Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog
1.Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat fragmentation in the temperate zone. Conserv. Biol. 6, 237–256 (1986).
Google Scholar
2.Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. USA 114, 7635–7640 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2011).Article
Google Scholar
4.Okie, J. G. & Brown, J. H. Niches, body sizes, and the disassembly of mammal communities on the Sunda Shelf islands. Proc. Natl. Acad. Sci. USA 106, 19679–19684 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
5.Viveiros De Castro, E. B. & Fernandez, F. A. S. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119, 73–80 (2004).Article
Google Scholar
6.Feeley, K. J. & Terborgh, J. W. Direct versus indirect effects of habitat reduction on the loss of avian species from tropical forest fragments. Anim. Conserv. 11, 353–360 (2008).Article
Google Scholar
7.Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. USA 105, 20770–20775 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).Article
Google Scholar
9.Janecka, J. E. et al. Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conserv. Genet. 17, 1093–1108 (2016).Article
Google Scholar
10.Creel, S. Four factors modifying the effect of competition on Carnivore population dynamics as illustrated by African wild dogs. Conserv. Biol. 15, 271–274 (2001).Article
Google Scholar
11.Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).Article
Google Scholar
12.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343 (2014).13.Sanderson, C. E., Jobbins, S. E. & Alexander, K. A. With Allee effects, life for the social carnivore is complicated. Popul. Ecol. 56, 417–425 (2014).Article
Google Scholar
14.Kamler, J. F. et al. Cuon alpinus. The IUCN Red List of Threatened Species 2015: e.T5953A72477893. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).15.Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the endangered dhole cuon alpinus in the high elevation eastern himalayan habitats of khangchendzonga biosphere reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article
Google Scholar
16.Pal, R., Thakur, S., Arya, S., Bhattacharya, T. & Sathyakumar, S. Recent records of dhole (Cuon alpinus, Pallas 1811) in Uttarakhand, Western Himalaya, India. Mammalia 82, 614–617 (2018).Article
Google Scholar
17.Karanth, K. K., Nichols, J. D., UllasKaranth, K., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article
Google Scholar
18.Keyghobadi, N. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85, 1049–1064 (2007).Article
Google Scholar
19.Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26, 1498–1514 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
20.Ghaskadbi, P., Habib, B. & Qureshi, Q. A whistle in the woods: An ethogram and activity budget for the dhole in central India. J. Mammal. 97, 1745–1752 (2016).Article
Google Scholar
21.Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger (Panthera tigiris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J. Zool. Lond. 250, 255–265 (2000).Article
Google Scholar
22.Johnsingh, A. J. T. Reproduction and social behaviour of the dhole, Cuon alpinus (Canidae). J. Zool. 198, 443–463 (1982).Article
Google Scholar
23.Ngoprasert, D. & Gale, G. A. Tiger density, dhole occupancy, and prey occupancy in the human disturbed Dong Phayayen—Khao Yai Forest Complex, Thailand. Mammal. Biol. 95, 51–58 (2019).Article
Google Scholar
24.Selvan, K. M., Lyngdoh, S., Habib, B. & Gopi, G. V. Population density and abundance of sympatric large carnivores in the lowland tropical evergreen forest of Indian Eastern Himalayas. Mammal. Biol. 79, 254–258 (2014).Article
Google Scholar
25.Jenks, K. E. et al. Comparative movement analysis for a sympatric dhole and golden jackal in a human-dominated landscape. Raffles Bull. Zool. 63, 546–554 (2015).
Google Scholar
26.Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
27.Modi, S. et al. Noninvasive DNA-based species and sex identification of Asiatic wild dog (Cuonalpinus). J. Genet. 97, 1457–1461 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Iyengar, A. et al. Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus). Mol. Ecol. 14, 2281–2297 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Durbin, L., Venkataraman, A. & Hedges, S. D. J. Dhole (Cuon alpinus). In Status Survery and Conservation Action Plan. Canids: Foxes, Wolves, Jackals and Dogs (eds. Sillero-Zubiri, C., Hoffman, M. & Macdonald, D. W.) 210–219 (2004).30.Smith, O. & Wang, J. When can noninvasive samples provide sufficient information in conservation genetics studies?. Mol. Ecol. Resour. 14, 1011–1023 (2014).CAS
PubMed
Google Scholar
31.Godinho, R. et al. Real-time assessment of hybridization between wolves and dogs: Combining noninvasive samples with ancestry informative markers. Mol. Ecol. Resour. 15, 317–328 (2015).CAS
PubMed
Article
Google Scholar
32.Venkataraman, A. B., Arumugam, R. & Sukumar, R. The foraging ecology of dhole (Cuon alpinus) in Mudumalai Sanctuary, southern India. J. Zool. 237, 543–561 (1995).Article
Google Scholar
33.Srivathsa, A., Karanth, K. U., Kumar, N. S. & Oli, M. K. Insights from distribution dynamics inform strategies to conserve a dhole Cuon alpinus metapopulation in India. Sci. Rep. 9, 1–12 (2019).ADS
CAS
Article
Google Scholar
34.Reddy, C. S., Sreelekshmi, S., Jha, C. S. & Dadhwal, V. K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 60, 453–464 (2013).Article
Google Scholar
35.Dutta, T., Sharma, S. & DeFries, R. Targeting restoration sites to improve connectivity in a tiger conservation landscape in India. PeerJ 6, e5587 (2018).PubMed
PubMed Central
Article
Google Scholar
36.Mondal, I., Habib, B., Talukdar, G. & Nigam, P. Triage of means: Options for conserving tiger corridors beyond designated protected lands in India. Front. Ecol. Evol. 4, 2–7 (2016).ADS
Article
Google Scholar
37.Lowther, A. D., Harcourt, R. G., Goldsworthy, S. D. & Stow, A. Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim. Behav. 83, 691–701 (2012).Article
Google Scholar
38.Marsden, C. D. et al. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). Mol. Ecol. 21, 1379–1393 (2012).PubMed
Article
PubMed Central
Google Scholar
39.Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9 (2014).40.Dutta, T. et al. Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers. Distrib. 19, 760–771 (2013).Article
Google Scholar
41.Thatte, P. et al. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 26, 299–314 (2020).Article
Google Scholar
42.Slatkin M. Gene flow and population structure. Ecol. Genet. 3–17 (1994).43.Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing effect of Prey availability and Apex predator. Ecol. Evol. 00, 1–12 (2021).
Google Scholar
44.Davies, K. F., Margules, C. R. & Lawrence, J. F. Which traits of species predict population declines in experimental forest fragments?. Ecology 81, 1450–1461 (2000).Article
Google Scholar
45.Bhatt, S., Biswas, S., Karanth, K., Pandav, B. & Mondol, S. Genetic analyses reveal population structure and recent decline in leopards (Panthera pardus fusca) across the Indian subcontinent. PeerJ 8, e8482 (2020).PubMed
PubMed Central
Article
Google Scholar
46.Mondol, S., Karanth, K. U. & Ramakrishnan, U. Why the Indian subcontinent holds the key to global tiger recovery. PLoS Genet. 5 (2009).47.Nijman, V. et al. Illegal wildlife trade–surveying open animal markets and online platforms to understand the poaching of wild cats. Biodiversity 20, 58–61 (2019).Article
Google Scholar
48.Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal. Rev. 50, 399–412 (2020).Article
Google Scholar
49.Richards, J. F. & Elizabeth, P. F. A century of land-use change in South and Southeast Asia. In Effects of land-use change on atmospheric CO2 concentrations 15–66 (1994).50.Goldewijk, K. K. & Ramankutty, N. Land use changes during the past 300 years (EOLSS Publisher Co., 2009).
Google Scholar
51.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 14 (2013).
Google Scholar
52.Rangarajan, M. Fencing the forest: Conservation and ecological change in India’s central provinces 1860–1914 (1999).53.Gadgil, M. Towards an ecological history of India. Econ. Pol. Wkly. 20, 1909–1911 (2011).
Google Scholar
54.Bebarta, K. C. Teak; ecology, silviculture, management and profitability (International Book Distributors, 1999).
Google Scholar
55.Waples, R. S. & England, P. R. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189, 633–644 (2011).PubMed
PubMed Central
Article
Google Scholar
56.Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).Article
Google Scholar
57.de Manuel, M. et al. The evolutionary history of extinct and living lions. Proc. Natl. Acad. Sci. USA 117, 10927–10934 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
58.Creel, S. Social organization and effective population size in carnivores. Behav. Ecol. Conserv. Biol. 264–265 (1998).59.Lande, R. & Barrowclough, G. Effective population size, genetic variation, and their use in population. Viable Popul. Conserv. 87–123 (1987).60.Neel, M. C. et al. Estimation of effective population size in continuously distributed populations: There goes the neighborhood. Heredity 111, 189–199 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Girman, D. J. et al. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus). Mol. Ecol. 10, 1703–1723 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Sacks, B. N., Mitchell, B. R., Williams, C. L. & Ernest, H. B. Coyote movements and social structure along a cryptic population genetic subdivision. Mol. Ecol. 14, 1241–1249 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Stronen, A. V. et al. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche. BMC Ecol. 14, 1–9 (2014).Article
Google Scholar
64.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4 (2017).65.Walston, J. et al. Bringing the tiger back from the brink-the six percent solution. PLoS Biol. 8, 6–9 (2010).Article
CAS
Google Scholar
66.Champion, H. G. & Seth, S. K. A revised survey of the forest types of India. (Manager of Publications, 1968).67.Biswas, S. et al. A practive faeces collection protocol for multidisciplinary research in wildlife science. Curr. Sci. 116, 1878 (2019).CAS
Article
Google Scholar
68.Hallsworth, J. E., Nomura, Y. & Iwahara, M. Ethanol-induced water stress and fungal growth. J. Ferment. Bioeng. 86, 451–456 (1998).CAS
Article
Google Scholar
69.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article
CAS
Google Scholar
70.Broquet, T. & Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608 (2004).CAS
PubMed
Article
Google Scholar
71.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed
Article
Google Scholar
72.Waits, L., Taberlet, P. & Luikart, G. Estimating the probability of identity among genotypesin natural populations: Cautions and guidelines. Mol. Ecol. 10, 249–256 (2001).CAS
PubMed
Article
Google Scholar
73.Valière, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379 (2002).
Google Scholar
74.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinf. 1, 117693430500100 (2005).75.Pritchard, J. K. & Stephens, M. D. M. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Article
Google Scholar
77.Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).78.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
79.Caye, K., Deist, T. M., Martins, H., Michel, O. & François, O. TESS3: Fast inference of spatial population structure and genome scans for selection. Mol. Ecol. Resour. 16, 540–548 (2016).CAS
PubMed
Article
Google Scholar
80.Jombart, T. et al. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed
PubMed Central
Article
Google Scholar
81.Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
82.Jombart, T., Devillard, S., Dufour, A. B. & Pontier, D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
83.Thioulouse, J., Chessel, D. & Champely, S. Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ. Ecol. Stat. 2, 1–14 (1995).Article
Google Scholar
84.Moran, P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B Stat. Methodol. 10, 243–251 (1948).85.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
86.Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed
Article
PubMed Central
Google Scholar
87.Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article
Google Scholar
88.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).PubMed
PubMed Central
Article
Google Scholar
89.Ryman, N. & Leimar, O. GST is still a useful measure of genetic differentiation—A comment on Jost’s D. Mol. Ecol. 18, 2084–2087 (2009).PubMed
Article
PubMed Central
Google Scholar
90.Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).PubMed
Article
PubMed Central
Google Scholar
91.Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed
PubMed Central
Article
Google Scholar
92.Faubet, P., Waples, R. S. & Gaggiotti, O. E. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 16, 1149–1166 (2007).PubMed
Article
PubMed Central
Google Scholar
93.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
94.Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).PubMed
Article
PubMed Central
Google Scholar
95.Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article
Google Scholar
96.Nikolic, N. & Chevalet, C. Detecting past changes of effective population size. Evol. Appl. 7, 663–681 (2014).PubMed
PubMed Central
Article
Google Scholar
97.Kimura, M. & Ohta, T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA 75, 2868–2872 (1978).ADS
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
98.Ruiz-Garcia, M. et al. Determination of microsatellite DNA mutation rates, mutation models and mutation bias in four main Felidae lineages (European wild cat, F. silvestris; ocelot, Leopardus pardalis; puma, Puma concolor; jaguar, Panthera onca). In Molecular Population Genetics, Evolutionary Biology & Biological Conservation of Neotropical Carnivores. (Nova Science Publishers Inc., New York, 2013).99.Xu, X., Peng, M., Fang, Z. & Xu, X. The direction of microsatellite mutations is dependent upon allele length. Nat. Genet. 24, 396–399 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar More