P, Ferdelman TG, Lavik G, Dittmar T, LaRoche J, et al. Heterotrophic organisms dominate nitrogen fixation in the south pacific gyre. ISME J. 2012;6:1238–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Raimbault P, Garcia N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences. 2008;5:323–38.CAS 
    Article 

    Google Scholar 
    29.Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, et al. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob Biogeochem Cyc. 2018;32:1028–44.CAS 
    Article 

    Google Scholar 
    30.Reintjes G, Tegetmeyer HE, Bürgisser M, Orlić S, Tews I, Zubkov M, et al. On-site analysis of bacterial communities of the ultraoligotrophic South Pacific gyre. Appl Environ Microbiol. 2019;85:e00184–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zielinski O, Henkel R, Voß D, Ferdelman TG. Physical oceanography during Sonne cruise SO245 (Ultrapac). PANGAEA. 2018. https://doi.org/10.1594/PANGAEA.890394.32.Ferdelman TG, Klockgether G, Downes P, Lavik G. Nutrient data from CTD Nisken bottles from Sonne expedition SO-245 “Ultrapac”. PANGAEA. 2019. https://doi.org/10.1594/PANGAEA.899228.33.Arar EJ, Collins GB. Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence: U.S. Environmental Protection Agency, Washington, DC; 1997. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=309417.34.Welschmeyer N, Naughton S. Improved chlorophyll a analysis: single fluorometric measurement with no acidification. Lake Reserv Manag. 1994;9:123.
    Google Scholar 
    35.Osterholz H, Kilgour D, Storey DS, Lavik G, Ferdelman T, Niggemann J, et al. Accumulation of DOC in the South Pacific subtropical gyre from a molecular perspective. Mar Chem. 2021;231:103955.CAS 
    Article 

    Google Scholar 
    36.Voß D, Henkel R, Wollschläger J, Zielinski O. Hyperspectral underwater light field measured during the cruise SO245 with R/V Sonne. PANGAEA. 2020. https://doi.org/10.1594/PANGAEA.911558.37.Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:1–7.Article 
    CAS 

    Google Scholar 
    38.Marra J. Net and gross productivity: weighing in with 14C. Aquat Microb Ecol. 2009;56:123–31.Article 

    Google Scholar 
    39.Ribeiro CG, Marie D, Santos ALD, Brandini FP, Vaulot D. Estimating microbial populations by flow cytometry: comparison between instruments. Limnol Oceanogr Methods. 2016;14:750–8.Article 

    Google Scholar 
    40.Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, et al. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16 S rRNA-targeted oligonucleotides. Microbiology. 2001;147:1731–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr. 1992;37:1434–46.CAS 
    Article 

    Google Scholar 
    44.Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:AEM00493–19.Article 

    Google Scholar 
    45.Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16 S rRNA gene (v4 and v4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems. 2016;1:e00009–15.PubMed 
    Article 

    Google Scholar 
    46.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Comeau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems. 2017;2:e00127–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DW. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Zhang J, Kobert K, Flouri T, Stamatakis A. Pear: a fast and accurate Illumina paired-end read merger. Bioinformatics. 2013;30:614–20.51.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. Vsearch: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kopylova E, Noé L, Touzet H. Sortmerna: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Mercier C, Boyer F, Bonin A, Coissac E (eds). Sumatra and Sumaclust: fast and exact comparison and clustering of sequences. SeqBio 2013 Workshop 2013: (abstract).54.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: A reference database of the plastidial 16 S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molec Ecol Res. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    57.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;4:D597–604.Article 
    CAS 

    Google Scholar 
    58.Del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 2018;16:e2005849.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Gruber-Vodicka HR, Seah BK, Pruesse E. Phyloflash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. Msystems. 2020;5:e00920.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS. 2016;113:E3365–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Oggerin de Orube M, Fuchs BM. Personal communication: Unpublished shotgun metagenomes collected from in situ pump samples during R/V Sonne expedition SO245. Bremen, Germany. 2021.63.Schlitzer R. Ocean Data View. Bremerhaven, Germany. 2021. https://odv.awi.de.64.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, Austria. 2017. https://www.R-project.org/.65.Wickham H. Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. 2016.66.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package: community ecology package. R package version 2.5–7. 2019. https://CRAN.R-project.org/package=vegan.68.Chaigneau A, Pizarro O. Surface circulation and fronts of the South Pacific Ocean, east of 120°W. Geophys Res Lett. 2005;32:L08605.69.Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16 S rRNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Shi XL, Lepère C, Scanlan DJ, Vaulot D. Plastid 16 s rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLOS ONE. 2011;6:e18979.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Le Gall F, et al. Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a pcr biased towards marine algal plastids. Aquat Micro Ecol. 2006;43:79–93.Article 

    Google Scholar 
    72.Raes EJ, Bodrossy L, Kamp JVD, Bissett A, Ostrowski M, Brown MV, et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. PNAS. 2018;115:E8266–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Campbell L, Liu H, Nolla HA, Vaulot D. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at station ALOHA during the 1991-4 ENSO event. Deep Sea Res Part I Oceanogr Res Pap. 1997;44:167–92.CAS 
    Article 

    Google Scholar 
    74.Viviani DA, Church MJ. Decoupling between bacterial production and primary production over multiple time scales in the North Pacific subtropical gyre. Deep Sea Res Part I Oceanogr Res Pap. 2017;121:132–42.CAS 
    Article 

    Google Scholar 
    75.Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the south east pacific ocean. Limnol Oceanogr. 2016;61:806–24.Article 

    Google Scholar 
    76.Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLOS ONE. 2009;4:e7657.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Kirkham AR, Lepere C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Lepère C, Vaulot D, Scanlan DJ. Photosynthetic picoeukaryote community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on earth. Environ Microbiol. 2009;11:3105–17.PubMed 
    Article 
    CAS 

    Google Scholar 
    79.Bender ML, Jönsson B. Is seasonal net community production in the South Pacific subtropical gyre anomalously low? Geophys Res Lett. 2016;43:9757–63.Article 

    Google Scholar 
    80.Montégut CDB, Madec G, Fischer AS, Lazar A, Iudicone D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans. 2004;109:C12003.Article 

    Google Scholar 
    81.Liu Q, Lu Y. Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific. Adv Atmospher Sci. 2016;33:442–51.Article 

    Google Scholar 
    82.Sato K, Suga T. Structure and modification of the South Pacific eastern subtropical mode water. J Phys Oceanogr. 2009;39:1700–14.Article 

    Google Scholar 
    83.Jung J, Furutani H, Uematsu M. Atmospheric inorganic nitrogen in marine aerosol and precipitation and its deposition to the north and south pacific oceans. J Atmospher Chem. 2011;68:157–81.CAS 
    Article 

    Google Scholar 
    84.Pavia FJ, Anderson RF, Winckler G, Fleisher MQ. Atmospheric dust inputs, iron cycling, and biogeochemical connections in the South Pacific Ocean from thorium isotopes. Glob Biogeochem Cycles. 2020;34:e2020GB006562.CAS 

    Google Scholar 
    85.Bonnet S, Guieu C, Bruyant F, Prášil O, Van Wambeke F, Raimbault P, et al. Nutrient limitation of primary productivity in the Southeast Pacific (Biosope Cruise). Biogeosciences. 2008;5:215–25.CAS 
    Article 

    Google Scholar 
    86.Mahaffey C, Björkman KM, Karl DM. Phytoplankton response to deep seawater nutrient addition in the North Pacific subtropical gyre. Mar Ecol Prog Ser. 2012;460:13–34.CAS 
    Article 

    Google Scholar 
    87.Grob C, Jardillier L, Hartmann M, Ostrowski M, Zubkov MV, Scanlan DJ. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition. Environ Microbiol Rep. 2015;7:211–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Vaulot D, Marie D, Olson RJ, Chisholm SW. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean. Science. 1995;268:1480–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Grob C, Hartmann M, Zubkov MV, Scanlan DJ. Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean. Environ Microbiol. 2011;13:3266–74.PubMed 
    Article 

    Google Scholar 
    90.Berthelot H, Duhamel S, L’Helguen S, Maguer J-F, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651.CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol. 2003;69:1299–304.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 2020;14:1065–73.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Timmermans K, Van der Wagt B, Veldhuis M, Maatman A, De Baar H. Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res. 2005;53:109–20.CAS 
    Article 

    Google Scholar 
    94.Vaulot D, Eikrem W, Viprey M, Moreau H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol Rev. 2008;32:795–820.CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Le Gall F, Rigaut-Jalabert F, Marie D, Garczarek L, Viprey M, Gobet A, et al. Picoplankton diversity in the South-east Pacific Ocean from cultures. Biogeosciences. 2008;5:203–14.Article 

    Google Scholar 
    97.NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. 2018. https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3M/CHL/2018/ Accessed 2019/08/01. More

  • in

    Network structure of resource use and niche overlap within the endophytic microbiome

    1.Borer ET, Seabloom EW, Mitchell CE, Cronin JP. Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos. 2014;123:214–24.Article 

    Google Scholar 
    2.Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci. 2013;110:11911–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type developmental stage and soil nutrient availability. Plant Soil. 2016;405:381–96.CAS 
    Article 

    Google Scholar 
    4.Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.PubMed 
    Article 

    Google Scholar 
    5.Lambers JHR, Harpole WS, Tilman D, Knops J, Reich PB. Mechanisms responsible for the positive diversity–productivity relationship in minnesota grasslands. Ecol Lett. 2004;7:661–8.Article 

    Google Scholar 
    6.Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. Plant community richness mediates inhibitory interactions and resource competition between Streptomyces and fusarium populations in the rhizosphere. Micro Ecol. 2017;74:157–67.Article 

    Google Scholar 
    7.Pan Y, Cassman N, de Hollander M, Mendes LW, Korevaar H, Geerts RH, et al. Impact of long-term n, p, k, and npk fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol. 2014;90:195–205.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Schlatter DC, DavelosBaines AL, Xiao K, Kinkel LL. Resource use of soilborne Streptomyces varies with location phylogeny, and nitrogen amendment. Micro Ecol. 2013;66:961–71.Article 

    Google Scholar 
    9.Firn J, McGree JM, Harvey E, Flores-Moreno H, Schütz M, Buckley YM, et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat Ecol Evol. 2019;3:400–6.PubMed 
    Article 

    Google Scholar 
    10.Anderson TM, Griffith DM, Grace JB, Lind EM, Adler PB, Biederman LA, et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecol. 2018;99:822–31.Article 

    Google Scholar 
    11.Bernstein N, Gorelick J, Zerahia R, Koch S. Impact of n, p, k, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L.). Front Plant Sci. 2019;10:736.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Tangolar S, Tangolar S, Torun AA, Ada M, Göçmez S. Influence of supplementation of vineyard soil with organic substances on nutritional status, yield and quality of ‘black magic’ grape (Vitis vinifera L.) and soil microbiological and biochemical characteristics. OENO One. 2020;54:1143–57.Article 
    CAS 

    Google Scholar 
    13.De Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA. Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Funct Ecol. 2016;30:314–25.Article 

    Google Scholar 
    14.Dietrich R, Ploss K, Heil M. Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant Cell Environ. 2004;27:896–906.CAS 
    Article 

    Google Scholar 
    15.Bryant JP, Chapin III FS, Klein DR. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 1983;40:357–68.16.Kinkel LL, Otto-Hanson LK, Otto-Hansen Z, Johnson M, Spawn S, Song Z, et al. Foliar endophytic microbiome composition and functional capacities vary with soil nutrient inputs. Phytopathol. 2018;108:77.
    Google Scholar 
    17.Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecol. 2019;100:e02758.Article 

    Google Scholar 
    18.Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. N. Phytol. 2015;206:1196–206.Article 

    Google Scholar 
    19.Stulberg E, Fravel D, Proctor LM, Murray DM, LoTempio J, Chrisey L, et al. An assessment of US microbiome research. Nat Microbiol. 2016;1:15015.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Hanson BM, Weinstock GM. The importance of the microbiome in epidemiologic research. Ann Epidemiol. 2016;26:301–5.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bell TH, Hockett KL, Alcalá-Briseño RI, Barbercheck M, Beattie GA, Bruns MA, et al. Manipulating wild and tamed phytobiomes: Challenges and opportunities. Phytobiomes J 2019;3:3–21.Article 

    Google Scholar 
    22.Henning JA, Kinkel L, May G, Lumibao CY, Seabloom EW, Borer ET. Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecol. 2021;102:e03210.Article 

    Google Scholar 
    23.Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst. 2016;47:1–24.Article 

    Google Scholar 
    24.Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:1–10.Article 
    CAS 

    Google Scholar 
    26.Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF, Sanchez A. High-order interactions distort the functional landscape of microbial consortia. PLOS Biol. 2019;17:e3000550.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proc Natl Acad Sci. 2018;115:E11951–E11960.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.O’Keeffe KR. Within-host Microbial Interactions and Plant Parasites: From Pairwise Interactions to the Microbiome. PhD thesis, The University of North Carolina at Chapel Hill, 2019.30.Wemheuer F, Kaiser K, Karlovsky P, Daniel R, Vidal S, Wemheuer B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci Rep. 2017;7:1–13.Article 
    CAS 

    Google Scholar 
    31.Wemheuer B, Thomas T, Wemheuer F. Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorg. 2019;7:37.CAS 
    Article 

    Google Scholar 
    32.Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017;25:217–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Barabási AL Network science. (Cambridge University Press, Cambridge, 2016).
    Google Scholar 
    34.Scott J. Social network analysis. Sociol. 1988;22:109–27.Article 

    Google Scholar 
    35.Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social sciences. Science. 2009;323:892–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Nelson GD, Rae A. An economic geography of the United States: from commutes to megaregions. PLOS ONE. 2016;11:e0166083.Article 
    CAS 

    Google Scholar 
    37.Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, et al. Networks and the epidemiology of infectious disease. Interdiscip Perspectives on Infect Dis. 2011.38.Expert P, Evans TS, Blondel VD, Lambiotte R. Uncovering space-independent communities in spatial networks. Proc Natl Acad Sci. 2011;108:7663–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Röttjers L, Faust K. From hairballs to hypotheses—biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Naqvi A, Rangwala H, Keshavarzian A, Gillevet P. Network-based modeling of the human gut microbiome. Chem Biodivers. 2010;7:1040–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Sci. 2015;350:663–6.CAS 
    Article 

    Google Scholar 
    42.Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener BB, Kinkel LL, et al. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathol. 2016;106:1083–96.CAS 
    Article 

    Google Scholar 
    43.Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL. Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Mol Ecol. 2014;23:1571–83.PubMed 
    Article 

    Google Scholar 
    44.van der Heijden MG, Hartmann M. Networking in the plant microbiome. PLOS Biol. 2016;14:e1002378.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Lau MK, Borrett SR, Baiser B, Gotelli NJ, Ellison AM. Ecological network metrics: opportunities for synthesis. Ecosphere. 2017;8:e01900.Article 

    Google Scholar 
    46.Billick I, Case TJ. Higher order interactions in ecological communities: what are they and how can they be detected? Ecol. 1994;75:1529–43.Article 

    Google Scholar 
    47.Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13:2647–55.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL. Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PLOS ONE. 2013;8:e81064.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol Evol. 2014;5:65–73.Article 

    Google Scholar 
    50.Borer ET, Grace JB, Harpole WS, MacDougall AS, Seabloom EW. A decade of insights into grassland ecosystem responses to global environmental change. Nat Ecol Evol. 2017;1:1–7.Article 

    Google Scholar 
    51.Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. Plant host and community diversity impact the dynamics of resource use by soil Streptomyces. Phytopathol. 2014;104:38.
    Google Scholar 
    52.LeBlanc N, Essarioui A, Kinkel LL, Kistler HC. Fusarium community structure and carbon metabolism phenotypes respond to grassland plant community richness and plant host. Phytopathol. 2014;104:67.Article 

    Google Scholar 
    53.Essarioui A, Kistler HC, Kinkel LL. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities. Plant Soil. 2016;409:329–43.CAS 
    Article 

    Google Scholar 
    54.Essarioui A, LeBlanc N, Otto-Hanson L, Schlatter DC, Kistler HC, Kinkel LL. Inhibitory and nutrient use phenotypes among coexisting fusarium and Streptomyces populations suggest local coevolutionary interactions in soil. Environ Microbiol. 2020;22:976–85.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Micro Ecol. 2009;57:413–20.Article 

    Google Scholar 
    56.Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 2013;8:249–56.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E 2006;74:016110.Article 
    CAS 

    Google Scholar 
    58.Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nat. 1998;393:440–2.CAS 
    Article 

    Google Scholar 
    59.Allesina S, Levine JM. A competitive network theory of species diversity. Proc Natl Acad Sci. 2011;108:5638–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Maynard DS, Bradford MA, Lindner DL, van Diepen LT, Frey SD, Glaeser JA, et al. Diversity begets diversity in competition for space. Nat Ecol Evol. 2017;1:1–8.Article 

    Google Scholar 
    61.Maynard DS, Crowther TW, Bradford MA. Competitive network determines the direction of the diversity–function relationship. Proc Natl Acad Sci. 2017;114:11464–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Gallien L, Zimmermann NE, Levine JM, Adler PB. The effects of intransitive competition on coexistence. Ecol Lett. 2017;20:791–800.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Schlatter DC, Song Z, Vaz-Jauri P, Kinkel LL. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLOS ONE. 2019;14:e0223779.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Milo R. Network motifs: simple building blocks of complex networks. Sci. 2002;298:824–7.CAS 
    Article 

    Google Scholar 
    65.Case TJ, Bender EA. Testing for higher order interactions. Am Nat. 1981;118:920–9.Article 

    Google Scholar 
    66.Levine JM, Bascompte J, Adler PB, Allesina S. Beyond pairwise mechanisms of species coexistence in complex communities. Nat. 2017;546:56–64.CAS 
    Article 

    Google Scholar 
    67.Mayfield MM, Stouffer DB. Higher-order interactions capture unexplained complexity in diverse communities. Nat Ecol Evol. 2017;1:0062.Article 

    Google Scholar 
    68.Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol. 2017;1:0109.Article 

    Google Scholar 
    69.Bender EA, Canfield E. The asymptotic number of labeled graphs with given degree sequences. J Comb Theory Ser A 1978;24:296–307.Article 

    Google Scholar 
    70.Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103:8577–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Guo X, Boedicker JQ. The contribution of high-order metabolic interactions to the global activity of a four-species microbial community. PLOS Comput Biol. 2016;12:e1005079.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Borrelli JJ, Allesina S, Amarasekare P, Arditi R, Chase I, Damuth J, et al. Selection on stability across ecological scales. Trends Ecol Evol. 2015;30:417–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Davis GH, Crofoot MC, Farine DR. Estimating the robustness and uncertainty of animal social networks using different observational methods. Anim Behav. 2018;141:29–44.Article 

    Google Scholar 
    74.Gilbertson ML, White LA, Craft ME. Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife. Methods Ecol Evol. 2020;12:76–87.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Grilli J, Barabás G, Michalska-Smith MJ, Allesina S. Higher-order interactions stabilize dynamics in competitive network models. Nat. 2017;548:210–3.CAS 
    Article 

    Google Scholar 
    76.Letten AD, Stouffer DB. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol Lett. 2019;22:423–36.PubMed 
    Article 

    Google Scholar 
    77.Dormann CF, Roxburgh SH. Experimental evidence rejects pairwise modelling approach to coexistence in plant communities. Proc R Soc B Biol Sci. 2005;272:1279–85.Article 

    Google Scholar 
    78.Staniczenko PP, Kopp JC, Allesina S. The ghost of nestedness in ecological networks. Nat Commun. 2013;4:1–6.Article 
    CAS 

    Google Scholar 
    79.Großkopf T, Soyer OS. Synthetic microbial communities. Curr Opin Microbiol. 2014;18:72–77.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    80.Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
    Google Scholar  More

  • in

    Predator cue-induced plasticity of morphology and behavior in planthoppers facilitate the survival from predation

    To defend against predators, insects often modify their morphology, flexibly, to enhance survival and reproductive advantages. Here, we report that predation risks from either isolated predator or predator odor cues, induce a higher proportion of nymphs to developed into long-winged females among the parent generation, as well as among F1 generation offspring. Surprisingly, these previously threatened long-winged adults survived better when attacked by a predator owing to the enhanced agility level gained from risk experience. The long wing, and increased agility level, provide adaptive benefits for SBPHs to escape from predation and so are able to go on to reproduce.SBPHs responded more strongly to the caged predators (visual + odor risk cues) and predator odor cues, than just the visual cue of the predator. Different risk cues can elicit different levels of responses in prey33,34,35,36. For example, in the case of the Colorado potato beetle, volatile odor cues from the predator stronger reduced the beetle feeding on plants than predator visual and tactile cues35. But a visual cue has been shown to be crucial for insect pollinators detecting and avoiding flowers with predators37. Insect herbivores frequently communicate via chemical odors33,38. Exploiting the odor cue to perceive the presence of predators should have advantages, because the odor cue can be sensed from a long distance and penetrate the blocking effect of foliage or canopy structure39, enabling the prior detection of risks and the preparation of antipredation behaviors.In densely planted rice paddies, the active foraging behavior of rove beetle may serve as a selective pressure favouring the development in SBPHs of a chemical instead of visual pathway to detect the approach of a rove beetle. However, in the F1 generation, the influence of a predator odor cue on the proportion of winged forms was weaker than that of caged predators, indicating the combined effects of odor and visual cues might be stronger than only an odor cue, suggesting that visual cues cannot be ignored. In our experiments, sealed predator cadavers may have weakened the visual cue of the rove beetles, because the lack of motion did not fully represent the normal visual cue.SBPHs frequently exhibit wing plasticity in response to population density and food quality28,29. When nymph density is higher, or food has deteriorated, a higher proportion of macropters will arise28,29. The development of the winged form is thought to be a strategy for SBPHs to emigrate from inhospitable environments. However, we assumed, predation risks could also induce the occurrence of the winged form, because long wings might enable SBPHs to escape from predation. As expected, the results presented here show that a higher proportion of long-winged females and their offspring arose when nymphs or adults were previously exposed to predation risk, demonstrating that SBPHs can express morphologically plastic defenses in response to prior predation risk. Additionally, the higher proportion of wing forms was not only due to the increasing number of winged females (see Fig. 1, the number of winged females in “caged rove beetle” treatment was lower), but also the increasing proportion of winged females among female groups (the decreasing numbers and proportions of wingless females, Fig. 1). To date, similar patterns have only been shown in pea aphids, in which when predation risk (foot prints from lady beetles) is higher during the parent generation, a higher proportion of winged morphs arise in the offspring40,41. In our experiments, we tested the risk effects passing from nymphs to adults and from parents to their offspring with combined risk cues, an odor cue or a visual cue, which better reveals the capacity for flexible defense strategies within SBPHs and the nature of predation risks in the perpetual ‘arms race’ against predation. This is the first example of how insects can express both within- generational and transgenerational morphological plasticity as a defense strategy in response to prior predator threat, and we suggest that this phenomenon is likely to occur more widely.However, SBPHs do not only face a single lethal pressure from their environment as we discussed above. Nymph density, food quality, even the temperatures or photoperiods may play or interplay roles in the induction of wing plasticity in SBPHs28,29. In these situations, the responses of SBPHs may differ from present results, or opposite results can occur. As an example, the growth rates of snails vary depending on snail densities, food supply and the strength of predation risks. Growth rates were higher when snails were reared on high nutrients and in low densities, but decreased steeply as the predation risk increased. Conversely, the growth rate was lower at high densities and with high predation risk, but increased as nutrient availability increased42. As for SBPHs, the proportion of winged adults may be higher if we reared in higher densities combined with high predation risk, or may be lower if the nutrient condition of the rice plants increases (for example, higher fertilizer inputs benefit the development of planthoppers43) and predators are removed. This hypothesis needs to be tested. Further, the rice plant phenotypes (resistant or sensitive phenotypes) are important to the development of planthoppers or leafhoppers44,45,46, and tests of the interactive effects of plant phenotype, plant quality/quantity, nymph density and predation risk on the wing plasticity of SBPHs should provide insights into the evolution of insects within changing environments.Induced transgenerational defense plasticity as shown in SBPHs may be common in many organisms20,47. It allows parents to transfer their risk experience to offspring and promotes their evolutionary fitness20. When SBPH nymphs are exposed to predation risk, they are likely to develop into long-winged females, because it is an advantageous form for them in the current risk environment. However, such predation risk is variable in time and space, and SBPH parents cannot predict when or whether the predators will disappear. Thus, an appropriate strategy to enhance the survival rate of offspring in an unpredictable environment is to continue producing a higher proportion of long-winged forms. Within-generational and transgenerational plasticity of defense should be a successful adaptive defense strategy for SBPHs, given that rove beetle and other groups of predators such as predatory spiders are abundant all around the year in rice paddies.The higher mortality of SBPH nymphs when they experience predation risk, has been broadly addressed before24,48,49. Reduced food intake during risk periods may contribute to this poorer survival outcome, because insects are likely to alter their feeding behavior50,51, or shift from a high-risk host to a safer, but nutritionally inferior, one52, when they detect the presence of predators. However, we did not observe an apparent behavior change in threatened nymphs in our experiments, even those going on to be macropters, compared to the non-threatened ones. For example, changing feeding location, non-feeding related motility, an increase in jump frequency, etc. did not occur in threatened nymphs. Thus, behavior plasticity seems not to be invoked to explain this phenomenon. However, considering the food consumption of sap-sucking SBPHs is difficult to determine, experiments employing electrical penetration graph (EPG) techniques should be conducted to quantify the amounts of sap consumption during risk periods53. This will help to explain whether the higher mortality is due to a change of feeding behavior (less food intake). Furthermore, some obscure internal physiological plasticity may also cause the higher mortality of SBPH nymphs at risk. For example, increased oxidative damage and decreased assimilation efficiency during the risk period may weaken the survival success of SBPH nymphs. Unfortunately, few studies have verified this assumption, although it has been shown that different assimilation efficiencies may arise under predation risk17, or oxidative damage may be induced by predation risk resulting in a slower growth rate54 and decreased escape performance55.SBPHs exhibit sexual differences in both with- and trans- generational morphological plasticity in relation to defense, i.e., threatened nymphs/parents are more likely to develop into long-winged females, due to the different vulnerability of females and males to predation. This predation difference is particularly acute between short-winged females and males, given that the proportion of short-winged females is lower than that seen in control settings (Fig. 1), and we assume the level of vulnerability may depend on their body size and reproductive role. The body sizes of short-winged females are larger than those of long-winged females or males, causing them to be more vulnerable to predation because they are more highly preferred targets for predator. Also, the short-winged female needs to stay and deposit eggs in the bare rice stem, which increases the time window of exposure to predators while, by contrast, long-winged males are slim and are not required to lay eggs, and so should be not be heavily predated. It follows that short-winged females should be more vulnerable to predation than long-winged females or males. Hence, in SHPBs, increasing the proportion of long-wing females in a population creates greater opportunities to migrate to predator-free habitats for reproduction, while at the same time reducing their vulnerability to predation. We hypothesize that the sexual difference in responses should be adaptive, and might be inheritable if predation pressure frequently favors the long-winged forms among populations over multiple generations.Results presented here also show that previously threatened long-winged offspring survived better than previosuly non-threatened ones when attacked by P. fuscipes. Studies suggest prey-altered morphology in response to predation risks should confer a survival advantage (fitness gained), i.e., a better-developed defensive structure13,24, or refuge in having a larger size that increase survival success57. However, wings themselves are without protective functions for SBPHs, as seen in pea aphids41. Thus, we setup behavioral experiments to reveal how threatened long-winged adults may increase their survival when attacked by a predator. Results show threatened long- winged offspring (but not parents) are more active, and respond more quickly, than unthreatened ones, i.e., a higher number of attacks are needed for P. fuscipes to capture a previously threatened long-winged offspring than one that has not been threatened before. We suggest the increased agility level is not because of the long wing itself, but due to the enhanced muscle strength in the legs of long-winged adults, because in our observation, long-winged adults avoid attack mainly by jumping but not by flight, probably because a jump needs less reaction time than flight.We only observed transgenerational plasticity of induced behavioral defense in SBPHs. This generational difference (within- and trans-generational) in behavioral defense in SBPHs may reflect potential carry-over effects from parents. To our knowledge, the generational difference in defense has rarely been shown in insects, though in pea aphids a fluctuating expression of transgenerational defensive traits (long wing) over generations when predation risk was present or absent has been reported58. We also expect there will be cumulative effects59 accumulated by SBPHs from the parent generation to the F1 generation. However, we are not certain whether these effects exist in our experiments. To determine this, experiments examining defensive traits across multigeneration should be conducted.However, if predation risk increases the number of agile, long-winged SBPH adults, which are of benefit in respect of dispersal, migration, and thus spreading rice viruses, the application of P. fuscipes in biological control appears ultimately to weaken the control effectiveness. Also, a study with field experiments found that predatory ladybugs increase the number of dispersed aphid nymphs, especially in plants with lower resistance. However, surprising results show that the higher number of dispersed aphid nymphs will not necessarily translate into population growth because dispersed aphids are weak (less food intake) and more easily predated by predators60. Thus, the benefits of anti-predator defense in aphids will, over time, translate into negative developmental costs that suppress the aphid population. As for SBPHs, threatened long-winged females perform well in dispersal and defense, but worse in development and reproduction. Recent experiments reveal that previously threatened long-winged females have a longevity that is three days shorter, and produces about 60 fewer eggs per female, than non-threatened long-winged females (unpublished data). Consequently, these negative effects would eventually translate into lower population growth rates within SBPHs. Thus, the introduction of the predation risk from P. fuscipes to control SBPHs is workable, since field experiments in controlling western flower thrips and grasshoppers by exposure to predation risk have been successful49,61, and the main purpose of biological control is to suppress the pest population beneath the relevant economic threshold, and reduce plant mass loss without necessarily eliminating the pest altogether.This study advances the importance of predation risk on the induction of flexible anti-predation defenses in insect parents and their offspring, uncovers the mediating mechanisms, shows how this anti-predation defense expresses differently between sexes, and further explores the adaptation significance of these defense traits for insects exposed to unpredictable environments. These findings should prove important for predicting SBPH migration or dispersal, conducting effective pest control, and better understanding prey-predator interactions. However, future work should examine the effects of predation risks from other groups of predators or parasites on the physiological and behavioral plasticity of SBPHs. More

  • in

    Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria

    A. Strain sampling and isolationBradyrhizobium is a commonly occurring genus in soil [21]. Closely related Bradyrhizobium diazoefficiens (previously Bradyrhizobium japonicum) strains were isolated from soil, as previously described [20, 22]. In brief, Bradyrhizobium isolates that formed symbiotic associations with a foundational legume species in the censused region, Acacia acuminata, were isolated from soil sampled along a large region spanning ~300,000 km2 in South West Australia, a globally significant biodiversity hotspot [23]. In total 60 soil samples were collected from twenty sites (3 soil samples per site; Supplementary Fig. S1) and 380 isolates were sequenced (19 isolates per site, 5 or 6 isolates per soil sample, each isolate re-plated from a single colony at least 2 times). Host A. acuminata legume plants were inoculated with field soil in controlled chamber conditions and isolates were cultured on Mannitol Yeast agar plates from root nodules (see [20, 22] for details). A total of 374 strains were included in this study after removing 5 contaminated samples and one sample that was a different Bradyrhizobium species; non- Bradyrhizobium diazoefficiens sample removal was determined from 16S rRNA sequences extracted from draft genome assemblies (Method C) using RNAmmer [24].B. Environmental variation among sampled sitesIn this study, I focus on environmental factors (temperature, rainfall, soil pH and salinity) previously identified to impact either rhizobia growth performance, functional fitness or persistence in soil [25,26,27,28] and where a directionality of rhizobial stress response could be attributed with respect to environmental variation present in the sampled region (i.e. stress occurs at high temperatures, low rainfall, high acidity and high salinity). Each environmental factor was standardised to a mean of 0 and a standard deviation of 1, and pH and rainfall scales were reversed to standardise stress responses directions so that low stress is at low values and high stress is at high values for all factors (Supplementary Fig. S2). Additionally, salinity was transformed using a log transformation (log(x + 0.01) to account for some zeroes) prior to standardisation.C. Isolate sequencing and pangenome annotationIllumina short reads (150 bp paired-end) were obtained and draft genome assemblies were generated using Unicycler from a previous study [29]. Resulting assemblies were of good assembly quality (99.2% of all strains had >95.0% genome completeness score according to BUSCO [30]; Table S1; assembled using reads that contained nominal 0.016 ± 0.00524% non-prokaryotic DNA content across all 374 isolates, according to Kraken classification [31]). Protein coding regions (CDS regions) were identified using Prokka [32] and assembled into a draft pangenome using ROARY [33], which produced a matrix of counts of orthologous gene clusters (i.e. here cluster refers to a set of protein-coding sequences containing all orthologous variants from all the different strains, grouped together and designated as a single putative gene). Gene clusters that occurred in 99% of strains were designated as ‘core genes’ and used to calculate the ‘efficiency of selection’ [34, 35] (measured as dN/dS, Method G.2) and population divergence measured as Fixation Index ‘Fst’, Method H) across each environmental stress factor. The identified gene clusters were then annotated using eggNOG-mapper V2 [36] and the strain by gene cluster matrix was reaggregated using the Seed ortholog ID returned by eggNOG-mapper as the protein identity. Out of the total 2,744,533 CDS regions identified in the full sample of 374 strains, eggNOG-mapper was able to assign 2,612,345 of them to 91,230 unique Seed orthologs. These 91,230 protein coding genes constituted the final protein dataset for subsequent analyses.D. Calculation and statistical analysis of gene richness and pangenome diversity along the stress gradientGene richness was calculated as the total number of unique seed orthologues for each strain (i.e. genome). Any singleton genes that occurred in only a single strain, as well as ‘core’ genes that occurred in every strain (for symmetry, and because these are equally uninformative with respect to variation between strains) were removed, leaving 74,089 genes in this analysis. Gene richness (being count data) was modelled on a negative binomial distribution (glmer.nb function) as a function of each of the four environmental stressors as predictors using the lme4 package in R [37], also accounting for hierarchical structure in the data by including site and soil sample as random effects.To rule out potentially spurious effects of assembly quality (i.e. missed gene annotations due to incomplete draft genomes) on key findings, I confirmed no significant association between gene richness and genome completeness (r = 0.042, p = 0.4224, Fig. S3).Finally, pangenome diversity was calculated as the total number of unique genes that occurred in each soil sample (since multiple strains were isolated from a single soil sample). Pangenome diversity was modelled the same as gene richness, except here soil sample was not included as a random effect.E. Calculation of network and duplication traits for each geneI used the seed orthologue identifier from eggNOG-mapper annotations to query matching genes within StringDB ([38]; https://string-db.org/), which collects information on protein-protein interactions. Out of 91,230 query seed orthologues, 73,126 (~80%) returned a match in STRING. For matching seed orthologue hits, a network was created by connecting any proteins that were annotated as having pairwise interactions in the STRING database using the igraph package in R [39]. Two vertex-based network metrics were calculated for each gene: betweenness centrality, which measures a genes tendency to connect other genes in the gene network, and mean cosine similarity, which is a measure of how much a gene’s links to other genes are similar to other genes.Betweenness centrality was calculated using igraph (functional betweenness). For mean cosine similarity, a pairwise cosine similarity was first calculated between all genes. To do this, the igraph network object was converted into a (naturally sparse yet large) adjacency matrix and the cosSparse function in qlcMatrix in R [40] was used to calculate cosine similarity between all pairs of genes. To obtain an overall cosine similarity trait value for each gene, the average pairwise cosine similarity to all other genes in the network was calculated.Finally, gene duplication level was calculated for each gene as one additional measure of ‘redundancy’, by calculating the average number of gene duplicates found within the same strain. Duplicates were identified as CDS regions with the same Seed orthologue ID.F. Gene distribution modelsTo determine how gene traits predict accessory genome distributions patterns along the stress gradients, I first calculated a model-based metric (hereafter and more specifically a standardised coefficient, ‘z-score’) of the relative tendency of each gene to be found in different soil samples across the four stress gradients (heat, salinity, acidity, and aridity). This was achieved by modelling each gene’s presence or absence in a strain as a function of the four stress gradients, with site and soil sample as a random effect, using a binomial model in lme4 (the structure of the model being the same as the gene richness model, only the response is different). To reduce computational overhead, these models were only run for the set of genes that were used in the gene richness analysis (e.g. after removing singletons and core genes), and which had matching network traits calculated (e.g. they occurred in the STRING database; n = 64,867 genes). Distribution models were run in tandem for each gene using the manyany function in the R package mvabund [41]. Standardised coefficients, or z-scores (coefficient/standard error) indicating the change in the probability of occurrence for each gene across each of the stress gradients were extracted. More negative coefficients correspond to genes that are more likely to be absent in high stress (and vice versa for positive coefficients).To determine how network and duplication traits influence the distribution of genes across the stress gradient, I performed a subsequent linear regression model where the gene’s z-scores was the response and gene traits as predictors. The environmental stress type (i.e. acidity, aridity, heat and salinity) was included as a categorical predictor, and the interaction between stress category and gene function traits were used to infer the influence of gene function traits on gene distributions in a given stress type (see Supplementary Methods S1 for z-score transformation).G. Quantifying molecular signals of natural selection on accessory and core genesTo examine molecular signatures of selection in accessory and core genes, I calculated dN/dS for a subsample of the total pool (n=74,089 genes), which estimates the efficiency of selection [34, 35]. Two major questions relevant to dN/dS that are addressed here require a different gene subsampling approach:(1) Do variable environmental stress responses lead to different dN/dS patterns among accessory genes?Here, I subsampled accessory genes (total accessory gene pool across 374 strains, 74,089) to generate and compare dN/dS among 3 categorical groups, each representing a different level of stress response based on their z-scores (accessory genes that either strongly increase, decrease or have no change in occurrence as stress increases; n = 1000 genes/category; see Supplementary Methods S2 for subsample stratification details).For each gene, sequences were aligned using codon-aware alignment tool, MACSE v2 [42]. dN/dS was estimated by codon within each gene using Genomegamap’s Bayesian model-based approach [43], which is a phylogeny-free method optimised for within bacterial species dN/dS calculation (see Supplementary Methods S3 for dN/dS calculation/summarisation; S9 for xml configuration). The proportion of codons with dN/dS that were credibly less than 1 (purifying selection) and those credibly greater than 1 (positive selection) were analysed, with respect to the genes’ occurrence response to stress. Specifically, I modelled the proportion of codons with dN/dS  1 was overall too low to analyse in this way, so the binary outcome (a gene with any codons with dN/dS  > 1 or not) was modelled using a binomial response model with the response categories as predictors (see Supplementary Methods S4 for details of both models).(2) Does dN/dS among microbial populations vary across environmental stress?Here, I compared the average change in dN/dS in core genes present across all environments at the population level (i.e. all isolates from one soil sample), which is used here to measure the change in the efficiency of selection across each stress gradient. Core genes were used since they occur in all soil samples, allowing a consistent set and sample size of genes to be used in the population-level dN/dS calculation. This contrasts with the previous section, which quantifies gene-level dN/dS on extant accessory genes that intrinsically have variable presence or absence across soil samples. For computational feasibility, 500 core genes were subsampled (total core 1015 genes) and, for each gene, individual strain variants were collated into a single fasta file based on soil sample membership, such that dN/dS could be calculated separately for each gene within each soil sample (i.e. 60 soil samples × 500 genes = 30,000 fasta files). Each fasta file was then aligned in MACSE and dN/dS calculated using the same methodology for accessory genes (Supplementary Method S3). This enabled the average dN/dS in a sample to be associated with soil-sample level environmental stress variables. Specifically, I modelled the mean proportion of codons with dN/dS  1 due to overall rarity of positive selection (average proportion of genes where at least 1 codon with dN/dS  > 1 was ~0.006). This low level of positive selection is expected for core genes which tend to be under strong selective constraint.H. Calculation and analysis of Fixation index (Fst) along stress gradientsUsing the core genome alignment (all SNPs among 1015 core genes) generated previously with ROARY, I computed pairwise environmentally-stratified Fst. Each soil sample (n = 60) was first placed into one of 5 bins based on their distances in total environmental stress space (using all four stress gradients), with the overall goal of generating roughly evenly sized bins such that the environmental similarity of stress was greater within bins than between (see Supplementary Methods S6 and Fig. S4 for clustering algorithm details). Next, fasta alignments were converted to binary SNPs using the adegenet package. Pairwise Fst between all strains (originating from a particular soil sample) within a single bin was calculated using StAMPP in R [44]. For each strain pair, the average of the two stress gradient values was assigned.The relationship between pairwise Fst and the average stress value was evaluated using a linear regression model with each of the four stress values as predictors. Since the analysis uses pairwise data (thus violating standard independence assumptions), the significance of the relationship was determined using a permutation test (see Supplementary Methods S7 for details).I. Chromosomal structure analysis of gene loss patternsTo gain insight into structural variation and test for regional hotspots in gene loss along the chromosome, I mapped each gene’s stress response (i.e. probability of loss or gain indicated by each genes z-score) onto a completed Bradyrhizobium genome (strain ‘36_1’ from the same set of 374 strains (Genbank CP067102.1; [45]). Putative CDS positions on the complete genome were determined using Prokka and annotated with SEED orthologue ID’s using eggNOG-mapper. Matching accessory genes derived from the full set of 374 incomplete draft genomes (n = 74,089) were mapped to positions on the complete genome (6274 matches). The magnitude of gene loss or gain (as measured by their standardised z-scores for each environment from the gene distribution models; see Method F) was then modelled across the genome using a one-dimensional spatial smoothing model. This model was implemented in R INLA [46] (www.r-inla.org), and models a response in a one-dimensional space using a Matern covariance-based random effect. The method uses an integrated nested Laplace approximation to a Bayesian posterior distribution, with a cyclical coordinate system to accommodate circular genomes. The model accounts for spatial non-independence among sites and produces a continuous posterior distribution of average z-score predictions along the entire genome, which was then used to visualise potential ‘hotspots’ of gene loss or gain. The modelling procedure was repeated, instead with gene network traits, such that model predictions of similarity and betweenness could be visualised on the reference chromosome. More