More stories

  • in

    The case for the reintroduction of cheetahs to India

    Gopalaswamy, A. M. et al. Nat. Ecol. Evol. 6, 1794–1795 (2022).Article 
    PubMed 

    Google Scholar 
    Sandom, C., Donlan, C. J., Svenning, J. C. & Hansen, D. in Key Topics In Conservation Biology 2 (eds MacDonald, D. W. & Willis, K. J.) 430–451 (2013).Ripple, W. J. et al. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Jhala, Y. V., Ranjitsinh, M. K., Bipin, C. M. & Yadav, S. P. Action Plan For Introduction Of Cheetah In India (2021).Divyabhanusinh & Kazami J. Bombay Nat. Hist. Soc. 116, 22–43 (2019).
    Google Scholar 
    IUCN/SSG. Guidelines For Reintroductions And Other Conservation Translocations IUCN. Ecological Applications 20 (IUCN Species Survival Commission, 2013).Prost, S. et al. Mol. Ecol. 31, 4208–4223 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buk, K. G., van der Merwe, V. C., Marnewick, K. & Funston, P. J. Conservation Of Severely Fragmented Populations: Lessons From The Transformation Of Uncoordinated Reintroductions Of Cheetahs (Acinonyx jubatus) Into A Managed Metapopulation With Self-Sustained Growth. Biodiversity And Conservation 27 (Springer Netherlands, 2018).Scientific Authority of South Africa. Gov. Gaz. Repub. South Africa 677, 1–4 (2021).Walker, E. H., Verschueren, S., Schmidt-Küntzel, A. & Marker, L. Oryx 56, 495–504 (2022).Article 

    Google Scholar 
    Tordiffe, A. S. W. et al. Disease Risk Analysis For Introduction Of Cheetahs (Acinonyx jubatus) To India (2022).Brugière, D., Chardonnet, B. & Scholte, P. Trop. Conserv. Sci. 8, 513–527 (2015).Article 

    Google Scholar 
    Jhala, Y. V. et al. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00312 (2019).Jhala, Y. et al. People Nat. 3, 281–293 (2021).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J. & Kerley, G. I. H. Biol. Conserv. 139, 219–229 (2007).Article 

    Google Scholar 
    Ogutu, J. O., Owen-Smith, N., Piepho, H. P. & Said, M. Y. J. Zool. 285, 99–109 (2011).Article 

    Google Scholar 
    Houser, A. M., Somers, M. J. & Boast, L. K. J. Zool. 278, 108–115 (2009).Article 

    Google Scholar  More

  • in

    Optimization of green and environmentally-benign synthesis of isoamyl acetate in the presence of ball-milled seashells by response surface methodology

    McElroy, C. R., Constantinou, A., Jones, L. C., Summerton, L. & Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 17, 3111–3121. https://doi.org/10.1039/C5GC00340G (2015).Article 
    CAS 

    Google Scholar 
    Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400. https://doi.org/10.1126/science.aay3060 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sheldon, R. A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48. https://doi.org/10.1021/acssuschemeng.7b03505 (2018).Article 
    CAS 

    Google Scholar 
    Anastas, P. T. & Williamson, T. C. in Green Chemistry, Vol. 626 ACS Symposium Series Ch. 1, 1–17 (American Chemical Society, 1996). https://doi.org/10.1021/bk-1996-0626.ch001.Clark, H. J. Green chemistry: Challenges and opportunities. Green Chem. 1, 1–8. https://doi.org/10.1039/A807961G (1999).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G. & Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans under mechanochemical ball milling. Green Chem. 16, 4914–4921 (2014).Article 
    CAS 

    Google Scholar 
    Eze, A. A. et al. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Sci. Rep. 11, 1–8 (2021).Article 

    Google Scholar 
    Gorrasi, G. & Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015).Article 
    CAS 

    Google Scholar 
    Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P. & Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Mac Naughton, G. E., Rolfe, S. A. & Siraj-Blatchford, I. E. Doing Early Childhood Research: International Perspectives on Theory and Practice (Open University Press, 2001).Evangelisti, L. et al. The borderline between reactivity and pre-reactivity of binary mixtures of gaseous carboxylic acids and alcohols. Angew. Chem. 129, 3930–3933 (2017).Article 
    ADS 

    Google Scholar 
    Gaspa, S., Porcheddu, A. & De Luca, L. Metal-free oxidative cross esterification of alcohols via acyl chloride formation. Adv. Synth. Catal. 358, 154–158 (2016).Article 
    CAS 

    Google Scholar 
    Fiorio, J. L., Braga, A. H., Guedes, C. L. S. B. & Rossi, L. M. Reusable heterogeneous tungstophosphoric acid-derived catalyst for green esterification of carboxylic acids. ACS Sustain. Chem. Eng. 7, 15874–15883 (2019).Article 
    CAS 

    Google Scholar 
    Karimi, B., Mirzaei, H. M. & Mobaraki, A. Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production. Catal. Sci. Technol. 2, 828–834 (2012).Article 
    CAS 

    Google Scholar 
    Tran, T. T. V. et al. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 484, 110724 (2020).Article 
    CAS 

    Google Scholar 
    Afshar, S. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Mon. Chem. Chem. Mon. 146, 1949–1957 (2015).Article 
    CAS 

    Google Scholar 
    Chng, L. L., Yang, J. & Ying, J. Y. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. Chemsuschem 8, 1916–1925 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lozano, P., Bernal, J. M. & Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem. 14, 3026–3033 (2012).Article 
    CAS 

    Google Scholar 
    Su, L., Hong, R., Guo, X., Wu, J. & Xia, Y. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206, 131–136 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö. & Mehmetoğlu, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785 (2007).Article 

    Google Scholar 
    Torres, S., Baigorí, M. D., Swathy, S., Pandey, A. & Castro, G. R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454–460 (2009).Article 
    CAS 

    Google Scholar 
    Ando, H., Kurata, A. & Kishimoto, N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794 (2006).Article 
    CAS 

    Google Scholar 
    Romero, M., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48 (2005).Article 
    CAS 

    Google Scholar 
    Borges, M. E. & Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012).Article 
    CAS 

    Google Scholar 
    Li, K.-T., Wang, C.-K., Wang, I. & Wang, C.-M. Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal. A 392, 180–183 (2011).Article 
    CAS 

    Google Scholar 
    Clark, J. H. & Rhodes, C. N. In Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, Vol. 4, (Royal Society of Chemistry, London, 2000). https://doi.org/10.1039/9781847550569Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol. 87, 172–179 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Melfi, D. T., dos Santos, K. C., Ramos, L. P. & Corazza, M. L. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15. J. Supercrit. Fluids 158, 104736 (2020).Article 
    CAS 

    Google Scholar 
    Azudin, N. Y., Mashitah, M. & Abd Shukor, S. R. Optimization of isoamyl acetate production in a solvent-free system. J. Food Qual. 36, 441–446 (2013).Article 
    CAS 

    Google Scholar 
    Ćorović, M. et al. Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst. Eng. 40, 23–34 (2017).Article 
    PubMed 

    Google Scholar 
    Liu, C. & Luo, G. Synthesis of isoamyl acetate catalyzed by ferric tri-dodecylsulfonate. Riyong Huaxue Gongye 34, 403–405 (2004).
    Google Scholar 
    Narwal, S. K., Saun, N. K., Dogra, P. & Gupta, R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ. J. Bioorg. Chem. 42, 69–73 (2016).Article 
    CAS 

    Google Scholar 
    Pizzio, L., Vázquez, P., Cáceres, C. & Blanco, M. Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001).Article 
    CAS 

    Google Scholar 
    Saha, B., Alqahtani, A. & Teo, H. T. R. Production of iso-Amyl Acetate: Heterogeneous Kinetics and Techno-feasibility Evaluation for Catalytic Distillation. Int. J. Chem. React. Eng. 3(1), https://doi.org/10.2202/1542-6580.1231 (2005).Osorio-Viana, W., Ibarra-Taquez, H. N., Dobrosz-Gomez, I. & Gómez-García, M. Á. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. 76, 70–82 (2014).Article 
    CAS 

    Google Scholar 
    Fang, M. et al. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem. Sect. A 53A, 1485–1492 (2014).Yang, Z., Zhou, C., Zhang, W., Li, H. & Chen, M. β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf., A 356, 134–139 (2010).Article 
    CAS 

    Google Scholar 
    Yang, Z. et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid. Ind. Eng. Chem. Res. 54, 1204–1215 (2015).Article 
    CAS 

    Google Scholar 
    Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. & Dekamin, M. G. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 129, 407–421. https://doi.org/10.1016/j.ijbiomac.2019.01.027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G., Kazemi, E., Karimi, Z., Mohammadalipoor, M. & Naimi-Jamal, M. R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol. 93, 767–774. https://doi.org/10.1016/j.ijbiomac.2016.09.012 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Bondarian, S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv. 13, 320–334. https://doi.org/10.1039/D2RA07319F (2023).Article 
    ADS 
    CAS 

    Google Scholar 
    Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 15, 811–820. https://doi.org/10.1039/C3GC36901C (2013).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 17758 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rostami, N., Dekamin, M., Valiey, E. & Fanimoghadam, H. Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci. Rep. 12, 8642–8642 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frindy, S., el Kadib, A., Lahcini, M., Primo, A. & García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7, 3307–3315 (2015).Article 
    CAS 

    Google Scholar 
    Pettignano, A. et al. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem. 39, 4222–4226 (2015).Article 
    CAS 

    Google Scholar 
    Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem. Int. Ed. 52, 1096–1108 (2013).Article 
    CAS 

    Google Scholar 
    Khrunyk, Y., Lach, S., Petrenko, I. & Ehrlich, H. Progress in modern marine biomaterials research. Mar. Drugs 18, 589 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, I. Molecular self-assembly: Smart design of surface and interface via secondary molecular interactions. Langmuir 29, 2476–2489. https://doi.org/10.1021/la304123b (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G. & Naimi-Jamal, M. R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep. 11, 18553 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, M. A. et al. Processing Aspects and biomedical and environmental applications of sustainable nanocomposites containing nanofillers. In Sustainable Polymer Composites and Nanocomposites, (eds Inamuddin et al.) 727–757 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-05399-4_25Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv. 4, 56658–56664. https://doi.org/10.1039/C4RA11801D (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilkhanizadeh, S., Khalafy, J. & Dekamin, M. G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol. 140, 605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol. 108, 1273–1280. https://doi.org/10.1016/j.ijbiomac.2017.11.050 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rostami, N., Dekamin, M. G. & Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. Carbohydr. Polym. Technol. Appl. 5, 100279. https://doi.org/10.1016/j.carpta.2022.100279 (2023).Article 
    CAS 

    Google Scholar 
    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hill, W. J. & Hunter, W. G. A review of response surface methodology: A literature survey. Technometrics 8, 571–590. https://doi.org/10.1080/00401706.1966.10490404 (1966).Article 
    MathSciNet 

    Google Scholar 
    Hamidi, F. et al. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Han, X.-X. et al. Syntheses of novel halogen-free Brønsted–Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 17, 499–508 (2015).Article 
    CAS 

    Google Scholar 
    Rehman, K. et al. Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Sci. Rep. 12, 1–11 (2022).Article 

    Google Scholar 
    Kamari, S., Ghorbani, F. & Sanati, A. M. Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain. Chem. Pharm. 13, 100153. https://doi.org/10.1016/j.scp.2019.100153 (2019).Article 

    Google Scholar 
    Sanati, A. M., Kamari, S. & Ghorbani, F. Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf. Interfaces 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374 (2019).Article 
    CAS 

    Google Scholar 
    Guner, S. G. & Dericioglu, A. Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements. RSC Adv. 6, 33184–33196 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Shao, Y., Zhao, H.-P. & Feng, X.-Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Adv. 4, 32451–32456 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jaji, A. Z. et al. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl. 10, 23 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Çam, M. & Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 58, 9103–9111 (2010).Article 
    PubMed 

    Google Scholar 
    Iwuchukwu, I. J. et al. Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. Int. J. Hydrog. Energy 36, 11684–11692 (2011).Article 
    CAS 

    Google Scholar 
    Hu, C. et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A 253, 389–396 (2003).Article 
    CAS 

    Google Scholar 
    Noda, L. K., de Almeida, R. M., Probst, L. F. D. & Gonçalves, N. S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 225, 39–46 (2005).Article 
    CAS 

    Google Scholar 
    Jalali-Heravi, M., Parastar, H. & Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 1216, 6088–6097 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sendzikiene, E., Sinkuniene, D., Kazanceva, I. & Kazancev, K. Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology. Renew. Energy 87, 266–272 (2016).Article 
    CAS 

    Google Scholar 
    Das, R., Sarkar, S. & Bhattacharjee, C. Photocatalytic degradation of chlorhexidine—a chemical assessment and prediction of optimal condition by response surface methodology. J. Water Process Eng. 2, 79–86 (2014).Article 

    Google Scholar 
    Nandiwale, K. Y., Galande, N. D. & Bokade, V. V. Process optimization by response surface methodology for transesterification of renewable ethyl acetate to butyl acetate biofuel additive over borated USY zeolite. RSC Adv. 5, 17109–17116 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Soltani, R. D. C. & Safari, M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization. Ultrason. Sonochem. 32, 181–190 (2016).Article 

    Google Scholar 
    Tan, K. T., Lee, K. T. & Mohamed, A. R. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Biores. Technol. 101, 965–969 (2010).Article 
    CAS 

    Google Scholar 
    Nagaraju, N., Peeran, M. & Prasad, D. Synthesis of isoamyl acetate usin NaX and NaY zeolites as catalysts. React. Kinet. Catal. Lett. 61, 155–160 (1997).Article 
    CAS 

    Google Scholar 
    Pizzio, L. R. & Blanco, M. N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. A 255, 265–277 (2003).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Karimi, Z. & Farahmand, M. Tetraethylammonium 2-(N-hydroxycarbamoyl)benzoate: A powerful bifunctional metal-free catalyst for efficient and rapid cyanosilylation of carbonyl compounds under mild conditions. Catal. Sci. Technol. 2, 1375–1381. https://doi.org/10.1039/C2CY20037F (2012).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Sagheb-Asl, S. & Reza Naimi-Jamal, M. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett. 50, 4063–4066. https://doi.org/10.1016/j.tetlet.2009.04.090 (2009).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Non-lethal fungal infection could reduce aggression towards strangers in ants

    Schmid-Hempel P. Parasites in social insects. Princeton University Press (1998).Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).Article 
    PubMed 

    Google Scholar 
    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasites Vectors 11, 1–6 (2018).Article 

    Google Scholar 
    Csata, E., Billen, J., Barbu-Tudoran, L. & Markó, B. Inside Pandora’s box: development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. Fungal Ecol. 50, 101022 (2021).Article 

    Google Scholar 
    Trinh, T., Ouellette, R. & de Bekker, C. Getting lost: the fungal hijacking of ant foraging behaviour in space and time. Anim. Behav. 181, 165–184 (2021).Article 

    Google Scholar 
    Moore J. Parasites and the Behavior of Animals. Oxford University Press, Oxford (2002).Thomas, F., Fauchier, J. & Lafferty, K. D. Conflict of interest between a nematode and a trematode in an amphipod host: test of the “sabotage” hypothesis. Behav. Ecol. Sociobiol. 51, 296–301 (2002).Article 

    Google Scholar 
    Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beros, S., Foitzik, S. & Menzel, F. What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? J. Chem. Ecol. 43, 869–880 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hamilton, W. D. Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Ito Y., Brown J. L., Kikkawa J. (eds) Animal societies: theories and facts. Jpn Sci Soc Press, Tokyo, pp 81–102 (1987).Hunt, J. H. & Richard, F. J. Intracolony vibroacoustic communication in social insects. Insect Soc. 60, 403–417 (2013).Article 

    Google Scholar 
    Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).Article 

    Google Scholar 
    Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casacci, L. P. et al. Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr. Biol. 23, 323–327 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).Article 

    Google Scholar 
    Sheehan, M. J. & Tibbetts, E. A. Specialized face learning is associated with individual recognition in paper wasps. Science 334, 1272–1275 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chittka, L. & Dyer, A. Your face looks familiar. Nature 481, 154–155 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Billen, J. Signal variety and communication in social insects. Proc. Neht. Entomol. Soc. Meet. 17, 9 (2006).
    Google Scholar 
    Blomquist G. J. Biosynthesis of cuticular hydrocarbons. In: Blomquist, G. J., Bagnères, A.-G. (eds.): Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press (2010).Hefetz, A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol. N. 10, 59–68 (2007).
    Google Scholar 
    Bagnères A. G., Lorenzi M. C. Chemical deception/mimicry using cuticular hydrocarbons. Insect hydrocarbons: Biology, biochemistry and chemical ecology. Chemical deception/mimicry using cuticular hydrocarbons, 282–324 (2010).van Zweden, J. S. & d’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. Insect Hydrocarbons: Biol. Biochem. Chem. Ecol. 11, 222–243 (2010).Article 

    Google Scholar 
    Esponda, F. & Gordon, D. M. Distributed nestmate recognition in ants. Proc. R. Soc. B. 282, 20142838 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crozier, R. & Dix, M. W. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4, 217–224 (1979).Article 

    Google Scholar 
    Wakonigg, G., Eveleigh, L., Arnold, G. & Crailsheim, K. Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica). J. Apic. Res. 39, 137–141 (2000).Article 
    CAS 

    Google Scholar 
    Cuvillier-Hot, V., Cobb, M., Malosse, C. & Peeters, C. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47, 485–493 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Cuticular hydrocarbons inform task decisions. Nature 423, 32–32 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kather, R., Drijfhout, F. P. & Martin, S. J. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37, 205–212 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleeberg, I., Menzel, F. & Foitzik, S. The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons. Proc. R. Soc. B. 284, 20162249 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. N. 30, 1–26 (2020).
    Google Scholar 
    Reeve, H. K. The evolution of conspecific acceptance thresholds. Am. Nat. 133, 407–435 (1989).Article 

    Google Scholar 
    Lenoir, A., D’Ettore, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. N. 11, 173–181 (2008).
    Google Scholar 
    Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. Roy. Soc. B. 266, 1419–1426 (1999).Article 
    CAS 

    Google Scholar 
    Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science 319, 88–90 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, C. A., Vander Meer, R. K. & Lavine, B. Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps Emery, after killing a Formica host queen (Hymenoptera: Formicidae). J. Chem. Ecol. 27, 1787–1804 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lecuona, R., Riba, G., Cassier, P. & Clément, J. L. Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J. Invertebr. Pathol. 58, 10–18 (1991).Article 
    CAS 

    Google Scholar 
    Trabalon, M., Plateaux, L., Péru, L., Bagnères, A. G. & Hartmann, N. Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. J. Insect Physiol. 46, 169–178 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zurek, L., Watson, D. W., Krasnoff, S. B. & Schal, C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly. Musca Domestica. J. Invertebr. Pathol. 80, 171–176 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: immune‐challenged males produce more attractive pheromones. Func. Ecol. 26, 20–28 (2012).Article 

    Google Scholar 
    Beros, S., Jongepier, E., Hagemeier, F. & Foitzik, S. The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc. Roy. Soc. B. 282, 20151473 (2015).Article 

    Google Scholar 
    Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc. 61, 247–252 (2014).Article 

    Google Scholar 
    Markó, B. et al. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J. Invertebr. Pathol. 136, 74–80 (2016).Article 
    PubMed 

    Google Scholar 
    Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. 126, 7–82 (2015).Article 

    Google Scholar 
    Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. 7, 46323 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. 65, 503–506 (2018).Article 

    Google Scholar 
    Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. 11, 1–9 (2021).Article 

    Google Scholar 
    Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62, 165–171 (2001).Article 

    Google Scholar 
    Lorenzi, M. C., Bagneres, A. G., Clément, J. L. & Turillazzi, S. Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera Vespidae). Insectes Soc. 44, 123–138 (1997).Article 

    Google Scholar 
    Ruther, J., Sieben, S. & Schricker, B. Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89, 111–114 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. A., Hölldobler, B. & Liebig, J. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19, 78–81 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ebsen, J. R., Boomsma, J. J. & Nash, D. R. Phylogeography and cryptic speciation in the Myrmica scabrinodis Nylander, 1846 species complex (Hymenoptera: Formicidae), and their conservation implications. Insect Conserv. Divers 12, 467–480 (2019).Article 

    Google Scholar 
    Ballinger, M. J., Moore, L. D. & Perlman, S. J. Evolution and diversity of inherited Spiroplasma symbionts in Myrmica ants. Appl. Environ. Microbiol. 84, e02299–17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Menzel, F. et al. Crematoenones – a novel substance class exhibited by ants functions as appeasement signal. Front. Zool. 10, 1–12 (2013).Article 

    Google Scholar 
    Qiu, H.-L., Qin, C.-S., Fox, E. G. P., Wang, D.-S. & He, Y.-R. Differential behavioral responses of Solenopsis invicta (Hymenoptera: Formicidae) workers toward nestmate and non-nestmate corpses. J. Ins. Sci. 20, 11 (2020).Article 

    Google Scholar 
    Martin, S. J., Vitikainen, E., Helanterä, H. & Drijfhout, F. P. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc. R. Soc. B. 275, 1271–1278 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guerrieri, F. J. et al. Ants recognize foes and not friends. Proc. R. Soc. B. 276, 2461–2468 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibbs, A. & Pomonis, J. G. Physical properties of insect cuticular hydrocarbons: the effects of chain lengths, methyl branching and unsaturation. Comp. Biochem. Physiol. 112, 243–249 (1995).Article 

    Google Scholar 
    Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B. 284, 20161727 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Breed, M. D., Leger, E. A., Pearce, A. M. & Wang, Y. J. Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55, 13–20 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Breed, M. D. & Stiller, T. M. Honey bee, Apis mellifera, nestmate discrimination: hydrocarbon effects and the evolutionary implications of comb choice. Anim. Behav. 43, 875–883 (1992).Article 

    Google Scholar 
    Akino, T., Yamamura, K., Wakamura, S. & Yamaoka, R. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39, 381–387 (2004).Article 
    CAS 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 210, 897–905 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casacci, L. P., Barbero, F., Ślipiński, P. & Witek, M. The inquiline ant Myrmica karavajevi uses both chemical and vibroacoustic deception mechanisms to integrate into its host colonies. Biology 10, 654 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bhatkar, A. & Whitcomb, W. Artificial diet for rearing various species of ants. Florid. Entomol. 53, 229–232 (1970).Article 

    Google Scholar 
    Espadaler X., Santamaria S. Ecto- and endoparasitic fungi on ants from the Holarctic region. Psyche 168478, 1–10 (2012).Csata, E. et al. Comprehensive survey of Romanian myrmecoparasitic fungi: new species, biology and distribution. North West J. Zool. 9, 23–29 (2013).
    Google Scholar 
    Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. 61, 307–323 (2014).Article 

    Google Scholar 
    Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. N. 23, 81–89 (2016).
    Google Scholar 
    Czekes, Z. et al. The genus Myrmica Latreille, 1804 (Hymenoptera: Formicidae) in Romania: distribution of species and key for their identification. Entomol. Rom. 17, 29–50 (2012).
    Google Scholar 
    Buczkowski, G. & Silverman, J. Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim. Behav. 69, 741–749 (2005).Article 

    Google Scholar 
    Diez, L., Moquet, L. & Detrain, C. Post-mortem changes in chemical profile and their influence on corpse removal in ants. J. Chem. Ecol. 39, 1424–1432 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. 98, 167–172 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moroń, D., Witek, M. & Woyciechowski, M. Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim. Behav. 75, 345–350 (2008).Article 

    Google Scholar 
    Bernadou, A., Felden, A., Moreau, M., Moretto, P. & Fourcassié, V. Ergonomics of load transport in the seed harvesting ant Messor barbarus: morphology influences transportation method and efficiency. J. Exp. Biol. 219, 2920–2927 (2016).PubMed 

    Google Scholar 
    Keresztes, K. K., Csata, E., Lunka-Tekla, A. & Markó, B. Friend or foe? Differential aggression towards neighbors and strangers in the ant Liometopum microcephalum (Hymenoptera: Formicidae). Sci. Entomol. 23, 351–358 (2020).Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of life data system. Mol. Ecol. Notes 7, 355–364, http://www.barcodinglife.org (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL ) (2020).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67, 1–48 (2015).Fox J., Weisberg S. Using car and effects Functions in Other Functions. Using Car Eff. Funct. Other Funct., 3, 1–5 (2020).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric 312 models. Biom. J. 50, 346–363 (2008).Article 
    PubMed 

    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media) (2009). More

  • in

    Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes

    Regional contextTo understand the variation in salt marsh geomorphology and mussel coverage across the South Atlantic Bight (SAB), we assessed density and areal coverage of1 tidal creekheads and2 mussel aggregations with a combination of published data and new field surveys across the region. First, to assess creekhead density, we selected 10 sites ranging from Cape Romain (SC) to Amelia Island (FL). Given that all of our experiments were conducted on Sapelo Island and the surrounding marsh islands, we selected three sites on Sapelo Island for comparison with four sites to the north and three to the south61. At each site, we scored the total number of tidal creekheads in a 1 km2 contiguous marsh area using Google Earth. Assuming each tidal creekhead constitutes approximately 0.0025 km2, we calculate the creekhead areal coverage to be:$$Creekhead,Areal,Coverage,(%)=frac{(0.0025k{m}^{2})times {{{{{rm{Creekhead}}}}}},{{{{{rm{Density}}}}}}(#k{m}^{-2})}{{{{{{rm{Marsh}}}}}},{{{{{rm{Creekshed}}}}}},{{{{{rm{Area}}}}}},(1k{m}^{2})}times 100%$$
    (1)
    Differences across northern, Sapelo Island, and southern sites were assessed with a one-way ANOVA with location as the main factor.To next test the hypothesis that creekhead mussel coverage is similar at sites across the SAB, we conducted surveys of mussel aggregations at 12 sites across the region from Edisto Beach (SC) to Amelia Island (FL). Previous work14 has shown that mussel aggregations decrease in size and density with increasing distance from the tidal creekhead, so we focused our measurements at three distances from one tidal creekhead onto the marsh platform: 0 m, 20 m, and 40 m. We note that at all sites, mussel aggregations extended >40 m from the tidal creekhead. Sites were again distributed across the region, and included 3 sites to the north, 3 sites to the south, and 6 sites on Sapelo and its back barrier marsh islands. At each site, we selected one representative creek 100–175 m in length and ensured that the tidal creekhead did not overlap spatially with a tidal creekhead of an adjacent creek. At each distance from creekhead, we established one 50 m x 1 m transect. Walking the transect line, we scored each mussel aggregation, counting the total number of mussels and measuring the mound dimensions (L x W x H). We then calculated the areal coverage of mussels within each transect (50 m2) and took the mean value across the three distances as the measure for the site. All data was collected between May and August in 2016 and 2017. Differences across northern, Sapelo Island, and southern sites were assessed with a one-way ANOVA with location as the main factor. Finally, we calculated creekshed mussel areal coverage in the three sub-regions, as the product of the percent of creekshed occupied by creekheads (sub-region mean, %) and the proportion of creekhead area occupied by mussels at each site.Landscape assays of sediment deposition over seasons and tidal phasesTo quantify the relative rates of sediment deposition across marsh landscapes, we deployed 9-cm diameter filter papers (Whatman Quantitative Filter Paper, Grade 42 Circles, Ashless, 90 mm; 57) at 13 location types across 3 sites. Locations included: 1) outer marsh levee (‘outer levee’), 2) marsh platform 10 m inland from outer marsh levee (‘outer levee-adjacent’), 3) inner tidal creek levee (‘inner levee’), 4) marsh platform 10 m inland from inner tidal creek levee (‘inner levee-adjacent’), 5) non-mussel marsh platform ( >50 m from mussel creekhead), 6,7) ridge/runnel area at tidal creekhead (‘ridge’ and ‘runnel’), 8,9) mussel aggregations and adjacent non-mussel marsh areas at the tidal creekhead (‘0 m ON mussel mound’ and ‘0 m OFF mound’), 10,11) mussel aggregations and adjacent marsh areas 10 m onto marsh platform from tidal creekhead (‘10 m ON mussel mound’ and ‘10 m OFF mound’), and 12,13) mussel aggregations and adjacent marsh areas 20 m onto marsh platform from tidal creekhead (‘20 m ON mussel mound’ and ‘20 m OFF mound’). At each location type, we used 15 replicate filters, spaced 1–2 m apart. Each pre-weighed and labeled filter paper was deployed attached to a Polystyrene Petri Dish (100 × 15 mm) using 1.5 mm steel wire. After 24 h in the field, all filters were harvested, dried in an oven at 60 °C, and reweighed. Filter papers were deployed at four tides: Summer Spring (August 2017, +2.5 m), Summer Neap (August 2017, +2.1 m), Winter Spring (February 2018, +2.5 m), and Winter Neap (February 2018, +2.0 m).To quantify the total and percent inorganic and organic material that was deposited on the marsh surface over a 24 h period, we deployed 8 replicate 4.7 cm diameter filter papers (Whatman Glass Microfiber Filter Paper, Grade GF/F Circles, 47 mm) across five marsh locations at one site. Locations included: 1) outer marsh levee (‘outer levee’), 2) marsh platform 10 m inland from outer marsh levee (‘outer levee-adjacent’), 3–4) mussel aggregations and adjacent non-mussel marsh areas at the tidal creekhead (‘0 m ON mussel mound’ and ‘0 m OFF mound’), and 5) non-mussel marsh platform. Prior to deployment, filter papers were combusted in a 450 °C furnace for 4 h and stored in aluminum foil packets. Packeted filter papers were then labeled and pre-weighed. Once in the field, filter papers were removed from their packet with forceps, placed on a petri dish inserted into the marsh sediment during a Summer Spring low tide (+2.5 m), and secured with 1.5 mm steel wire.After 24 h, the filter papers were collected with forceps and inserted back in their corresponding packet. Upon transport back to the lab, the packeted filter papers were dried in a 60 °C oven until constant mass was obtained and re-weighed. The change in weight between pre- and post-deployment was used to calculate total dry weight. Packeted filter papers were combusted again in a 450 °C furnace for 4 h and re-weighed. The total dry weight and the weight lost from the second combustion were then used to calculate total inorganic and organic dry weight and percent organic material for each filter paper.To calculate the organic and inorganic material in persistent in marsh sediment layers, 5-cm cores were collected from the sediment layer using a 60 mL syringe with a 2.5 cm diameter. Cores were taken at same five location types: levee crest, levee-adjacent, on-mound, mound-adjacent, and non-mussel marsh platforms. Eight cores, 1–2 m apart, were collected from each location and placed into pre-weighed foil packets. Cores were dried at 60 °C in an oven until constant mass was obtained, weighed, and combusted in a 450 °C furnace for 4 h. The cores were then reweighed, and the weight loss after combustion was used to calculate the percent organic (and inorganic) material.The mass of both organic and inorganic material deposited on each mussel aggregation filter was far greater (0.11 g and 0.50 g, organic and inorganic sediment, respectively, here and below) than that deposited on levee crests (0.02 g and 0.06 g), levee-adjacent (0.04 g and 0.15 g), and non-mussel marsh platforms (0.04 g and 0.19 g; F4,38 = 9.5; p  0.20), with all locations exhibiting 13–14% organic content (Fig. S3).Field experiment 1: fate of mussel biodepositsTo assess the distribution of sediment supplemented by mussels via local biodeposition and, in turn, their contribution to sediment supply across the broader marsh landscape, we measured the transport of previously settled biodeposits as well as those actively deposited over one tidal cycle. For each process, we selected 6 mussel mounds in two marsh zones where mussels commonly aggregate: 1) the creekhead and 2) 20 meters away from the creekhead on the marsh platform. All focal mounds were at least 5 meters apart to avoid mixing of biodeposits. We addressed the transport of previously settled biodeposits by first removing 2 cm of each mound’s biodeposit layer, homogenizing it with fluorescent chalk (Irwin Straight-Line Fluorescent Orange Marking Chalk) at a 2:1 ratio (biodepost:chalk), and evenly distributing the mixture back on the mounds. We then revisited the mounds at night after one tide had flooded over the mounds (max tidal height +2.2 m) and traced the distribution of fluorescent material through black light detection. We measured the maximum distance fluorescent material traveled in each direction to quantify transport of previously settled biodeposits across the marsh landscape.To account for the distribution of biodeposits ejected by actively filter-feeding mussels, we collected 10 mussels from each mound, transported them back to University of Georgia Marine Institute’s wet lab, depurated them in saltwater (Instant Ocean, 28 ppt) for 24 h, and allowed them to feed on a mixture of seawater and fluorescent chalk for 2 h. We then rinsed the mussels to remove any loose fluorescent material from their shells before transplanting them back into the focal mounds at low tide. We then revisited the mounds at night after one tide had flooded over the mounds and traced the distribution of fluorescent material through black light detection. We measured the maximum distance fluorescent material traveled in each direction to quantify transport of actively ejected biodeposits across the marsh landscape.Field experiment 2: local scale depositional effects of mussels and cordgrassThe second experimental study was conducted at Airport Marsh on Sapelo Island, Georgia, USA. At this site, the experiment was deployed at two zones: the marsh platform >85 m from the nearest tidal creek (31°25’25.3“N 81°17’29.8“W) and the creekhead, where the tidal creek enters onto the marsh platform and tidal water first floods the marsh (31°25’28.1“N 81°17’30.2“W). Within each zone, we deployed seven experimental treatments (n = 5 replicates per treatment per zone) in which we varied mussel (M) presence and density, as well as cordgrass (C) presence. The full set of seven treatments included: 1) no-mussel, no-cordgrass controls (0 M, 0 C); 2) cordgrass-only controls (0 M, C + ); 3) 1-mussel (1 M, 0 C) blocks; 4) small mussel aggregations (20 M, 0 C); 5) intermediate size mussel aggregations (50 M, 0 C); 6) intermediate size mussel aggregations plus cordgrass (50 M, C + ); and 7) large mussel aggregations (80 M, 0 C; Fig. S5).In July 2017, we harvested 70 blocks of marsh peat (50 cm x 50 cm x 20 cm) from the experimental site using flat-edge shovels. We selected 30 blocks of standardized cordgrass density (48.9 ± 9.0 g dry biomass per block; mean ± SD) from non-mussel areas, 10 blocks containing small mussel aggregations (~20 mussels), 20 blocks of intermediate-size mussel aggregations (~50 mussels), and 10 blocks of large mussel aggregations (~80 mussels). All marsh blocks were transported back to the lab where they were washed completely clean of all surface sediment. With the exception of 10 non-mussel blocks and 10 intermediate-size mussel aggregation blocks, all cordgrass was clipped to the marsh surface. For the 1-mussel treatments, we harvested 10 mussels (6–8 cm in length) from the experimental site and individually inserted them in the center of the marsh block so that they were 40–50% below the marsh surface.After cleaning and cordgrass removal, all blocks were cut to new dimensions (36 cm x 36 cm x 16 cm) and placed within plastic-encased bins of the same dimensions. Bins containing marsh blocks were then centrally placed and fitted within an additional larger bin (61 cm x 61 cm x 8 cm), with the top of each box flush to the same height. The outside bin was filled with 64, 5 cm diameter PVC poles and 32, 2.5 cm diameter PVC poles (both 8 cm in height) so that all bin edges were held upright and PVC was rigidly filling all space within the outer box (Fig. S4). PVC poles were oriented in this way to capture all deposited sediment and minimize resuspension by substantially decreasing the fetch within the catchment bins. These sediment catchment units were then transported back to the experimental site where recipient holes were dug to the exact dimensions, so that the top of the marsh block (along with the top of each PVC pole) was exactly flush with the marsh surface sediment. We stapled 1-cm hardware cloth mesh (66 cm x 66 cm, with central 36 cm x 36 cm cutout) above PVC and flush to the marsh surface to allow invertebrate access to and from mussel aggregations and to limit the amount of disturbance to and resuspension of the settled material. Finally, to minimize mussel mortality in the absence of cordgrass, we built shades using 2 layers of 5-cm Aquamesh, attached these shades to four bamboo stakes, and inserted them above each plot at a height of ~1 m. The experiment ran for one month, from July 18 to August 18, 2017.After one month in the field, all experimental units and their contents were returned to the lab, rinsed into recipient aluminum tins, dried, and weighed. The contents of the central bins and sediment on plant tissue were dislodged and collected using spatulas, scraper tools, and a Waterpik Flosser device. After all sediment was collected, each mussel was removed from the aggregation, measured for length, and weighed for biomass. Finally, from treatments containing vegetation, all aboveground cordgrass biomass was harvested, dried, and weighed (Fig. S6).Delft3D ModelTo evaluate the contribution of mussel mounds to marsh accretion, we performed numerical simulations using the Delft3D-FLOW model63,64. We first modified the source code by adding a bivalve module (Delft3D-BIVALVES) to simulate sediment filtration and deposition processes that lead to mussel mound formations. In building this module, we assumed that mussels remove sediments from the water column because of filtration, and expel them as very cohesive pseudofeces, which are attached to the mounds, increasing their elevation. These processes are simulated by adding, in the computational cells containing the mussel mounds, a depositional term due to mussel filtration that reads:$${triangle z}_{{FILT}}={rho }_{{MM}}cdot {f}_{{MM}}cdot {C}_{{sed}}cdot {dt}cdot {{rho }_{{sed},{dry}}}^{-1},$$
    (2)
    where ({rho }_{{MM}}) is the density of mussels in the mounds [mussel m−2], set equal to 177 mussel m−214, and ({f}_{{MM}}) is the volume of water filtered by each mussel per unit of time [m3 s−1 mussel−1], set equal to 0.115 m3 s−1 mussel−1. ({C}_{{sed}}) is the sediment concentration in the water column above each mussel mound [kg m−3], ({dt}) is the simulation time step [s], set equal to 0.6 s, and ({rho }_{{sed},{dry}}) is the dry density of the sediments [kg m−3], set equal to 800 kg m−373. The volume of sediments correspondent to the mussel filtration depositional term obtained from Eq 2. is removed from the lower computational layer of the water column above the mussel aggregation by adding the following sink term in the advection-diffusion equation:$${SINK}={rho }_{{MM}}cdot {f}_{{MM}}cdot {C}_{{sed}}cdot {A}_{{cell}},$$
    (3)
    where ({A}_{{cell}}) is the area of the computational cell [m2]. Numerically, the term is implemented implicitly to prevent the appearance of negative concentrations. For settling velocity, we used a value of 0.1 mm s−1. This value provides the best fit of the Total Suspended Sediment (TSS) concentration we surveyed in a creek, on the adjacent Little Sapelo Island, with an error of 0.022 ± 0.025 kg m−3 (Fig. S8, MAE + RMSE). The fit was obtained by using the exponential decay formulation that reads:$${C}_{s}={C}_{s0}{e}^{-{tcdot w}_{s}/h},$$
    (4)
    where ({w}_{s}) is the settling velocity in [m s−1], (h) is the slow depth in [m], ({C}_{s0}) is the initial sediment concentration in [kg m−3], and (t) is the time in [s]. We set ({C}_{s0}) equal to 0.10 g m−3, which approximates the average value measured during flood tide, at the same location and tidal cycle. In addition, we set h equal to 0.30 m, which is the local mean annual high tide, calculated for 2018. To assess the sensitivity of the results to settling velocity, we ran a simulation in which we increased settling velocity by 50% (i.e., settling velocity equal to 0.15 mm s−1), and extra deposition due to mussel mounds varied by only approximately 6.5% of the original value.We next established a rectangular model domain to describe our study area in a simplified fashion (Fig. 5a). Within the model domain, the marsh platform is connected to the main channel by a tidal creek. The domain extends for 50 m and 207 m in the long-shore and landward directions, respectively. It is discretized using a rectangular grid constituted of 50 cm × 50 cm cells at the creek head and 50 cm × 100 cm cells elsewhere. In our model domain, mussel aggregations occupy only the creekhead, which is the 50 m × 50 m area between the creek and the upper part of the domain. We assign that each mussel mound has an area of 0.25 m2, corresponding to a mound diameter of ~0.5 m. At our resolution, a mound occupies a single cell. A sensitivity analysis using cells of 0.25 m and 0.125 m showed negligible changes in the results. The main channel occupies the lower 20 m of the domain, and its depth goes from 0 m AMSL at the marsh edge to −6 m at the seaward boundary. The tidal creek is located in the middle of the marsh platform and stops 50 m from the landward boundary of the domain. It is 2 m wide, and its depth goes from 0.79 m AMSL at the creek head to −1 m where it connects to the main channel. The marsh system consists of four subareas: (i) the levees (0.94 m AMSL), which are 5 m wide cordons separating the marsh platform from the channel and the creek (except at the creek head) and are vegetated by tall-form cordgrass; (ii) the levee adjacent areas (0.79 m AMSL), which are 10 m wide and vegetated by intermediate size cordgrass, (iii) mussel aggregations, which occupy a set proportion of the creek head (0, 10, or 20%), are vegetated by short-form cordgrass, and form a regular array (0.79 m AMSL, a newly formed mound); and (iv) the marsh platform, all remaining area consisting of short-form cordgrass and located at a uniform elevation of 0.79 m AMSL (Table S2).We used the Delft3D “trachytopes” functionality to impose vegetation resistance on flow propagating through the model domain. At every time step, a Chézy friction coefficient ((C)) is calculated for the vegetation, using a formulation developed by83. The formula is based on the unvegetated bed roughness (({C}_{b})), the drag coefficient (({C}_{D})), the vegetation height (({h}_{v})), and the vegetation density ((n)), expressed as the number of stems per square meter ((m)) times the stem diameter (({D}_{S})). In our model, only cells with an elevation higher than 0 m above MSL are vegetated. We considered four vegetation zones, as described above (Table S2; see details for collection of cordgrass and mussel parameters below). For each vegetation type, we used the same ({C}_{b}) and ({C}_{D}), equal to 45 m1/2s−1 and 1.65, respectively84. The vegetation properties, for each class, are based on local surveys and are reported in Table S1. For each of the three mussel scenarios analyzed, we considered two vegetation distributions. The first one sticks with the description of the vegetation zones we report above. In the second scenario, the vegetation is absent from the entire domain.To compute the sediment deposition in our numerical model, we simulated deposition from October 6th to October 22nd, 2018. This period contains the most representative spring and neap tides of the year and was obtained using the following procedure. First, we reconstructed the astronomic signal for 2018 using the tidal components of the NOAA station “Daymark #156, Head of Mud River, GA” # 8674975”, which is the closest to our study area. We then calculated the tidal ranges in 2018 using consecutive low and high tide levels extrapolated from the astronomic tidal signal. Next, we classified the tidal ranges using the 25th and 75th quantiles of their distribution (i.e., Q25 and Q75): ranges lower than the 25th quartile were neap tides and ranges greater than the 75th were spring tides. The 2018 astronomic tide was then divided into periods containing a spring and a consecutive neap tide. For each period, we identified the tidal ranges associated with spring and neap tides by using Q25 and Q75. Finally, for each period, we calculated the average tidal range for neap and spring tide, the difference between these average values and the yearly average, and the sum of these two differences. The period with the lowest value of this sum contains the most representative spring and neap tides of 2018. For this date range, we then ran our model under six scenarios: mussel cover at 0, 10, and 20%, but with and without vegetation present. We report both sediment deposition and annual accretion in the five location types (i.e., levee crest, levee-adjacent, mussel aggregation, aggregation-adjacent, and non-mussel marsh platform) at local (1 m2), creekhead (2500 m2) and entire domain scales (10,350-m2).Field experiment 3: creekshed mussel manipulationTo assess the effects of mussel presence and population size on marsh accretion at the creekshed scale, we first selected a marsh creekshed with three adjacent tidal creeks of similar length, structure, associated mussel populations, and marsh platform characteristics (i.e., size, elevation, and cordgrass characteristics). For each of the three tidal creeks, we first delineated a 50 m by 50 m creekhead area, oriented perpendicular to the direction of the tidal creek entry into the marsh, and located with midpoint of the front edge positioned at the point of tidal creek entry into the marsh. We then delineated a larger creekshed area associated with each creek of ≥10,000 m2 within which we would deploy our experimental treatments. To quantify initial mussel and cordgrass cover, we set up three 50 m2 transects (50 m long, 1 m wide) within the creekhead area, located at 0 m, 20 m, and 40 m distance from the tidal creek point of entry (and oriented perpendicular to the direction of flow). Within each transect, we counted each mussel aggregation, scoring each individual mussel as well as the length, width, and height from marsh platform of each mussel aggregation structure.For a subset of 20 mussel aggregations randomly selected within each transect (3 transects per creek, 180 aggregations total), we scored the total number of cordgrass tillers on each aggregation. For a subset of 5 randomly selected tillers on each aggregation, we measured both length and width. To assess the differences in cordgrass characteristics between mussel aggregations and aggregation-adjacent areas, we also measured cordgrass stem density, height, and diameter in non-aggregation areas (1 m2) located 1m away from each mussel aggregation.After all initial data was collected, we removed and transplanted approximately 200,000 mussels from one tidal creekhead to another. To do so, we initially flagged approximately 4000 mussel aggregations within the creekshed area of the “Removal” creek, encompassing both the 2500 m2 creekhead area as well as the surrounding ≥10,000 m2 creekshed extent. Mussel individuals were removed by hand over the course of 16 weeks, with all field personnel taking care to leave all pseudofeces in place and cordgrass intact. Field crews were split between the mussel removal and mussel addition creek, such that mussels were re-transplanted within 24 h of removal to minimize mortality. Due to logistical and permitting constraints, it was not feasible to replicate the treatments across multiple sites; instead, the three plots occupied a single contiguous creekshed (Fig. 6a, b).To assess changes in marsh elevation, we first quantified initial creekhead elevation (mean m AMSL in 2500-ft2 area perpendicular to point of entry) using two metrics: 1) Real Time Kinematic (RTK) elevation datapoints (Trimble R6 GNSS System) distributed across the creekshed; and 2) measurements of mussel mound heights throughout each transect at set distances from the point of water entry. For the RTK datapoints, we collected 86 total points across the creekshed in June 2017. Elevation datapoints were randomly selected in each 2500 m2 creekhead zone (minimum of 20 points per creekhead; Fig. S7). However, given the low number of RTK points across a large area, we additionally utilized mussel mound height calculations to provide a second estimate of initial elevation across the creekshed. Mussel aggregations and other bivalves, such as oysters, exhibit a height ceiling of growth, above which survivorship and growth are hypothesized to decrease. Previous work on Sapelo Island marshes reported the height ceiling to be +0.84 ± 0.004 m AMSL (mean ± SE). Therefore, assuming mature mussel aggregations (i.e., with tops at the aforementioned height ceiling), then mussel aggregation height (i.e., the distance between the marsh platform and the topmost point of the mussel aggregation mounded structure) will inform our knowledge of the marsh platform elevation by the following equation: Marsh Elevation (m AMSL) = Mussel Height Ceiling (+0.84 m AMSL) – Mussel Aggregation Height (m AMSL). For each distance from creekhead from which we conducted a 50 m2 transect (0, 20, and 40 m), we estimated mean platform elevation using each of the measured mussel aggregation heights. We then took the mean value of marsh elevation across the three distances (0 m, 20 m, and 40 m) as a measure of creekhead elevation in 2017 for each of our experimental creeks ( >60 mounds per creekhead; 250 total).To assess elevation three years after treatment deployment, we compared creekhead elevation using a 2020 Digital Elevation Model (DEM) of the creekshed. To build the DEM, we flew a DJI Matrice 600 Pro drone carrying a custom build Lidar payload in August 2020. The payload consisted of a Velodyne Puck Lite VLP16, paired with a Novatel Stim300 Inertial Measurement Unit. The point clouds from the drone were orthorectified from GPS data continuously measured on the drone (see the procedure described in 85,86). To remove the vegetation and any other surface perturbations (i.e., from digital surface model to digital elevation model), we used the CloudCompare software (https://github.com/cloudcompare/cloudcompare). The cloth Simulation Filter (CSF; 87) was applied twice to the dataset, which successfully removed the vegetation data. The point cloud of the marsh surface was then exported to ArcGIS 10.7 where the DEM was generated by raster interpolation. Once completed, the mean elevation within each 2500 m2 creekhead location was calculated using the Zonal Statistics tool in ArcGIS 10.7.Statistical analysesTo quantify the effects of season, tidal phase, and location type on short-term deposition, we first square root transformed short-term sediment deposition (i.e., filter paper results) to meet the assumptions of parametric statistics. We then conducted a three-way fully factorial ANOVA, with main effects season, tidal phase, and location type. Post-hoc analyses were conducted with Tukey HSD test, with Bonferroni-corrected p-values (STATA v 15.1). We further analyzed the effects of site, season, tide, and marsh location on short-term sediment deposition using regression tree analysis (rpart, R version 3.1.0). Over-fitted trees were pruned using k fold cross-validation. To next assess the effects of marsh location type on total organic material deposited over 24 h (surface) and percent organic material (surface and to 5 cm depth), we ran three separate one-way ANOVAs. Post-hoc analyses were again conducted with Tukey HSD tests, with Bonferroni-corrected p-values (STATA v 15.1). For Experiment 1, we assessed the fate of mussel biodeposits, both previously settled and newly ejected, with a one-way ANOVA with location (creekhead versus platform) as the main effect. Finally, for Experiment 2, to assess whether cordgrass and mussel aggregations significantly affected sediment deposition over the one-month experimental deployment, we used multiple regression analysis with cordgrass biomass and mussel biomass as predictor variables for sediment biomass collected in each zone (STATA v 15.1; Table S1).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Info-gap theory to determine cost-effective eradication of invasive species

    Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363–371 (2001).Article 

    Google Scholar 
    Atkinson, I. A. E. Introduced mammals and models for restoration. Biol. Conserv. 99, 81–96 (2001).Article 

    Google Scholar 
    Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. In Invasive Species Management: A Handbook of Principles and Techniques (eds Clout, M. N. & Williams, P. A.) (Oxford University Press, 2009).
    Google Scholar 
    Baker, C. M., Hodgson, J. C., Tartaglia, E. & Clarke, R. H. Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project. Biol. Invasions 19, 2959–2970 (2017).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Sanchirico, J. N., Albers, H. J., Fischer, C. & Coleman, C. Spatial Management of invasive species: Pathways and policy options. Environ. Resour. Econ. 45, 517–535 (2010).Article 

    Google Scholar 
    Caplat, P., Hui, C., Maxwell, B. D. & Peltzer, D. A. Cross-scale management strategies for optimal control of trees invading from source plantations. Biol. Invasions 16, 677–690 (2014).Article 

    Google Scholar 
    Long, Y., Van der Merwe, J., Thomas, M. L., McKirdy, S. & Kompas, T. Biosecurity for valuable environmental island assets: Spatial post-border surveillance for early detection. Ecol. Econ. forthcoming (2022).Kroetz, K. & Sanchirico, J. N. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).Article 

    Google Scholar 
    Liu, Y., Wang, P., Thomas, M. L., Zheng, D. & McKirdy, S. J. Cost-effective surveillance of invasive species using info-gap theory. Sci. Rep. 11, 22828 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Homans, F. & Horie, T. Optimal detection strategies for an established invasive pest. Ecol. Econ. 70, 1129–1138 (2011).Article 

    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article 

    Google Scholar 
    Moffitt, L. J., Stranlund, J. K. & Osteen, C. D. Robust detection protocols for uncertain introductions of invasive species. J. Environ. Manage. 89, 293–299 (2008).Article 
    PubMed 

    Google Scholar 
    Yokomizo, H., Possingham, H. P., Hulme, P. E., Grice, A. C. & Buckley, Y. M. Cost-benefit analysis for intentional plant introductions under uncertainty. Biol. Invasions 14, 839–849 (2011).Article 

    Google Scholar 
    Ben-Haim, Y. Info-gap Decision Theory: Decisions Under Severe Uncertainty 2nd edn. (Academic Press, 2006).
    Google Scholar 
    Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921).
    Google Scholar 
    Regan, H. M. et al. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 15, 1471–1477 (2005).Article 

    Google Scholar 
    Ben-Haim, Y. Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004).Article 

    Google Scholar 
    Ben-Haim, Y. & Demertzis, M. Decision making in times of Knightian uncertainty: An info-gap perspective. Economics 10, 1 (2016).Article 

    Google Scholar 
    Lever, C. Naturalized Reptiles and Amphibians of the World (Oxford University Press, 2003).
    Google Scholar 
    Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 
    PubMed 

    Google Scholar 
    Torres-Carvajal, O. On the origin of South American populations of the common house gecko (Gekkonidae: Hemidactylus frenatus). NeoBiota 27, 69–79 (2015).Article 

    Google Scholar 
    Hoskin, C. J. The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol. 36, 240–251 (2011).Article 

    Google Scholar 
    Barnett, L. K. Understanding Range Expansion of Asian House Geckos (Hemidactylus frenatus) in Natural Environments (James Cook University, 2017).
    Google Scholar 
    Norval, G. & Mao, J.-J. An instance of a house gecko (Hemidactylus frenatus Schlegel, 1836) utilizing an electrical timer for thermoregulation. IRCF Reptil. Amphib. 22, 76–78 (2015).Article 

    Google Scholar 
    Greenslade, P., Burbidge, A. A. & Lynch, A. J. J. Keeping Australias islands free of introduced rodents Barrow Island. Pac. Conserv. Biol. 19, 284–294 (2013).Article 

    Google Scholar 
    Perella, C. D. & Behm, J. E. Understanding the spread and impact of exotic geckos in the greater Caribbean region. Biodivers. Conserv. 29, 1109–1134 (2020).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 364–369 (University of California Press, 2011).
    Google Scholar 
    García-Díaz, P., Ross, J. V., Vall-llosera, M. & Cassey, P. Low detectability of alien reptiles can lead to biosecurity management failure: A case study from Christmas Island (Australia). NeoBiota. 45, 75–92 (2019).Article 

    Google Scholar 
    Koopman, B. O. Search and Screening. Operations Evaluation Group (OEG) Report. (1946).Grasinger, M., O’Malley, D., Vesselinov, V. & Karra, S. Decision analysis for robust CO2 injection: Application of Bayesian-Information-Gap Decision Theory. Int. J. Greenh. Gas Control 49, 73–80 (2016).Article 
    CAS 

    Google Scholar 
    MathWorks. MATLAB R2018b. (MathWorks, 2018).Commonwealth Government of Australia. Approval—Gorgon Gas Development (EPBC Reference: 2008/4178). (2009).Kalaris, T. et al. The role of surveillance methods and technologies in plant biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 309–337 (Springer, 2014).Chapter 

    Google Scholar 
    Sharma, S., Mckirdy, S. & Macbeth, F. The biosecurity continuum and trade: Tools for post-border biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 189–206 (Springer, 2014).Chapter 

    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).Article 

    Google Scholar 
    Gregg, H. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).Article 

    Google Scholar 
    Parkes, J. Feasibility plan to eradicate Common mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Landcare Research Contract Report LC0506/184. (2006).Barun, A. & Simberloff, D. Carnivores. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 95–100 (University of California Press, 2011).
    Google Scholar 
    Pluess, T. et al. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14, 1365–1378 (2012).Article 

    Google Scholar 
    Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15, 803–812 (2012).Article 
    PubMed 

    Google Scholar 
    Rout, T. M., Thompson, C. J. & McCarthy, M. A. Robust decisions for declaring eradication of invasive species. J. Appl. Ecol. 46, 782–786 (2009).Article 

    Google Scholar 
    Hauser, C. E. & McCarthy, M. A. Streamlining “search and destroy”: Cost-effective surveillance for invasive species management. Ecol. Lett. 12, 683–692 (2009).Article 
    PubMed 

    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: Integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).Article 
    PubMed 

    Google Scholar 
    Moore, J. L. et al. Protecting islands from pest invasion: Optimal allocation of biosecurity resources between quarantine and surveillance. Biol. Conserv. 143, 1068–1078 (2010).Article 

    Google Scholar 
    Rout, T. M., Moore, J. L., Possingham, H. P. & McCarthy, M. A. Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol. Econ. 71, 54–62 (2011).Article 

    Google Scholar  More

  • in

    Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks

    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature https://doi.org/10.1038/nature04056 (2005).Article 
    PubMed 

    Google Scholar 
    Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    Bunbury, F. et al. Exploring the onset of B12-based mutualisms using a recently evolved Chlamydomonas auxotroph and B12-producing bacteria. Environ. Microbiol. 24, 3134–3147 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science https://doi.org/10.1126/science.281.5374.207 (1998).Article 
    PubMed 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0905512106 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x (2004).Article 
    PubMed 

    Google Scholar 
    Bagwell, C. E. et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00516 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoeger, A. L., Jehmlich, N., Kipping, L., Griehl, C. & Noll, M. Associated bacterial microbiome responds opportunistic once algal host Scenedesmus vacuolatus is attacked by endoparasite Amoeboaphelidium protococcarum. Sci. Rep. https://doi.org/10.1038/s41598-022-17114-1 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mars Brisbin, M., Mitarai, S., Saito, M. A. & Alexander, H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME J. https://doi.org/10.1038/s41396-022-01263-2 (2022).Article 
    PubMed 

    Google Scholar 
    Milici, M. et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 7, 1–20 (2016).Article 

    Google Scholar 
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).Article 
    PubMed 

    Google Scholar 
    Tucker, A. E. & Brown, S. P. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chun, S. J. et al. Network analysis reveals succession of microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. https://doi.org/10.1016/j.watres.2019.115326 (2020).Article 
    PubMed 

    Google Scholar 
    Huang, S. Back to the biology in systems biology: What can we learn from biomolecular networks?. Briefings Funct. Genom. Proteom. https://doi.org/10.1093/bfgp/2.4.279 (2004).Article 

    Google Scholar 
    Ma’ayan, A. Introduction to network analysis in systems biology. Sci. Signal. https://doi.org/10.1126/scisignal.2001965 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 1–10 (2014).Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3417 (2015).Article 
    PubMed 

    Google Scholar 
    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).Article 
    PubMed 

    Google Scholar 
    Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V. & Conesa, A. A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J. 15, 228–244 (2021).Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science https://doi.org/10.1126/science.1262073 (2015).Article 
    PubMed 

    Google Scholar 
    Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).Article 
    CAS 

    Google Scholar 
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00219 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature https://doi.org/10.1038/nature24621 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods https://doi.org/10.1038/s41592-018-0141-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. https://doi.org/10.1038/ismej.2012.8 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome https://doi.org/10.1186/s40168-018-0470-z (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major oceanic 16S/18S databases in qiime2 format. https://github.com/ndu-invitae/Oceanic_database/tree/master/PhytoRef.Hemprich-Bennett, D. R., Oliveira, H. F. M., Le Comber, S. C., Rossiter, S. J. & Clare, E. L. Assessing the impact of taxon resolution on network structure. Ecology https://doi.org/10.1002/ecy.3256 (2021).Article 
    PubMed 

    Google Scholar 
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics https://doi.org/10.1093/bioinformatics/bty734 (2019).Article 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002687 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csardi, G., & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems. igraph Softw. Packag. (2006).Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Assenov, Y., Ramírez, F., Schelhorn, S. E. S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics https://doi.org/10.1093/bioinformatics/btm554 (2008).Article 
    PubMed 

    Google Scholar 
    Barabási, A. L. Scale-free networks: A decade and beyond. Science https://doi.org/10.1126/science.1173299 (2009).Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Morris, J. H. et al. ClusterMaker: A multi-algorithm clustering plugin for cytoscape. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-436 (2011).Article 

    Google Scholar 
    Van Dongen, S. & Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. https://doi.org/10.1007/978-1-61779-361-5_15 (2012).Article 
    PubMed 

    Google Scholar 
    Raivo, K. Pheatmap: Pretty heatmaps. R Pacakage Version (2012).Albert, R., Jeong, H. & Barabási, A. L. Diameter of the world-wide web. Nature https://doi.org/10.1038/43601 (1999).Article 

    Google Scholar 
    Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.91.138701 (2003).Article 
    PubMed 

    Google Scholar 
    Ma, B. et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 (2017).Article 
    CAS 

    Google Scholar 
    Goecke, F., Thiel, V., Wiese, J., Labes, A. & Imhoff, J. F. Algae as an important environment for bacteria—Phylogenetic relationships among new bacterial species isolated from algae. Phycologia https://doi.org/10.2216/12-24.1 (2013).Article 

    Google Scholar 
    Krohn-Molt, I. et al. Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01641-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woebken, D. et al. Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J. https://doi.org/10.1038/ismej.2007.63 (2007).Article 
    PubMed 

    Google Scholar 
    Faria, M. et al. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics https://doi.org/10.1016/j.ygeno.2017.10.007 (2018).Article 
    PubMed 

    Google Scholar 
    Barbeyron, T., L’Haridon, S., Corre, E., Kloareg, B. & Potin, P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. Nov.. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/00207713-51-3-985 (2001).Article 
    PubMed 

    Google Scholar 
    Nedashkovskaya, O. I. et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijs.0.02626-0 (2003).Article 
    PubMed 

    Google Scholar 
    Kim, B. H., Ramanan, R., Cho, D. H., Oh, H. M. & Kim, H. S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.07.015 (2014).Article 

    Google Scholar 
    Rivas, M. O., Vargas, P. & Riquelme, C. E. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. https://doi.org/10.1007/s00248-010-9686-6 (2010).Article 
    PubMed 

    Google Scholar 
    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).Article 

    Google Scholar 
    Fulbright, S. P. et al. Bacterial community changes in an industrial algae production system. Algal Res. https://doi.org/10.1016/j.algal.2017.09.010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, M., Glöckner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. https://doi.org/10.3354/ame018275 (1999).Article 

    Google Scholar 
    Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae https://doi.org/10.1016/j.hal.2004.12.012 (2005).Article 

    Google Scholar 
    Janse, I., Zwart, G., Van der Maarel, M. J. E. C. & Gottschal, J. C. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures. Aquat. Microb. Ecol. https://doi.org/10.3354/ame022119 (2000).Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).Article 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sapp, M., Wichels, A. & Gerdts, G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02274-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milici, M. et al. Bacterioplankton biogeography of the Atlantic ocean: A case study of the distance-decay relationship. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. https://doi.org/10.1038/s41467-021-25646-9 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of verrucomicrobia. PLoS ONE https://doi.org/10.1371/journal.pone.0035314 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dell’Anno, F. et al. Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.584850 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. https://doi.org/10.1038/ismej.2009.150 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-120710-100912 (2014).Article 
    PubMed 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1413137112 (2015).Article 
    PubMed 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    Coelho, F. J. R. C. et al. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Queiroz, L. L. et al. Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 8, 9. https://doi.org/10.1007/s10482-020-01384-8 (2020).Article 
    CAS 

    Google Scholar 
    de Voogd, N. J., Cleary, D. F. R., Polónia, A. R. M. & Gomes, N. C. M. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv019 (2015).Article 
    PubMed 

    Google Scholar 
    Vigneron, A. et al. Multiple strategies for light-harvesting, photoprotection, and carbon flow in high latitude microbial mats. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02881 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pushpakumara, B. L. D. U., Tandon, K., Willis, A. & Verbruggen, H. The bacterial microbiome of the coral skeleton algal symbiont Ostreobium shows preferential associations and signatures of phylosymbiosis. bioRxiv https://doi.org/10.1101/2022.12.13.520198 (2022).Article 

    Google Scholar 
    Lage, O. M. & Bondoso, J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.2011.01168.x (2011).Article 
    PubMed 

    Google Scholar 
    Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. https://doi.org/10.3354/ame048217 (2007).Article 

    Google Scholar 
    Bengtsson, M. M. & Øvreås, L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-261 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludington, W. B. et al. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater. PLoS ONE https://doi.org/10.1371/journal.pone.0174930 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1–13 (2021).Article 

    Google Scholar 
    Walker, A. M., Leigh, M. B. & Mincks, S. L. Patterns in benthic microbial community structure across environmental gradients in the beaufort sea shelf and slope. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.581124 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morris, R. M., Longnecker, K. & Giovannoni, S. J. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2006.01029.x (2006).Article 
    PubMed 

    Google Scholar 
    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. https://doi.org/10.1038/s41564-020-0720-2 (2020).Article 
    PubMed 

    Google Scholar 
    Bohórquez, J. et al. Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00245 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12242 (2014).Article 
    PubMed 

    Google Scholar 
    Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. https://doi.org/10.1038/ismej.2016.20 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008

    Hobbs, R. J. (ed.) Invasive Species in a Changing World (Island press, 2000).
    Google Scholar 
    Marbuah, G., Gren, I. M. & McKie, B. Economics of harmful invasive species: A review. Diversity 6, 500–523. https://doi.org/10.3390/d6030500 (2014).Article 

    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265. https://doi.org/10.1073/pnas.1602480113 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    David, P. et al. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    Roy, H. E. et al. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Glob. Change Biol. 25, 1032–1048. https://doi.org/10.1111/gcb.14527 (2019).Article 
    ADS 

    Google Scholar 
    Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 24, 686–693. https://doi.org/10.1016/j.tree.2009.06.008 (2009).Article 
    PubMed 

    Google Scholar 
    Peyton, J. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol. Invasions 21, 2107–2125. https://doi.org/10.1007/s10530-019-01961-7 (2019).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).Article 

    Google Scholar 
    Lodge, D. M. Biol Invasions: Lessons for ecology. Trends Ecol. Evol. 8, 133–137. https://doi.org/10.1016/0169-5347(93)90025-K (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keller, S. R. & Taylor, D. R. History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866. https://doi.org/10.1111/j.1461-0248.2008.01188.x (2008).Article 
    PubMed 

    Google Scholar 
    Ham, D., Kim, W. G., Lee, H., Choi, D. S. & Bae, Y. J. New Korean record of the mycophagous gall midge Asynapta groverae (Diptera: Cecidomyiidae) with its outbreak situation and ecological notes. Newsl. Entomol. Soc. Korea. 11, 25–30 (2018) (in Korean).
    Google Scholar 
    Grover, P. Studies on gall-midges from India XXXIV. On the study of Indian Porricondylini. Cecidologia Indica 6, 1–38 (1971).
    Google Scholar 
    Jiang, Y. X. & Bu, W. J. A newly recorded gall midge genus (Diptera, Cecidomyiidae) with a species, Asynapta groverae Jiang et Bu, nom. Nov. from China. Acta. Zootax. Sinica. 29, 786–789 (2004).
    Google Scholar 
    Bae, Y. J. Research report on the outbreak of the cecidomyiids (Diptera: Cecidomyiidae) from the Well-county apartment area in Songdo, Incheon. Incheon Metropolitan Development Corporation, Incheon 171 (2009) (in Korean).Ham, D. & Bae, Y. J. Description of immature stages of Asynapta groverae (Diptera: Cecidomyiidae). Bull. Entomol. Res. 34, 103–107 (2018).
    Google Scholar 
    Gagné, R. J. & Jaschhof, M. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th Edition, Digital, 121–124 (2021).Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397 (2020).Article 
    CAS 

    Google Scholar 
    Ross, K. G. & Shoemaker, D. D. Estimation of the number of founders of an invasive pest insect population: The fire ant Solenopsis invicta in the USA. Proc. R. Soc. B-Biol. Sci. 275, 2231–2240. https://doi.org/10.1098/rspb.2008.0412 (2008).Article 

    Google Scholar 
    Brandt, M., Van Wlgenburg, E. & Tsutsui, N. D. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol. Ecol. 18, 997–1005. https://doi.org/10.1111/j.1365-294X.2008.04056.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amouroux, P., Normand, F., Nibouche, S. & Delatte, H. Invasive mango blossom gall midge, Procontarinia mangiferae (Felt) (Diptera: Cecidomyiidae) in Reunion Island: Ecological plasticity, permanent and structured populations. Biol. Invasions 15, 1677–1693. https://doi.org/10.1007/s10530-012-0400-0 (2013).Article 

    Google Scholar 
    Horst, C. P. & Lau, J. A. Genetic variation in invasive species response to direct and indirect species interactions. Biol. Invasions 17, 651–659. https://doi.org/10.1007/s10530-014-0756-4 (2015).Article 

    Google Scholar 
    Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10. https://doi.org/10.2307/2407137 (1975).Article 
    PubMed 

    Google Scholar 
    Tsutsui, N. D. & Suarez, A. V. The colony structure and population biology of invasive ants. Conserv. Biol. 17, 48–58. https://doi.org/10.1046/j.1523-1739.2003.02018.x (2003).Article 

    Google Scholar 
    Freeland, J. Molecular markers in ecology. In (eds Freeland, J., Pertersen, S. & Kirk, H.) Oxford 31–62 (2011).Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. PNAS 97, 5948–5953. https://doi.org/10.1073/pnas.100110397 (2000).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. A. Invasion Biology (Oxford University Press, 2009).
    Google Scholar 
    Yao, Y. X. et al. Genetic variation may have promoted the successful colonization of the invasive gall midge, Obolodiplosis robiniae, in China. Front. Genet. 11, 387. https://doi.org/10.3389/fgene.2020.00387 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, R. N. & Starks, P. T. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Ann. Entomol. Soc. Am. 97, 732–737. https://doi.org/10.1603/0013-8746(2004)097[0732:ASLOGD]2.0.CO;2 (2004).Article 

    Google Scholar 
    Roderick, G. K. Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annu. Rev. Entomol. 41, 325–352. https://doi.org/10.1146/annurev.en.41.010196.001545 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Puillandre, N. et al. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. Biol. Invasions 10, 319–333. https://doi.org/10.1007/s10530-007-9132-y (2008).Article 

    Google Scholar 
    Zhan, A., Macisaac, H. J. & Cristescu, M. E. Invasion genetics of the Ciona intestinalis species complex: From regional endemism to global homogeneity. Mol. Ecol. 19, 4678–4694. https://doi.org/10.1111/j.1365-294X.2010.04837.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mallez, S. et al. Worldwide invasion routes of the pinewood nematode: What can we infer from population genetics analyses?. Biol. Invasions 17(4), 1199–1213. https://doi.org/10.1007/s10530-014-0788-9 (2015).Article 

    Google Scholar 
    Tsutsui, N. D. & Case, T. J. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55, 976–985. https://doi.org/10.1111/j.0014-3820.2001.tb00614.x (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kim, H., Hoelmer, K. A. & Lee, S. Population genetics of the soybean aphid in North America and East Asia: Test for introduction between native and introduced populations. Biol. Invasions 19, 597–614. https://doi.org/10.1007/s10530-016-1299-7 (2017).Article 

    Google Scholar 
    Chen, M. H. & Dorn, S. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull. Entomol. Res. 100, 75–85 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412. https://doi.org/10.1038/hdy.2008.125 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: A bridgehead invasion. J. Pest Sci. 92, 189–200. https://doi.org/10.1007/s10340-018-0993-x (2019).Article 

    Google Scholar 
    Mutitu, E. K. et al. Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): Cities as bridgeheads for global pest invasions. Biol. Invasions 22, 2325–2338. https://doi.org/10.1007/s10530-020-02258-w (2020).Article 

    Google Scholar 
    Peccoud, J. et al. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol. Ecol. 17(21), 4608–4618. https://doi.org/10.1111/j.1365-294X.2008.03949.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyer, P. A., Moran, M. N., Blumenfeld, A. J. & Vargo, E. L. Development of a set of microsatellite markers to investigate sexually antagonistic selection in the invasive ant Nylanderia fulva. Insects 12, 643. https://doi.org/10.3390/insects12070643 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauer, B., Bong, J., Popp, C., Obermaier, E. & Feldhaar, H. Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl. Ecol. 32, 26–38. https://doi.org/10.1016/j.baae.2018.01.005 (2018).Article 

    Google Scholar 
    Bereczki, J., Póliska, S., Váradi, A. & Tóth, J. P. Incipient sympatric speciation via host race formation in Phengaris arion (Lepidoptera: Lycaenidae). Org. Divers. Evol. 20, 63–76. https://doi.org/10.1007/s13127-019-00418-y (2020).Article 

    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x (2006).Article 
    PubMed 

    Google Scholar 
    Miah, G. et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J. Mol. Sci. 14, 22499–22528. https://doi.org/10.3390/ijms141122499 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd, C. J., Norton, A. P., Hufbauer, R. A., Bogdanowicz, S. M. & Nissen, S. J. Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Mol. Ecol. Notes 4, 605–607. https://doi.org/10.1111/j.1471-8286.2004.00751.x (2004).Article 
    CAS 

    Google Scholar 
    Bentur, J. S. et al. Isolation and characterization of microsatellite loci in the Asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). Int. J. Mol. Sci. 12, 755–772. https://doi.org/10.3390/ijms12010755 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hinomoto, N., Higaki, T., Abe, J., Yamane, M. & Yano, E. Development and characterization of 21 polymorphic microsatellite loci in the aphidophagous gall midge, Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 47, 165–171. https://doi.org/10.1007/s13355-012-0104-z (2012).Article 
    CAS 

    Google Scholar 
    Mezghani-Khemakhem, M. et al. Development of new polymorphic microsatellite loci for the barley stem gall midge, Mayetiola hordei (Diptera: Cecidomyiidae) from an Enriched Library. Int. J. Mol. Sci. 13, 14446–14450. https://doi.org/10.3390/ijms131114446 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. et al. Development and characterization of 12 microsatellite loci from the blueberry gall midge Dasineura oxycoccana (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 50, 415–418. https://doi.org/10.1007/s13355-015-0335-x (2015).Article 

    Google Scholar 
    Benzécri, J. P. Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques. Cahiers de l’analyse des données. 7, 209–218 (1982).MATH 

    Google Scholar 
    Simberloff, D. Invasive species. In Conservation Biology for all (eds Sodhi, N. S. & Ehrlich, P. R.) 131–152 (Oxford University Press, 2010).Chapter 

    Google Scholar 
    Keum, E. et al. Morphological, genetic and symptomatic identification of an invasive jujube pest in Korea, Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae). J. Asia Pac. Entomol. 101935, 2002. https://doi.org/10.1016/j.aspen.2022.101935 (2022).Article 

    Google Scholar 
    Jaschhof, M. & Jaschhof, C. New and rarely found species of asynaptine Porricondylinae (Diptera: Cecidomyiidae) in northern Europe. Zootaxa https://doi.org/10.12651/JSR.2019.8.2.238 (2019).Article 
    PubMed 

    Google Scholar 
    Yuxia, J. & Wenjun, B. A newly recorded gall midge genus (Diptera, cecidomyiidae) with a species, Asynapta groverae Jiang et bu. nom. Nov. from China. Dong wu fen lei xue bao = Acta Zootaxonomica Sinica 29, 786–789 (2004).
    Google Scholar 
    Mamaev, M. & Krivosheina, N. P. The Larvae of the Gall Miges (CRC Press, 1992).
    Google Scholar 
    Dorchin, N., Harris, K. M. & Stireman, J. O. III. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Mol. Phylogenet. Evol. 140, 106602. https://doi.org/10.1016/j.ympev.2019.106602 (2019).Article 
    PubMed 

    Google Scholar 
    Gilpin, M. E. Minimal viable populations: Processes of species extinction. Conserv. Biol. Sci. Scarcity Divers. (1986).Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Syst. 37, 67–93. https://doi.org/10.1146/annurev.ecolsys.37.091305.110132 (2006).Article 

    Google Scholar 
    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181. https://doi.org/10.1038/nature02807 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frankham, R. Resolving the genetic paradox in invasive species. Heredity 94, 385–385. https://doi.org/10.1038/sj.hdy.6800634 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).Article 

    Google Scholar 
    Wagner, N. P. Parthenogenesis in the larva of insects. Sci. Mem. Kasan Univ. 1, 25–111 (1862) (in Russian).
    Google Scholar 
    Meinert, F. Miastor metraloas: yderlige oplysning om den af Prof. Nic. Wagner nyligt beskneune insektlarva, som formerer sig ved spinedannelse. Naturhistorisk Tidsskrqt R3(3), 37–43 (1864).
    Google Scholar 
    Wyatt, I. J. Pupal paedogenesis in the Cecidomyiidae (Diptera). II. Proceedings of the Royal Entomological Society of London. J. Entomol. Ser. A-Gen. 38, 136–144. https://doi.org/10.1111/j.1365-3032.1963.tb00768.x (1963).Article 

    Google Scholar 
    Wyatt, I. J. Immature stages of Lestremiinae (Diptera: Cecidomyiidae) infesting cultivated mushrooms. Trans. R. Entomol. Soc. Lond. 116, 15–27. https://doi.org/10.1111/j.1365-2311.1964.tb00823.x (1964).Article 

    Google Scholar 
    Panelius, I. J. A revision of the European gall midges of the subfamily Porricondylinae (Diptera: Itonididae). Acta Zool. Fenn. 13, 1–157 (1965).
    Google Scholar 
    Schüpbach, P. M. & Camenzind, R. Germ cell lineage and follicle formation in paedogenetic development of Mycophila speyeri Barnes (Diptera: Cecidomyiidae). Int. J. Insect Morphol. Embryol. 12, 211–223. https://doi.org/10.1016/0020-7322(83)90018-1 (1983).Article 

    Google Scholar 
    Sikora, T., Jaschhof, M., Mantič, M., Kaspřák, D. & Ševčík, J. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool. J. Linn. Soc. 185, 98–110. https://doi.org/10.1093/zoolinnean/zly029 (2019).Article 

    Google Scholar 
    Gould, S. J. Ontogeny and Phylogeny (Harvard University Press, 1985).
    Google Scholar 
    Went, D. F. Paedogenesis in the dipteran insect Heteropeza pygmaea: An interpretation. Int. J. Invertebr. Reprod. 1, 21–30. https://doi.org/10.1080/01651269.1979.10553296 (1979).Article 

    Google Scholar 
    Hodin, J. & Riddiford, L. M. Parallel alterations in the timing of ovarian ecdysone receptor and ultraspiracle expression characterize the independent evolution of larval reproduction in two species of gall midges (Diptera: Cecidomyiidae). Dev. Genes Evol. 210, 358–372. https://doi.org/10.1007/s004270000079 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olfert, O., Elliott, R. H. & Hartley, S. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems (eds Langor, D. W. & Sweeney, J.) 127–133 (Springer, 2008). https://doi.org/10.1007/978-1-4020-9680-8_9.Chapter 

    Google Scholar 
    Miao, J. et al. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in Northern China. J. Insect Behav. 26, 120–129. https://doi.org/10.1007/s10905-012-9346-4 (2013).Article 

    Google Scholar 
    Hao, Y. N. et al. Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae). J. Econ. Entomol. 106, 2043–2047. https://doi.org/10.1603/EC13218 (2013).Article 
    PubMed 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Luo, R. et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18. https://doi.org/10.1186/2047-217X-1-18 (2012).Article 

    Google Scholar 
    Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 1–12. https://doi.org/10.1186/1471-2105-15-182 (2014).Article 
    CAS 

    Google Scholar 
    Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols. Methods in Molecular Biology™ Vol. 132 (eds Misener, S. & Krawetz, S. A.) (Humana Press, 2000). https://doi.org/10.1385/1-59259-192-2:365.Chapter 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x (1998).Article 

    Google Scholar 
    Teacher, A. G. F. & Griffiths, D. J. HapStar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 11, 151–153. https://doi.org/10.1111/j.1755-0998.2010.02890.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER v. 2.2.3. (2006).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II (2004). More

  • in

    Climate-driven convergent evolution in riparian ecosystems on sky islands

    Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article 
    ADS 

    Google Scholar 
    Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant Environ. Int. 1, 166–180 (2020).Article 

    Google Scholar 
    Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. Eco-Evolutionary Dynamics (Princeton University Press, 2017).Book 

    Google Scholar 
    Anstett, D. N., Branch, H. A. & Angert, A. L. Regional differences in rapid evolution during severe drought. Evol. Lett. 5, 130–142 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. PNAS 118, e2015772118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokhorst, S., Bjerke, J. W., Street, L. E., Callaghan, T. V. & Phoenix, G. K. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Glob. Change Biol. 17, 2817–2830 (2011).Article 
    ADS 

    Google Scholar 
    Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186, S60–S73 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooliver, R., Tittes, S. B. & Sheth, S. N. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74, 1699–1710 (2020).Article 
    PubMed 

    Google Scholar 
    McCormack, J. E., Huang, H. & Knowles, L. L. Sky Islands. in Encyclopedia of Islands (eds. Gillespie, R. G. & Clague, D. A.) 839–843 (2009).Knowles, J. F., Scott, R. L., Minor, R. L. & Barron-Gafford, G. A. Ecosystem carbon and water cycling from a sky island montane forest. Agric. For. Meteorol. 281, 107835 (2020).Article 
    ADS 

    Google Scholar 
    Heald, W. Sky Islands (Van Nostrand, 1967).
    Google Scholar 
    DeBano, L. H. et al. Biodiversity and management of the Madrean Archipelago: The Sky Islands of southwestern United States and northwestern Mexico: 1994 September 19–23; Tucson, AZ. Gen Tech Rep RM-GTR-264. Fort Collins, CO: US Dep Agric For Serv, Rocky Mt For Range Exp Stn. 669 p. (1995).Pérez-Alquicira, J. et al. The role of historical factors and natural selection in the evolution of breeding systems of Oxalis alpina in the Sonoran desert ‘Sky Islands’. J. Evol. Biol. 23, 2163–2175 (2010).Article 
    PubMed 

    Google Scholar 
    Wiens, J. J. et al. Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol. Ecol. 28, 2610–2624 (2019).Article 
    PubMed 

    Google Scholar 
    Pielou, E. C. After the Ice Age. The return of Life to Glaciated North America (The University of Chicago Press, 1991).Book 

    Google Scholar 
    Hosner, P. A., Nyári, Á. S. & Moyle, R. G. Water barriers and intra-island isolation contribute to diversification in the insular Aethopyga sunbirds (Aves: Nectariniidae). J. Biogeogr. 40, 1094–1106 (2013).Article 

    Google Scholar 
    Favé, M.-J. et al. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. Bmc Evol. Biol. 15, 183 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanahan, A. D. & Moore, W. Impacts of 21st-century climate change on montane habitat in the Madrean Sky Island Archipelago. Divers. Distrib. 25, 1625–1638 (2019).Article 

    Google Scholar 
    Oline, D. K., Mitton, J. B. & Grant, M. C. Population and subspecific genetic differentiation in the Foxtail Pine (Pinus balfouriana). Evolution 54, 1813–1819 (2000).CAS 
    PubMed 

    Google Scholar 
    Barrowclough, G. F., Groth, J. G., Mertz, L. A. & Gutiérrez, R. J. Genetic structure of Mexican spotted owl (Strix Occidentalis Lucida) populations in a fragmented landscape. Auk 123, 1090–1102 (2006).
    Google Scholar 
    Atwood, T. C. et al. Modeling connectivity of black bears in a desert sky island archipelago. Biol. Conserv. 144, 2851–2862 (2011).Article 

    Google Scholar 
    Halbritter, D. A., Storer, C. G., Kawahara, A. Y. & Daniels, J. C. Phylogeography and population genetics of pine butterflies: Sky islands increase genetic divergence. Ecol. Evol. 9, 13389–13401 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeChaine, E. G. & Martin, A. P. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am. J. Bot. 92, 477–486 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baker, A. J. Islands in the sky: The impact of Pleistocene climate cycles on biodiversity. J. Biol. 7, 32 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robin, V. V., Sinha, A. & Ramakrishnan, U. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLoS ONE 5, e13321 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manthey, J. D. & Moyle, R. G. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: A landscape genomics approach. Mol. Ecol. 24, 3628–3638 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vásquez, D. L. A., Balslev, H., Hansen, M. M., Sklenář, P. & Romoleroux, K. Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot. 126, 135–142 (2016).Article 

    Google Scholar 
    Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Williamson, J. L. et al. Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int. J. Parasitol. 49, 437–448 (2019).Article 
    PubMed 

    Google Scholar 
    Knowles, L. L. & Richards, C. L. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14, 4023–4032 (2005).Article 
    PubMed 

    Google Scholar 
    Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).Article 
    PubMed 

    Google Scholar 
    Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article 

    Google Scholar 
    Kooyers, N. J., Greenlee, A. B., Colicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).Article 
    PubMed 

    Google Scholar 
    Price, E. A. C. & Marshall, C. Clonal plants and environmental heterogeneity—An introduction to the proceedings. Plant Ecol. 141, 3–7 (1999).Article 

    Google Scholar 
    Matsuo, A. et al. Female and male fitness consequences of clonal growth in a dwarf bamboo population with a high degree of clonal intermingling. Ann. Bot. Lond. 114, 1035–1041 (2014).Article 
    CAS 

    Google Scholar 
    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. PNAS 112, 8859–8866 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bittebiere, A.-K., Benot, M.-L. & Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Persp. Plant Ecol. Evol. Syst. 43, 125510 (2020).Article 

    Google Scholar 
    King, D. & Roughgarden, J. Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21, 194–204 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    LaDeau, S. L. & Clark, J. S. Rising CO2 levels and the fecundity of forest trees. Science 292, 95–98 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Qiu, T. et al. Is there tree senescence? The fecundity evidence. PNAS 118, e2106130118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oddou-Muratorio, S. et al. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann. Bot. Lond. 128, 193–204 (2021).Article 

    Google Scholar 
    Knops, J. M. H., Koenig, W. D. & Carmen, W. J. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. PNAS 104, 16982–16985 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakamura, I. et al. Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia 165, 809–818 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. Spatiotemporal Processes of Plant Phenology, Simulation and Prediction (Springer, 2017).Book 

    Google Scholar 
    Bradshaw, H. D. & Stettler, R. F. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139, 963–973 (1995).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rae, A. M. et al. QTL for yield in bioenergy Populus: Identifying G×E interactions from growth at three contrasting sites. Tree Genet. Genom. 4, 97–112 (2008).Article 

    Google Scholar 
    Rae, A. M., Street, N. R., Robinson, K. M., Harris, N. & Taylor, G. Five QTL hotspots for yield in short rotation coppice bioenergy poplar: The poplar biomass loci. Bmc Plant Biol. 9, 23 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allwright, M. R. et al. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels 9, 195 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badmi, R. et al. A new calmodulin-binding protein expresses in the context of secondary cell wall biosynthesis and impacts biomass properties in Populus. Front. Plant Sci. 9, 1669 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).Hughes, L., Hughes, L. & Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).Article 
    PubMed 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).Article 
    ADS 

    Google Scholar 
    Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. NY. Acad. Sci. 1162, 311–333 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bertel, C. et al. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127, 1355–1367 (2018).Article 

    Google Scholar 
    Knotek, A. et al. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11, 561526 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tusiime, F. M. et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio). PLoS ONE 15, e0228979 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. E. K. & Rood, S. B. Trees of the people: The growing science of poplars in Canada and worldwide. Botany 85, 1103–1110 (2007).
    Google Scholar 
    Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. 57–86 (1996).Schweitzer, J. A., Martinsen, G. D. & Whitham, T. G. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence?. Am. J. Bot. 89, 981–990 (2002).Article 
    PubMed 

    Google Scholar 
    Moore, W. et al. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands. Proc. RMRS 2013, 144–168 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).Article 

    Google Scholar 
    Tuskan, G. A. et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 34, 85–93 (2004).Article 
    CAS 

    Google Scholar 
    Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peakall, R. & Ssmouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Arxiv https://doi.org/10.48550/arxiv.1406.5823 (2014).Article 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 4, 14–24 (2013).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fox, J. et al. Package ‘car’: Companion to Applied Regression. R package version 3.0–10 (2020). More