1.Convention on Biological Diversity (UN, 1992).2.Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); http://www.cbd.int/sp/3.Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN, 2015).4.Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020).5.Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://doi.org/10.5281/zenodo.38316736.Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. https://doi.org/10.1111/conl.12762 (2020).7.Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS
PubMed
PubMed Central
Google Scholar
8.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).PubMed
PubMed Central
Article
Google Scholar
10.Piipponen-Doyle, S., Bolam, F. C. & Mair, L. Disparity between ecological and political timeframes for species conservation targets. Biodivers. Conserv. 30, 1899–1912 (2021).Article
Google Scholar
11.Keith, D. A. et al. The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article
Google Scholar
12.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed
Article
PubMed Central
Google Scholar
15.Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).PubMed
Article
PubMed Central
Google Scholar
16.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework First Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021).17.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article
Google Scholar
18.Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
19.Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).Article
Google Scholar
20.Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article
Google Scholar
21.Hunter, D. et al. Including Food Systems, Biodiversity, Nutrition and Dietary Health in the Zero Draft of the Post-2020 Global Biodiversity Framework (Alliance of Bioversity International and the International Center for Tropical Agriculture and the United Nations Environment Programme, 2020); https://hdl.handle.net/10568/10709622.Halewood, M., Ferreira de Souza Dias, B., Nnadozie, K., Noriega, I. & Toledo, A. Including Access and Benefit Sharing in the Post-2020 Global Biodiversity Framework (AfricaRice, Alliance of Bioversity International and CIAT, ICARDA, ICRISAT, IITA, ILRI, CIMMYT, CIP, IRRI, World Agroforestry Centre, The Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, UNEP and The ABS Capacity Development Initiative, 2020); https://cgspace.cgiar.org/handle/10568/11127323.Delabre, I. et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7, eabc8259 (2021).PubMed
PubMed Central
Article
Google Scholar
24.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Lyons, M. B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).Article
Google Scholar
26.Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020).27.Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).Article
Google Scholar
28.Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 619–620, 249–257 (2018).PubMed
Article
CAS
PubMed Central
Google Scholar
29.Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria v. 1.1 (IUCN, 2017).31.Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).Article
Google Scholar
32.Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 0, e12665 (2019).
Google Scholar
33.Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).Article
Google Scholar
34.Mace, G. M. The ecology of natural capital accounting. Oxford Rev. Econ. Policy 35, 54–67 (2019).Article
Google Scholar
35.Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).PubMed
Article
PubMed Central
Google Scholar
38.Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).PubMed
Article
PubMed Central
Google Scholar
39.Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the tenth conference of the parties to the convention on biological diversity. Glob. Environ. Politics 14, 41–63 (2014).Article
Google Scholar
40.Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).PubMed
Article
PubMed Central
Google Scholar
41.Martínez-Jauregui, M., Touza, J., White, P. C. L. & Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 121, 107203 (2021).Article
Google Scholar
42.Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).PubMed
Article
PubMed Central
Google Scholar
43.Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Shi, J., Ma, K., Wang, J., Zhao, J. & He, K. Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodivers. Conserv. 19, 1279–1295 (2010).Article
Google Scholar
45.Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).Article
Google Scholar
46.Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).Article
Google Scholar
47.Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
48.Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. https://doi.org/10.1111/gcb.15634 (2021).49.Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).Article
Google Scholar
50.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature https://doi.org/10.1038/s41586-019-1567-7 (2019).51.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed
Article
PubMed Central
Google Scholar
52.DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).PubMed
Article
PubMed Central
Google Scholar
54.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Wilkins, S., Keith, D. A. & Adam, P. Measuring success: evaluating the restoration of a grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor. Ecol. 11, 489–503 (2003).Article
Google Scholar
56.Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).Article
Google Scholar
57.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Burgman, M. A., Ferson, S. & Akcakaya, H. R. Risk Assessment in Conservation Biology (Chapman and Hall, 1993).59.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed
Article
PubMed Central
Google Scholar
60.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Update of the Zero Draft of the Post 2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).61.Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).PubMed
Article
PubMed Central
Google Scholar
62.Burgass, M. J. et al. Three key considerations for biodiversity conservation in multilateral agreements. Conserv. Lett. 14, e12764 (2021).Article
Google Scholar
63.Rice, W. S., Sowman, M. R. & Bavinck, M. Using theory of change to improve post-2020 conservation: a proposed framework and recommendations for use. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.301 (2020).64.Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).PubMed
Article
PubMed Central
Google Scholar
65.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).66.Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0504-8 (2018).67.Niemeijer, D. & de Groot, R. S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 8, 14–25 (2008).Article
Google Scholar
68.Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26-27, 97–105 (2017).Article
Google Scholar
69.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).70.Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Turner, I. M. & T. Corlett, R. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
72.Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).PubMed
Article
PubMed Central
Google Scholar
74.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).Article
Google Scholar
75.Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Hein, M. Y., Willis, B. L., Beeden, R. & Birtles, A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873–883 (2017).Article
Google Scholar
77.Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).Article
Google Scholar
79.Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
80.Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).PubMed
Article
PubMed Central
Google Scholar
81.Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).Article
Google Scholar
82.Bekessy, S. A. et al. The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158 (2010).Article
Google Scholar
83.SBSTTA Draft Monitoring Framework for the Post-2020 Global Biodiversity Framework for Review (Subsidiary Body on Scientific, Technical and Technological Advice, 2020); https://www.cbd.int/sbstta24/review.shtml84.Indicators for the Post-2020 Global Biodiversity Framework—Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership (UNEP-WCMC, 2020); https://www.cbd.int/sbstta24/review.shtml85.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Proposed Indicators and Monitoring Approach for the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3Add.1 (Subsidiary Body on Scientific, Technical and Technological Advice, 2020).86.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework. Addendum. Appendices: Preliminary Draft Monitoring Framework for the Goals And Preliminary Draft Monitoring Framework for Targets CBD/WG2020/2/3/Add.1 (CBD, 2020).87.UNEP-WCMC Indicators for the Post-2020 Global Biodiversity Framework. Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership and Incorporating Inputs from Peer Review CBD/SBSTTA/24/INF/20 (CBD, 2021).88.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Proposed Headline Indicators of the Monitoring Framework for the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3/Add.1 (CBD, 2021).89.Geldmann, J. et al. Essential indicators for measuring site-based conservation effectiveness in the post-2020 global biodiversity framework. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).90.Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2020).Article
Google Scholar
91.Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).Article
Google Scholar
92.Brown, C. J. et al. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecol. Indic. 126, 107694 (2021).Article
Google Scholar
93.Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 Monthly Sea Ice Extent (NSIDC, 2017).94.Karger, D. N., Kessler, M., Lehnert, M. & Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01450-y (2021).95.Skowno, A. L., Jewitt, D. & Slingsby, J. A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. South Afr. J. Sci. 117, 8182 (2021).
Google Scholar
96.Murray, N. J. et al. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. v. 1.0 (Wildlife Conservation Society, 2020).97.Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 35, 325–335 (2020).PubMed
Article
PubMed Central
Google Scholar
98.Fuller, R. M., Smith, G. M. & Devereux, B. J. The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Observ. Geoinf. 4, 243–253 (2003).Article
Google Scholar
99.Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article
Google Scholar
100.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS
Article
Google Scholar
101.Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
102.Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
103.Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B 280, 20122649 (2013).PubMed
PubMed Central
Article
Google Scholar
104.Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
105.Fraixedas, S. et al. A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indic. 118, 106728 (2020).Article
Google Scholar
106.Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).PubMed
Article
PubMed Central
Google Scholar
107.Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348 (2015).Article
Google Scholar
108.Peterson, G. D., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article
Google Scholar
109.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
110.Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, e3000247 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
111.Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring eological integrity within protected areas. Bioscience 53, 851–860 (2003).Article
Google Scholar
112.Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).Article
Google Scholar
113.Juffe-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation knowledge. PLoS ONE 11, e0160640 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
114.Rowland, J. A., Lee, C. K. F., Bland, L. M. & Nicholson, E. Testing the performance of ecosystem indices for biodiversity monitoring. Ecol. Indic. 116, 106453 (2020).Article
Google Scholar
115.Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
116.Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
117.Fu, C. et al. Making ecological indicators management ready: assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 105, 16–28 (2019).Article
Google Scholar
118.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).PubMed
Article
PubMed Central
Google Scholar
119.Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).Article
Google Scholar
120.Stevenson, S. L. et al. Matching biodiversity indicators to policy needs. Conserv. Biol. 35, 522–532 (2021).PubMed
Article
PubMed Central
Google Scholar
121.Han, X. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).Article
Google Scholar
122.Stephenson, P. J. & Stengel, C. An inventory of biodiversity data sources for conservation monitoring. PLoS ONE 15, e0242923 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
123.Bhatt, R. et al. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).Article
Google Scholar
124.Hein, L. et al. Defining ecosystem assets for natural capital accounting. PLoS ONE 11, e0164460 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
125.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).PubMed
Article
PubMed Central
Google Scholar
126.Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).PubMed
PubMed Central
Article
Google Scholar
127.Goodwin, K. D. et al. DNA Sequencing as a tool to monitor marine ecological status. Front. Marine Sci. 4, 107 (2017).Article
Google Scholar
128.Pace, M. L., Carpenter, S. R. & Cole, J. J. With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13, 460–467 (2015).Article
Google Scholar
129.Scheffer, M., Carpenter, S. R., Dakos, V. & Nes, E. H. V. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).Article
Google Scholar
130.Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
131.Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).PubMed
Article
PubMed Central
Google Scholar
132.Zhao, L.-X. et al. Fairy circles reveal the resilience of self-organized salt marshes. Sci. Adv. 7, eabe1100 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
133.Sievers, M. et al. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).Article
Google Scholar
134.Allen, C. R. et al. Quantifying spatial resilience. J. Appl Ecol. 53, 625–635 (2016).Article
Google Scholar
135.Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).Article
Google Scholar
136.Moonlight, P. W. et al. Expanding tropical forest monitoring into dry forests: The DRYFLOR protocol for permanent plots. Plants People Planet 3, 295–300 (2021).Article
Google Scholar
137.Réjou-Méchain, M. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).PubMed
Article
CAS
PubMed Central
Google Scholar
138.Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).Article
Google Scholar
139.Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).PubMed
Article
PubMed Central
Google Scholar
140.Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article
Google Scholar
141.Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).Article
Google Scholar
142.The IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org/143.An Indicator of the Conservation Status of Useful Wild Plants (CIAT, 2020); https://ciat.cgiar.org/usefulplants-indicator/144.Measuring Change in the Extent of Water-Related Ecosystems Over time. Sustainable Development Goal Monitoring Methodology Indicator 6.6.1 (UNEP, UN Water, 2020).145.Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).Article
Google Scholar
146.Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 9–20 (2015).Article
Google Scholar
147.Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).Article
Google Scholar
148.Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
149.Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).Article
Google Scholar
150.Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35 (2016).Article
Google Scholar
151.Ferrier, S., Harwood, T. D., Ware, C. & Hoskins, A. J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 117, 106554 (2020).Article
Google Scholar
152.Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).Article
Google Scholar
153.McRae, L., Deinet, S. & Freeman, R. The Diversity-Weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
154.Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26, 760–771 (2020).Article
Google Scholar
155.Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).PubMed
PubMed Central
Article
Google Scholar
156.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article
Google Scholar
157.Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12592 (2020).Article
Google Scholar
158.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
159.DiMiceli, C., Townshend, J., Carroll, M. & Sohlberg, R. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sens. Environ. 254, 112271 (2021).Article
Google Scholar
160.Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Marine Sci. 6, 580 (2019).Article
Google Scholar
161.Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349–355 (2019).Article
Google Scholar
162.Kogan, F. N. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636 (1997).Article
Google Scholar
163.Stelzer, K., Simis, S. & Müller, D. Copernicus Global Land Operations, Cryosphere and Water, CGLOPS-2, Framework Service Contract N° 199496 (JRC): Product User Manual Lake Waters, 300M and 1KM products, Versions 1.3.0–1.4.0, Issue I1.10 (Copernicus, 2020).164.Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium 1783–1793 (2006).165.Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article
Google Scholar
166.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
167.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
168.Purvis, A. A single apex target for biodiversity would be bad news for both nature and people. Nat. Ecol. Evol. 4, 768–769 (2020).PubMed
Article
PubMed Central
Google Scholar
169.Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
170.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
171.Preston, B. J. & Adam, P. Describing and listing threatened ecological communities under the Threatened Species Conservation Act 1995 (NSW): part 1—the assemblage of species and the particular area. Environ. Plan. Law J. 21, 250–263 (2004).
Google Scholar
172.Noss, R. F. Ecosystems as conservation targets. Trends Ecol. Evol. 11, 351 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
173.Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front Ecol. Environ. 16, 29–36 (2018).Article
Google Scholar
174.Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).Article
Google Scholar
175.Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article
Google Scholar
176.Grafton, R. Q. et al. Realizing resilience for decision-making. Nat. Sustain. 2, 907–913 (2019).Article
Google Scholar
177.Chambers, J. C., Allen, C. R. & Cushman, S. A. Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00241 (2019).178.Higuera, P. E. et al. Integrating subjective and objective dimensions of resilience in fire-prone landscapes. Bioscience 69, 379–388 (2019).PubMed
PubMed Central
Article
Google Scholar
179.Newton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).Article
Google Scholar
180.Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecol. 40, 433–443 (2015).Article
Google Scholar
181.Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).Article
Google Scholar
182.Rohwer, Y. & Marris, E. Ecosystem integrity is neither real nor valuable. Conserv. Sci. Pract. 3, e411 (2021).
Google Scholar
183.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Scientific and Technical information to support the review of the Proposed Goals and Targets in the Updated Zero Draft of the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3/Add.2 (CBD, 2021).184.McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).Article
Google Scholar
185.Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar More