Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations
1.Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).ADS
Article
Google Scholar
2.Thompson, R. C., Wilson, B. J., Tobin, M. L., Hill, A. S. & Hawkins, S. J. Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales. J. Exp. Mar. Biol. Ecol. 202, 73–84 (1996).Article
Google Scholar
3.Christie, H., Jørgensen, N. M. & Norderhaug, K. M. Bushy or smooth, high or low; importance of habitat architecture and vertical position for distribution of fauna on kelp. J. Sea Res. 58, 198–208 (2007).ADS
Article
Google Scholar
4.Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article
Google Scholar
5.Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).ADS
Article
Google Scholar
6.Mineur, F. et al. European seaweeds under pressure: Consequences for communities and ecosystem functioning. J. Sea Res. 98, 91–108 (2015).ADS
Article
Google Scholar
7.Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. PNAS 113, 13785–13790 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
8.Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).Article
Google Scholar
9.Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).Article
Google Scholar
10.Piazzi, L. et al. Biodiversity in canopy-forming algae: Structure and spatial variability of the Mediterranean Cystoseira assemblages. Estuar. Coast. Shelf Sci. 207, 132–141 (2018).ADS
Article
Google Scholar
11.Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).Article
Google Scholar
13.Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).ADS
Article
Google Scholar
14.Gubbay, S. et al. European Red List of Habitats. Part 1. Marine habitats. Luxembourg: Publications Office of the European Union (2016).15.Perkol-Finkel, S., Ferrario, F., Nicotera, V. & Airoldi, L. Conservation challenges in urban seascapes: Promoting the growth of threatened species on coastal infrastructures. J. Appl. Ecol. 49, 1457–1466 (2012).Article
Google Scholar
16.Falace, A., Kaleb, S., Fuente, G. D. L., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Gianni, F., Bartolini, F., Airoldi, L. & Mangialajo, L. Reduction of herbivorous fish pressure can facilitate focal algal species forestation on artificial structures. Mar. Environ. Res. 138, 102–109 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Gianni, F. et al. Optimizing canopy-forming algae conservation and restoration with a new herbivorous fish deterrent device. Restor. Ecol. 28, 750–756 (2020).Article
Google Scholar
19.Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: Methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).PubMed
PubMed Central
Article
Google Scholar
20.Fuente, G. D. L., Chiantore, M., Asnaghi, V., Kaleb, S. & Falace, A. First ex situ outplanting of the habitat-forming seaweed Cystoseira amentacea var. stricta from a restoration perspective. PeerJ 7, e7290 (2019).Article
Google Scholar
21.Tamburello, L. et al. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies. PLoS ONE 14, e0224477 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Medrano, A. et al. From marine deserts to algal beds: Treptacantha elegans revegetation to reverse stable degraded ecosystems inside and outside a No-Take marine reserve. Restor. Ecol. 28, 632–644 (2020).Article
Google Scholar
23.Chryssovergis, F. & Panayotidis, P. Évolution des peuplements macrophytobenthiques le long d’un gradient d’eutrophisation. Oceanol. Acta 18, 649–658 (1995).
Google Scholar
24.Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).ADS
CAS
Article
Google Scholar
25.Díez, I., Santolaria, A., Secilla, A. & Gorostiaga, J. M. Recovery stages over long-term monitoring of the intertidal vegetation in the ‘Abra de Bilbao’ area and on the adjacent coast (N. Spain). Eur. J. Phycol. 44, 1–14 (2009).Article
Google Scholar
26.Bringloe, T. T. et al. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39, 281–321 (2020).CAS
Article
Google Scholar
27.Guern, M. Embryologie de quelques espèces du genre Cystoseira Agardh 1821 (FUCALES). Vie et Milieu 649–680 (1962).28.Dudgeon, S., Kübler, J. E., Wright, W. A., Vadas, R. L. & Petraitis, P. S. Natural variability in zygote dispersal of Ascophyllum nodosum at small spatial scales. Funct. Ecol. 15, 595–604 (2001).Article
Google Scholar
29.Mangialajo, L. et al. Zonation patterns and interspecific relationships of fucoids in microtidal environments. J. Exp. Mar. Biol. Ecol. 412, 72–80 (2012).Article
Google Scholar
30.Capdevila, P. et al. Recruitment patterns in the Mediterranean deep-water alga Cystoseira zosteroides. Mar. Biol. 162, 1165–1174 (2015).CAS
Article
Google Scholar
31.Assis, J. et al. A fine-tuned global distribution dataset of marine forests. Sci. Data 7, 119 (2020).PubMed
PubMed Central
Article
Google Scholar
32.Fabbrizzi, E. et al. Modeling macroalgal forest distribution at Mediterranean scale: Present status, drivers of changes and insights for conservation and management. Front. Mar. Sci. 7, 20 (2020).Article
Google Scholar
33.Benedetti-Cecchi, L., Tamburello, L., Maggi, E. & Bulleri, F. Experimental perturbations modify the performance of early warning indicators of regime shift. Curr. Biol. 25, 1867–1872 (2015).CAS
PubMed
Article
Google Scholar
34.Bulleri, F., Benedetti-Cecchi, L., Ceccherelli, G. & Tamburello, L. A few is enough: A low cover of a non-native seaweed reduces the resilience of Mediterranean macroalgal stands to disturbances of varying extent. Biolical Invasions 19, 2291–2305 (2017).Article
Google Scholar
35.Rindi, L., Bello, M. D., Dai, L., Gore, J. & Benedetti-Cecchi, L. Direct observation of increasing recovery length before collapse of a marine benthic ecosystem. Nat. Ecol. Evol. 1, 1–7 (2017).Article
Google Scholar
36.Draisma, S. G. A., Ballesteros, E., Rousseau, F. & Thibaut, T. DNA sequence data demonstrate the polyphyly of the genus Cystoseira and other Sargassaceae genera (Phaeophyceae). J. Phycol. 46, 1329–1345 (2010).Article
Google Scholar
37.Bruno de Sousa, C. et al. Improved phylogeny of brown algae Cystoseira (Fucales) from the Atlantic-Mediterranean region based on mitochondrial sequences. PLoS ONE 14, e0210143 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Jódar-Pérez, A. B., Terradas-Fernández, M., López-Moya, F., Asensio-Berbegal, L. & López-Llorca, L. V. Multidisciplinary analysis of Cystoseira sensu lato (SE Spain) suggest a complex colonization of the Mediterranean. J. Mar. Sci. Eng. 8, 961 (2020).Article
Google Scholar
39.Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. PNAS 101, 8998–9002 (2004).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
40.Reusch, T. B. H. & Hughes, A. R. The emerging role of genetic diversity for ecosystem functioning: Estuarine macrophytes as models. Estuaries and Coasts J ERF 29, 159–164 (2006).Article
Google Scholar
41.Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. PNAS 102, 2826–2831 (2005).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
42.Ehlers, A., Worm, B. & Reusch, T. B. H. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar. Ecol. Prog. Ser. 355, 1–7 (2008).ADS
Article
Google Scholar
43.Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).PubMed
Article
Google Scholar
44.Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002) https://doi.org/10.1017/CBO9780511808999
.Book
Google Scholar
45.Cowen, R., Gawarkiewicz, G., Pineda, J., Thorrold, S. & Werner, F. Population connectivity in marine systems: An overview. Oceanography 20, 14–21 (2007).Article
Google Scholar
46.Mayr, E. Animal Species and Evolution. Animal Species and Evolution (Harvard University Press, 2013).
Google Scholar
47.Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983) https://doi.org/10.1017/CBO9780511623486
.Book
Google Scholar
48.Frankham, R. Conservation genetics. Annu. Rev. Genet. 29, 305–327 (1995).CAS
PubMed
Article
Google Scholar
49.Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).Article
Google Scholar
50.Frankham, R. et al. Genetic Management of Fragmented Animal and Plant Populations (Oxford University Press, 2017).Book
Google Scholar
51.Planes, S., Jones, G. P. & Thorrold, S. R. Larval dispersal connects fish populations in a network of marine protected areas. PNAS https://doi.org/10.1073/pnas.0808007106 (2009).Article
PubMed
PubMed Central
Google Scholar
52.Pineda, J., Hare, J. A. & Sponaugle, S. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).Article
Google Scholar
53.Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Article
Google Scholar
54.Buonomo, R. et al. Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp. Mar. Environ. Res. 138, 119–128 (2018).CAS
PubMed
Article
Google Scholar
55.Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26, 766–780 (2017).PubMed
Article
Google Scholar
56.Bermejo, R. et al. Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. Sci. Rep. 8, 10427 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
57.Engelen, A. H. et al. A population genetics toolbox for the threatened canopy-forming brown seaweeds Cystoseira tamariscifolia and C. amentacea (Fucales, Sargassaceae). J. Appl. Phycol. 29, 627–629 (2017).Article
Google Scholar
58.Thibaut, T. et al. Connectivity of populations of the seaweed Cystoseira amentacea within the Bay of Marseille (Mediterranean Sea): Genetic structure and hydrodynamic connections. crya 37, 233–255 (2016).Article
Google Scholar
59.Guiry, M.D. & Guiry, G.M. AlgaeBase. World-wide electronic publication (National University of Ireland, 2021) http://www.algaebase.org (Accessed 21 Jan 2021).60.Sales, M. & Ballesteros, E. Shallow Cystoseira (Fucales: Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW Mediterranean): Relationships with environmental factors and anthropogenic pressures. Estuar. Coast. Shelf Sci. 84, 476–482 (2009).ADS
CAS
Article
Google Scholar
61.Robvieux, P. et al. First characterization of eight polymorphic microsatellites for Cystoseira amentacea var. stricta (Fucales, Sargassaceae). Conserv. Genet. Resour. 4, 923–925 (2012).Article
Google Scholar
62.Sadogurska, S. S., Neiva, J., Falace, A., Serrão, E. A. & Israel, Á. The genus Cystoseira s.l. (Ochrophyta, Fucales, Sargassaceae) in the Black Sea: Morphological variability and molecular taxonomy of Gongolaria barbata and endemic Ericaria crinita f. bosphorica comb. nov. Phytotaxa 480, 1–21 (2021).Article
Google Scholar
63.Bologa, A. S. & Sava, D. Progressive decline and present trend of Romanian Black Sea macroalgal flora. Cercetari Mar. 36, 31–60 (2006).
Google Scholar
64.Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Mar. Biol. 156, 1223–1231 (2009).Article
Google Scholar
65.Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
67.De Meeûs, T. et al. Deceptive combined effects of short allele dominance and stuttering: An example with Ixodes scapularis, the main vector of Lyme disease in the USA. bioRxiv https://doi.org/10.1101/622373 (2019).Article
Google Scholar
68.De Meeûs, T. Revisiting FIS, FST, Wahlund effects, and null alleles. J. Hered. 109, 446–456 (2018).PubMed
Article
PubMed Central
Google Scholar
69.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed
Article
PubMed Central
Google Scholar
71.Manangwa, O. et al. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania. Mol. Ecol. Resour. 19, 757–772 (2019).PubMed
Article
PubMed Central
Google Scholar
72.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
73.Engel, C. R., Brawley, S. H., Edwards, K. J. & Serrão, E. Isolation and cross-species amplification of microsatellite loci from the fucoid seaweeds Fucus vesiculosus, F. serratus and Ascophyllum nodosum (Heterokontophyta, Fucaceae). Mol. Ecol. Notes 3, 180–182 (2003).CAS
Article
Google Scholar
74.Paulino, C. et al. Characterization of 12 polymorphic microsatellite markers in the sugar kelp Saccharina latissima. J. Appl. Phycol. 28, 3071–3074 (2016).Article
Google Scholar
75.Coleman, M. A., Dolman, G., Kelaher, B. P. & Steinberg, P. D. Characterisation of microsatellite loci in the subtidal habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales). Conserv. Genet. 9, 1015–1017 (2008).CAS
Article
Google Scholar
76.Coleman, M. A. & Brawley, S. H. Are life history characteristics good predictors of genetic diversity and structure? A case study of the intertidal alga Fucus spiralis (heterokontophyta; Phaeophyceae). J. Phycol. 41, 753–762 (2005).Article
Google Scholar
77.Coleman, M. A. & Brawley, S. H. Spatial and temporal variability in dispersal and population genetic structure of a rockpool alga. Mar. Ecol. Prog. Ser. 300, 63–77 (2005).ADS
Article
Google Scholar
78.Engel, C. R., Daguin, C. & Serrão, E. A. Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol. Ecol. 14, 2033–2046 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
79.Medrano, A. et al. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci. Rep. 10, 19219 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
80.Engelen, A. H. et al. Periodicity of propagule expulsion and settlement in the competing native and invasive brown seaweeds, Cystoseira humilis and Sargassum muticum (Phaeophyta). Eur. J. Phycol. 43, 275–282 (2008).Article
Google Scholar
81.Assis, J., Serrão, E. A., Claro, B., Perrin, C. & Pearson, G. A. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol. Ecol. 23, 2797–2810 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
82.Neiva, J. et al. Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS ONE 10, e0131530 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
83.Coleman, M. A. & Kelaher, B. P. Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast. Mar. Ecol. Prog. Ser. 381, 63–70 (2009).ADS
Article
Google Scholar
84.Boissin, E. et al. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Sci. Rep. 10, 21624 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
85.Olsen, J. L. et al. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol. Ecol. 13, 1923–1941 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
86.Peijnenburg, K. T. C. A., Breeuwer, J. A. J., Pierrot-Bults, A. C. & Menken, S. B. J. Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European Seas. Evolution 58, 1472–1487 (2004).PubMed
Article
PubMed Central
Google Scholar
87.Luttikhuizen, P. C., Campos, J., van Bleijswijk, J., Peijnenburg, K. T. C. A. & van der Veer, H. W. Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol. Phylogenet. Evol. 46, 1015–1030 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
88.Wilson, A. B. & Eigenmann Veraguth, I. The impact of Pleistocene glaciation across the range of a widespread European coastal species. Mol. Ecol. 19, 4535–4553 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
89.Riquet, F. et al. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 73, 817–835 (2019).PubMed
Article
PubMed Central
Google Scholar
90.Hewitt, G. M. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol. Evol. 3, 158–167 (1988).CAS
PubMed
Article
PubMed Central
Google Scholar
91.Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.07.015 (2020).Article
PubMed
PubMed Central
Google Scholar
92.McCoy, S. J., Krueger-Hadfield, S. A. & Mieszkowska, N. Evolutionary phycology: Toward a macroalgal species conceptual framework. J. Phycol. 56, 1404–1413 (2020).PubMed
PubMed Central
Article
Google Scholar
93.Neiva, J., Pearson, G. A., Valero, M. & Serrão, E. A. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evol. Biol. 12, 78 (2012).PubMed
PubMed Central
Article
Google Scholar
94.Whitlock, M. C. & McCauley, D. E. Indirect measures of gene flow and migration: FST ≠1/(4 Nm + 1). Heredity 82, 117–125 (1999).PubMed
Article
PubMed Central
Google Scholar
95.Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19, 3038–3051 (2010).PubMed
Article
PubMed Central
Google Scholar
96.Durrant, H. M. S. et al. Implications of macroalgal isolation by distance for networks of marine protected areas. Conserv. Biol. 28, 438–445 (2014).PubMed
Article
PubMed Central
Google Scholar
97.Engelen, A., Olsen, J., Breeman, A. & Stam, W. Genetic differentiation in Sargassum polyceratium (Fucales: Phaeophyceae) around the island of Curaçao (Netherlands Antilles). Mar. Biol. 139, 267–277 (2001).CAS
Article
Google Scholar
98.Billot, C., Engel, C. R., Rousvoal, S., Kloareg, B. & Valero, M. Current patterns, habitat discontinuities and population genetic structure: The case of the kelp Laminaria digitata in the English Channel. Mar. Ecol. Prog. Ser. 253, 111–121 (2003).ADS
Article
Google Scholar
99.Tatarenkov, A., Jönsson, R. B., Kautsky, L. & Johannesson, K. Genetic structure in populations of Fucus vesiculosus (phaeophyceae) over spatial scales from 10 m to 800 km. J. Phycol. 43, 675–685 (2007).CAS
Article
Google Scholar
100.Susini, M.-L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46, 605–611 (2007).Article
Google Scholar
101.Korotenko, K., Bowman, M. & Dietrich, D. High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea. Terrest. Atmos. Oceanic Sci. J. 21, 123–136 (2010).Article
Google Scholar
102.Barale, V., Schiller, C., Tacchi, R. & Marechal, C. Trends and interactions of physical and bio-geo-chemical features in the Adriatic Sea as derived from satellite observations. Sci. Total Environ. 353, 68–81 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
103.Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).Article
Google Scholar
104.Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).CAS
Article
Google Scholar
105.Richard, B., A. & Wilks, A., R. Maps in S. AT&T Bell Laboratories Statistics Research Report [93.2] (1993).106.Richard, B., A. & Wilks, A., R. Constructing a Geographical Database. AT&T Bell Lab-oratories Statistics Research Report [95.2] (1995).107.R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2017).108.Holleley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
109.Peakall, R. & Smouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article
Google Scholar
110.Goudet, J. Fstat (Version 1.2): A computer program to calculate F-Statistics. J. Hered. 86, 485–486 (1995).Article
Google Scholar
111.De Meeûs, T., Guégan, J.-F. & Teriokhin, A. T. MultiTest V.1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinform. 10, 443 (2009).Article
CAS
Google Scholar
112.Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet
MATH
Google Scholar
113.Oosterhout, C. V., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6, 255–256 (2006).Article
Google Scholar
114.Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).Article
Google Scholar
115.El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).PubMed
Article
PubMed Central
Google Scholar
116.Raymond, M. & Rousset, F. GENEPOP (Version 1.2): Population genetics Software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article
Google Scholar
117.Szulkin, M., Bierne, N. & David, P. Heterozygosity-fitness correlations: A time for reappraisal. Evolution 64, 1202–1217 (2010).PubMed
PubMed Central
Google Scholar
118.David, P., Pujol, B., Viard, F., Castella, V. & Goudet, J. Reliable selfing rate estimates from imperfect population genetic data. Mol. Ecol. 16, 2474–2487 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
119.Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).Article
Google Scholar
120.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS
PubMed
PubMed Central
Google Scholar
121.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
122.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
123.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
124.Jakobsson, M. & Rosenberg, N. A. Clumpp: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
125.Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article
Google Scholar
126.Séré, M., Thévenon, S., Belem, A. M. G. & De Meeûs, T. Comparison of different genetic distances to test isolation by distance between populations. Heredity 119, 55–63 (2017).PubMed
PubMed Central
Article
Google Scholar
127.Rousset, F. & Raymond, M. Statistical analyses of population genetic data: New tools, old concepts. Trends Ecol. Evol. 12, 313–317 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
128.Hijmans, R. J. Geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere. R package version 1.5–5. (2016).129.Korotenko, K. A. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: An assessment of the environmental impacts. PeerJ 6, e5448 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
130.López-Márquez, V. et al. Seascape genetics and connectivity modelling for an endangered Mediterranean coral in the northern Ionian and Adriatic seas. Landsc. Ecol. 34, 2649–2668 (2019).Article
Google Scholar
131.Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
132.Watts, P. C. et al. Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: Analysis of ‘neighbourhood size’ using a more precise estimator. Mol. Ecol. 16, 737–751 (2007).PubMed
Article
PubMed Central
Google Scholar
133.Hill, W. G. Estimation of effective population size from data on linkage disequilibrium. Genet. Res. 38, 209–216 (1981).Article
Google Scholar
134.Waples, R. S. Seed banks, salmon, and sleeping genes: Effective population size in semelparous, age-structured species with fluctuating abundance. Am. Nat. 167, 118–135 (2006).PubMed
Article
PubMed Central
Google Scholar
135.Waples, R. S. & Do, C. ldne: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).PubMed
Article
Google Scholar
136.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
137.Cavalli-Sforza, L. L., & Edwards, A. W. F. Phylogenetic analysis: Model and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).CAS
PubMed
PubMed Central
Google Scholar More