Mammalian body size is determined by interactions between climate, urbanization, and ecological traits
1.Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638 (1966).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).Article
Google Scholar
3.Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
4.Peters, R. H. The ecological implications of body size. Cambridge University Press. (1983).5.White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationship between body size and abundance in ecology. Trends Ecol. Evo 22, 323–330 (2007).Article
Google Scholar
6.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed
Article
PubMed Central
Google Scholar
7.Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original Ger.) 1, 595–708 (1847).
Google Scholar
8.Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415 (2000).PubMed
Article
PubMed Central
Google Scholar
9.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article
Google Scholar
10.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. elife 7, e27166 (2018).PubMed
PubMed Central
Article
Google Scholar
11.Alroy, J. A multispecies overkill simulation of the end- Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Pineda-Munoz, S., Evans, A. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).Article
Google Scholar
13.Tomassini, A., Colangelo, P., Agnelli, P., Jones, G. & Russo, D. Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing climate or urbanization? J. Biogeogr. 41, 944–953 (2014).Article
Google Scholar
14.Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).Article
Google Scholar
15.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article
Google Scholar
16.Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1882).
Google Scholar
17.Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724 (2004).Article
Google Scholar
18.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).PubMed
Article
PubMed Central
Google Scholar
19.Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).Article
Google Scholar
20.Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed
Article
PubMed Central
Google Scholar
21.Merckx, T. et al. Body‐size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).CAS
PubMed
Article
Google Scholar
22.Magura, T., Ferrante, M. & Lövei, G. L. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeor. 29, 1978–1987 (2020).Article
Google Scholar
23.Pergams, O. R. W. & Lacy, R. C. Rapid morphological and genetic change in Chicago-area Peromyscus. Mol. Ecol. 17, 450–463 (2008).CAS
PubMed
Article
Google Scholar
24.McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article
Google Scholar
25.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).PubMed
Article
Google Scholar
26.Schmidt, N. M. & Jensen, P. M. Changes in mammalian body length over 175 years – adaptations to a fragmented landscape? Conserv. Ecol. 72, 6 (2003).
Google Scholar
27.Schmidt, N. M. & Jensen, P. M. Concomitant patterns in avian and mammalian body length changes in Denmark. Ecol. Soc. 10, 5 (2005).Article
Google Scholar
28.Nowak, R. M. Walker’s mammals of the world. Baltimore: The Johns Hopkins University Press. (1999).29.Lindstedt, S. L. & Boyce, M. S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878 (1985).Article
Google Scholar
30.McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).Article
Google Scholar
31.Naya, D. E., Naya, H. & Cook, J. Climate change and body size trends in aquatic and terrestrial endotherms: does habitat matter? PLoS ONE 12, e0183051 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
32.Johnson, G. E. Hibernation in mammals. Q. Rev. Biol. 6, 439–461 (1931).Article
Google Scholar
33.Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444 (2011).Article
Google Scholar
34.Kuussaari, M. et al. Butterfly species’ responses to urbanization: differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527 (2021).Article
Google Scholar
35.McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).Article
Google Scholar
36.Guralnick, R., Hantak, M. M., Li, D. & McLean, B. S. Body size trends in response to climate and urbanization in the widespread North American deer mouse, Peromyscus maniculatus. Sci. Rep. 10, 8882 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Robinette, W. L., Baer, C. H., Pillmore, R. E. & Knittle, C. E. Effects of nutritional change on captive mule deer. J. Wildl. Manag. 37, 312–326 (1973).Article
Google Scholar
38.Beckmann, J. P. & Berger, J. Using black bears to test ideal-free distribution models experimentally. J. Mammal. 84, 594–606 (2003).Article
Google Scholar
39.Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H. & Stenseth, N. C. Lower extinction risk in sleep-or-hide mammals. Am. Nat. 173, 264–272 (2009).PubMed
Article
PubMed Central
Google Scholar
40.Eastman, L. M., Morelli, T. L., Rowe, K. C., Conroy, C. J. & Moritz, C. Size increase in high elevation ground squirrels over the last century. Glob. Change Biol. 18, 1499–1508 (2012).Article
Google Scholar
41.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).Article
Google Scholar
43.Scheffers, B. R., Edward, D. P., Diesmos, A., William, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).Article
Google Scholar
44.Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).CAS
Article
Google Scholar
45.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article
Google Scholar
46.Gohli, J. & Voje, K. L. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolut. Biol. 16, 222 (2016).Article
Google Scholar
47.Babinska-Werka, J. Food of the striped field mouse in different types of urban areas. Acta Theriol. 26, 285–299 (1981).Article
Google Scholar
48.Brown, J. S., Kotler, B. P. & Porter, W. P. How foraging allometries are resource dynamics could explain Bergmann’s rule and the body-size diet relationship in mammals. Oikos 126, 224–230 (2017).Article
Google Scholar
49.Santini, L. et al. One strategy does not fit all: Determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed
Article
PubMed Central
Google Scholar
50.Nielsen, S. E. et al. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations. BMC Ecol. 13, 31 (2013).PubMed
PubMed Central
Article
Google Scholar
51.Dahirel, M., De Cock, M., Vantieghem, P. & Bonte, D. Urbanization-driven changes in web building and body size in an orb web spider. J. Anim. Ecol. 88, 79–91 (2019).PubMed
Article
PubMed Central
Google Scholar
52.Hart, M. A. & Sailor, D. J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 95, 397–406 (2009).Article
Google Scholar
53.Yom-Tov, Y. Body sizes of carnivores commensal with humans have increased over the past 50 years. Funct. Ecol. 17, 323–327 (2003).Article
Google Scholar
54.Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).Article
Google Scholar
55.Metcalfe, N. B. & Ure, S. E. Diurnal variation in flight performance and hence potential predation risk in small birds. Proc. R. Soc. B Biol. Sci. 261, 395–400 (1995).Article
Google Scholar
56.Kullberg, C., Fransson, T. & Jakobsson, S. Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc. R. Soc. B Biol. Sci. 263, 1671–1675 (1996).Article
Google Scholar
57.Downes, S. Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82, 2870–2881 (2001).Article
Google Scholar
58.Macleod, R., Gosler, A. G. & Cresswell, W. Diurnal mass gain strategies and perceived predation risk in the great tit Parus major. J. Anim. Ecol. 74, 956–964 (2005).Article
Google Scholar
59.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. 26, 6336–6350 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).Article
Google Scholar
61.Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 110, 223–240 (2008).Article
Google Scholar
62.Jokimäki, J., Suhonen, J., Jokimäki-Kaisanlahti, M.-L. & Carbó-Ramirez, P. Effects of urbanization on breeding birds in European towns: Impacts of species traits. Urban Ecosyst. 19, 1565–1577 (2016).Article
Google Scholar
63.Jung, K. & Threlfall, C. G. Trait-dependent tolerance of bats to urbanization: a global meta-analysis. Proc. R. Soc. B Biol. Sci. 285, 20181222 (2018).Article
Google Scholar
64.Parsons, A. W. et al. Mammal communities are larger and more diverse in moderately developed areas. eLife 7, e38012 (2018).PubMed
PubMed Central
Article
Google Scholar
65.Fuller, A., Mitchell, D., Maloney, S. K. & Hetem, R. S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Change Resp. 3, 10 (2016).Article
Google Scholar
66.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926 (2015).PubMed
Article
Google Scholar
67.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article
Google Scholar
68.Riddell, E. A. et al. Exposure to climate drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).CAS
PubMed
Article
Google Scholar
69.Law, C. J., Slater, G. J. & Mehta, R. S. Shared extremes by ectotherms and endotherms: body elongation in mustelids is associated with small size and reduced limbs. Evolution 73, 735–749 (2019).PubMed
Article
Google Scholar
70.Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).PubMed
Article
PubMed Central
Google Scholar
71.Nengovhela, A., Denys, C. & Taylor, P. J. Life history and habitat do not mediate temporal changes in body size due to climate warming in rodents. PeerJ 8, 9792 (2020).Article
Google Scholar
72.Merckx, T., Kaiser, A. & Van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Change Biol. 24, 3837–3848 (2018).Article
Google Scholar
73.Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).Article
Google Scholar
74.Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
75.Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Christensen, J. H. et al. Climate Phenomena and their Relevance for Future Regional Climate Change in Climate Change 2013: The Physical Science Basis. Contribution Working Group I Fifth Assess. Rep. Intergovernmental Panel Clim. Change 1–6, 1217–1308 (2013). pp.
Google Scholar
77.Guralnick, R. & Constable, H. VertNet: creating a data-sharing community. Bioscience 60, 258–259 (2010).Article
Google Scholar
78.National Ecological Observatory Network. Data Products: DP1.10072.001. Provisional data downloaded from http://data.neonscience.org on May 10, 2019. Battelle, Boulder, CO, USA. (2019).79.Calhoun, J. B. North American census of small mammals. Release no. 1. Announcement of program. Rodent ecology program. Johns Hopkins University Pres. (1948).80.Calhoun, J. B. North American census of small mammals. Release no. 2. Annual report of census made in 1948. Rodent ecology program. Johns Hopkins University Press. (1949).81.Calhoun, J. B. North American census of small mammals. Release no. 3. Annual report of census made in 1949. Roscoe B. Jackson Memorial Laboratory. (1950).82.Calhoun, J. B. North American census of small mammals. Release no. 4. Annual report of census made in 1950. Roscoe B. Jackson Memorial Laboratory. (1951).83.Calhoun, J. B. Population dynamics of vertebrates. Compilations of research data. Release no. 5. 1951 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1956).84.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 6. 1952 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).85.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 7. 1953 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).86.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 8. 1954 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).87.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 9. 1955 and 1956 Annual report – North American census of small mammals and certain summaries for the years 1948–1956. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).88.Guralnick, R. P. et al. The Importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).PubMed
PubMed Central
Article
Google Scholar
89.Laney, C. & Lunch, C. neonUtilities: utilities for working with NEON data. R package version 1.3.1. https://cran.r-project.org/web/packages/neonUtilities. (2019).90.Chapman, A. D. & Wieczorek, J. Guide to best practices for georeferencing. Global Biodiversity Information Facility. (2006).91.Wieczorek, J., Guo, Q., Boureau, C. & Wieczorek, C. Georeferencing calculator. http://manisnet.org/gci2.html. (2001).92.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/. (2021).93.Tiwari, V. & Kashikar, A. OutlierDetection: Outlier Detection. R package version 0.1.1. https://cran.r-project.org/web/packages/OutlierDetection/index.html. (2019).94.Fang, Y. & Jawitz, J. W. High-resolution reconstruction of the United States human population distribution, 1790 to 2010. Sci. Data 5, 180067 (2018).PubMed
PubMed Central
Article
Google Scholar
95.Venter, O. et al. Global Human Footprint maps for 1993 and 2009. Sci. Data 3, 10067 (2016).Article
Google Scholar
96.Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).PubMed
Article
PubMed Central
Google Scholar
97.Li, D. et al. Climate, urbanization, and species traits interactively drive flowering duration. Glob. Change Biol. 27, 892–903 (2021).Article
Google Scholar
98.PRISM Climate Group. PRISM climate data. Available at https://prism.oregonstate.edu. (2020).99.Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 17, e3000494 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
100.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. (2014).101.Brown, James H. Macroecology. University of Chicago Press. (1995).102.Smith, F. A. et al. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am. Nat. 163, 672–691 (2004).PubMed
Article
PubMed Central
Google Scholar
103.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).Article
Google Scholar
104.Barton, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html. (2012).105.Li, D., Dinnage, R., Helmus, M. & Ives, A. phyr: An R package for phylogenetic species‐distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).Article
Google Scholar
106.Ives, A. R. & Li, D. rr2: an R package to calculate R2s for regression models. J. Open Source Softw. 3, 1028 (2018).Article
Google Scholar More