Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies
1.Spoor, F., Wood, B. A. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
2.Braga, J. et al. Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10, e0127780 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Urciuoli, A. et al. The evolution of the vestibular apparatus in apes and humans. Elife 9, e51261 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Ward, D. L. et al. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat. Rec. https://doi.org/10.1002/ar.24601 (2021).Article
Google Scholar
5.Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed
PubMed Central
Article
Google Scholar
6.Grohé, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: A case study of Musteloidea. J. Anat. 228, 366–383 (2016).PubMed
Article
PubMed Central
Google Scholar
7.Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
8.Vater, M. & Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2011).PubMed
Article
PubMed Central
Google Scholar
9.Manoussaki, D. et al. The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. U.S.A. 105, 6162–6166 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Wannaprasert, T. & Jeffery, N. Variations of mammalian cochlear shape in relation to hearing frequency and skull size. Trop. Nat. Hist. 15, 41–54 (2015).
Google Scholar
11.Beaudet, A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. Am. J. Phys. Anthropol. 170, 439–446 (2019).PubMed
Article
Google Scholar
12.Kendall, D. G. Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984).MathSciNet
MATH
Article
Google Scholar
13.Srivastava, A. & Klassen, E. Functional and Shape Data Analysis (Springer, 2016).MATH
Book
Google Scholar
14.Braga, J. et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Hum. Evol. 130, 21–35 (2019).PubMed
Article
Google Scholar
15.Braga, J. et al. Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci. Rep. 9, 10889 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011).PubMed
Article
PubMed Central
Google Scholar
17.Grine, F. E. The alpha taxonomy of Australopithecus africanus. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 73–104 (Springer, 2013).Chapter
Google Scholar
18.Grine, F. E., Delanty, M. M. & Wood, B. A. Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 125–146 (Springer, 2013).Chapter
Google Scholar
19.Clarke, R. J. Australopithecus from Sterkfontein caves, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 105–123 (Springer, 2013).Chapter
Google Scholar
20.Wood, B. A. & Boyle, E. K. Hominin taxic diversity: Fact or fantasy?. Yearb. Phys. Anthropol. 159, S37–S78 (2016).Article
Google Scholar
21.Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2020).PubMed
Article
Google Scholar
22.Rak, Y., Kimbel, W. H., Moggi-Cecchi, J., Lockwood, C. A. & Menter, C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry). South Africa. J. Hum. Evol. 151, 102913 (2021).PubMed
Google Scholar
23.Moggi-Cecchi, J., Tobias, P. V. & Beynon, A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein South Africa. Am. J. Phys. Anthropol. 106, 425–465 (1998).CAS
PubMed
Article
Google Scholar
24.Curnoe, D. & Tobias, P. V. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. J. Hum. Evol. 50, 36–77 (2006).PubMed
Article
Google Scholar
25.Clarke, R. J. Latest information on Sterkfontein’s Australopithecus skeleton and a new look at Australopithecus. S. Afr. J. Sci. 104, 443–449 (2008).ADS
Article
Google Scholar
26.Braga, J. et al. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa). J. Hum. Evol. 65, 447–456 (2013).PubMed
Article
Google Scholar
27.Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evol. 30, 314–334 (1976).Article
Google Scholar
28.Bookstein, F. & Mitteroecker, P. Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology. Evol. Biol. 41, 336–350 (2014).Article
Google Scholar
29.Le Maitre, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article
Google Scholar
30.Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evol. 66, 2369–2383 (2012).Article
Google Scholar
31.Quam, R. et al. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 8847–8851 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
32.Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2020).Article
Google Scholar
33.Sponheimer, M. & Lee-Thorp, J. A. Biogeochemical evidence for the environments of early Homo in South Africa. In The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 185–194 (Springer, 2009).Chapter
Google Scholar
34.Ni, G., Elliott, S. J., Ayat, M. & Teal, P. D. Modelling cochlear mechanics. Biomed. Res. Int. 2, 150637 (2014).
Google Scholar
35.Cai, H., Manoussaki, D. & Chadwick, R. Effects of coiling on the micromechanics of the mammalian cochlea. J. R. Soc. Interface 2, 341–348 (2005).PubMed
PubMed Central
Article
Google Scholar
36.Tang, Z. et al. Research on the characteristics of dynamic behavior of basilar membrane in spiral cochlea. J. Vibroengineering 19, 3809–3821 (2017).Article
Google Scholar
37.Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).PubMed
PubMed Central
Article
Google Scholar
38.Quam, R. M. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).ADS
PubMed
PubMed Central
Article
Google Scholar
39.Kojima, S. Comparison of auditory functions in the chimpanzee and human. Folia Primatol. 55, 62–72 (1990).CAS
Article
Google Scholar
40.Machens, C. K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Zoloth, S. R. et al. Species-specific perceptual processing of vocal sounds by monkeys. Science 204, 870–873 (1979).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
42.Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205, 581–598 (1979).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
43.Broom, R. The Pleistocene anthropoid apes of South Africa. Nature 142, 377–379 (1938).ADS
Article
Google Scholar
44.Coqueugniot, H. et al. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299–302 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
45.Carayon, D., Vaysse, F., Tramini, P., Dumoncel, J. & Esclassan, R. The age-related maturational pattern of the human subarcuate fossa. C. R. Palevol. 14, 139–145 (2015).Article
Google Scholar
46.Clarke, R.J. The cranium of the Swartkrans hominid SK 847 and its relevance to human origins. Ph.D. Thesis (University of the Witwatersrand,1977).47.Spoor, F. The comparative morphology and phylogeny of the human bony labyrinth. Ph.D. Thesis. (Utrecht University, 1993).48.Boyer, D. M. et al. Algorithms to automatically quantify the geometric similarity of anatomical surface. Proc. Natl. Acad. Sci. U.S.A. 108, 18221–18226 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
49.Durrleman, S., Pennec, X., Trouvé, A., Ayache, N. & Braga, J. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012).PubMed
Article
PubMed Central
Google Scholar
50.Kim, K., Kim, P. T., Koo, J. & Pierrynowski, M. R. Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Top. Sig. Process. 7, 646–654 (2013).ADS
Article
Google Scholar
51.Pietsch, M. et al. Spiral form of the human cochlea results from spatial constraints. Sci. Rep. 7, 7500 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
52.Huang, W., Absil, P.-A., Gallivan, K. & Hand, P. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds (2016). https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html53.Dryden, I.L. & Mardia, K.V. Statistical Shape analysis, with Applications in R. Second Edition (John Wiley and Sons, 2016). R package version 1.2.6. https://cran.r-project.org/web/packages/shapes/index.html54.Kuhn, M. & Vaughan, D. Package ‘yardstick’. Tidy Characterizations of Model Performance. R package version 0.0.7. https://CRAN.R-project.org/package=yardstick (2020).55.Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 410–420 (2007).56.Nowosad, J. & Stepinski., T.F. ,. Spatial association between regionalizations using the information-theoretical V-measure. Int. J. Geogr. Inf. Sci. 32, 1–16 (2018).Article
Google Scholar
57.Schlager, S. & Morpho, R. Shape analysis in R. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic Press, 2017).Chapter
Google Scholar
58.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).59.Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: Spurious patterns from between group PCA. Evol. Biol. 46, 303–316 (2019).Article
Google Scholar
60.Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Pääbo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).CAS
PubMed
Article
Google Scholar
62.Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
63.Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).PubMed
PubMed Central
Article
Google Scholar
64.Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: A review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).PubMed
PubMed Central
Article
Google Scholar More