1.IUPAC. Compendium of Chemical Terminology, 2nd ed. (the ‘Gold Book’). Compiled by McNaught, A. D. & Wilkinson, A. (Blackwell Scientific Publications, 1997).2.Bolan, N. S., Adriano, D. C. & Naidu, R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. In Reviews of Environmental Contamination and Toxicology Vol. 177 (ed. Ware, G. W.) 1–44 (Springer, 2003).Chapter
Google Scholar
3.Marcovecchio, J., Botté, S., Domini, C. & Freije, R. Heavy metals, major metals, trace elements. In Handbook of Water Analysis (eds Nollet, L. M. L. & De Gelder, L. S. P.) 379–428 (CRC Press, 2013).
Google Scholar
4.Wedepohl, H. K. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).ADS
CAS
Article
Google Scholar
5.Santos, I. R., Silva-Filho, E. V., Schaefer, C. E. G. R., Albuquerque-Filho, M. R. & Campos, L. S. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar. Pollut. Bull. 50, 185–194 (2005).CAS
Article
Google Scholar
6.Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).CAS
Article
Google Scholar
7.Kabata-Pendias, A. Trace elements in soils and plants, 4th ed. (CRC Press, 2010).8.Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 598, 220–227 (2017).ADS
CAS
Article
Google Scholar
9.Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400, 212–226 (2008).ADS
CAS
Article
Google Scholar
10.Lenihan, H. S., Oliver, J. S., Oakden, J. M. & Stephenson, M. D. Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Mar. Pollut. Bull. 21, 422–430 (1990).CAS
Article
Google Scholar
11.Santos, I. R. et al. Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ. Pollut. 140, 304–311 (2006).Article
CAS
Google Scholar
12.Tin, T. et al. Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33 (2009).ADS
Article
Google Scholar
13.Corsolini, S. Industrial contaminants in Antarctic biota. J. Chromatogr. A 1216, 598–612 (2009).CAS
Article
Google Scholar
14.Bargagli, R., Agnorelli, C., Borghini, F. & Monaci, F. Enhanced deposition and bioaccumulation of mercury in antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 39, 8150–8155 (2005).ADS
CAS
Article
Google Scholar
15.Planchon, F. A. M. et al. Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet. Sci. Lett. 200, 207–222 (2002).ADS
CAS
Article
Google Scholar
16.Szopińska, M., Namieśnik, J. & Polkowska, Ż How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. In Reviews of Environmental Contamination and Toxicology Vol. 239 (ed. de Voogt, P.) 79–156 (Springer, 2017).
Google Scholar
17.Bengtson Nash, S. et al. Contaminant profiles of air and soil around Casey station, Antarctica; discerning local and distant contaminant sources. In 21st Society for Environmental Toxicology and Chemistry (SETAC) Europe Annual Meeting Proceedings (2011).18.Boutron, C. F. & Patterson, C. C. Relative levels of natural and anthropogenic lead in recent Antarctic snow. J. Geophys. Res. 92, 8454–8464 (1987).ADS
CAS
Article
Google Scholar
19.Dick, A. L. Concentrations and sources of metals in the Antarctic Peninsula aerosol. Geochim. Cosmochim. Acta 55, 1827–1836 (1991).ADS
CAS
Article
Google Scholar
20.de Moreno, J. E. A., Gerpe, M. S., Moreno, V. J. & Vodopivez, C. Heavy metals in Antarctic organisms. Polar Biol. 17, 131–140 (1997).Article
Google Scholar
21.Kennicutt, I. M. C. et al. Human contamination of the marine environment-arthur harbor and mcmurdo sound, Antarctica. Environ. Sci. Technol. 29, 1279–1287 (1995).ADS
CAS
Article
Google Scholar
22.Hughes, K. A. & Ashton, G. V. Breaking the ice: The introduction of biofouling organisms to Antarctica on vessel hulls. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 158–164 (2017).Article
Google Scholar
23.Aston, S. R. & Thornton, I. Regional geochemical data in relation to seasonal variations in water quality. Sci. Total Environ. 7, 247–260 (1977).ADS
CAS
Article
Google Scholar
24.Norwood, W. P., Borgmann, U. & Dixon, D. G. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca. Environ. Pollut. 143, 519–528 (2006).CAS
Article
Google Scholar
25.Jerez, S. et al. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences. Environ. Pollut. 159, 2412–2419 (2011).CAS
Article
Google Scholar
26.Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ. Pollut. 143, 456–467 (2006).CAS
Article
Google Scholar
27.Trevizani, T. H. et al. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Mar. Pollut. Bull. 106, 366–371 (2016).CAS
Article
Google Scholar
28.Trevizani, T. H., Petti, M. A. V., Ribeiro, A. P., Corbisier, T. N. & Figueira, R. C. L. Heavy metal concentrations in the benthic trophic web of Martel Inlet, Admiralty Bay (King George Island, Antarctica). Mar. Pollut. Bull. 130, 198–205 (2018).CAS
Article
Google Scholar
29.Cipro, C. V. Z., Montone, R. C. & Bustamante, P. Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution. Mar. Pollut. Bull. 114, 564–570 (2017).CAS
Article
Google Scholar
30.de Oliveira, M. F. et al. Evidence of metabolic microevolution of the limpet Nacella concinna to naturally high heavy metal levels in Antarctica. Ecotoxicol. Environ. Saf. 135, 1–9 (2017).Article
CAS
Google Scholar
31.Torres, M. A. et al. Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicol. Environ. Saf. 71, 1–15 (2008).CAS
Article
Google Scholar
32.Neff, J. M. Bioaccumulation in Marine Organisms. Effect of Contaminants from Oil Well Produced Water. Organic Geochemistry (Elsevier, 2002).
Google Scholar
33.Wong, P. T. & Trevors, J. T. Chromium toxicity to algae and bacteria. In Chromium in the Natural and Human Environments (eds Nriagu, J. O. & Nieboer, E.) 305–315 (Wiley, 1988).
Google Scholar
34.Community, E. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Parliam. L327, 1–82 (2000).
Google Scholar
35.Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).ADS
CAS
PubMed Central
Article
PubMed
Google Scholar
36.Pertierra, L. R. et al. Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities. Ecosyst. Serv. 49, 101299 (2021).Article
Google Scholar
37.Pringle, B. H., Hissong, D. E., Katz, E. L. & Mulawka, S. T. Trace metal accumulation by estuarine mollusks. J. Sanit. Eng. Div. Proc. Amer. Soc. Civ. Eng. 94, 455–475 (1968).CAS
Article
Google Scholar
38.Amiard, J. C., Amiard-Triquet, C., Berthet, B. & Metayer, C. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. J. Exp. Mar. Bio. Ecol. 106, 73–89 (1987).CAS
Article
Google Scholar
39.Borgmann, U., Norwood, W. P. & Clarke, C. Accumulation, regulation and toxicity of copper, zinc, lead and mercury in Hyalella azteca. Hydrobiologia 259, 79–89 (1993).CAS
Article
Google Scholar
40.Windom, H. & Kendall, D. R. Accumulation and biotransformation of mercury in coastal and marine biota. In The Biogeochemistry of Mercury in the Environment (ed. Nriagu, J. O.) 303–323 (Elsevier/North-Holland Biomedical Press, 1979).
Google Scholar
41.Turner, S. J. et al. Are soft-sediment communities stable? An example from a windy harbour. Mar. Ecol. Prog. Ser. 120, 219–230 (1995).ADS
Article
Google Scholar
42.Caccia, V. G., Millero, F. J. & Palanques, A. The distribution of trace metals in Florida Bay sediments. Mar. Pollut. Bull. 46, 1420–1433 (2003).CAS
Article
Google Scholar
43.Gibbs, R. J. Transport phases of transition metals in the Amazon and Yukon Rivers. Bull. Geol. Soc. Am. 88, 829–843 (1977).CAS
Article
Google Scholar
44.Jain, C. K. & Sharma, M. K. Distribution of trace metals in the Hindon River system, India. J. Hydrol. 253, 81–90 (2001).ADS
CAS
Article
Google Scholar
45.Filgueiras, A. V., Lavilla, I. & Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 4, 823–857 (2002).CAS
Article
Google Scholar
46.Salomons, W. & Förstner, U. Metals in the Hydrocycle (Springer, 1984).Book
Google Scholar
47.Niimi, A. J. & Kissoon, G. P. Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 26, 169–178 (1994).CAS
Article
Google Scholar
48.Landrum, P. F., Lydy, M. J. & Lee, H. Toxicokinetics in aquatic systems: Model comparisons and use in hazard assessment. Environ. Toxicol. Chem. 11, 1709–1725 (1992).CAS
Article
Google Scholar
49.Wiener, J. G. et al. Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In Ecosystem Responses to Mercury Contamination: Indicators of Change (eds Harris, R. et al.) 87–122 (CRC Press & SETAC Press, 2007).Chapter
Google Scholar
50.Dunton, K. H. δ15N and δ13C measurements of Antarctic Peninsula fauna: Trophic relationships and assimilation of benthic seaweeds. Am. Zool. 41, 99–112 (2001).
Google Scholar
51.Corbisier, T. N., Petti, M. A. V., Skowronski, R. S. P. & Brito, T. A. S. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol. 27, 75–82 (2004).Article
Google Scholar
52.Norkko, A. et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88, 2810–2820 (2007).CAS
Article
Google Scholar
53.Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 1–11 (2019).
Google Scholar
54.Zenteno, L. et al. Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Prog. Oceanogr. 174, 55–63 (2019).ADS
Article
Google Scholar
55.Cardona, L., Lloret-Lloret, E., Moles, J. & Avila, C. Latitudinal changes in the trophic structure of benthic coastal food webs in the Antarctic Peninsula. Mar. Environ. Res. 167, 105290 (2021).CAS
Article
Google Scholar
56.COMNAP. Antarctic Station Catalogue (COMNAP Secretariat, 2017).57.Wiencke, C., Amsler, C. & Clayton, M. Macroalgae. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 66–73 (Scientific Committee on Antarctic Research, 2014).
Google Scholar
58.Danis, B., Griffiths, H. J. & Jangoux, M. Asteroidea. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 200–207 (Scientific Committee on Antarctic Research, 2014).
Google Scholar
59.Schiaparelli, S. & Linse, K. Gastropoda. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 122–125 (Scientific Committee on Antarctic Research, 2014).
Google Scholar
60.Borrell, A., Tornero, V., Bhattacharjee, D. & Aguilar, A. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci. Total Environ. 545–546, 414–423 (2016).ADS
Article
CAS
PubMed
PubMed Central
Google Scholar
61.Torres, J., Eira, C., Miquel, J. & Feliu, C. Heavy metal accumulation by intestinal helminths of vertebrates. Recent Adv. Pharm. Sci. II(661), 169–181 (2012).
Google Scholar
62.Vighi, M., Borrell, A. & Aguilar, A. Bone as a surrogate tissue to monitor metals in baleen whales. Chemosphere 171, 81–88 (2017).ADS
CAS
Article
Google Scholar
63.Borrell, A., Aguilar, A., Tornero, V. & Drago, M. Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waters. Chemosphere 107, 319–323 (2014).ADS
CAS
Article
Google Scholar
64.Borrell, A., Clusa, M., Aguilar, A. & Drago, M. Use of epidermis for the monitoring of tissular trace elements in Mediterranean striped dolphins (Stenella coeruleoalba). Chemosphere 122, 288–294 (2015).ADS
CAS
Article
Google Scholar
65.Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G. & de Sostoa, A. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Sci. Total Environ. 449, 9–19 (2013).ADS
CAS
Article
Google Scholar
66.Suda, C. N. K. et al. The biology and ecology of the Antarctic limpet Nacella concinna. Polar Biol. 38, 1949–1969 (2015).Article
Google Scholar
67.Škrbić, B., Crossed, D. & Signurišić-Mladenović, N. Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements. Serbia. Environ. Monit. Assess. 185, 457–471 (2013).Article
CAS
Google Scholar
68.Škrbić, B. D., Buljovčić, M., Jovanović, G. & Antić, I. Seasonal, spatial variations and risk assessment of heavy elements in street dust from Novi Sad, Serbia. Chemosphere 205, 452–462 (2018).ADS
Article
CAS
Google Scholar
69.Škrbić, B., Durišić-Mladenović, N. & Cvejanov, J. Principal component analysis of trace elements in Serbian wheat. J. Agric. Food Chem. 53, 2171–2175 (2005).Article
CAS
Google Scholar
70.Wilde, E. W. & Benemann, J. R. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11, 781–812 (1993).CAS
Article
Google Scholar
71.Farías, S., Arisnabarreta, S. P., Vodopivez, C. & Smichowski, P. Levels of essential and potentially toxic trace metals in Antarctic macro algae. Spectrochim. Acta B 57, 2133–2140 (2002).ADS
Article
Google Scholar
72.Black, W. A. P. & Mitchell, R. L. Trace elements in the common algae and in sea water. J. Mar. Biol. Assoc. UK 30, 1–10 (1952).Article
Google Scholar
73.Lignell, A., Roomans, G. M. & Pedersen, M. Localization of absorbed cadmium in Fucus vesiculosus L. by X-ray microanalysis. Z. Pflanzenphysiol. 105, 103–109 (1982).CAS
Article
Google Scholar
74.Ragan, M. A., Smidsrød, O. & Larsen, B. Chelation of divalent metal ions by brown algal polyphenols. Mar. Chem. 7, 265–271 (1979).CAS
Article
Google Scholar
75.Talarico, L. Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ. Pollut. 120, 813–821 (2002).CAS
Article
Google Scholar
76.Vasconcelos, M. T. S. D. & Leal, M. F. C. Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar. Chem. 74, 65–85 (2001).CAS
Article
Google Scholar
77.Pellegrini, L., Delivopoulos, S. G. & Pellegrini, M. Arsenic-induced ultrastructural changes in the vegetative cells of Cystoseira barbata forma repens Zinova et Kalugina (Fucophyceae, Fucales). Bot. Mar. 33, 229–234 (1990).CAS
Article
Google Scholar
78.Deheyn, D. D., Gendreau, P., Baldwin, R. J. & Latz, M. I. Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar. Environ. Res. 60, 1–33 (2005).CAS
Article
Google Scholar
79.Exley, C. Silicon in life: A bioinorganic solution to bioorganic essentiality. J. Inorg. Biochem. 69, 139–144 (1998).CAS
Article
Google Scholar
80.Costa, R. R. et al. Dynamics of an intense diatom bloom in the Northern Antarctic Peninsula, February 2016. Limnol. Oceanogr. 65, 2056–2075 (2020).ADS
CAS
Article
Google Scholar
81.Mendes, C. R. B. et al. Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep. Res. I 65, 1–14 (2012).CAS
Article
Google Scholar
82.Ducklow, H. W. et al. Marine pelagic ecosystems: The West Antarctic Peninsula. Philos. Trans. R. Soc. B. 362, 67–94 (2007).Article
Google Scholar
83.Prezelin, B. B., Hofmann, E. E., Mengelt, C. & Klinck, J. M. The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res. 58, 165–202 (2000).Article
Google Scholar
84.Bargagli, R., Monaci, F. & Cateni, D. Marine coastal food web. Mar. Ecol. Prog. Ser. 169, 65–76 (1998).ADS
CAS
Article
Google Scholar
85.Collier, R. & Edmond, J. The trace element geochemistry of marine biogenic particulate matter. Prog. Oceanogr. 13, 113–199 (1984).ADS
Article
Google Scholar
86.Rubio, C. et al. Metals in edible seaweed. Chemosphere 173, 572–579 (2017).ADS
CAS
Article
Google Scholar
87.Desideri, D. et al. Essential and toxic elements in seaweeds for human consumption. J. Toxicol. Environ. Health A 79, 112–122 (2016).CAS
Article
Google Scholar
88.Runcie, J. W. & Riddle, M. J. Metal concentrations in macroalgae from East Antarctica. Mar. Pollut. Bull. 49, 1114–1119 (2004).CAS
Article
Google Scholar
89.Fowler, S. W., Villeneuve, J. P., Wyse, E., Jupp, B. & de Mora, S. Temporal survey of petroleum hydrocarbons, organochlorinated compounds and heavy metals in benthic marine organisms from Dhofar, southern Oman. Mar. Pollut. Bull. 54, 357–367 (2007).CAS
Article
Google Scholar
90.Curtosi, A., Pelletier, E., Vodopivez, C., St Louis, R. & MacCormack, W. P. Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Arch. Environ. Contam. Toxicol. 59, 582–592 (2010).CAS
Article
Google Scholar
91.Ahn, I. Y., Kim, K. W. & Choi, H. J. A baseline study on metal concentrations in the Antarctic limpet Nacella concinna (Gastropoda: Patellidae) on King George Island: Variations with sex and body parts. Mar. Pollut. Bull. 44, 424–431 (2002).CAS
Article
PubMed
PubMed Central
Google Scholar
92.Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974).Article
Google Scholar
93.Pearse, J. S. Reproductive periodicities in several contrasting populations of Odontaster validus Koehler, a common Antarctic
asteroid. Antarct. Res. Ser. 5, 39–85 (1965).94.Peckham, V. Year-round SCUBA diving in the Antarctic. Polar Rec. 12, 143–146 (1964).Article
Google Scholar
95.Smale, D. A., Barnes, D. K. A., Fraser, K. P. P., Mann, P. J. & Brown, M. P. Scavenging in Antarctica: Intense variation between sites and seasons in shallow benthic necrophagy. J. Exp. Mar. Bio. Ecol. 349, 405–417 (2007).Article
Google Scholar
96.Mcclintock, J. B. Trophic biology of antarctic shallow-water echinoderms. Mar. Ecol. Prog. Ser. 111, 191–202 (1994).ADS
Article
Google Scholar
97.Grotti, M. et al. Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarct. Sci. 20, 39–51 (2008).ADS
Article
Google Scholar
98.Papadopoulou, C., Kanias, G. D. & Moraitopoulou-Kassimati, E. Stable elements of radioecological importance in certain echinoderm species. Mar. Pollut. Bull. 7, 143–144 (1976).CAS
Article
Google Scholar
99.Di Giglio, S. et al. Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica. Sci. Total Environ. 765, 142669 (2020).Article
CAS
Google Scholar
100.Danis, B. et al. Contaminant levels in sediments and asteroids (Asterias rubens L., Echinodermata) from the Belgian coast and Scheldt estuary: Polychlorinated biphenyls and heavy metals. Sci. Total Environ. 333, 149–165 (2004).ADS
CAS
Article
Google Scholar
101.Riva, S. D., Abelmoschi, M. L., Magi, E. & Soggia, F. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea: Northern Victoria Land). Chemosphere 56, 59–69 (2004).ADS
Article
CAS
Google Scholar
102.Cabrita, M. T. et al. Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antartica. Mar. Pollut. Bull. 121, 192–200 (2017).CAS
Article
Google Scholar
103.Truzzi, C. et al. Separation of micro-phytoplankton from inorganic particulate in Antarctic seawater (Ross Sea) for the determination of Cd, Pb and Cu: Optimization of the analytical methodology. Anal. Methods 7, 5490–5496 (2015).Article
Google Scholar
104.Bargagli, R. Trace metals in Antarctic organisms and the development of circumpolar biomonitoring networks. in Reviews of Environmetal Contamination and Toxicology (ed. Ware, G. W.) vol. 171, 53–110 (2001).105.Focardi, S., Bargagli, R. & Corsolini, S. Isomer-specific analysis and toxic potential evaluation of polychlorinated biphenyls in Antarctic fish, seabirds and Weddell seals from Terra Nova Bay (Ross Sea). Antarct. Sci. 7, 31–35 (1995).ADS
Article
Google Scholar
106.Demina, L. L. & Nemirovskaya, I. A. Spatial distribution of microelements in the seston of the White Sea. Oceanology 47, 360–372 (2007).ADS
Article
Google Scholar
107.Wiencke, C. & Amsler, C. D. Seaweeds and their communities in polar regions. In Seaweed Biology (eds Wiencke, C. & Bischof, K.) 265–291 (Springer, 2012).Chapter
Google Scholar
108.Fairhead, V. A., Amsler, C. D., Mcclintock, J. B. & Baker, B. J. Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. Oceanology 322, 1–12 (2005).CAS
Google Scholar
109.Amsler, C. D. Algal chemical ecology: Algal Chemical Ecology (Springer, 2008).Book
Google Scholar
110.Amsler, C. D., Mcclintock, J. B. & Baker, B. J. Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J. Phycol. 50, 1–10 (2014).Article
Google Scholar
111.Aumack, C. F., Amsler, C. D., McClintock, J. B. & Baker, B. J. Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur. J. Phycol. 45, 19–26 (2010).Article
Google Scholar
112.Núñez-Pons, L., Rodríguez-Arias, M., Gómez-Garreta, A., Ribera-Siguán, A. & Avila, C. Feeding deterrency in Antarctic marine organisms: Bioassays with the omnivore amphipod Cheirimedon femoratus. Eur. J. Phycol. 462, 163–174 (2012).
Google Scholar
113.Ahn, I. Y., Chung, K. H. & Choi, H. J. Influence of glacial runoff on baseline metal accumulation in the Antarctic limpet Nacella concinna from King George Island. Mar. Pollut. Bull. 49, 119–127 (2004).CAS
Article
Google Scholar
114.Burdon-Jones, C., Denton, G. R. W., Jones, G. B. & McPhie, K. A. Regional and seasonal variations of trace metals in tropical phaeophyceae from North Queensland. Mar. Environ. Res. 7, 13–30 (1982).CAS
Article
Google Scholar
115.Augier, H., Gilles, G., Leal Nascimento, M. & Ramonda, G. Évolution de la contamination de la flore et de la faune marines benthiques de la Baie de Port-Cros de 1976 à 1981. Trav. Sci. Parc Natl. Port-Cros 10, 37–50 (1984).
Google Scholar
116.Chakraborty, S., Bhattacharya, T., Singh, G. & Maity, J. P. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol. Environ. Saf. 100, 61–68 (2014).CAS
Article
Google Scholar
117.Pastor, A. et al. Levels of heavy metals in some marine organisms from the western Mediterranean area (Spain). Mar. Pollut. Bull. 28, 50–53 (1994).CAS
Article
Google Scholar More