More stories

  • in

    Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies

    1.Spoor, F., Wood, B. A. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Braga, J. et al. Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10, e0127780 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Urciuoli, A. et al. The evolution of the vestibular apparatus in apes and humans. Elife 9, e51261 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ward, D. L. et al. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat. Rec. https://doi.org/10.1002/ar.24601 (2021).Article 

    Google Scholar 
    5.Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Grohé, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: A case study of Musteloidea. J. Anat. 228, 366–383 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Vater, M. & Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Manoussaki, D. et al. The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. U.S.A. 105, 6162–6166 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wannaprasert, T. & Jeffery, N. Variations of mammalian cochlear shape in relation to hearing frequency and skull size. Trop. Nat. Hist. 15, 41–54 (2015).
    Google Scholar 
    11.Beaudet, A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. Am. J. Phys. Anthropol. 170, 439–446 (2019).PubMed 
    Article 

    Google Scholar 
    12.Kendall, D. G. Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    13.Srivastava, A. & Klassen, E. Functional and Shape Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    14.Braga, J. et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Hum. Evol. 130, 21–35 (2019).PubMed 
    Article 

    Google Scholar 
    15.Braga, J. et al. Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci. Rep. 9, 10889 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Grine, F. E. The alpha taxonomy of Australopithecus africanus. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 73–104 (Springer, 2013).Chapter 

    Google Scholar 
    18.Grine, F. E., Delanty, M. M. & Wood, B. A. Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 125–146 (Springer, 2013).Chapter 

    Google Scholar 
    19.Clarke, R. J. Australopithecus from Sterkfontein caves, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 105–123 (Springer, 2013).Chapter 

    Google Scholar 
    20.Wood, B. A. & Boyle, E. K. Hominin taxic diversity: Fact or fantasy?. Yearb. Phys. Anthropol. 159, S37–S78 (2016).Article 

    Google Scholar 
    21.Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2020).PubMed 
    Article 

    Google Scholar 
    22.Rak, Y., Kimbel, W. H., Moggi-Cecchi, J., Lockwood, C. A. & Menter, C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry). South Africa. J. Hum. Evol. 151, 102913 (2021).PubMed 

    Google Scholar 
    23.Moggi-Cecchi, J., Tobias, P. V. & Beynon, A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein South Africa. Am. J. Phys. Anthropol. 106, 425–465 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Curnoe, D. & Tobias, P. V. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. J. Hum. Evol. 50, 36–77 (2006).PubMed 
    Article 

    Google Scholar 
    25.Clarke, R. J. Latest information on Sterkfontein’s Australopithecus skeleton and a new look at Australopithecus. S. Afr. J. Sci. 104, 443–449 (2008).ADS 
    Article 

    Google Scholar 
    26.Braga, J. et al. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa). J. Hum. Evol. 65, 447–456 (2013).PubMed 
    Article 

    Google Scholar 
    27.Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evol. 30, 314–334 (1976).Article 

    Google Scholar 
    28.Bookstein, F. & Mitteroecker, P. Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology. Evol. Biol. 41, 336–350 (2014).Article 

    Google Scholar 
    29.Le Maitre, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article 

    Google Scholar 
    30.Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evol. 66, 2369–2383 (2012).Article 

    Google Scholar 
    31.Quam, R. et al. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 8847–8851 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2020).Article 

    Google Scholar 
    33.Sponheimer, M. & Lee-Thorp, J. A. Biogeochemical evidence for the environments of early Homo in South Africa. In The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 185–194 (Springer, 2009).Chapter 

    Google Scholar 
    34.Ni, G., Elliott, S. J., Ayat, M. & Teal, P. D. Modelling cochlear mechanics. Biomed. Res. Int. 2, 150637 (2014).
    Google Scholar 
    35.Cai, H., Manoussaki, D. & Chadwick, R. Effects of coiling on the micromechanics of the mammalian cochlea. J. R. Soc. Interface 2, 341–348 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Tang, Z. et al. Research on the characteristics of dynamic behavior of basilar membrane in spiral cochlea. J. Vibroengineering 19, 3809–3821 (2017).Article 

    Google Scholar 
    37.Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Quam, R. M. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kojima, S. Comparison of auditory functions in the chimpanzee and human. Folia Primatol. 55, 62–72 (1990).CAS 
    Article 

    Google Scholar 
    40.Machens, C. K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zoloth, S. R. et al. Species-specific perceptual processing of vocal sounds by monkeys. Science 204, 870–873 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205, 581–598 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Broom, R. The Pleistocene anthropoid apes of South Africa. Nature 142, 377–379 (1938).ADS 
    Article 

    Google Scholar 
    44.Coqueugniot, H. et al. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299–302 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Carayon, D., Vaysse, F., Tramini, P., Dumoncel, J. & Esclassan, R. The age-related maturational pattern of the human subarcuate fossa. C. R. Palevol. 14, 139–145 (2015).Article 

    Google Scholar 
    46.Clarke, R.J. The cranium of the Swartkrans hominid SK 847 and its relevance to human origins. Ph.D. Thesis (University of the Witwatersrand,1977).47.Spoor, F. The comparative morphology and phylogeny of the human bony labyrinth. Ph.D. Thesis. (Utrecht University, 1993).48.Boyer, D. M. et al. Algorithms to automatically quantify the geometric similarity of anatomical surface. Proc. Natl. Acad. Sci. U.S.A. 108, 18221–18226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Durrleman, S., Pennec, X., Trouvé, A., Ayache, N. & Braga, J. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Kim, K., Kim, P. T., Koo, J. & Pierrynowski, M. R. Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Top. Sig. Process. 7, 646–654 (2013).ADS 
    Article 

    Google Scholar 
    51.Pietsch, M. et al. Spiral form of the human cochlea results from spatial constraints. Sci. Rep. 7, 7500 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Huang, W., Absil, P.-A., Gallivan, K. & Hand, P. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds (2016). https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html53.Dryden, I.L. & Mardia, K.V. Statistical Shape analysis, with Applications in R. Second Edition (John Wiley and Sons, 2016). R package version 1.2.6. https://cran.r-project.org/web/packages/shapes/index.html54.Kuhn, M. & Vaughan, D. Package ‘yardstick’. Tidy Characterizations of Model Performance. R package version 0.0.7. https://CRAN.R-project.org/package=yardstick (2020).55.Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 410–420 (2007).56.Nowosad, J. & Stepinski., T.F. ,. Spatial association between regionalizations using the information-theoretical V-measure. Int. J. Geogr. Inf. Sci. 32, 1–16 (2018).Article 

    Google Scholar 
    57.Schlager, S. & Morpho, R. Shape analysis in R. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic Press, 2017).Chapter 

    Google Scholar 
    58.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).59.Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: Spurious patterns from between group PCA. Evol. Biol. 46, 303–316 (2019).Article 

    Google Scholar 
    60.Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Pääbo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: A review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Near-daily reconstruction of tropical intertidal limpet life-history using secondary-ion mass spectrometry

    Ecology of Yellowfoot limpetIn the Tropical Pacific, sympatric limpets (Cellana melanostoma, Cellana exarata, Cellana sandwicensis, Cellana talcosa) inhabit the Hawaiian rocky intertidal ecosystem, where they graze on crustose coralline algae (CCA) and epibenthic microorganisms. Distribution ranges from the splash zone (upper-intertidal) to subtidal zone, and across the entire Hawaiian Archipelago26. They are dispersed across the majority of seamounts, atolls, and islands, however, not all species are present in every rocky intertidal locality, which reflects species-specific micro-habitat preferences.The reproduction cycles for each species appears to vary in time and space, and on-going long-term monitoring efforts are in progress to define this critical life-history trait. Previous studies on the yellowfoot limpet C. sandwicensis, reveal that reproduction is highly synchronized from December to March27,29. Gametogenesis also occurs from June to August, however, the level synchronicity and intensity of this second spawn period are inconsistent.These limpets are gonochoristic and considered to be sequential hermaphrodites44. The sex ratio is near 1:1(M:F) during spawning season, however, we have directly observed populations to maintain disproportionate sex ratios.Development of this broad-cast spawning limpet has been described from egg to post-larvae, where settlement occurs in less than 4 days post-fertilization29. This short larval duration ensures recruitment to the same localized intertidal environment, and reduces likelihood of hybridization between sympatric species with similar life-histories26.For wild limpets, growth rates shift through ontogeny—average monthly growth decreasing from 4–5 mm shell length (SL) as juveniles to 2–3 mm SL as adults27. Limpets also exhibit seasonal growth patterns—influenced by temperature and feeding28,37. Currently, growth rates of large individuals ( >50 mm SL) and species longevity are absent in the literature.Regional climate and coastal oceanographyKa’alawai is located on the south-facing shoreline of Oahu Island, Hawai’i (21°15’20.7“N 157°47’30.8“W). This area, defined as a rocky intertidal zone, is primarily comprised of basalt outcrops, boulders and benches, and supports a diverse community of epibenthic flora and fauna. The area is relatively easy to access by foot, and has been continuously exposed to various anthropogenic factors, which includes development, urban run-off, and subsistence fishing.The microclimate of the region is characterized by mild, wet winters (January to March) and dry, hot summers (July to September). The mean daily atmospheric temperature range and mean daily sea-surface temperature range are 18.44–31.38 °C and 22.67–30.18 °C, respectively. The annual precipitation is low relative to windward sides of the island, with maximum rainfall of 6.35 cm (data sources: US climate station USC00519397: Waikiki 717.2; PacIOOS Nearshore Sensor 04 (NS04): Waikiki Aquarium). Although freshwater input from precipitation along this coastline is considered to be marginal, the mixing of submarine groundwater discharge generates a unique geochemical profile for surface seawater at Ka’alawai. In particular, the mean surface salinity for this study site has been reported to be 25.4 ‰, which reflects this highly localized land-sea interaction45.The coastal oceanography of this region is predominantly influenced by wave, wind, and tidal forces. The south-shore region experiences a mixed tidal cycle—having both diurnal and semi-diurnal sinusoidal constituents per lunar day—with a tidal range of 58 cm and 91 cm during neap tide and spring tide, respectively; The trade winds from north-easterly direction (between 22.5°–67.5°) account for ~63% of the year with mean annual intensity around 5 m/s;46 and South swells with wave amplitudes of ~3 m are generated by storms in the Tasmanian Sea during Northern Hemisphere Summer47,48.Modern and historical specimensOn June 28th of 2018, live Yellowfoot limpet (Cellana sandwicensis) specimens CW1 and CW2 were collected from the rocky intertidal zone at Ka’alawai, Oahu, Hawai’i (Fig. 7). The animals were immediately sacrificed/dissected using scalpel blade, and measured for shell dimensions using a caliper. Limpets were weighed to determine gonadosomatic index, and gonads were preserved for histological examination. Shells were rinsed in an ultrasonic bath and air-dried.Fig. 7: Study site map.Hawaiian limpet specimens (Cellana sandwicensis) were collected along the rocky intertidal shoreline of Ka’alawai (Oahu, Hawaii). Instrumental sea-surface temperatures were measured in-situ by PacIOOS Nearshore Sensor 04 (NS04) at the Waikiki Aquarium.Full size imageA historical specimen BPBM (identification number 250851-200492) was loaned from the Bernice Pauahi Bishop Museum Malacology Department Collection. This specimen’s geographical and ecological origin is unknown, but was identified as C. sandwicensis by its characteristic shell morphology49. This specimen was selected for its large size to estimate life-expectancy of this limpet species, as well as to evaluate this method for paleoclimatology studies.Permission was not required to obtain specimens used in this study, and limpets were collected at a size exceeds the legal minimum shell length of 31.8 mm (Hawaii State Law is enforced by Department of Land and Natural Resources). Ethical approval was not required to conduct analysis.Characterization of shell microstructureShell microstructure was identified before isotopic analysis could be attempted. Each shell was cross-sectioned from anterior to posterior direction using a low speed saw (Isomet 1000, Buehler) equipped with a 0.5 mm diamond coated blade. Parallel cuts were made at the apex or maximal growth-axis to obtain two replicate 1.3 mm thick-sections per specimen. The first replicate thick-sections, prepared for micro-sampling, were further cut into More

  • in

    Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning

    1.Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73. https://doi.org/10.1038/nature04514.CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Stocker TF, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2013.3.Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7. https://doi.org/10.1126/science.1097396.CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Trumbore SE. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA. 1997;94:8284–91. https://doi.org/10.1073/pnas.94.16.8284.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7–20. https://doi.org/10.1023/A:1006247623877.CAS 
    Article 

    Google Scholar 
    6.Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90. https://doi.org/10.1038/nrmicro2439.CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541 https://doi.org/10.1038/ncomms10541.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Liu Y-R, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41. https://doi.org/10.1016/j.soilbio.2017.12.003.9.McGuire KL, Treseder KK. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol Biochem. 2010;42:529–35. https://doi.org/10.1016/j.soilbio.2009.11.016.10.Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature. 2006;439:711–4. https://doi.org/10.1038/nature04555.CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Clim Change. 2013;3:909–12. https://doi.org/10.1038/nclimate1951.12.Delgado‐Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr. 2016;86:373–90.Article 

    Google Scholar 
    13.Maaroufi NI, Long JR de. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front For Glob Change. 2020;3. https://doi.org/10.3389/ffgc.2020.00016.14.Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol. 2019;9:12113–27. https://doi.org/10.1002/ece3.5665.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Durán J, Delgado-Baquerizo M. Vegetation structure determines the spatial variability of soil biodiversity across biomes. Sci Rep. 2020;10:21500. https://doi.org/10.1038/s41598-020-78483-z.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Beugnon R, et al. Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration (in press).17.Pei Z, Eichenberg D, Bruelheide H, Kröber W, Kühn P, Li Y, et al. Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biol Biochem. 2016;96:180–90. https://doi.org/10.1016/j.soilbio.2016.02.004.18.Xu S, Eisenhauer N, Ferlian O, Zhang J, Zhou G, Lu X. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc Biol Sci. 2020;287:20202063. https://doi.org/10.1098/rspb.2020.2063.CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:6707. https://doi.org/10.1038/ncomms7707.CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. https://doi.org/10.1038/nature10386.CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641. https://doi.org/10.1038/srep44641.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J Plant Ecol. 2017;10:28–35. https://doi.org/10.1093/jpe/rtw115.Article 

    Google Scholar 
    23.Fornara DA, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol. 2008;96:314–22. https://doi.org/10.1111/j.1365-2745.2007.01345.x.CAS 
    Article 

    Google Scholar 
    24.Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332. https://doi.org/10.1038/s41467-019-09258-y.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem. 2010;42:1558–65. https://doi.org/10.1016/j.soilbio.2010.05.030.CAS 
    Article 

    Google Scholar 
    26.Rousk J, Brookes PC, Bååth E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem. 2010;42:926–34. https://doi.org/10.1016/j.soilbio.2010.02.009.27.Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. https://doi.org/10.1007/s10533-011-9658-z.CAS 
    Article 

    Google Scholar 
    28.Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE. et al. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19:1176–88. https://doi.org/10.1111/1462-2920.13642.CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Fanin N, Barantal S, Fromin N, Schimann H, Schevin P, Hättenschwiler S. Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS ONE. 2012;7:e49990. https://doi.org/10.1371/journal.pone.0049990.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7. https://doi.org/10.1126/science.aaf4507.CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155:103647. https://doi.org/10.1016/j.apsoil.2020.103647.Article 

    Google Scholar 
    32.Bao Y, Guo Z, Chen R, Wu M, Li Z, Lin X. et al. Functional community composition has less environmental variability than taxonomic composition in straw-degrading bacteria. Biol Fertil Soils. 2020;56:869–74. https://doi.org/10.1007/s00374-020-01455-y.CAS 
    Article 

    Google Scholar 
    33.Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8. https://doi.org/10.1038/s41396-018-0158-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016;10:1527–39. https://doi.org/10.1038/ismej.2015.201.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function—The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Roy S, editors. Biodiversity in Ecosystems—Linking Structure and Function. Rijeka, Croatia, InTech; 2015.36.Chen Q-L, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479. https://doi.org/10.1016/j.scitotenv.2020.139479.CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604. https://doi.org/10.1038/ismej.2016.65.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hale L, Feng W, Yin H, Guo X, Zhou X, Bracho R. et al. Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME J. 2019;13:2901–15. https://doi.org/10.1038/s41396-019-0485-x.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen J, Sinsabaugh RL. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Glob Change Biol. 2021;27:1322–5. https://doi.org/10.1111/gcb.15506.Article 

    Google Scholar 
    40.Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40. https://doi.org/10.1038/ngeo846.41.Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology. 2010;91:485–96. https://doi.org/10.1890/08-2338.1.CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Bonner MT, Shoo LP, Brackin R, Schmidt S. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma. 2018;315:96–103. https://doi.org/10.1016/j.geoderma.2017.11.026.CAS 
    Article 

    Google Scholar 
    43.Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K, Borsodi AK. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung. 2014;61:347–61. https://doi.org/10.1556/AMicr.61.2014.3.8.CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Chodak M, Klimek B, Niklińska M. Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils. 2016;52:1093–104. https://doi.org/10.1007/s00374-016-1144-2.CAS 
    Article 

    Google Scholar 
    45.Lagomarsino A, Knapp BA, Moscatelli MC, De Angelis P, Grego S, Insam H. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments. 2007;7:399–405. https://doi.org/10.1065/jss2007.04.223.46.Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365. https://doi.org/10.1126/science.aav0550.47.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB. et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82. https://doi.org/10.1038/s41564-018-0201-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Malik AA, Martiny J, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9. https://doi.org/10.1038/s41396-019-0510-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun. 2021;12:810. https://doi.org/10.1038/s41467-021-21079-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical C hina. Methods Ecol Evol. 2014;5:74–89. https://doi.org/10.1111/2041-210X.12126.Article 

    Google Scholar 
    51.Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q. et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910–5. https://doi.org/10.1073/pnas.1317065111.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bradstreet RB. Determination of Nitro Nitrogen by Kjeldahl Method. Anal Chem. 1954;26:235–6.CAS 
    Article 

    Google Scholar 
    53.Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods. 1991;14:151–63. https://doi.org/10.1016/0167-7012(91)90018-L.54.Ruess L, Chamberlain PM. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem. 2010;42:1898–910. https://doi.org/10.1016/j.soilbio.2010.07.020.55.Scheu S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem. 1992;24:1113–8. https://doi.org/10.1016/0038-0717(92)90061-2.Article 

    Google Scholar 
    56.Schöps R, Goldmann K, Herz K, Lentendu G, Schöning I, Bruelheide H. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front Microbiol. 2018;9:2711. https://doi.org/10.3389/fmicb.2018.02711.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Nawaz A, et al. DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms. 2019;7. https://doi.org/10.3390/microorganisms7090341.58.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.60.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lahti L, Shetty S, Blake T, Salojarvi J. Microbiome R package. Tools Microbiome Anal R. 2017;1:504.63.Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. Environ Sci Technol. 2017;51:12164–74. https://doi.org/10.1021/acs.est.7b03521.CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62. https://doi.org/10.1007/s11427-018-9364-7.CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69:3593–9. https://doi.org/10.1128/aem.69.6.3593-3599.2003.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Rosseel Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw. 2012;48:1–36.Article 

    Google Scholar 
    67.Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem. 2008;40:1103–13. https://doi.org/10.1016/j.soilbio.2007.12.003.68.Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D. et al. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Front Microbiol. 2016;7:1524. https://doi.org/10.3389/fmicb.2016.01524.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. https://doi.org/10.1016/S0378-1127(99)00294-7.Article 

    Google Scholar 
    70.Moretto AS, Distel RA, Didoné NG. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol. 2001;18:31–7. https://doi.org/10.1016/S0929-1393(01)00151-2.Article 

    Google Scholar 
    71.Kyker-Snowman E, Wieder WR, Frey SD, Grandy AS. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci Model Dev. 2020;13:4413–34. https://doi.org/10.5194/gmd-13-4413-2020.CAS 
    Article 

    Google Scholar 
    72.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36. https://doi.org/10.1038/s43247-020-00031-4.Article 

    Google Scholar 
    73.Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Hector A, et al.. Biotic and abiotic drivers of soil microbial functions across tree diversity experiments. bioRXiv 2020. https://doi.org/10.1101/2020.01.30.927277.74.Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–62. https://doi.org/10.1038/ismej.2015.116.CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–3. https://doi.org/10.1126/science.aat6405.CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE. 2013;8:e62671. https://doi.org/10.1371/journal.pone.0062671.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA. 2013;110:6889–94. https://doi.org/10.1073/pnas.1217382110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM. Modelling microbial adaptation to changing availability of substrates. Water Res. 2004;38:1003–13. https://doi.org/10.1016/j.watres.2003.09.037.CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Hooper DU, BIGNELL DE, BROWN VK, BRUSSARD L, MARK DANGERFIELD J, WALL DH, et al. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience. 2000;50:1049.Article 

    Google Scholar 
    80.Domke GM, Oswalt SN, Walters BF, Morin RS. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci USA. 2020;117:24649–51. https://doi.org/10.1073/pnas.2010840117.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M, Penuelas J. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat Commun. 2020;11:129. https://doi.org/10.1038/s41467-019-13798-8.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Veldkamp E, Schmidt M, Powers JS, Corre MD. Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ. 2020;1:590–605. https://doi.org/10.1038/s43017-020-0091-5.Article 

    Google Scholar 
    83.Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–8. https://doi.org/10.1038/d41586-019-01026-8.CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    National climate and biodiversity strategies are hamstrung by a lack of maps

    1.Khan, M. & Schmidt-Traub, G. Use of Spatial Information in National Climate Strategies. An Analysis of Nationally Determined Contributions (NDCs) (SDSN, 2020); https://resources.unsdsn.org/use-of-spatial-information-in-national-climate-strategies2.Cadena, M. et al. Nature is counting on us: Mapping Progress to Achieve the Aichi Biodiversity Targets. NBSAP Forum https://go.nature.com/3B9vo5Z (2019).3.Díaz, S. et al. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    4.First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf5.Clark, M. A. et al. Science 370, 705–708 (2020).CAS 
    Article 

    Google Scholar 
    6.Soterroni, A. C. et al. Env. Res. Lett. 13, 074021 (2018).Article 

    Google Scholar 
    7.Wallbott, L., Siciliano, G. & Lederer, M. Ecol. Soc. 24, 24 (2019).Article 

    Google Scholar 
    8.Brauman, K. A. et al. Global trends in nature’s contributions to people. Proc. Natl Acad. Sci. USA 117, 32799–32805 (2020).CAS 
    Article 

    Google Scholar 
    9.Jung, M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).10.Sala, E. et al. Nature 592, 397–402 (2021).CAS 
    Article 

    Google Scholar 
    11.Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020); https://go.nature.com/3z6jZls12.Schmidt-Traub, G. et al. Natl Sci. Rev. https://doi.org/gnr8 (2020).13.Schmidt-Traub, G., Adams, J. & Zhu, C. The EU and China must cooperate to green commodity supply chains. China Dialogue https://go.nature.com/3rfOpPN (2020).14.G7 2030 Nature Compact. G7 https://go.nature.com/3ilGLzj (2021). More

  • in

    Study of energetic properties of different tree organs in six Olea europaea L. cultivars

    1.European Commission. COM(2014) A policy framework for climate and energy in the period from 2020 to 2030. 1–18 (2012).2.Miranda, T. et al. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 103, 91–96 (2012).CAS 
    Article 

    Google Scholar 
    3.Paiano, A. & Lagioia, G. Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case. Energy Policy 91, 161–173 (2020).Article 

    Google Scholar 
    4.Mehmood, M. A. et al. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 9, 3–21 (2017).Article 

    Google Scholar 
    5.Italian National Institute of Statistics ISTAT. Cultivations. At http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (2020).6.Barbanera, M. et al. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew. Energy 88, 185–191 (2016).CAS 
    Article 

    Google Scholar 
    7.Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004).CAS 
    Article 

    Google Scholar 
    8.Telmo, C. & Lousada, J. Heating values of wood pellets from different species. Biomass Bioenerg. 35, 2634–2639 (2011).CAS 
    Article 

    Google Scholar 
    9.Zeng, W., Tang, S. & Xiao, Q. Calorific values and ash contents of different parts of Masson pine trees in southern China. J. For. Res. 25, 779–786 (2014).Article 

    Google Scholar 
    10.Yan, P., Xu, L. & He, N. Variation in the calorific values of different plants organs in China. PLoS ONE 13, e0199762 (2018).Article 

    Google Scholar 
    11.FAO. Crops. At http://www.fao.org/faostat/en/#data/QC (2019).12.Gorzynik-Debicka, M. et al. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 19, 686 (2018).Article 

    Google Scholar 
    13.Various authors. Handbook for a sustainable management of the olive groves. At https://olive4climate.eu/wp-content/uploads/Olive-4-Climate-Handbook.pdf (2017).14.Beccali, M., Columba, P., D’Alberti, V. & Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS-based support methodology. Biomass Bioenerg. 33, 79–87 (2009).Article 

    Google Scholar 
    15.Gucci, R. & Cantini, C. Pruning and Training Systems for Modern Olive Growing (Csiro Publishing, Clayton, 2000).Book 

    Google Scholar 
    16.Fernandez, E. R. et al. Evolution and sustainability of the olive production systems. Options Méditerranéennes Séries A Mediterranean Seminars 106, 11–42 (2013).
    Google Scholar 
    17.Di Blasi, C., Tanzi, V. & Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenerg. 12, 321–331 (1997).Article 

    Google Scholar 
    18.Brunori, A. et al. Biomass and volume modeling in Olea europaea L. cv “Leccino”. Trees Struct. Funct. 31, 1859–1874 (2017).Article 

    Google Scholar 
    19.Alves, C. A. et al. Gaseous and speciated particulate emissions from the open burning of wastes from tree pruning. Atmos. Res. 226, 110–121 (2019).CAS 
    Article 

    Google Scholar 
    20.Repullo, M. A., Carbonell, R., Hidalgo, J., Rodríguez-Lizana, A. & Ordóñez, R. Using olive pruning residues to cover soil and improve fertility. Soil Tillage Res. 124, 36–46 (2012).Article 

    Google Scholar 
    21.Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018).22.Nardino, M. et al. Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51, 63–74 (2013).CAS 
    Article 

    Google Scholar 
    23.Romero-García, J. M. et al. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014).Article 

    Google Scholar 
    24.Werther, J., Saenger, M., Hartge, E. U., Ogada, T. & Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 26, 1–27 (2000).CAS 
    Article 

    Google Scholar 
    25.Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenerg. 20, 351–360 (2001).Article 

    Google Scholar 
    26.Motisi, A. et al. Le cultivar di Olivo (Olea europaea L.) siciliane della collezione costituita dal dipartimento di colture arboree di Palermo presso l’azienda ‘Campo Carboj’ dell’Ente di Sviluppo Agricolo della regione Siciliana. Italus Hortus 13, 137–144 (2006).
    Google Scholar 
    27.Caruso, T. & D’Anna, F. Catalogo accessioni di Olivo Pesco Fragolina di bosco. Fondo Europeo agricolo per lo sviluppo rurale: l’Europa investe nelle zone rurali. (Tipografia Paruzzo Caltanissetta, 2015).
    Google Scholar 
    28.Caruso, T., Cartabellotta, D. & Antonio, M. Cultivar Di Olivo Siciliane. Identificazione, Validazione, Caratterizzazione morfologica e Molecolare e Qualità Degli Oli. Contiene manuale per la caratterizzazione primaria di cultivar di olivo siciliane. Palermo, Italy (2007).29.UNI EN ISO 14775 Solid Biofuels – Determination Of Ash Content. 14775 Solid Biofuels – Determination Of Ash Content (2010).30.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ (2020).31.Sirna, A. LCA methodology in two self-consumption wood energy chains. PhD thesis, University of Tuscia, Italy (2012).32.Requejo, A., Feria, M. J., Vargas, F. & Rodríguez, A. Total use of olive tree prunings by means of hydrothermal and combustion processes. BioResources 7, 118–134 (2012).CAS 

    Google Scholar 
    33.Cuevas, M. et al. Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew. Energy 132, 911–920 (2019).Article 

    Google Scholar 
    34.Garcia-Maraver, A., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F. & Zamorano, M. Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 129, 1–7 (2015).CAS 
    Article 

    Google Scholar 
    35.Lama-Muñoz, A. et al. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem. 329, 127153 (2020).Article 

    Google Scholar 
    36.Garcia-Maraver, A., Salvachúa, D., Martínez, M. J., Diaz, L. F. & Zamorano, M. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag. 33, 2245–2249 (2013).CAS 
    Article 

    Google Scholar 
    37.Telmo, C. & Lousada, J. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenerg. 35, 1663–1667 (2011).CAS 
    Article 

    Google Scholar 
    38.Demirbaş, A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77, 1117–1120 (1998).Article 

    Google Scholar 
    39.Demirbaş, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20, 105–111 (2002).Article 

    Google Scholar 
    40.García-Maraver, A., Terron, L. C., Ramos-Ridao, A. & Zamorano, M. Effects of mineral contamination on the ash content of olive tree residual biomass. Biosyst. Eng. 118, 167–173 (2014).Article 

    Google Scholar 
    41.Velázquez-Martí, B., Fernández-González, E., López-Cortés, I. & Salazar-Hernández, D. M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenerg. 35, 3453–3464 (2011).Article 

    Google Scholar 
    42.Spinelli, R. & Picchi, G. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour. Technol. 101, 730–735 (2010).CAS 
    Article 

    Google Scholar 
    43.García Martín, J. F. et al. Energetic valorisation of olive biomass: Olive-tree pruning, olive stones and pomaces. Processes 8, 511 (2020).Article 

    Google Scholar 
    44.Regione Sicilia, Dipartimento dell’Energia. Rapporto Energia 2015 Monitoraggio sull’energia in Sicilia. 1–168. At http://www.catastoenergetico.regione.sicilia.it/D/NEWS/Rapporto%20Energia%202015.pdf (2015). More

  • in

    Areas of global importance for conserving terrestrial biodiversity, carbon and water

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    3.Butchart, S. H. M., Miloslavich, P., Reyers, B. & Subramanian, S. M. in IPBES Global Assessment on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T.) Ch. 3 (IPBES, 2019).4.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/meetings/WG2020-036.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).Article 
    CAS 

    Google Scholar 
    9.Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).CAS 
    Article 

    Google Scholar 
    10.Greve, M., Reyers, B., Mette Lykke, A. & Svenning, J.-C. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nat. Commun. 4, 2975 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).Article 
    CAS 

    Google Scholar 
    14.Allan, J. R. et al. Conservation attention necessary across at least 44% of Earth’s terrestrial area to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2019).15.Fastre, S., Mogg, C., Jung, M. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).16.Rinnan, D. S. & Jetz, W. Terrestrial conservation opportunities and inequities revealed by global multi-scale prioritization. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).17.Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 943–953 (2020).Article 

    Google Scholar 
    18.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McInnes, L. et al. Do global diversity patterns of vertebrates reflect those of monocots? PLoS ONE 8, e56979 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Daru, B. H. et al. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766 (2019).Article 

    Google Scholar 
    22.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).Article 

    Google Scholar 
    25.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (W. W. Norton, 2016).26.Laffoley, D. et al. An introduction to ‘other effective area-based conservation measures’ under Aichi Target 11 of the Convention on Biological Diversity: origin, interpretation and emerging ocean issues. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 130–137 (2017).Article 

    Google Scholar 
    27.IUCN Red List Categories and Criteria Version 3.1 (IUCN, 2012).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1368 (2009).CAS 
    Article 

    Google Scholar 
    30.Strassburg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).Article 

    Google Scholar 
    31.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Woodley, S. et al. A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25, 31–46 (2019).Article 

    Google Scholar 
    33.Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Chauvenet, A. L. M., Kuempel, C. D., McGowan, J., Beger, M. & Possingham, H. P. Methods for calculating Protection Equality for conservation planning. PLoS ONE 12, e0171591 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.World Checklist of Vascular Plants (WCVP, 2020); http://wcvp.science.kew.org/44.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019); www.iucnredlist.org45.Bird Species Distribution Maps of the World Version 2019.1 (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis46.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical informationnetwork to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615 (2016).48.Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).Article 

    Google Scholar 
    49.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    50.Forest Inventory and Analysis National Program (US Forest Service, 2013); www.fia.fs.fed.us/51.Peet, R., Lee, M., Jennings, M. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodivers. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    52.Boyle, B. & Enquist, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. https://doi.org/10.7809/b-e.00086 (2012).53.Wiser, S., Bellingham, P. & Burrows, L. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
    Google Scholar 
    54.DeWalt, S. J., Bourdy, G., ChÁvez de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).Article 

    Google Scholar 
    55.Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2001).
    Google Scholar 
    56.Fegraus, E. Tropical ecology assessment and monitoring network (TEAM Network). Biodivers. Ecol. 4, 287–287 (2012).Article 

    Google Scholar 
    57.Oliveira-Filho, A. T. in Fitossociologia no Brasil—Métodos e Estudos de Caso Vol. 2 (eds. Eisenlohr, P. V. et al.) Ch. 19 (Editora UFV, 2015).58.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    59.Rondinini, C., Stuart, S. & Boitani, L. Habitat suitability models and the shortfall in conservation planning for African vertebrates. Conserv. Biol. 19, 1488–1497 (2005).Article 

    Google Scholar 
    60.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Habitats Classification Scheme Version 3.1 (IUCN, 2012).63.Lesiv, M. et al. Global planted trees extent 2015. Zenodo https://doi.org/10.5281/zenodo.3931930 (2020).64.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    65.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (International Working Group on Taxonomic Databases for Plant Sciences, 2001).67.Santoro, M. GlobBiomass—Global Datasets of Forest Biomass (PANGAEA, 2018); https://doi.org/10.1594/PANGAEA.89471168.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408469.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).Article 

    Google Scholar 
    70.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    71.Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).Article 

    Google Scholar 
    72.Spawn, S. A., Lark, T., & Gibbs, H. New Global Biomass Map for the Year 2010 (American Geophysical Union, 2017).73.Schepaschenko, D. et al. Improved estimates of biomass expansion factors for Russian forests. Forests 9, 312 (2018).Article 

    Google Scholar 
    74.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 5 (IPCC, 2006).75.Hengl, T. & Wheeler, I. Soil organic carbon stock in kg/m2 for 5 standard depth intervals (0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/ZENODO.2536040 (2018).76.Hengl, T. & Nauman, T. Predicted USDA soil orders at 250 m (probabilities) (version v0.1). Zenodo https://doi.org/10.5281/zenodo.2658183 (2019).77.Mulligan, M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 44, 748–769 (2013).Article 

    Google Scholar 
    78.Mulligan, M. in The Impacts of Climate Change on Water Resources in Agriculture (eds Zolin, A. C. & Rodrigues, R. A. R.) 184–204 (CRC, 2014).79.van Soesbergen, A. & Mulligan, M. Potential outcomes of multi-variable climate change on water resources in the Santa Basin, Peru. Int. J. Water Res. Dev. 34, 150–165 (2018).Article 

    Google Scholar 
    80.Van Soesbergen, A. & Mulligan, M. Uncertainty in data for hydrological ecosystem services modelling: potential implications for estimating services and beneficiaries for the CAZ Madagascar. Ecosyst. Serv. 33, 175–186 (2018).Article 

    Google Scholar 
    81.Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation? Biol. Conserv. 143, 439–448 (2010).Article 

    Google Scholar 
    84.Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. N. Y. Acad. Sci. 1322, 61–76 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Eklund, J., Arponen, A., Visconti, P. & Cabeza, M. Governance factors in the identification of global conservation priorities for mammals. Philos. Trans. R. Soc. B 366, 2661–2669 (2011).Article 

    Google Scholar 
    86.McCreless, E., Visconti, P., Carwardine, J., Wilcox, C. & Smith, R. J. Cheap and nasty? The potential perils of using management costs to identify global conservation priorities. PLoS ONE 8, e80893 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Carwardine, J. et al. Cost-effective priorities for global mammal conservation. Proc. Natl Acad. Sci. USA 105, 11446–11450 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Arponen, A., Heikkinen, R., Thomas, C. D. & Moilanen, A. The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conserv. Biol. 19, 2009–2014 (2005).Article 

    Google Scholar 
    90.Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Model. 328, 14–22 (2016).Article 

    Google Scholar 
    91.Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article 

    Google Scholar 
    92.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).93.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. (2020); https://CRAN.R-project.org/package=prioritizr94.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019). More

  • in

    Solutions in microbiome engineering: prioritizing barriers to organism establishment

    1.Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging frontiers in microbiome engineering. Trends Immunol. 2019;40:952–73.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Loffler FE, O’Malley MA, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol. 2019;17:725–41.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Qiu ZG, Egidi E, Liu HW, Kaur S, Singh BK. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv. 2019;37:107371.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Enam F, Mansell TJ. Prebiotics: tools to manipulate the gut microbiome and metabolome. J Ind Microbiol Biotechnol. 2019;46:1445–59.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 2021;39:244–61.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    6.Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1021.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Finkel OM, Castrillo G, Paredes SH, Gonzalez IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 2019;37:140–51.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Kolar CS, Lodge DM. Progress in invasion biology: predicting invaders. Trends Ecol Evol. 2001;16:199–204.PubMed 
    Article 

    Google Scholar 
    10.Cairns J, Heckman JR. Restoration ecology: the state of an emerging field. Annu Rev Environ Resour. 1996;21:167–89.
    Google Scholar 
    11.Wainwright CE, Staples TL, Charles LS, Flanagan TC, Lai HR, Loy X, et al. Links between community ecology theory and ecological restoration are on the rise. J Appl Ecol. 2018;55:570–81.Article 

    Google Scholar 
    12.Mallon CA, Le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Enders M, Hutt MT, Jeschke JM. Drawing a map of invasion biology based on a network of hypotheses. Ecosphere. 2018;9:e02146.Article 

    Google Scholar 
    14.Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.
    Google Scholar 
    15.Wittmann MJ, Metzler D, Gabriel W, Jeschke JM. Decomposing propagule pressure: the effects of propagule size and propagule frequency on invasion success. Oikos 2014;123:441–50.Article 

    Google Scholar 
    16.Hulvey KB, Leger EA, Porensky LM, Roche LM, Veblen KE, Fund A, et al. Restoration islands: a tool for efficiently restoring dryland ecosystems? Restor Ecol. 2017;25:S124–S34.Article 

    Google Scholar 
    17.Funk JL, Hoffacker MK, Matzek V. Summer irrigation, grazing and seed addition differentially influence community composition in an invaded serpentine grassland. Restor Ecol. 2015;23:122–30.Article 

    Google Scholar 
    18.Jones ML, Ramoneda J, Rivett DW, Bell T. Biotic resistance shapes the influence of propagule pressure on invasion success in bacterial communities. Ecology 2017;98:1743–9.PubMed 
    Article 

    Google Scholar 
    19.Albright MBN, Sevanto S, Gallegos Graves LV, Dunbar J. Biotic interactions are more important than propagule pressure in microbial community invasions. Mbio 2020;11:e02089–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vila JCC, Jones ML, Patel M, Bell T, Rosindell J. Uncovering the rules of microbial community invasions. Nat Ecol Evol. 2019;3:1162–71.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Simberloff D. The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst. 2009;40:81–102.Article 

    Google Scholar 
    22.Zhou JZ, Ning DL. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Comeau Y, Greer CW, Samson R. Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation. Appl Microbiol Biotechnol. 1993;38:681–7.Article 
    CAS 

    Google Scholar 
    24.Choudhary S, Schmidt-Dannert C. Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol. 2010;86:1267–79.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    25.Kreitschitz A, Haase E, Gorb SN. The role of mucilage envelope in the endozoochory of selected plant taxa. Sci Nat-Heidelb. 2021;108:2.Article 
    CAS 

    Google Scholar 
    26.Gornish E, Arnold H, Fehmi J. Review of seed pelletizing strategies for arid land restoration. Restor Ecol. 2019;27:1206–11.Article 

    Google Scholar 
    27.Ali M, Oshiki M, Rathnayake L, Ishii S, Satoh H, Okabe S. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Res. 2015;79:147–57.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Gallien L, Mazel F, Lavergne S, Renaud J, Douzet R, Thuiller W. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol Invasions. 2015;17:1407–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Cadotte MW, Campbell SE, Li SP, Sodhi DS, Mandrak NE. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev Plant Biol. 2018;69:661–84.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Fick SE, Day N, Duniway MC, Hoy-Skubik S, Barger NN. Microsite enhancements for soil stabilization and rapid biocrust colonization in degraded drylands. Restor Ecol. 2020;28:S139–S49.Article 

    Google Scholar 
    31.Vasquez E, Sheley R, Svejcar T. Creating invasion resistant soils via nitrogen management. Invas Plant Sci Man. 2008;1:304–14.Article 
    CAS 

    Google Scholar 
    32.Zhao X, Wang W, Blaine A, Kane ST, Zijlstra RT, Ganzle MG. Impact of probiotic Lactobacillus sp. on autochthonous lactobacilli in weaned piglets. J Appl Microbiol. 2019;126:242–54.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    33.Muthukrishnan R, Hansel-Welch N, Larkin DJ. Environmental filtering and competitive exclusion drive biodiversity-invasibility relationships in shallow lake plant communities. J Ecol. 2018;106:2058–70.Article 

    Google Scholar 
    34.Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19:1366–78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Thompson IP, van der Gast CJ, Ciric L, Singer AC. Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol. 2005;7:909–15.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Bell TH, Bell T. Many roads to bacterial generalism. Fems Microbiol Ecol. 2021;97:fiaa240.37.Campieri M, Rizzello F, Venturi A, Poggioli G, Ugolini F, Helwig U, et al. Combination of antibiotic and probiotic treatment is efficacious in prophylaxis of post-operative recurrence of Crohn’s disease: a randomized controlled study vs mesalamine. Gastroenterology 2000;118:A781–A.Article 

    Google Scholar 
    38.Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. Msphere. 2017;2:e00501–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018;557:434–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science. 2016;353:583–6.PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Umu OCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Micro Ecol Health Dis. 2017;28:1348886.
    Google Scholar 
    43.Sriswasdi S, Yang CC, Iwasaki W. Generalist species drive microbial dispersion and evolution. Nat Commun. 2017;8:1162.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc B. 2015;370:20140298.Article 

    Google Scholar 
    45.Shahab RL, Brethauer S, Luterbacher JS, Studer MH. Engineering of ecological niches to create stable artificial consortia for complex biotransformations. Curr Opin Biotechnol. 2020;62:129–36.PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Upton RN, Bach EM, Hofmockel KS. Spatio-temporal microbial community dynamics within soil aggregates. Soil Biol Biochem. 2019;132:58–68.Article 
    CAS 

    Google Scholar 
    48.Bezkorovainy A. Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr. 2001;73:399s–405s.PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Tripathi S, Srivastava P, Devi R, Bhadouria R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: Prasad MNV (ed). Agrochemicals detection, treatment and remediation. (Butterworth-Heinemann, 2020) pp 25-54.50.Dykhuizen DE, Hartl DL. Selection in chemostats. Microbiol Rev. 1983;47:150–68.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Zhao D, Wu SG, Feng WW, Jakovlic I, Tran NT, Xiong F. Adhesion and colonization properties of potentially probiotic Bacillus paralicheniformis strain FA6 isolated from grass carp intestine. Fish Sci. 2020;86:153–61.Article 
    CAS 

    Google Scholar 
    52.Wang XY, Cao ZP, Zhang MM, Meng L, Ming ZZ, Liu JY. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci Adv. 2020;6:eabb1952.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteom. 2020;213:103600.Article 
    CAS 

    Google Scholar 
    54.Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev. 2013;88:15–30.PubMed 
    Article 

    Google Scholar 
    55.Funk JL, Cleland EE, Suding KN, Zavaleta ES. Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol. 2008;23:695–703.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Northfield TD, Laurance SGW, Mayfield MM, Paini DR, Snyder WE, Stouffer DB, et al. Native turncoats and indirect facilitation of species invasions. Proc Biol Sci. 2018;285:20171936.PubMed 
    PubMed Central 

    Google Scholar 
    57.Gagnon K, Rinde E, Bengil EGT, Carugati L, Christianen MJA, Danovaro R, et al. Facilitating foundation species: the potential for plant-bivalve interactions to improve habitat restoration success. J Appl Ecol. 2020;57:1161–79.Article 

    Google Scholar 
    58.Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018;174:1406–23.PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Garcia-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science. 2018;361:eaat2456.PubMed 
    Article 
    CAS 

    Google Scholar 
    60.Maynard DS, Crowther TW, Bradford MA. Competitive network determines the direction of the diversity-function relationship. Proc Natl Acad Sci USA. 2017;114:11464–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Feichtmayer J, Deng L, Griebler C. Antagonistic microbial interactions: contributions and potential applications for controlling pathogens in the aquatic systems. Front Microbiol. 2017;8:2192.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Fuchslin HP, Schneider C, Egli T. In glucose-limited continuous culture the minimum substrate concentration for growth, s(min), is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium. ISME J. 2012;6:777–89.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    63.Beaury EM, Finn JT, Corbin JD, Barr V, Bradley BA. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol Lett. 2020;23:476–82.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.Article 

    Google Scholar 
    65.Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature. 2017;548:407–12.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    66.Perez-Gutierrez RA, Lopez-Ramirez V, Islas A, Alcaraz LD, Hernandez-Gonzalez I, Olivera BCL, et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 2013;7:487–97.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Safferman RS, Morris ME. Evaluation of natural products for algicidal properties. Appl Microbiol. 1962;10:289–92.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Russel J, Roder HL, Madsen JS, Burmolle M, Sorensen SJ. Antagonism correlates with metabolic similarity in diverse bacteria. Proc Natl Acad Sci USA. 2017;114:10684–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Long RA, Rowley DC, Zamora E, Liu JY, Bartlett DH, Azam F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol. 2005;71:8531–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Wardenburg JB. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 2016;17:1281–91.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Lopez-Igual R, Bernal-Bayard J, Rodriguez-Paton A, Ghigo JM, Mazel D. Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol. 2019;37:755–60.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Koskella B. New approaches to characterizing bacteria-phage interactions in microbial communities and microbiomes. Environ Microbiol Rep. 2019;11:15–6.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Soundararajan M, von Bunau R, Oelschlaeger TA. K5 Capsule and lipopolysaccharide are important in resistance to T4 phage attack in probiotic E. coli strain nissle 1917. Front Microbiol. 2019;10:2783.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8.Article 

    Google Scholar 
    75.Marsh P, Wellington EMH. Phage-host interactions in soil. FEMS Microbiol Ecol. 1994;15:99–107.Article 
    CAS 

    Google Scholar 
    76.Balogh B, Jones JB, Iriarte FB, Momol MT. Phage therapy for plant disease control. Curr Pharm Biotechnol. 2010;11:48–57.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    77.Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol. 2012;22:1845–50.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci USA. 2019;116:15979–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Pascual-Garcia A, Bonhoeffer S, Bell T. Metabolically cohesive microbial consortia and ecosystem functioning. Philos Trans R Soc B. 2020;375:20190245.Article 
    CAS 

    Google Scholar 
    80.Martinez-Harms MJ, Bryan BA, Balvanera P, Law EA, Rhodes JR, Possingham HP, et al. Making decisions for managing ecosystem services. Biol Conserv. 2015;184:229–38.Article 

    Google Scholar 
    81.Kildisheva OA, Dixon KW, Silveira FAO, Chapman T, Di Sacco A, Mondoni A, et al. Dormancy and germination: making every seed count in restoration. Restor Ecol. 2020;28:S256–S65.Article 

    Google Scholar 
    82.Maslo B, Handel SN, Pover T. Restoring beaches for Atlantic coast piping plovers (Charadrius melodus): a classification and regression tree analysis of nest-site selection. Restor Ecol. 2011;19:194–203.Article 

    Google Scholar 
    83.Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.PubMed 
    Article 
    CAS 

    Google Scholar 
    84.Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13:2647–55.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, et al. Trophic downgrading of planet Earth. Science. 2011;333:301–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.PubMed 
    Article 

    Google Scholar 
    88.Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract-identification of keystone and foundation taxa. Microbiome. 2015;3:44.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc. 2001;101:229–41.PubMed 
    Article 
    CAS 

    Google Scholar 
    90.Woo SL, Pepe O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Wood-Charlson EM, Anubhav, Auberry D, Blanco H, Borkum MI, Corilo YE, et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat Rev Microbiol. 2020;18:313–4.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Brussow H. Probiotics and prebiotics in clinical tests: an update. F1000Res. 2019;8:1157.93.van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.PubMed 
    Article 
    CAS 

    Google Scholar 
    94.Weingarden AR, Chen C, Bobr A, Yao D, Lu YW, Nelson VM, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol. 2014;306:G310–G9.PubMed 
    Article 
    CAS 

    Google Scholar 
    95.Hutchinson MI, Bell TAS, Gallegos-Graves L, Dunbar J, Albright M. Merging fungal and bacterial community profiles via an internal control. Microb Ecol. 2021; e-pub ahead of print 2021; https://doi.org/10.1007/s00248-020-01638-y.96.Nayfach S, Roux S, Seshadri R. A genomic catalog of Earth’s micobiomes. Nat Biotechnol. 2021;39:499–509. al. ePubMed 
    Article 
    CAS 

    Google Scholar 
    97.Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016;32:180.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    99.Henze M, Gujer W, Mino T, Van Loosdrecht MCM. Activated sludge models ASM1, ASM2, ASM2d and ASM, Vol 121. 2000. IWA Scientific and Technical Report 9, IWA publishing, London.100.Orozco-Mosqueda MD, Rocha-Granados MD, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. 2018;208:25–31.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient

    1.Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science (80-). 2001;294:804–8.CAS 
    Article 

    Google Scholar 
    2.Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Jochum M, Fischer M, Isbell F, Roscher C, van der Plas F, Boch S, et al. The results of biodiversity-ecosystem functioning experiments are realistic. Nat Ecol Evol. 2020;4:1485–94.PubMed 
    Article 

    Google Scholar 
    4.Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett. 2006;9:1146–56.PubMed 
    Article 

    Google Scholar 
    5.Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, et al. The functional role of producer diversity in ecosystems. Am J Bot. 2011;98:572–92.PubMed 
    Article 

    Google Scholar 
    6.Weißbecker C, Heintz-Buschart A, Bruelheide H, Buscot F, Wubet T. Linking soil fungal generality to tree richness in young subtropical Chinese forests. Microorganisms. 2019; https://doi.org/10.3390/microorganisms7110547.7.Prada-Salcedo LD, Wambsganss J, Bauhus J, Buscot F, Goldmann K. Low root functional dispersion enhances functionality of plant growth by influencing bacterial activities in European forest soils. Env Microbiol. 2020; https://doi.org/10.1111/1462-2920.15244.8.Prada-Salcedo LD, Goldmann K, Heintz-Buschart A, Reitz T, Wambsganss J, Bauhus J, et al. Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Mol Ecol. 2021;30:572–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiol Ecol. 2019; https://doi.org/10.1093/femsec/fiz005.10.van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30:418–26.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Smith SE, Read DJ. Mycorrhizal symbiosis. 2010. Academic press.12.Chen W, Koide RT, Eissenstat DM, Field K. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Funct Ecol. 2018;32:858–69.Article 

    Google Scholar 
    13.Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci. 2019; https://doi.org/10.3390/ijms20174199.14.Pena R, Polle A. Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J. 2014;8:321–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.He X-H, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). CRC Crit Rev Plant Sci. 2003;22:531–67.Article 

    Google Scholar 
    16.Aerts R. The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Mycorrhizal Ecol. Springer; 2003. p. 117–33.17.Phillips RP, Brzostek E, Midgley MG. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 2013;199:41–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 2001;413:297–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 2000;148:511–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol. 2016;14:760–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 2020;225:1835–51.PubMed 
    Article 

    Google Scholar 
    22.Heklau H, Schindler N, Buscot F, Eisenhauer N, Ferlian O, Prada Salcedo LD, et al. Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecol Evol. 2021.23.Regvar M, Likar M, Piltaver A, Kugonič N, Smith JE. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil. 2010;330:345–56.CAS 
    Article 

    Google Scholar 
    24.Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D. Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett. 2006;9:1127–35.PubMed 
    Article 

    Google Scholar 
    25.Hooper DU, Bignell DE, Brown VK, Brussard L, Mark Dangerfield J, Wall DH, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks: we assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms co. Bioscience. 2000;50:1049–61.Article 

    Google Scholar 
    26.Montesinos‐Navarro A, Segarra‐Moragues JG, Valiente‐Banuet A, Verdú M. The network structure of plant–arbuscular mycorrhizal fungi. New Phytol. 2012;194:536–47.PubMed 
    Article 

    Google Scholar 
    27.Bahram M, Harend H, Tedersoo L. Network perspectives of ectomycorrhizal associations. Fungal Ecol. 2014;7:70–7.Article 

    Google Scholar 
    28.Querejeta J, Egerton-Warburton LM, Allen MF. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology. 2009;90:649–62.PubMed 
    Article 

    Google Scholar 
    29.Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, et al. The fungal collaboration gradient dominates the root economics space in plants. Sci Adv. 2020;6:eaba3756.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Weißbecker C, Wubet T, Lentendu G, Kühn P, Scholten T, Bruelheide H, et al. Experimental evidence of functional group-dependent effects of tree diversity on soil fungi in subtropical forests. Front Microbiol. 2018;9:2312.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Ferlian O, Cesarz S, Craven D, Hines J, Barry KE, Bruelheide H, et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere. 2018;9:e02226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–63.PubMed 
    Article 

    Google Scholar 
    33.Kolaříková Z, Kohout P, Krüger C, Janoušková M, Mrnka L, Rydlová J. Root-associated fungal communities along a primary succession on a mine spoil: distinct ecological guilds assemble differently. Soil Biol Biochem. 2017;113:143–52.Article 
    CAS 

    Google Scholar 
    34.Dang P, Vu NH, Shen Z, Liu J, Zhao F, Zhu H, et al. Changes in soil fungal communities and vegetation following afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere. 2018;9:e02401.Article 

    Google Scholar 
    35.Kalucka IL, Jagodzinski AM. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review. Dendrobiology. 2016;76:91–104.Article 

    Google Scholar 
    36.Jones MD, Durall DM, Cairney JWG. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003;157:399–422.PubMed 
    Article 

    Google Scholar 
    37.Rog I, Rosenstock NP, Korner C, Klein T. Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol. 2020;29:2321–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Chagnon PL, Bradley RL, Maherali H, Klironomos JN. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013;18:484–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM. Where the wild things are: looking for uncultured Glomeromycota. New Phytol. 2014;204:171–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol. 2009;184:424–37.PubMed 
    Article 
    CAS 

    Google Scholar 
    41.Buscot F. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol. 2015;172:55–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol. 2014;203:233–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, et al. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field‐based tree experiment. Mol Ecol. 2016;25:4032–46.PubMed 
    Article 

    Google Scholar 
    44.Burrows RL, Pfleger FL. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot. 2002;80:120–30.Article 

    Google Scholar 
    45.Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:1–8.
    Google Scholar 
    47.Klironomos JN, McCune J, Hart M, Neville J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett. 2000;3:137–41.Article 

    Google Scholar 
    48.Saks Ü, Davison J, Öpik M, Vasar M, Moora M, Zobel M. Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany. 2013;92:277–85.Article 

    Google Scholar 
    49.Molina R, Horton TR. Mycorrhiza specificity: its role in the development and function of common mycelial networks BT – Mycorrhizal Networks. In: Horton TR, editor. Springer Netherlands, Dordrecht; 2015. p. 1–39.50.van der Linde S, Suz LM, Orme C, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Rasmussen AL, Busby RR, Hoeksema JD. Host preference of ectomycorrhizal fungi in mixed pine–oak woodlands. Can J For Res. 2017;48:153–9.Article 
    CAS 

    Google Scholar 
    52.Soudzilovskaia NA, Vaessen S, van’t Zelfde M, Raes N. Global patterns of mycorrhizal distribution and their environmental drivers. In: Biogeogr. mycorrhizal symbiosis. Springer; 2017. p. 223–35.53.Simard SW, Jones MD, Durall DM. Carbon and nutrient fluxes within and between mycorrhizal plants BT – Mycorrhizal Ecology. In: van der Heijden MGA, Sanders IR, editors. Springer Berlin Heidelberg, Berlin, Heidelberg; 2003. p. 33–74.54.Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil. 1995;170:47–62.CAS 
    Article 

    Google Scholar 
    55.Dickie IA, Koide RT, Fayish AC. Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol. 2001;151:257–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Davison J, Öpik M, Daniell TJ, Moora M, Zobel M. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol. 2011;78:103–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Singavarapu B, Beugnon R, Bruelheide H, Cesarz S, Du J, Eisenhauer N, et al. Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environ Microbiol. 2021.58.Altermann M, Rinklebe J, Merbach I, Körschens M, Langer U, Hofmann B. Chernozem—soil of the year 2005. J Plant Nutr Soil Sci. 2005;168:725–40.CAS 
    Article 

    Google Scholar 
    59.Wang B, Qiu Y-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Vierheilig H, Schweiger P, Brundrett M. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant. 2005;125:393–404.CAS 

    Google Scholar 
    61.Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980; 489–500.62.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protoc. a Guid. to methods Appl. San Diego; 1990. p. 315–22.63.Wahdan SFM, Reitz T, Heintz-Buschart A, Schädler M, Roscher C, Breitkreuz C, et al. Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environ Microbiol. 2021. https://doi.org/10.1111/1462-2920.15492.64.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Weißbecker C, Schnabel B, Heintz-Buschart A. Dadasnake, a Snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology. Gigascience. 2020. https://doi.org/10.1093/gigascience/giaa135.66.Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010;188:223–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. In: Bioinforma. DNA Seq. Anal. Springer; 2009. p. 39–64.68.Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Nilsson RH, Larsson KH, Taylor A, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky1022.71.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.Article 

    Google Scholar 
    72.Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Chytrý M, Tichý L, Holt J, Botta‐Dukát Z. Determination of diagnostic species with statistical fidelity measures. J Veg Sci. 2002;13:79–90.Article 

    Google Scholar  More