More stories

  • in

    Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog

    1.Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat fragmentation in the temperate zone. Conserv. Biol. 6, 237–256 (1986).
    Google Scholar 
    2.Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. USA 114, 7635–7640 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2011).Article 

    Google Scholar 
    4.Okie, J. G. & Brown, J. H. Niches, body sizes, and the disassembly of mammal communities on the Sunda Shelf islands. Proc. Natl. Acad. Sci. USA 106, 19679–19684 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Viveiros De Castro, E. B. & Fernandez, F. A. S. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119, 73–80 (2004).Article 

    Google Scholar 
    6.Feeley, K. J. & Terborgh, J. W. Direct versus indirect effects of habitat reduction on the loss of avian species from tropical forest fragments. Anim. Conserv. 11, 353–360 (2008).Article 

    Google Scholar 
    7.Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. USA 105, 20770–20775 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).Article 

    Google Scholar 
    9.Janecka, J. E. et al. Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conserv. Genet. 17, 1093–1108 (2016).Article 

    Google Scholar 
    10.Creel, S. Four factors modifying the effect of competition on Carnivore population dynamics as illustrated by African wild dogs. Conserv. Biol. 15, 271–274 (2001).Article 

    Google Scholar 
    11.Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).Article 

    Google Scholar 
    12.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343 (2014).13.Sanderson, C. E., Jobbins, S. E. & Alexander, K. A. With Allee effects, life for the social carnivore is complicated. Popul. Ecol. 56, 417–425 (2014).Article 

    Google Scholar 
    14.Kamler, J. F. et al. Cuon alpinus. The IUCN Red List of Threatened Species 2015: e.T5953A72477893. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).15.Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the endangered dhole cuon alpinus in the high elevation eastern himalayan habitats of khangchendzonga biosphere reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article 

    Google Scholar 
    16.Pal, R., Thakur, S., Arya, S., Bhattacharya, T. & Sathyakumar, S. Recent records of dhole (Cuon alpinus, Pallas 1811) in Uttarakhand, Western Himalaya, India. Mammalia 82, 614–617 (2018).Article 

    Google Scholar 
    17.Karanth, K. K., Nichols, J. D., UllasKaranth, K., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article 

    Google Scholar 
    18.Keyghobadi, N. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85, 1049–1064 (2007).Article 

    Google Scholar 
    19.Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26, 1498–1514 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Ghaskadbi, P., Habib, B. & Qureshi, Q. A whistle in the woods: An ethogram and activity budget for the dhole in central India. J. Mammal. 97, 1745–1752 (2016).Article 

    Google Scholar 
    21.Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger (Panthera tigiris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J. Zool. Lond. 250, 255–265 (2000).Article 

    Google Scholar 
    22.Johnsingh, A. J. T. Reproduction and social behaviour of the dhole, Cuon alpinus (Canidae). J. Zool. 198, 443–463 (1982).Article 

    Google Scholar 
    23.Ngoprasert, D. & Gale, G. A. Tiger density, dhole occupancy, and prey occupancy in the human disturbed Dong Phayayen—Khao Yai Forest Complex, Thailand. Mammal. Biol. 95, 51–58 (2019).Article 

    Google Scholar 
    24.Selvan, K. M., Lyngdoh, S., Habib, B. & Gopi, G. V. Population density and abundance of sympatric large carnivores in the lowland tropical evergreen forest of Indian Eastern Himalayas. Mammal. Biol. 79, 254–258 (2014).Article 

    Google Scholar 
    25.Jenks, K. E. et al. Comparative movement analysis for a sympatric dhole and golden jackal in a human-dominated landscape. Raffles Bull. Zool. 63, 546–554 (2015).
    Google Scholar 
    26.Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Modi, S. et al. Noninvasive DNA-based species and sex identification of Asiatic wild dog (Cuonalpinus). J. Genet. 97, 1457–1461 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Iyengar, A. et al. Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus). Mol. Ecol. 14, 2281–2297 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Durbin, L., Venkataraman, A. & Hedges, S. D. J. Dhole (Cuon alpinus). In Status Survery and Conservation Action Plan. Canids: Foxes, Wolves, Jackals and Dogs (eds. Sillero-Zubiri, C., Hoffman, M. & Macdonald, D. W.) 210–219 (2004).30.Smith, O. & Wang, J. When can noninvasive samples provide sufficient information in conservation genetics studies?. Mol. Ecol. Resour. 14, 1011–1023 (2014).CAS 
    PubMed 

    Google Scholar 
    31.Godinho, R. et al. Real-time assessment of hybridization between wolves and dogs: Combining noninvasive samples with ancestry informative markers. Mol. Ecol. Resour. 15, 317–328 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Venkataraman, A. B., Arumugam, R. & Sukumar, R. The foraging ecology of dhole (Cuon alpinus) in Mudumalai Sanctuary, southern India. J. Zool. 237, 543–561 (1995).Article 

    Google Scholar 
    33.Srivathsa, A., Karanth, K. U., Kumar, N. S. & Oli, M. K. Insights from distribution dynamics inform strategies to conserve a dhole Cuon alpinus metapopulation in India. Sci. Rep. 9, 1–12 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Reddy, C. S., Sreelekshmi, S., Jha, C. S. & Dadhwal, V. K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 60, 453–464 (2013).Article 

    Google Scholar 
    35.Dutta, T., Sharma, S. & DeFries, R. Targeting restoration sites to improve connectivity in a tiger conservation landscape in India. PeerJ 6, e5587 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Mondal, I., Habib, B., Talukdar, G. & Nigam, P. Triage of means: Options for conserving tiger corridors beyond designated protected lands in India. Front. Ecol. Evol. 4, 2–7 (2016).ADS 
    Article 

    Google Scholar 
    37.Lowther, A. D., Harcourt, R. G., Goldsworthy, S. D. & Stow, A. Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim. Behav. 83, 691–701 (2012).Article 

    Google Scholar 
    38.Marsden, C. D. et al. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). Mol. Ecol. 21, 1379–1393 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9 (2014).40.Dutta, T. et al. Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers. Distrib. 19, 760–771 (2013).Article 

    Google Scholar 
    41.Thatte, P. et al. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 26, 299–314 (2020).Article 

    Google Scholar 
    42.Slatkin M. Gene flow and population structure. Ecol. Genet. 3–17 (1994).43.Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing effect of Prey availability and Apex predator. Ecol. Evol. 00, 1–12 (2021).
    Google Scholar 
    44.Davies, K. F., Margules, C. R. & Lawrence, J. F. Which traits of species predict population declines in experimental forest fragments?. Ecology 81, 1450–1461 (2000).Article 

    Google Scholar 
    45.Bhatt, S., Biswas, S., Karanth, K., Pandav, B. & Mondol, S. Genetic analyses reveal population structure and recent decline in leopards (Panthera pardus fusca) across the Indian subcontinent. PeerJ 8, e8482 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Mondol, S., Karanth, K. U. & Ramakrishnan, U. Why the Indian subcontinent holds the key to global tiger recovery. PLoS Genet. 5 (2009).47.Nijman, V. et al. Illegal wildlife trade–surveying open animal markets and online platforms to understand the poaching of wild cats. Biodiversity 20, 58–61 (2019).Article 

    Google Scholar 
    48.Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal. Rev. 50, 399–412 (2020).Article 

    Google Scholar 
    49.Richards, J. F. & Elizabeth, P. F. A century of land-use change in South and Southeast Asia. In Effects of land-use change on atmospheric CO2 concentrations 15–66 (1994).50.Goldewijk, K. K. & Ramankutty, N. Land use changes during the past 300 years (EOLSS Publisher Co., 2009).
    Google Scholar 
    51.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 14 (2013).
    Google Scholar 
    52.Rangarajan, M. Fencing the forest: Conservation and ecological change in India’s central provinces 1860–1914 (1999).53.Gadgil, M. Towards an ecological history of India. Econ. Pol. Wkly. 20, 1909–1911 (2011).
    Google Scholar 
    54.Bebarta, K. C. Teak; ecology, silviculture, management and profitability (International Book Distributors, 1999).
    Google Scholar 
    55.Waples, R. S. & England, P. R. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189, 633–644 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).Article 

    Google Scholar 
    57.de Manuel, M. et al. The evolutionary history of extinct and living lions. Proc. Natl. Acad. Sci. USA 117, 10927–10934 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Creel, S. Social organization and effective population size in carnivores. Behav. Ecol. Conserv. Biol. 264–265 (1998).59.Lande, R. & Barrowclough, G. Effective population size, genetic variation, and their use in population. Viable Popul. Conserv. 87–123 (1987).60.Neel, M. C. et al. Estimation of effective population size in continuously distributed populations: There goes the neighborhood. Heredity 111, 189–199 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Girman, D. J. et al. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus). Mol. Ecol. 10, 1703–1723 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Sacks, B. N., Mitchell, B. R., Williams, C. L. & Ernest, H. B. Coyote movements and social structure along a cryptic population genetic subdivision. Mol. Ecol. 14, 1241–1249 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Stronen, A. V. et al. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche. BMC Ecol. 14, 1–9 (2014).Article 

    Google Scholar 
    64.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4 (2017).65.Walston, J. et al. Bringing the tiger back from the brink-the six percent solution. PLoS Biol. 8, 6–9 (2010).Article 
    CAS 

    Google Scholar 
    66.Champion, H. G. & Seth, S. K. A revised survey of the forest types of India. (Manager of Publications, 1968).67.Biswas, S. et al. A practive faeces collection protocol for multidisciplinary research in wildlife science. Curr. Sci. 116, 1878 (2019).CAS 
    Article 

    Google Scholar 
    68.Hallsworth, J. E., Nomura, Y. & Iwahara, M. Ethanol-induced water stress and fungal growth. J. Ferment. Bioeng. 86, 451–456 (1998).CAS 
    Article 

    Google Scholar 
    69.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    70.Broquet, T. & Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 

    Google Scholar 
    72.Waits, L., Taberlet, P. & Luikart, G. Estimating the probability of identity among genotypesin natural populations: Cautions and guidelines. Mol. Ecol. 10, 249–256 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Valière, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379 (2002).
    Google Scholar 
    74.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinf. 1, 117693430500100 (2005).75.Pritchard, J. K. & Stephens, M. D. M. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).78.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Caye, K., Deist, T. M., Martins, H., Michel, O. & François, O. TESS3: Fast inference of spatial population structure and genome scans for selection. Mol. Ecol. Resour. 16, 540–548 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Jombart, T. et al. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Jombart, T., Devillard, S., Dufour, A. B. & Pontier, D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Thioulouse, J., Chessel, D. & Champely, S. Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ. Ecol. Stat. 2, 1–14 (1995).Article 

    Google Scholar 
    84.Moran, P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B Stat. Methodol. 10, 243–251 (1948).85.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    88.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Ryman, N. & Leimar, O. GST is still a useful measure of genetic differentiation—A comment on Jost’s D. Mol. Ecol. 18, 2084–2087 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Faubet, P., Waples, R. S. & Gaggiotti, O. E. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 16, 1149–1166 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article 

    Google Scholar 
    96.Nikolic, N. & Chevalet, C. Detecting past changes of effective population size. Evol. Appl. 7, 663–681 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Kimura, M. & Ohta, T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA 75, 2868–2872 (1978).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    98.Ruiz-Garcia, M. et al. Determination of microsatellite DNA mutation rates, mutation models and mutation bias in four main Felidae lineages (European wild cat, F. silvestris; ocelot, Leopardus pardalis; puma, Puma concolor; jaguar, Panthera onca). In Molecular Population Genetics, Evolutionary Biology & Biological Conservation of Neotropical Carnivores. (Nova Science Publishers Inc., New York, 2013).99.Xu, X., Peng, M., Fang, Z. & Xu, X. The direction of microsatellite mutations is dependent upon allele length. Nat. Genet. 24, 396–399 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Livestock movement informs the risk of disease spread in traditional production systems in East Africa

    Understanding the spatial patterns and drivers of animal movement is a crucial first step to controlling disease spread4. Our study provides novel information about where, how and when cattle move in a region beset by endemic pathogens2,39,40. Because contacts occur heterogeneously through time and space, interventions targeting areas and times of high contact risk could effectively break the chain of transmission across wide areas. We found that cattle herds had the highest probability of contact at dipping sites, far from their bomas, in small herds and during periods of low rainfall, indicating that transmission of all pathogens may be particularly elevated under these conditions (Figs. 5, 6). Nonetheless, cattle spent most of their time in other areas (i.e. near bomas or in grazing areas) where the direction and magnitude of effect of spatiotemporal scale on contact rates varies. This suggests that interventions for different pathogens in these systems will likely require a consideration of scale of transmission and be tailored to particular pathogens. Overall, our study provides a framework for risk-based livestock disease control approaches for the most dominant management systems in sub-Saharan Africa.Daily movement patterns of cattle in pastoral and agropastoral settings in sub-Saharan Africa largely reflect the distribution of shared resources, which determines the distance animals move each day and the probability of contacting each other. Our results are similar to those reported in other regions of Africa, suggesting broadly comparable patterns of daily displacement. For instance, cattle in our agropastoral study area travel to grazing, watering and dipping locations that are ~ 4 km from their bomas and primarily during daylight hours (Fig. 2). Similarly, in Kenya, cattle in the pastoral Mara and Ol Pajeta regions move less than 6 km from their bomas and movements peak around 12:00–14:00 h each day9,41. Despite the predominance of short-distance daily movements, we observed occasional long-distance movements (i.e. up to 12 km), particularly by larger herds. Transhumant cattle in Cameroon also moved up to 23 km/day for short periods, while relocating to seasonal grazing areas on the edge of the Sahel, though in most observations (86%) they moved less than 5 km/day8. Although we observed no contacts among cattle from bomas  > 17 km apart (Supplementary Fig. S5), regardless of how contact was defined, infrequent long-distance movements by large herds may provide a conduit for disease transmission between villages42. Indeed, larger herds actually had a lower relative probability of contact across spatiotemporal scales (Fig. 5), which may reflect the fact that large herds were more likely to move to areas away from other collared cattle, either because they were moving outside the study area, or because they had exclusive use of particular areas, whereas smaller herds that were mostly moved around bomas mixed more frequently. While interventions (e.g. vaccination or quarantine) targeting small herds would address local disease events, particularly within villages, halting larger-scale transmission requires an understanding of livestock pathways enabling inter-village connectivity and strategies tailored to herds driving these processes.A key difference between the movement of cattle in agropastoral and pastoral systems lies in the seasonal variation of daily movement. In our study, agropastoralists move their herds farther in the wet compared to the dry season, while the opposite has been reported for pastoralists8,9,41. During the wet season, agropastoralists cultivate crops near their homesteads, which increases competition for space and displaces cattle to reserved grazing areas far from cultivated land11. During the dry season, particularly in the early period, cattle graze harvested fields around the homestead and tend to move short distances each day. In our study, although individual herds travelled more (marginally) in the wet compared to the dry season, there were more contacts following low rainfall periods when resources were typically scarce (Fig. 5). Similarly, a previous study has shown that more villages were connected at shared resource areas during dry spells, which resulted in higher contacts11. This suggests a higher disease risk in the dry compared to wet seasons in agropastoral management systems.Translating movements into contact between individuals is challenging because the definition of a “contact” depends on the distance at which pathogens can travel in space, and the time period that pathogens survive, or mature to an infectious state, in the environment. Most studies that attempt to measure contact, however, focus only on a single scale. Here, we show that pairwise contact rates between cattle herds generally increase with broader spatiotemporal definitions of contact. Yet, there was no difference at spatial scales between 50 m, 100 m and 200 m for a temporal scale of one hour, suggesting these scales are functionally equivalent definitions of contact. Thus, we define “close contact” as proximity of livestock herds within 200 m in any given hour, which would be applicable to multiple disease systems and vital for understanding infectious disease spread in traditionally managed herds. However, given that herds tracked in our study ranged in size from 30 to 500 cattle, for households with herds of  More

  • in

    DNA sequence and community structure diversity of multi-year soil fungi in Grape of Xinjiang

    Soil physicochemical propertiesThe test results of physicochemical factors of the soil are shown in Table 2. In the soil with 15-year vines, the average contents of TK and SK were highest and the contents of SOM and TN were lowest. In the soil with 5-year vines, the contents of XN and SK were relatively higher, and the soil pH was between 7.86 and 7.98, thus it is alkaline soil.Table 2 Determined results of soil physicochemical properties.Full size tableThe analysis of variance showed that grape planting year had significant effect on TK and SP (P  More

  • in

    Hydropower-induced selection of behavioural traits in Atlantic salmon (Salmo salar)

    1.Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human Influences on Evolution, and the Ecological and Societal Consequences (The Royal Society, 2017).Book 

    Google Scholar 
    3.Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B 285, 20182047 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Dynesius, M. & Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266, 753–762 (1994).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy?. Trends Ecol. Evol. 32, 922–935 (2017).PubMed 
    Article 

    Google Scholar 
    6.Calles, O. & Greenberg, L. Connectivity is a two-way street—the need for a holistic approach to fish passage problems in regulated rivers. River Res. Appl. 25, 1268–1286 (2009).Article 

    Google Scholar 
    7.Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784 (1997).Article 

    Google Scholar 
    8.Haraldstad, T. et al. Anthropogenic and natural size-related selection act in concert during brown trout (Salmo trutta) smolt river descent. Hydrobiologia, 1–14 (2020).9.Limburg, K. E. & Waldman, J. R. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59, 955–965 (2009).Article 

    Google Scholar 
    10.Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish 12, 1–59 (2003).Article 

    Google Scholar 
    12.Thorstad, E. B., Økland, F., Aarestrup, K. & Heggberget, T. G. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev. Fish Biol. Fish. 18, 345–371 (2008).Article 

    Google Scholar 
    13.Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. & Reeves, G. H. Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55, 281–287 (1998).Article 

    Google Scholar 
    14.Larinier, M. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609, 97–108 (2008).Article 

    Google Scholar 
    15.Coutant, C. C. & Whitney, R. R. Fish behavior in relation to passage through hydropower turbines: a review. Trans. Am. Fish. Soc. 129, 351–380 (2000).Article 

    Google Scholar 
    16.Montèn, E. Fish and Turbines: Fish Injuries During Passage Through Power Station Turbines (Nordsteds Tryckeri, 1985).
    Google Scholar 
    17.Pracheil, B. M., DeRolph, C. R., Schramm, M. P. & Bevelhimer, M. S. A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage. Rev. Fish Biol. Fisheries 26, 153–167 (2016).Article 

    Google Scholar 
    18.Calles, O., Rivinoja, P. & Greenberg, L. A Historical perspective on downstream passage at hydroelectric plants in swedish rivers. In: Ecohydraulics. Wiley (2013).19.Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish Fish. 19, 340–362 (2017).Article 

    Google Scholar 
    20.Noonan, M. J., Grant, J. W. A. & Jackson, C. D. A quantitative assessment of fish passage efficiency. Fish Fish. 13, 450–464 (2012).Article 

    Google Scholar 
    21.Scruton, D. A., McKinley, R. S., Kouwen, N., Eddy, W. & Booth, R. K. Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Res. Appl. 19, 605–617 (2003).Article 

    Google Scholar 
    22.Mallen-Cooper, M. & Brand, D. A. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage?. Fish. Manage. Ecol. 14, 319–332 (2007).Article 

    Google Scholar 
    23.Bunt, C., Castro-Santos, T. & Haro, A. Performance of fish passage structures at upstream barriers to migration. River Res. Appl. 28, 457–478 (2012).Article 

    Google Scholar 
    24.Haugen, T. O., Aass, P., Stenseth, N. C. & Vøllestad, L. A. Changes in selection and evolutionary responses in migratory brown trout following the construction of a fish ladder. Evol. Appl. 1, 319–335 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Mallen-Cooper, M. & Stuart, I. G. Optimising Denil fishways for passage of small and large fishes. Fish. Manage. Ecol. 14, 61–71 (2007).Article 

    Google Scholar 
    26.Maynard, G. A., Kinnison, M. & Zydlewski, J. D. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population. River Res. Appl. 33, 1004–1015 (2017).Article 

    Google Scholar 
    27.Lothian, A. J. et al. Are we designing fishways for diversity? Potential selection on alternative phenotypes resulting from differential passage in brown trout. J Environ Manag 262, 110317 (2020).Article 

    Google Scholar 
    28.Haraldstad, T., Haugen, T. O., Kroglund, F., Olsen, E. M. & Höglund, E. Migratory passage structures at hydropower plants as potential physiological and behavioural selective agents. R. Soc. Open Sci. 6, 190 (2019).Article 

    Google Scholar 
    29.Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. R. Soc. B: Biol. Sci. 282, 20142201 (2015).Article 

    Google Scholar 
    31.Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B: Biol. Sci. 365, 4051–4063 (2010).Article 

    Google Scholar 
    32.Haraldstad, T., Höglund, E., Kroglund, F., Haugen, T. O. & Forseth, T. Common mechanisms for guidance efficiency of descending Atlantic salmon smolts in small and large hydroelectric power plants. River Res. Appl. 34, 1179–1185 (2018).Article 

    Google Scholar 
    33.Larsen, M. H., Thorn, A. N., Skov, C. & Aarestrup, K. Effects of passive integrated transponder tags on survival and growth of juvenile Atlantic salmon Salmo salar. Anim. Biotelem. 1, 19 (2013).Article 

    Google Scholar 
    34.Vollset, K. W. et al. Systematic review and meta-analysis of PIT tagging effects on mortality and growth of juvenile salmonids. Rev. Fish Biol. Fish, 1–16 (2020).35.Adriaenssens, B. & Johnsson, J. I. Natural selection, plasticity and the emergence of a behavioural syndrome in the wild. Ecol. Lett. 16, 47–55 (2013).PubMed 
    Article 

    Google Scholar 
    36.Dingemanse, N. J. et al. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 76, 1128–1138 (2007).PubMed 
    Article 

    Google Scholar 
    37.Larsen, M. H. et al. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration. PLoS ONE 10, e0119127 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Castanheira, M. F., Herrera, M., Costas, B., Conceição, L. E. & Martins, C. I. Can we predict personality in fish? Searching for consistency over time and across contexts. PLoS ONE 8, e62037 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Huntingford, F. et al. Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. J. Fish Biol. 76, 1576–1591 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Brown, C., Jones, F. & Braithwaite, V. Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J. Fish Biol. 71, 1590–1601 (2007).Article 

    Google Scholar 
    41.R Development Core Team. R: A language and environment for statistical computing.). R Foundation for Statistical Computing (2016).42.Akaike, H. A. new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    43.Anderson, D. R. Model-Based Interference in the Life Sciences: A Primer on Evidence (Springer, 2008).MATH 
    Book 

    Google Scholar 
    44.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).45.Brunham, A. & Anderson D, R. Model selection and multimodel inference: A practical information-theoretic approach. 2nd edn (Springer-Verlag, New York 2002).46.Fjeldstad, H. P., Alfredsen, K. & Boissy, T. Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river. Fish. Manage. Ecol. 21, 22–31 (2014).Article 

    Google Scholar 
    47.Calles, O. et al. Anordning för upp- och nedströmspassage av fisk vid vattenanläggningar (2013).48.Larinier, M., Travade, F. The development and evaluation of downstream bypasses for juvenile salmonids at small hydroelectric plants in France. Innov. Fish Passage Technol. 25–42 (1999).49.Turnpenny, A. W. H., O`Keeffe, N. Screening for intake and Outfalls: a best practice guide (2005).50.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 
    Article 

    Google Scholar 
    51.Taylor, M. K. & Cooke, S. J. Repeatability of movement behaviour in a wild salmonid revealed by telemetry. J. Fish Biol. 84, 1240–1246 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    52.Odling-Smee, L. & Braithwaite, V. A. The role of learning in fish orientation. Fish Fish. 4, 235–246 (2003).Article 

    Google Scholar 
    53.Lucon-Xiccato, T., Montalbano, G. & Bertolucci, C. Personality traits covary with individual differences in inhibitory abilities in 2 species of fish. Curr. Zool. 66, 187–195 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Endler, J. A. Natural Selection in the Wild (Princeton University Press, 1986).
    Google Scholar 
    55.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
    Article 

    Google Scholar 
    57.Wuerz, Y. & Krüger, O. Personality over ontogeny in zebra finches: long-term repeatable traits but unstable behavioural syndromes. Front. Zool. 12, S9 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wolf, M. & Weissing, F. J. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed 
    Article 

    Google Scholar 
    59.Cordero-Rivera, A. Behavioral diversity (ethodiversity): a neglected level in the study of biodiversity. Front. Ecol. Evol. 5, 7 (2017).ADS 
    Article 

    Google Scholar 
    60.Biro, P. A. & Post, J. R. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl. Acad. Sci. 105, 2919–2922 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Uusi-Heikkilä, S., Wolter, C., Klefoth, T. & Arlinghaus, R. A behavioral perspective on fishing-induced evolution. Trends Ecol. Evol. 23, 419–421 (2008).PubMed 
    Article 

    Google Scholar 
    62.Cooke, S. J., Suski, C. D., Ostrand, K. G., Wahl, D. H. & Philipp, D. P. Physiological and behavioral consequences of long-term artificial hselection for vulnerability to recreational angling in a teleost fish. Physiol. Biochem. Zool. 80, 480–490 (2007).PubMed 
    Article 

    Google Scholar  More

  • in

    Uneven declines between corals and cryptobenthic fish symbionts from multiple disturbances

    Host and mutual symbionts decline at different rates following consecutive cyclones and bleachingBefore and after disturbances, we surveyed Acropora corals known to host Gobiodon coral gobies along line (30 m) and cross (two 4-m by 1-m belt) transects. In February 2014, prior to cyclones and bleaching events, most of these Acropora corals were inhabited by Gobiodon coral gobies. Gobies were not found in corals under 7-cm average diameter, therefore we only sampled bigger corals. The vast majority of transects (95%) had Acropora corals. On average there were 3.24 ± 0.25 (mean ± standard error) Acropora coral species per transect (Fig. 2a) and a total of 17 species were observed among all 2014 transects. Average coral diameter was 25.4 ± 1.0 cm (Fig. 2b), with some corals reaching over 100 cm. Only 4.1 ± 1.4% of corals lacked any goby inhabitants (Fig. 2c). On average there were 3.37 ± 0.26 species of gobies per transect (Fig. 2d) and a total of 13 species among all 2014 transects. In each occupied coral there were 2.20 ± 0.14 gobies (Fig. 2e), with a maximum of 11 individuals of the same species.Figure 2Effects of consecutive climate disturbances on coral and goby populations. Changes in Acropora (a) richness (n = 279), and (b) average diameter (n = 244), (c) percent goby occupancy (n = 244) and Gobiodon (d) richness (n = 279), and (e) group size (n = 230) per transect (n = sample size per variable) before and after each cyclone (black cyclone symbols) and after two consecutive heatwaves/bleaching events (white coral symbols) around Lizard Island, Great Barrier Reef, Australia. Error bars are standard error. Fish and coral symbols above each graph illustrate the change in means for each variable among sampling events from post-hoc tests. Figures were illustrated in R (v3.5.2)33 and Microsoft Office PowerPoint 2016.Full size imageIn January–February 2015, 9 months after Cyclone Ita (category 4) struck from the north (Supplementary Fig. 1), follow-up surveys revealed no changes to coral richness (p = 0.986, see Supplementary Table 1 for all statistical outputs) relative to February 2014, but corals were 19% smaller (p  More

  • in

    Fire suppression and seed dispersal play critical roles in the establishment of tropical forest tree species in southeastern Africa

    1.Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F., Lewis, S. L. & Meir, P. Measuring woody encroachment along a forest-savanna boundary in Central Africa. Earth Interact. 13, 1–29 (2009).Article 

    Google Scholar 
    2.Murphy, B. P. & Bowman, D. M. J. S. What controls the distribution of tropical forest and savanna?. Ecol. Lett. 15, 748–758 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bowman, D. M. J. S., Murphy, B. P. & Banfai, D. S. Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics?. Landsc. Ecol. 25, 1247–1260 (2010).Article 

    Google Scholar 
    5.Favier, C., Namur, C. D. & Dubois, M. F. Forest progression modes in littoral Congo, central atlantic Africa. J. Biogeogr. 31, 1445–1461 (2004).Article 

    Google Scholar 
    6.Puyravaud, J. P., Dufour, C. & Aravajy, S. Rain forest expansion mediated by successional processes in vegetation thickets in the Western Ghats of India. J. Biogeogr. 30, 1067–1080 (2003).Article 

    Google Scholar 
    7.Tng, D. Y. P. et al. Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years. Ecol. Evol. 2, 34–45 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mariano, V., Rebolo, I. F. & Christianini, A. V. Fire sensitive species dominate seed rain after fire supression: implications for plant community diversity and woody encroachment in the Cerrado. Biotropica 51, 5–9 (2019).Article 

    Google Scholar 
    9.Ferreira, A. V., Bruna, E. M. & Vasconcelos, H. L. Seed predators limit plant recruitment in neotropical savannas. Oikos 120, 1013–1022 (2010).Article 

    Google Scholar 
    10.Azihou, A. F., Glèlè Kakaï, R. & Sinsin, B. Do isolated gallery-forest trees facilitate recruitment of forest seedlings and saplings in savannna?. Acta Oecol. 53, 11–18 (2013).ADS 
    Article 

    Google Scholar 
    11.Duarte, L. D. S., Dos-Santos, M. M. G., Hartz, S. M. & Pillar, V. D. Role of nurse plants in Araucaria Forest expansion over grassland in south Brazil. Austral Ecol. 31, 520–528 (2006).Article 

    Google Scholar 
    12.Hoffmann, W. A. The Effects of Fire and Cover on Seedling Establishment in a Neotropical Savanna. J. Ecol. 84, 383–393 (1996).Article 

    Google Scholar 
    13.Hoffmann, W. A., Orthen, B. & Franco, A. C. Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140, 252–260 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Lawes, M. J., Murphy, B. P., Midgley, J. J. & Russell-Smith, J. Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?. Oecologia 166, 229–239 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Russell-Smith, J., Stanton, P. J., Whitehead, P. J. & Edwards, A. Rain forest invasion of eucalypt-dominated woodland savanna, iron range, north-eastern Australia: I. Successional processes. J. Biogeogr. 31, 1293–1303 (2004).Article 

    Google Scholar 
    16.Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    17.Callaway, R. M. Positive interactions among plants. Bot. Rev. 61, 306–349 (1995).Article 

    Google Scholar 
    18.Slocum, M. G. & Horvitz, C. C. Seed arrival under different genera of trees in a neotropical pasture. Plant Ecol. 149, 51–62 (2000).Article 

    Google Scholar 
    19.Schlawin, J. R. & Zahawi, R. A. ‘Nucleating’ succession in recovering neotropical wet forests: the legacy of remnant trees. J. Veg. Sci. 19, 485–492 (2008).Article 

    Google Scholar 
    20.Slocum, M. G. How tree species differ as recruitment foci in a tropical pasture. Ecology 82, 2547–2559 (2001).Article 

    Google Scholar 
    21.Fujita, T. Ficus natalensis facilitates the establishment of a montane rain-forest tree in south-east African tropical woodlands. J. Trop. Ecol. 30, 303–310 (2014).Article 

    Google Scholar 
    22.de Dantas, V. L. et al. Plant dispersal strategies and the colonization of araucaria forest patches in a grassland-forest mosaic. J. Veg. Sci. 18, 847–858 (2007).Article 

    Google Scholar 
    23.Campbell, B., Frost, P. & Byron, N. Miombo woodlands and their use: overview and key issues. In The Miombo in transition: woodlands and welfare in Africa (ed. Campbell, B.) 1–5 (Center for International Forestry Research, 1996).
    Google Scholar 
    24.White, F., Dowsett-Lemaire, F. & Chapman, S. Evergreen Forest Flora of Malawi (Royal Botanic Gardens, 2001).
    Google Scholar 
    25.Chapman, J. D. PART II Description of the forest. In The evergreen forests of Malawi (eds. Chapman, J. D. & White, F.) 113–180 (Commonwealth Forestry Institute, 1970).
    Google Scholar 
    26.Hoffmann, W. A. et al. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Frazer, G. W., Canham, C. D., & Lertzman, K. P. Gap Light Analyzer (GLA) 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. http://remmain.rem.sfu.ca/downloads/Forestry/GLAV2UsersManual.pdf (1999).28.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    29.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    30.Trauernicht, C., Murphy, B. P., Portner, T. E. & Bowman, D. M. J. S. Tree cover-fire interactions promote the persistence of a fire-sensitive conifer in a highly flammable savanna. J. Ecol. 100, 958–968 (2012).Article 

    Google Scholar 
    31.Castro, J., Zamora, R., Hódar, J. A. & Gómez, J. M. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J. Ecol. 92, 266–277 (2004).Article 

    Google Scholar 
    32.Gómez-Aparicio, L., Gómez, J. M., Zamora, R. & Boettinger, J. L. Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J. Veg. Sci. 16, 191–198 (2005).Article 

    Google Scholar 
    33.Smit, C., Den Ouden, J. & Díaz, M. Facilitation of Quercus ilex recruitment by shrubs in Mediterranean open woodlands. J. Veg. Sci. 19, 193–200 (2008).Article 

    Google Scholar 
    34.Rao, S. J., Iason, G. R., Hulbert, I. A. R., Elston, D. A. & Racey, P. A. The effect of sapling density, heather height and season on browsing by mountain hares on birch. J. Appl. Ecol. 40, 626–638 (2003).Article 

    Google Scholar 
    35.de Dantas, V. L., Hirota, M., Oliveira, R. S. & Pausas, J. G. Disturbance maintains alternative biome states. Ecol. Lett. 19, 12–19 (2016).Article 

    Google Scholar 
    36.Terborgh, J. et al. Megafaunal influences on tree recruitment in African equatorial forests. Ecography 39, 180–186 (2016).Article 

    Google Scholar 
    37.Ripple, R. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498. https://doi.org/10.1098/rsos.160498 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hegerl, C., Burgess, N., Nielsen, M., Martin, E., Ciolli, M., & Rovero, F. Using camera trap data to assess the impact of bushmeat hunting on forest mammals in Tanzania. Oryx 51(1), 87–97 (2017).Article 

    Google Scholar 
    39.Bowman, D. M. J. S. & Panton, W. J. Factors that control monsoon-rainforest seedling establishment and growth in North Australian Eucalyptus Savanna. J. Ecol. 81, 297–304 (1993).Article 

    Google Scholar 
    40.Ruggiero, C. P. G., Batalha, M. A., Pivello, V. R. & Meirelles, S. T. Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160, 1–16 (2002).Article 

    Google Scholar 
    41.Viani, R. A. G., Rodrigues, R. R., Dawson, T. E. & Oliveira, R. S. Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil 349, 341–353 (2011).CAS 
    Article 

    Google Scholar 
    42.Chen, J. et al. Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecolog. Divers. 8, 199–210 (2015).Article 

    Google Scholar 
    43.Zahawi, R. A., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50(2013), 88–96 (2013).Article 

    Google Scholar 
    44.Clark, C. J., Poulsen, J. R., Connor, E. F. & Parker, V. T. Fruiting trees as dispersal foci in a semi-deciduous tropical forest. Oecologia 139, 66–75 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Carlo, T. A. & Aukema, J. E. Female-directed dispersal and facilitation between a tropical mistletoe and a dioecious host. Ecology 86, 3245–3251 (2005).Article 

    Google Scholar 
    46.Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Response to: Problems and promises of savanna fire regime change

    Laris also notes that people in West Africa overwhelmingly set early dry season (EDS) fires. This is true for Burkina Faso, Senegal, Benin, Togo, Ghana, which all have an early burning pattern (See Table 1). However, this is not the case for Nigeria, Sierra Leone and Guinea-Bissau, which have most emissions in the late dry season (LDS) (see Table 1). Also, if we sum the total EDS and LDS emissions for West African Countries, then 45% of emissions occur in the EDS and 55% in the late dry season (see Table 1). The total West African contribution is around 8% of the total African savanna emissions—a relatively small contributor.We haven’t suggested that the early burning practise would work for all of West Africa, but the evidence suggests that it would work for Nigeria, Sierra Leone and Guinea-Bissau (see Table 1). We agree, many of the West African countries have significant EDS burning patterns like Burkina Faso, Senegal, Benin, Togo and Ghana and would not benefit from the approach. However, for those countries with significant EDS burning that still have significant LDS emissions as well, such as Mali and Côte d’Ivoire, there may be some opportunity for further emissions reductions through improved fire management practices as presented in our paper3.Laris1 also points out that the same EDS regime proposed is one that was developed by indigenous people and that it has been applied by Africans for centuries. The same is true for Australia, but colonial occupation altered that, as it has in some areas of Africa. A new incentive in the form of carbon payments for early burning in Australia has empowered local indigenous people to reconnect to their traditional lands and fulfil their cultural obligations and a diversity burning practices14. More

  • in

    Collective behaviour can stabilize ecosystems

    1.Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237 (2000).2.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).3.Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).4.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).5.Costantino, R. F., Cushing, J. M., Dennis, B. & Desharnais, R. A. Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230 (1995).6.Fussmann, G. F., Ellner, S. P., Shertzer, K. W. & Hairston, N. G. Jr. Crossing the Hopf bifurcation in a live predator-prey system. Science 290, 1358–1360 (2000).7.Dalziel, B. D. et al. Persistent chaos of measles epidemics in the prevaccination United States caused by a small change in seasonal transmission patterns. PLoS Comput. Biol. 12, e1004655 (2016).8.Darwin, C. On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).9.Gause, G. F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79, 16–17 (1934).10.Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).Article 

    Google Scholar 
    11.Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).Article 

    Google Scholar 
    12.McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).13.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).14.Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).15.May, R. M. Host-parasitoid systems in patchy environments: a phenomenological model. J. Anim. Ecol. 47, 833–844 (1978).Article 

    Google Scholar 
    16.Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid–host and predator–prey models: a review. Theor. Popul. Biol. 65, 299–315 (2004).17.Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).Article 

    Google Scholar 
    18.Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).19.Nagy, M., Akos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).20.Dalziel, B. D., Corre, M. L., Côté, S. D. & Ellner, S. P. Detecting collective behaviour in animal relocation data, with application to migrating caribou. Methods Ecol. Evol. 7, 30–41 (2015).Article 

    Google Scholar 
    21.Torney, C. J. et al. Inferring the rules of social interaction in migrating caribou. Phil. Trans. R. Soc. B 373, 20170385 (2018).22.Fryxell, J. M., Mosser, A., Sinclair, A. R. E. & Packer, C. Group formation stabilizes predator–prey dynamics. Nature 449, 1041–1043 (2007).23.Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995).CAS 
    Article 

    Google Scholar 
    24.Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).25.King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding collective behaviour: an ecological perspective. Trends Ecol. Evol. 33, 347–357 (2018).26.Sumpter, D. J. T. Collective Animal Behavior (Princeton Univ. Press, 2010).27.Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).CAS 
    Article 

    Google Scholar 
    28.Barbier, M. & Watson, J. R. The spatial dynamics of predators and the benefits and costs of sharing information. PLoS Comput. Biol. 12, e1005147 (2016).29.Lotka, A. J. Analytical note on certain rhythmic relations in organic systems. Proc. Natl Acad. Sci. USA 6, 410–415 (1920).CAS 
    Article 

    Google Scholar 
    30.Rosenzweig, M. L. & MacArthur, R. H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 97, 209–223 (1963).Article 

    Google Scholar 
    31.Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).32.Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).33.MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).Article 

    Google Scholar 
    34.Dalziel, B. D., Thomann, E., Medlock, J. & De Leenheer, P. Global analysis of a predator-prey model with variable predator search rate. J. Math. Biol. 81, 159–183 (2020).35.Lukas, D. & Clutton-Brock, T. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134 (2018).36.Purves, D. W., Lichstein, J. W., Strigul, N. & Pacala, S. W. Predicting and understanding forest dynamics using a simple tractable model. Proc. Natl Acad. Sci. USA 105, 17018–17022 (2008).CAS 
    Article 

    Google Scholar 
    37.Dalziel, B. D. et al. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science 362, 75–79 (2018).38.Monk, C. T. et al. How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration-exploitation trade-offs. Ecol. Lett. 21, 779–793 (2018).39.Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017).40.Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).41.Axtell, R. L. Zipf distribution of U.S. firm sizes. Science 293, 1818–1820 (2001).42.Turchin, P. et al. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proc. Natl Acad. Sci. USA 115, E144–E151 (2018).CAS 
    Article 

    Google Scholar 
    43.Press, W. H. Numerical Recipes in C (Cambridge Univ. Press, 1986). More