1.Smith, B. D. Documenting plant domestication: The consilience of biological and archaeological approaches. Proc. Natl Acad. Sci. USA 98, 1324–1326 (2001).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
2.Darwin, C. R. On the Origins of the Species. (John Murray, 1859).3.Venable, D. L. & Lawlor, L. Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46, 272–282 (1980).ADS
PubMed
Article
PubMed Central
Google Scholar
4.Ellner, S. ESS germination strategies in randomly varying environments.1. Logist.Type models Theor. Popul. Biol. 28, 50–79 (1985).MathSciNet
CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
5.Levin, D. A. Seed bank as a source of genetic novelty in plants. Am. Nat. 135, 563–572 (1990).Article
Google Scholar
6.Evans, M. E. K., Ferriere, R., Kane, M. J. & Venable, D. L. Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. Am. Nat. 169, 84–94 (2007). Simulations and field data support bet-hedging via dormancy.Article
Google Scholar
7.Kortessis, N. & Chesson, P. Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition. Theor. Popul. Biol. 130, 60–73 (2019).PubMed
MATH
Article
PubMed Central
Google Scholar
8.Peres, S. Saving the gene pool for the future: Seed banks as archives. Stud. Hist. Philos. Sci. Part C. Stud. Hist. Philos. Biol. Biomed. Sci. 55, 96–104 (2016).Article
Google Scholar
9.Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).PubMed
PubMed Central
Article
Google Scholar
10.Ginsburg, I., Lingam, M. & Loeb, A. Galactic Panspermia. Astrophys. J. Lett. 868 (2018).11.Maslov, S. & Sneppen, K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5, 10523 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
12.Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Sriram, R., Shoff, M., Booton, G., Fuerst, P. & Visvesvara, G. S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 46, 4045–4048 (2008).PubMed
PubMed Central
Article
Google Scholar
14.Storey, K. B. Life in the slow lane: molecular mechanisms of estivation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 733–754 (2002).PubMed
Article
PubMed Central
Google Scholar
15.Hu, P. J. In WormBook (ed The C. elegans Research Community) (2007).16.Gilbert, J. J. Dormancy in rotifers. Trans. Am. Microsc. Soc. 93, 490–513 (1974).Article
Google Scholar
17.Kostal, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Schleucher, E. Torpor in birds: taxonomy, energetics, and ecology. Physiol. Biochem. Zool. 77, 942–949 (2004).PubMed
Article
PubMed Central
Google Scholar
19.Cooke, S. J., Grant, E. C., Schreer, J. F., Philipp, D. P. & Devries, A. L. Low temperature cardiac response to exhaustive exercise in fish with different levels of winter quiescence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134, 159–167 (2003).Article
Google Scholar
20.Fenelon, J. C., Banerjee, A. & Murphy, B. D. Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174 (2014).PubMed
Article
PubMed Central
Google Scholar
21.Andrews, M. T. Advances in molecular biology of hibernation in mammals. Bioessays 29, 431–440 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Sottocornola, R. & Lo Celso, C. Dormancy in the stem cell niche. Stem Cell Res. Ther. 3, 10 (2012).23.Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020). Review discussing importance of dormancy for persistence and dispersal of cancer cells with clinical applications.CAS
PubMed
Article
PubMed Central
Google Scholar
24.Darby, I. A. & Hewitson, T. D. Fibroblast differentiation in wound healing and fibrosis. Int Rev. Cytol. 257, 143–179 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Chapman, N. M., Boothby, M. R. & Chi, H. B. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 777–784 (2006).PubMed
Article
PubMed Central
Google Scholar
27.Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109-114 (2020).28.Seger, J. & Brockmann, J. H. What is bet-hedging? In Oxford Surveys in Evolutionary Biology (eds Harvey P. H. & Partridge L.) Vol. 4, 182–211 (Oxford University Press, 1987). Comprehensive review of bet-hedging in population biology.29.Considine, M. J. & Considine, J. A. On the language and physiology of dormancy and quiescence in plants. J. Exp. Bot. 67, 3189–3203 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Cohen, D. Optimizing reproduction in a randomly varying environment. Theor. Biol. 12, 119–129 (1966). Among the first mathematical models describing the benefits of delayed seed germination.ADS
CAS
Article
Google Scholar
31.Amen, R. D. A model of seed dormancy. Bot. Rev. 34, 1–31 (1968).CAS
Article
Google Scholar
32.Bulmer, M. G. Delayed germination of seeds: Cohen’s model revisited. Theor. Popul. Biol. 26, 367–377 (1984).MathSciNet
MATH
Article
Google Scholar
33.Philippi, T. Bet-hedging germination of desert annuals: beyond the 1st year. Am. Nat. 142, 474–487 (1993).CAS
PubMed
Article
Google Scholar
34.Rajon, E., Venner, S. & Menu, F. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy. J. Evol. Biol. 22, 2094–2103 (2009).CAS
PubMed
Article
Google Scholar
35.Blath, J., González Casanova, A., Eldon, B., Kurt, N. & Wilke-Berenguer, M. Genetic variability under the seedbank coalescent. Genetics 200, 921–934 (2015).PubMed
PubMed Central
Article
Google Scholar
36.Locey, K. J., Fisk, M. C. & Lennon, J. T. Microscale insight into microbial seed banks. Front. Microbiol. 7, 2040 (2017).PubMed
PubMed Central
Article
Google Scholar
37.Yamamichi, M., Hairston, N. G., Rees, M. & Ellner, S. P. Rapid evolution with generation overlap: the double-edged effect of dormancy. Theor. Ecol. 12, 179–195 (2019). Models explore how dormancy and environmental fluctuations affect the rate of trait evolution and adaptation.Article
Google Scholar
38.Wörmer, L. et al. Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial. Sci. Adv. 5, eaav1024 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
39.Baskin, C. C. & Baskin, J. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination. 1600 (Academic Press, 2014). Comprehensive book covering the causes and consequences of dormancy in plants.40.Magurran, A. E. Measuring Biological Diversity. (Blackwell Publishing, 2004).41.Hoyle, G. L. et al. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Glob. Change Biol. 19, 1549–1561 (2013).ADS
Article
Google Scholar
42.Haaland, T. R., Wright, J. & Ratikainen, I. I. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc. R. Soc. B Biol. Sci. 286, 20192070 (2019).Article
Google Scholar
43.Childs, D. Z., Metcalf, C. J. E. & Rees, M. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proc. R. Soc. B Biol. Sci. 277, 3055–3064 (2010).Article
Google Scholar
44.Starrfelt, J. & Kokko, H. Bet-hedging – a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).PubMed
Article
PubMed Central
Google Scholar
45.Cooper, W. S. & Kaplan, R. H. Adaptive coin-flipping: a decision-theoretic examination of natural selection for random individual variation. J. Theor. Biol. 94, 135–151 (1982).ADS
MathSciNet
CAS
PubMed
Article
PubMed Central
Google Scholar
46.Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
47.Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005). Model showing that stochastic transitioning into dormancy is beneficial in fluctuating environments.PubMed
PubMed Central
Article
Google Scholar
48.Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
49.Jost, J. & Wang, Y. Optimization and phenotype allocation. Bull. Math. Biol. 76, 184–200 (2014).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
50.Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Epstein, S. S. Microbial awakenings. Nature 457, 1083–1083 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
52.Buerger, S. et al. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl. Environ. Microbiol. 78, 3221–3228 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
53.Chevin, L. M. & Hoffman, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. Lond. 372, 1723 (2017).Article
Google Scholar
54.Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
55.Baskin, J. M. & Baskin, C. C. The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35, 492–498 (1985).Article
Google Scholar
56.Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K. & Ayele, B. T. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front. Plant Sci. 9, 668 (2018).57.Samuels, I. A. & Levey, D. J. Effects of gut passage on seed germination: do experiments answer the questions they ask? Funct. Ecol. 19, 365–368 (2005).Article
Google Scholar
58.Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell 121, 401–409 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
59.McKenney, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11, 33–44 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Locey, K. J. & Lennon, J. T. A residence time theory for biodiversity. Am. Nat. 194, 59–72 (2019).PubMed
Article
PubMed Central
Google Scholar
61.Levin, B. R. et al. A numbers game: ribosome densities, bacterial growth, and antibiotic-mediated stasis and death. mBio. 8, e02253-16 (2017).62.Rambo, I. M., Marsh, A. & Biddle, J. F. Cytosine methylation within marine sediment microbial communities: potential epigenetic adaptation to the environment. Front. Microbiol. 10, 1291 (2019).63.Wisnoski, N. I., Leibold, M. A. & Lennon, J. T. Dormancy in metacommunities. Am. Nat. 194, 135–151 (2019).PubMed
Article
PubMed Central
Google Scholar
64.Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
65.Locey, K. J. et al. Dormancy dampens the microbial distance-decay relationship. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190243 (2020). Combined field and modeling approach demonstrating that dormancy can alter biogeographic patterns.66.Chihara, K., Matsumoto, S., Kagawa, Y. & Tsuneda, S. Mathematical modeling of dormant cell formation in growing biofilm. Front. Microbiol. 6, 534 (2015).PubMed
PubMed Central
Article
Google Scholar
67.Frank, S. A. Metabolic heat in microbial conflict and cooperation. Front. Ecol. Evolution 8, 275 (2020).Article
Google Scholar
68.Maki, H. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu. Rev. Genet. 36, 279–303 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Foster, P. L. Stress responses and genetic variation in bacteria. Mutat. Res. Fundam. Mol. Mech. Mutagen. 569, 3–11 (2005).CAS
Article
Google Scholar
70.Ryan, F. J. Spontaneous mutation in non-dividing bacteria. Genetics 40, 726–738 (1955).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Gangloff, S. et al. Quiescence unveils a novel mutational force in fission yeast. eLife 6, e27469 (2017).PubMed
PubMed Central
Article
Google Scholar
72.Long, H. A. et al. Evolutionary determinants of genome-wide nucleotide composition. Nat. Ecol. Evol. 2, 237–240 (2018).PubMed
PubMed Central
Article
Google Scholar
73.Shoemaker, W. R. & Lennon, J. T. Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol. Appl. 11, 60–75 (2018).PubMed
PubMed Central
Article
Google Scholar
74.Tellier, A., Laurent, S. J. Y., Lainer, H., Pavllidis, P. & Stephan, W. Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc. Natl. Acad. Sci. USA 108, 17052-17057 (2011). Infers seed bank quantities based on a coalescent theoretical model.75.Sellinger, T. P. P., Abu Awad, D., Moest, M. & Tellier, A. Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data. PLoS Genet. 16, e1008698 (2020).76.Blath, J., Buzzoni, E., Koskela, J. & Berenguer, M. W. Statistical tools for seed bank detection. Theor. Popul. Biol. 132, 1–15 (2020).PubMed
MATH
Article
PubMed Central
Google Scholar
77.Templeton, A. R. & Levin, D. A. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).Article
Google Scholar
78.Hairston, N. G. & Destasio, B. T. Rate of evolution slowed by dormant propagule pool. Nature 336, 239–242 (1988). Field evidence that dormancy and species interactions affect rates of evolution.ADS
Article
Google Scholar
79.Turelli, M., Schemske, D. W. & Bierzychudek, P. Stable two-allele polymorphisms maintained by fluctuating fitnesses and seed banks: Protecting the blues in Linanthus parryae. Evolution 55, 1283–1298 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Sundqvist, L., Godhe, A., Jonsson, P. R. & Sefbom, J. The anchoring effect-long-term dormancy and genetic population structure. ISME J. 12, 2929–2941 (2018).PubMed
PubMed Central
Article
Google Scholar
81.Maughan, H. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61, 280–288 (2007).CAS
PubMed
Article
Google Scholar
82.Weller, C. & Wu, M. A generation-time effect on the rate of molecular evolution in bacteria. Evolution 69, 643–652 (2015). Phylogenetic comparative approach demonstrating that dormancy reduces rates of evolution.CAS
PubMed
Article
Google Scholar
83.Willis, C. G. et al. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309 (2014).PubMed
Article
Google Scholar
84.Kalisz, S. & McPeek, M. A. Demography of an age-structured annual: resampled projection matrices, elasticity analyses, and seed bank effects. Ecology 73, 1082–1093 (1992).Article
Google Scholar
85.Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).PubMed
Article
PubMed Central
Google Scholar
86.Moriuchi, K. S., Venable, D. L., Pake, C. E. & Lange, T. Direct measurement of the seed bank age structure of a Sonoran desert annual plant. Ecology 81, 1133–1138 (2000).Article
Google Scholar
87.Moger-Reischer, R. Z. & Lennon, J. T. Microbial ageing and longevity. Nat. Rev. Microbiol. 17, 679–690 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
88.Dalling, J. W., Davis, A. S., Schutte, B. J. & Arnold, A. E. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J. Ecol. 99, 89–95 (2011).Article
Google Scholar
89.Hairston, N. G. & Kearns, C. M. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr. Comp. Biol. 42, 481–491 (2002).PubMed
Article
PubMed Central
Google Scholar
90.Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).91.Wright, E. S. & Vetsigian, K. H. Stochastic exits from dormancy give rise to heavy-tailed distributions of descendants in bacterial populations. Mol. Ecol. 28, 3915–3928 (2019).PubMed
Article
PubMed Central
Google Scholar
92.Cordero, F., Cassanova, A. G., Schweinsberg, J. & Wilke-Berenguer, M. Λ-coalescents arising in populations with dormancy. Preprint at https://arxiv.org/abs/2009.09418 (2020).93.Blath, J., Buzzoni, E., Gonzalez Casanova, A. & Wilke-Berenguer, M. Separation of time-scales for the seed bank diffusion and its jump-diffusion limit. J Math Biol. 82, 53 (2021).94.Rogalski, M. A. Maladaptation to acute metal exposure in resurrected Daphnia ambigua clones after decades of increasing contamination. Am. Nat. 189, 443–452 (2017).PubMed
Article
PubMed Central
Google Scholar
95.Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
96.Warner, R. R. & Chesson, P. L. Coexistence mediated by recruitment fluctuation: a field guide to the storage effect. Am. Nat. 125, 769–787 (1985).Article
Google Scholar
97.Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994). Describes models of competition and coexistence, including the storage effect, which often involves dormancy in fluctuating environments.MATH
Article
Google Scholar
98.Pake, C. E. & Venable, D. L. Is coexistence of Sonoran Desert annuals mediated by temporal variability in reproductive success? Ecology 76, 246–261 (1995).Article
Google Scholar
99.Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. F. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
100.Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997). Dormancy in lake zooplankton contributes to maintenance of diversity via the storage effect.ADS
PubMed
PubMed Central
Article
Google Scholar
101.Jiang, L. & Morin, P. J. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76, 660–668 (2007).PubMed
Article
PubMed Central
Google Scholar
102.Kuwamura, M., Nakazawa, T. & Ogawa, T. A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
103.Gulbudak, H. & Weitz, J. S. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc. R. Soc. B Biol. Sci. 283, 20161037 (2016).104.Kuwamura, M. & Nakazawa, T. Dormancy of predators dependent on the rate of variation in prey density. SIAM J. Appl. Math. 71, 169–179 (2011).MathSciNet
MATH
Article
Google Scholar
105.McCauley, E., Nisbet, R. M., Murdoch, W. W., de Roos, A. M. & Gurney, W. S. C. Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999).106.Verin, M. & Tellier, A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 72, 1362–1372 (2018).CAS
Article
Google Scholar
107.Bautista, M. A., Zhang, C. Y. & Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. mBio. 6, e02565–14 (2015).PubMed
PubMed Central
Article
Google Scholar
108.Rengefors, K., Karlsson, I. & Hansson, L. A. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. B Biol. Sci. 265, 1353–1358 (1998).Article
Google Scholar
109.Dzialowski, A. R., Lennon, J. T., O’Brien, W. J. & Smith, V. H. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshwat. Biol. 48, 1593–1602 (2003).Article
Google Scholar
110.Sellinger, T., Muller, J., Hosel, V. & Tellier, A. Are the better cooperators dormant or quiescent? Math. Biosci. 318, 108272 (2019).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
111.Honegger, R. The lichen symbiosis: what is so spectacular about it? Lichenologist 30, 193–212 (1998).Article
Google Scholar
112.Green, T. G. A., Pintado, A., Raggio, J. & Sancho, L. G. The lifestyle of lichens in soil crusts. Lichenologist 50, 397–410 (2018).Article
Google Scholar
113.Kuykendall, L. D., Hashem, F. M., Bauchan, G. R., Devine, T. E. & Dadson, R. B. Symbiotic competence of Sinorhizobium fredii on twenty alfalfa cultivars of diverse dormancy. Symbiosis 27, 1–16 (1999).
Google Scholar
114.Vujanovic, V. & Vujanovic, J. Mycovitality and mycoheterotrophy: where lies dormancy in terrestrial orchid and plants with minute seeds? Symbiosis 44, 93–99 (2007).CAS
Google Scholar
115.Dittmer, J. & Brucker, R. M. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. Microbiome 9, 85 (2021).PubMed
PubMed Central
Article
Google Scholar
116.Snyder, R. E. Multiple risk reduction mechanisms: can dormancy substitute for dispersal? Ecol. Lett. 9, 1106–1114 (2006).PubMed
Article
PubMed Central
Google Scholar
117.Vitalis, R., Rousset, F., Kobayashi, Y., Olivieri, I. & Gandon, S. The joint evolution of dispersal and dormancy in a metapopulation with local extinctions and kin competition. Evolution 67, 1676–1691 (2013).PubMed
Article
PubMed Central
Google Scholar
118.Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
119.den Hollander, F. & Pederzani, G. Multi-colony Wright-Fisher with a seed bank. Indag. Math. 28, 637–669 (2017).MathSciNet
MATH
Article
Google Scholar
120.Coates, A. R. M. Dormancy and Low Growth States in Microbial Disease. (Cambridge University Press, 2003). Book describing how dormancy is involved in many human diseases.121.Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe 13, 632–642 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
122.Zhu, D. L., Sorg, J. A. & Sun, X. M. Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell. Infect. Microbiol. 8, 29 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
123.Wood, T. K., Knabel, S. J. & Kwan, B. W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
124.Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
125.Mukamolova, G. V., Turapov, O., Malkin, J., Woltmann, G. & Barer, M. R. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
126.Shimizu, H. & Nakayama, K. Artificial intelligence in oncology. Cancer Sci. 111, 1452–1460 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
127.Aktipis, A. C., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
128.Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).CAS
PubMed
Article
Google Scholar
129.Miller, A. K., Brown, J. S., Basanta, D. & Huntly, N. What is the storage effect, why should it occur in cancers, and how can it inform cancer therapy? Cancer Control 27,1073274820941968 (2020).130.Park, S. Y. & Nam, J. S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med. 52, 569–581 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
131.Sorrell, I., White, A., Pedersen, A. B., Hails, R. S. & Boots, M. The evolution of covert, silent infection as a parasite strategy. Proc. R. Soc. B Biol. Sci. 276, 2217–2226 (2009).Article
Google Scholar
132.Boots, M. et al. The population dynamical implications of covert infections in host–microparasite interactions. J. Anim. Ecol. 72, 1064–1072 (2003).Article
Google Scholar
133.Gilbert, N. M., O’Brien, V. P. & Lewis, A. L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog. 13, e1006238 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
134.Xu, R. Global dynamics of a delayed epidemic model with latency and relapse. Nonlinear Anal. Model Control 18, 250–263 (2013).MathSciNet
MATH
Article
Google Scholar
135.Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). Hosts defend against parasites via dormancy with implications for herd immunity.ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
136.Lamont, B. B., Pausas, J. G., He, T. H., Witkowski, E. T. F. & Hanley, M. E. Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit. Rev. Plant Sci. 39, 140–172 (2020).CAS
Article
Google Scholar
137.Alsos, I. G., Muller, E. & Eidesen, P. B. Germinating seeds or bulbils in 87 of 113 tested Arctic species indicate potential for ex situ seed bank storage. Polar Biol. 36, 819–830 (2013).Article
Google Scholar
138.Ooi, M. K. J., Auld, T. D. & Denham, A. J. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Glob. Change Biol. 15, 2375 – 2386 (2009).139.Gioria, M. & Pysek, P. The legacy of plant invasions: changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).Article
Google Scholar
140.Kuo, V., Lehmkuhl, B. K. & Lennon, J. T. Resuscitation of the microbial seed bank alters plant‐soil interactions. Mol. Ecol. 30, 2905–2914 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
141.Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).CAS
Article
Google Scholar
142.Kearns, P. J. et al. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments. Nat. Commun. 7, 12881 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
143.Salazar, A., Lennon, J. T. & Dukes, J. S. Microbial dormancy improves predictability of soil respiration at the seasonal time scale. Biogeochemistry 144, 103–116 (2019).CAS
Article
Google Scholar
144.Zha, J. R. & Zhuang, Q. L. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).ADS
CAS
Article
Google Scholar
145.Blath, J., Hermann, F. & Slowik, N. A branching process model for dormancy and seed banks in randomly fluctuating environments. J. Math. Biol. 83, 17 (2021).MathSciNet
PubMed
Article
PubMed Central
Google Scholar
146.Malik, T. & Smith, H. L. Does dormancy increase fitness of bacterial populations in time-varying environments? Bull. Math. Biol. 70, 1140–1162 (2008).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
147.Dombry, C., Mazza, C. & Bansaye, V. Phenotypic diversity and population growth in a fluctuating environment. Adv. Appl. Prob. 43, 375–398 (2011). Mathematical model for assessing optimality of transitioning in random environments.MathSciNet
MATH
Article
Google Scholar
148.Wakeley, J. Coalescent Theory: An Introduction. (Greenwood Village: Roberts & Company Publishers, 2009). Concise introduction to the fundamentals of coalescent theory bridging mathematics and biology.149.Tellier, A. et al. Estimating parameters of speciation models based on refined summaries of the joint site-frequency spectrum. PLoS One 6, e18155 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
150.Tellier, A. Persistent seed banking as eco-evolutionary determinant of plant nucleotide diversity: novel population genetics insights. New Phytol. 221, 725–730 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
151.Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248 (1982). Foundational paper that introduced the standard coalescent.MathSciNet
MATH
Article
Google Scholar
152.Kaj, I., Krone, S. M. & Lascoux, M. Coalescent theory for seed bank models. J. Appl. Probab. 38, 285–300 (2001). First paper to incorporate seed banks into coalescent theory.MathSciNet
MATH
Article
Google Scholar
153.Blath, J., Casanova, A. G., Kurt, N. & Wilke-Berenguer, M. A new coalescent for seed-bank models. Ann. Appl. Probab. 26, 857–891 (2016).MathSciNet
MATH
Article
Google Scholar
154.Blath, J., Kurt, N., Gonzalez Casanova, A. & Wilke-Berenguer, M. The seed bank coalescent with simultaneous switching. Electron. J. Probab. 25, 1–21 (2020).155.Lalonde, R. G. & Roitberg, B. D. Chaotic dynamics can select for long-term dormancy. Am. Nat. 168, 127–131 (2006).CAS
PubMed
Article
Google Scholar
156.Blath, J. & Tobias, A. Invasion and fixation of microbial dormancy traits under competitive pressure. Stoch. Proc. Appl. 130, 7363–7395 (2020).MathSciNet
MATH
Article
Google Scholar
157.Tan, Z. X., Koh, J. M., Koonin, E. V. & Cheong, K. H. Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7, 1901559 (2020).Article
Google Scholar
158.McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed
Article
Google Scholar
159.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography. (Princeton University Press, 2001).160.Ewens, W. J. Sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).MathSciNet
CAS
PubMed
MATH
Article
Google Scholar
161.Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).PubMed
Article
Google Scholar
162.Rosindell, J., Wong, Y. & Etienne, R. S. A coalescence approach to spatial neutral ecology. Ecol. Inform. 3, 259–271 (2008).Article
Google Scholar
163.White, E. P., Thibault, K. M. & Xiao, X. Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology 93, 1772–1778 (2012).PubMed
Article
Google Scholar
164.Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 5 (2017).Article
Google Scholar
165.Greven, A., den Hollander, F. & Oomen, M. Spatial populations with seed-bank: well-posedness, duality and equilibrium. Preprint at https://arxiv.org/abs/2004.14137 (2020).166.Liggett, T. M. Interacting Particle Systems. 488 (Springer Science & Business Media, 1985). Overview of the mathematical theory of stochastic systems consisting of large numbers of interacting components.167.Kipnis, C. & Landim, C. Scaling Limits of Interacting Particle Systems. Vol. 320 (Springer, 1999).168.van der Hofstad, R. Random Graphs and Complex Networks. (Cambridge University Press, 2017).169.Levin, D. Z., Walter, J. & Murnighan, K. J. Dormant ties: the value of reconnecting. Organ. Sci. 22, 923–939 (2011).Article
Google Scholar
170.Marin, A. & Hampton, K. Network instability in times of stability. Sociol. Forum 34, 313–336 (2019).Article
Google Scholar
171.Crawford, D. C. & Mennerick, S. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release. Neuroscientist 18, 216–223 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
172.Borsboom, D. A network theory of mental disorders. World Psychiatry 16, 5–13 (2017).PubMed
PubMed Central
Article
Google Scholar
173.Metz, J. A., Nisbet, R. M. & Geritz, S. A. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198–202 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
174.Bansaye, V. & Meleard, S. Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior. (Springer, 2015).175.Champagnat, N., Ferrière, R. & Ben Arous, G. The canonical equation of adaptive dynamics: a mathematical view. Selection 2, 73–83 (2001).Article
Google Scholar
176.Champagnat, N. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116, 1127–1160 (2006).MathSciNet
MATH
Article
Google Scholar
177.Champagnat, N. & Meleard, S. Polymorphic evolution sequence and evolutionary branching. Probab. Theory Relat. Field 151, 45–94 (2011).MathSciNet
MATH
Article
Google Scholar
178.Kraut, A. & Bovier, A. From adaptive dynamics to adaptive walks. J. Math. Biol. 75, 1699–1747 (2019).MathSciNet
MATH
Article
Google Scholar
179.Blath, J., Hammer, M. & Nie, F. The stochastic Fisher-KPP Equation with seed bank and on/off-branching-coalescing Brownian motion. Preprint at https://arxiv.org/abs/2005.01650 (2020). More