More stories

  • in

    From the 1990s climate change has decreased cool season catchment precipitation reducing river heights in Australia’s southern Murray-Darling Basin

    The JJAS river heights at Hay (Fig. 2a) have clearly reduced variability over the 27-year period 1965–1991 compared with 1992–2018 (p-value = 0.005, Table 4). Despite the apparent decrease in the mean and variance of JJAS Murrumbidgee River heights at Hay from the 1960s, as shown by the low p-values (0.309, 0.332), respectively, for the 27-year intervals 1938–1964 to 1965–1991 (Table 4), the decrease is not statistically significant. However, the decrease is consistent with the suggestion that a change point occurred from the late 1950s between unregulated to regulated flow at Hay11.While the mean JJAS precipitation of the three catchment locations of Burrinjuck Dam, Blowering Dam and Tumut indicate a slight decrease in percentile extremes from the 1990s, with 2016 (due to September) only above the 95th percentile (Fig. 3), they exhibit no significant change in mean or variance based on the bootstrapped intervals JJAS 1964–1991 to 1992–2018. Consequently, the question arises of why the significant decrease in mean and variance of the JJAS Murrumbidgee River height at Wagga Wagga and in variance at Hay does not match a similar significant decrease in mean or variance of JJAS catchment rainfall. A rainfall decline in recent decades was found to be most pronounced in late autumn20,21 and that without sufficient autumn rainfall to moisten catchments in southern Australia, follow-up rainfall in winter cannot be efficiently converted to run-off and catchment inflows22. There have been statistically significant decreases in April–May mean precipitation at the catchment locations of Blowering Dam, Burrinjuck Dam and Tumut from 1964 to 1991 to 1992–2018 and also for the mean inflows to the two Dams (Table 4). Furthermore, as a result of the Millennium Drought (1997–2009), modelling experiments indicate that, starting from very dry conditions, the run-off response to rainfall only will return to the normal pre-drought conditions after about 10–20 years of average rainfall23. Therefore, the significant decrease in variance of Murrumbidgee River heights at Hay and in mean and variance at Wagga Wagga, is most likely due to the April–May reduced dam inflows and precipitation, and from average JJAS catchment precipitation since 1991. Any role played by water extraction for irrigation between Wagga Wagga and Hay, where irrigation is concentrated, is likely to be small owing to the highly significant mean river height reduction at Wagga Wagga which is upstream from Hay. However, irrigation, and other water usage, is sourced from the dams, so there is a long-term impact of irrigation over the months preceding JJAS on flows at Wagga Wagga, due to the reduction in water stored in the upstream dams. The dams integrate the water extracted for irrigation and all other usage since the last spill event, and therefore the extractions over an extended period can have an impact on when the dam will fill, and hence on the flows downstream, including Wagga Wagga. The minimum water level in the dams, which typically occurs near the end of Autumn, is due to the reduction in inflows (impacted by climate change), and extractions from the dam. Coupled with the tendency for a slower fill rate due to reduced inflows, this results in fewer spill events. As a consequence, there is a change in the distribution between spill events and irrigation releases, changing the frequency distribution of flows. This will be particularly the case for the JJAS period, as a delayed dam filling will have a major impact in dam levels in that period. Before the 1990s the river at Wagga Wagga and Hay reached flood level height or close to flood level height regularly in JJAS from precipitation-driven inflows regardless of the amount of water that was extracted (see Fig. 2a,b). Since the mid-1990s less water reaching Wagga Wagga has significantly reduced the river height owing to significantly decreased April–May and JJAS precipitation-driven inflows at the upstream catchment dams of Burrinjuck and Blowering Dams and significantly decreased mean precipitation at Tumut, which also represents the catchment area of Blowering Dam (Fig. 2c,d; Table 4). Moreover, there has been no overallocation or hoarding of water found in the southern MDB24. In a different southern MDB catchment study of the Millennium Drought 1997–2008, factors for a disproportionate reduction in rainfall run-off were reduced mean annual rainfall, less interannual variability of rainfall, changed seasonality of rainfall and lastly increased potential evaporation25. However, the last two factors mentioned have since become well established in the last decade with reference to the work in this study. It was suggested that a rainfall reduction alone does not explain the observed inflow reduction trend26. Even after a major rain event, the soils are so dry that they absorb more water than before the rain event, and less reaches the dams and rivers than on a wet catchment. In the last three decades it is unknown what the effect on run-off into dams and the Murrumbidgee river has been in JJAS from major rain events because, apart from August–September 2016, there have been no major catchment net inflows since 1991 (Fig. 2c,d). There were significant precipitation-driven inflows during SON 2010 which led to flood level exceedances at Wagga Wagga and Hay in December 2010. In June and July 1991 there was a series of rain-producing cut-off low pressure systems over inland NSW and the adjacent coast influencing the catchment, interspersed with persistent, precipitation-producing frontal systems embedded in the westerly airflow during July and August. Rain producing inland cut-off low pressure systems over southeast Australia are the main influence on enhancing JJAS rainfall totals8.Decreased JJAS precipitation in continental southeast Australia has been evident for at least the last two decades, as anticipated by climate scientists. The naturally periodic La Niña phenomenon provided spring and summer precipitation during much of 2010 to 2012, which ended the Millennium Drought (1997–2009). The only other recent widespread significant rainfall in southeast continental Australia was in August–September 2016 due to a negative phase of the Indian Ocean Dipole (IOD). A negative IOD phase typically is associated with wetter than normal spring conditions for southeast Australia7,8.Although the SAM is an atmospheric index with a time scale typically of a few weeks, an annual average SAM reconstruction shows that since the 1970s it is in its most positive state over at least the past 1000 years27. Prior to the 1990s soil wetness would have been in phase with the annual cycle of winter/spring peak rainfall, dry summer/early autumn and without a long term trend in SAM. However, because SAM has trended positive since the 1970s, the annual cycle of soil wetness of the MDB has been increasingly disrupted particularly since the Millennium Drought23 and there is also a potential long-term impact from groundwater systems28. This is supported by the most recent available annual area-averaged actual evapotranspiration and soil moisture deciles in Fig. 7a,b. These figures show the anomalously dry MDB catchment area in the period 2018–2019. In the southeast corner of the MDB, actual evapotranspiration is below average and soil moisture is very much below average.Figure 7Available at: http://www.bom.gov.au/water/nwa/2019/mdb/climateandwater/climateandwater.shtml.Annual deciles of actual evapotranspiration and soil moisture 2018–2019. Map of southeast Australia showing for the MDB region deciles during the 2018–2019 year for, (a) annual area-averaged actual evapotranspiration. Note the below average decile in the southeast corner of the MDB, and (b) annual area-averaged soil moisture. Note the very much below average decile in the southeast corner of the MDB. (Reproduced with permission under Creative Commons Attribution Licence 3.0 from the Australian Bureau of Meteorology.Full size imageTwo Supplementary Tables showing historical April–May (S1) and JJAS (S2) maximum river heights above flood level at Hay (6.7 m) in IPO phases indicate, as expected, more in negative IPO phases than positive phases and importantly a dissociation with the IPO resulting from none in the most recent negative phase from 1998 and the preceding positive phase after the early 1990s. The implication is that accelerated global warming since the 1990s has overwhelmed the influence of negative IPO on precipitation.The MDB plan, introduced from 201329 provided, for the first time, regulated allocations to environmental flows for ecosystem sustainability of rivers in southeast Australia such as the Murrumbidgee. However, the plan requires that each year on 1 July a fixed amount of water is locked in for future consumption, split three ways with the highest priority for human consumption and irrigation for permanent crops (e.g., fruit trees and nuts). The remaining allocations are split between non-permanent crops (e.g., cotton, rice) and environmental flow. A major issue is that the forecast net inflows upon which the allocations are based are the minimum inflows experienced in the 120 years up to the end of the twentieth century. However, as shown, even lower inflows have been experienced in the past two decades. It is not surprising that there is a significant decrease in the JJAS variance of the Murrumbidgee River height at Hay (p-value = 0.005) and both the JJAS mean and variance at Wagga Wagga from the periods 1965–1991 to 1992–2018 (mean p-value = 0.0044, variance p-value = 0.095; Table 4) since this period corresponds with the significantly reduced mean April–May catchment precipitation and mean April–May dam net inflows. The fact that there has been no significant change in the mean Murrumbidgee River height since 1991 is an indication that there has been a lack of major April-September rain events. The lack of significant catchment rainfall events from April to September is the reason for the reduction in the mean and variance of river heights at Wagga Wagga. Floods in April–May are rare along the Murrumbidgee River and the six years since 1874 in which April–May floods occurred at Hay prior to 1991 (Table 3), were dominated by precipitation that occurred as a result of mid-latitude interaction with either tropical or subtropical moisture, whereas the last flood that occurred in March 2012, was the result of a rain-producing tropical low pressure trough in the easterly wind regime that extended from northwest Australia to a low pressure centre in southern New South Wales near the Murrumbidgee catchment. Moreover, given the significant decline in April–May, Murrumbidgee catchment rainfall, JJAS run-off into the dams and Murrumbidgee River height at Wagga Wagga since 1991, the implication for water allocations of irrigated agriculture downstream from Wagga Wagga and for flood plain environmental flows required for sustainable wetlands downstream from Hay, will continue to be a problem. More

  • in

    Quantifying the dynamics of rocky intertidal sessile communities along the Pacific coast of Japan: implications for ecological resilience

    1.Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996).Article 

    Google Scholar 
    2.Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    3.Gunderson, L. H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    4.Thrush, S. F. et al. Forecasting the limits of resilience: Integrating empirical research with theory. Proc. R. Soc. B Biol. Sci. 276, 3209–3217 (2009).Article 

    Google Scholar 
    5.Bagchi, S. et al. Quantifying long-term plant community dynamics with movement models: Implications for ecological resilience. Ecol. Appl. 27, 1514–1528 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Radchuk, V. et al. The dimensionality of stability depends on disturbance type. Ecol. Lett. 22, 674–684 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).ADS 
    Article 

    Google Scholar 
    11.Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Raffaelli, D. & Hawkins, S. J. Intertidal Ecology (Chapman & Hall, 1996).Book 

    Google Scholar 
    15.Tsujino, M. et al. Distance decay of community dynamics in rocky intertidal sessile assemblages evaluated by transition matrix models. Popul. Ecol. 52, 171–180 (2010).Article 

    Google Scholar 
    16.Kanamori, Y., Fukaya, K. & Noda, T. Seasonal changes in community structure along a vertical gradient: Patterns and processes in rocky intertidal sessile assemblages. Popul. Ecol. 59, 301–313 (2017).Article 

    Google Scholar 
    17.Menge, B. A. et al. Benthic–pelagic links and rocky intertidal communities: Bottom-up effects on top-down control?. Proc. Natl. Acad. Sci. 94, 14530–14535 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Sanford, E. Regulation of keystone predation by small changes in ocean temperature. Science 283, 2095–2097 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Menge, B. A. Top-down and bottom-up community regulation in marine rocky intertidal habitats. J. Exp. Mar. Biol. Ecol. 250, 257–289 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Connolly, S. R., Menge, B. A. & Roughgarden, J. A. Latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).Article 

    Google Scholar 
    21.Menge, B. A. et al. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc. Natl. Acad. Sci. 100, 12229–12234 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Nielsen, K. J. & Navarrete, S. A. Mesoscale regulation comes from the bottom-up: Intertidal interactions between consumers and upwelling. Ecol. Lett. 7, 31–41 (2004).Article 

    Google Scholar 
    23.Schoch, G. C. et al. Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnol. Oceanogr. 51, 2564–2585 (2006).ADS 
    Article 

    Google Scholar 
    24.Vinueza, L. R., Menge, B. A., Ruiz, D. & Palacios, D. M. Oceanographic and climatic variation drive top-down/bottom-up coupling in the Galápagos intertidal meta-ecosystem. Ecol. Monogr. 84, 411–434 (2014).Article 

    Google Scholar 
    25.Menge, B. A., Gouhier, T. C., Hacker, S. D., Chan, F. & Nielsen, K. J. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol. Monogr. 85, 213–233 (2015).Article 

    Google Scholar 
    26.Hacker, S. D., Menge, B. A., Nielsen, K. J., Chan, F. & Gouhier, T. C. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology https://doi.org/10.1002/ecy.2763 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Qiu, B. Kuroshio and Oyashio currents. In Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1413–1425 (Academic Press, 2001).Chapter 

    Google Scholar 
    28.Qiu, B. Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr. 32, 353–375 (2002).ADS 
    Article 

    Google Scholar 
    29.Sakurai, Y. An overview of the Oyashio ecosystem. Deep Sea Res. Pt. II 54, 2526–2542 (2007).ADS 
    Article 

    Google Scholar 
    30.Yatsu, A. et al. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 70, 922–933 (2013).Article 

    Google Scholar 
    31.Kawabe, M. Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. J. Oceanogr. 61, 529–537 (2005).Article 

    Google Scholar 
    32.Okunishi, T. et al. Characteristics of oceanographic condition of Tohoku prefecture in 2018. in Bulletin of Liaison Conference of Tohoku Marine Surveys and Technology , Vol. 68, 4–5 (2018) (in Japanese).33.Japan Meteorological Agency. Fluctuations in the Kuroshio Current on a Scale of Months to Decades (Paths). http://www.data.jma.go.jp/gmd/kaiyou/data/shindan/b_2/kuroshio_stream/kuroshio_stream.html (in Japanese, accessed 11 March 2021).34.Taniguchi, K., Sato, M. & Owada, K. On the characteristics of the structural variation in the Eisenia bicyclis population on Joban coast, Japan. Bull Tohoku Natl. Fish. Res. Inst. 48, 49–57 (1986) (in Japanese with English abstract).
    Google Scholar 
    35.Nomura, K., & Hirabayashi, I. Mass mortality of coral communities caused by abnormality low water temperature observed at Kii peninsula west coast for winter season in 2018. Marine Pavilion. Supplement 7 (2018) (in Japanese).36.Yamaguchi, M. Acanthaster planci infestations of reefs and coral assemblages in Japan: A retrospective analysis of control efforts. Coral Reefs 5, 23–30 (1986).ADS 
    Article 

    Google Scholar 
    37.Ohgaki, S. I. et al. Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan. Ecol. Indic. 96, 684–693 (2019).Article 

    Google Scholar 
    38.Kawajiri, M., Sasaki, T. & Kageyama, Y. Extensive deterioration of Ecklonia kelp stands and death of the plants, and fluctuations in abundance of the abalone off Toji, southern Izu peninsula. Bull. Shizuoka Pref. Fish. Exp. Stn. 15, 19–30 (1981) (in Japanese).
    Google Scholar 
    39.Takami, H. et al. Overwinter mortality of young-of-the-year Ezo abalone in relation to seawater temperature on the North Pacific coast of Japan. Mar. Ecol. Prog. Ser. 367, 203–212 (2008).ADS 
    Article 

    Google Scholar 
    40.Okuda, T., Noda, T., Yamamoto, T., Ito, N. & Nakaoka, M. Latitudinal gradient of species diversity: Multi-scale variability in rocky intertidal sessile assemblages along the Northwestern Pacific coast. Popul. Ecol. 46, 159–170 (2004).Article 

    Google Scholar 
    41.Nakaoka, M., Ito, N., Yamamoto, T., Okuda, T. & Noda, T. Similarity of rocky intertidal assemblages along the Pacific coast of Japan: Effects of spatial scales and geographic distance. Ecol. Res. 21, 425–435 (2006).Article 

    Google Scholar 
    42.Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315. https://doi.org/10.1126/sciadv.1700315 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Iwasaki, A., Fukaya, K. & Noda, T. Quantitative evaluation of the impact of the Great East Japan Earthquake and tsunami on the rocky intertidal community. In Ecological Impacts of Tsunamis on Coastal Ecosystems (eds Urabe, J. & Nakashizuka, T.) 35–46 (Springer Japan, 2016).Chapter 

    Google Scholar 
    45.Noda, T., Iwasaki, A. & Fukaya, K. Recovery of rocky intertidal zonation: Two years after the 2011 Great East Japan Earthquake. J. Mar. Biol. Assoc. UK 96, 1549–1555 (2016).Article 

    Google Scholar 
    46.Noda, T., Sakaguchi, M., Iwasaki, A. & Fukaya, K. Influence of the 2011 Tohoku Earthquake on population dynamics of a rocky intertidal barnacle: Cause and consequence of alternation in larval recruitment. Coast. Mar. Sci. 40, 35–43 (2017).
    Google Scholar 
    47.Nuvoloni, F. M., Feres, R. J. F. & Gilbert, B. Species turnover through time: Colonization and extinction dynamics across metacommunities. Am. Nat. 187, 786–796 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Clarke, A. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. A Rev. 21, 341–453 (1983).
    Google Scholar 
    49.Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).Article 

    Google Scholar 
    50.Bulleri, F. et al. Temporal stability of European rocky shore assemblages: Variation across a latitudinal gradient and the role of habitat-formers. Oikos 121, 1801–1809 (2012).Article 

    Google Scholar 
    51.Noda, T. Spatial hierarchical approach in community ecology: A way beyond high context-dependency and low predictability in local phenomena. Popul. Ecol. 46, 105–117 (2004).Article 

    Google Scholar 
    52.Sahara, R. et al. Larval dispersal dampens population fluctuation and shapes the interspecific spatial distribution patterns of rocky intertidal gastropods. Ecography 39, 487–495 (2015).Article 

    Google Scholar 
    53.Hanawa, K. & Mitsudera, H. Variation of water system distribution in the Sanriku coastal area. J. Oceanogr. 42, 435–446 (1987).Article 

    Google Scholar 
    54.Ohtani, K. Westward inflow of the coastal Oyashio Water into the Tsugaru Strait. Bull. Fac. Fish Hokkaido Univ. 38, 209–220 (1987) (in Japanese with English abstract).
    Google Scholar 
    55.Takasugi, S. Distribution of Tsugaru Warm Current water in the Iwate coastal area and their influence to sea surface temperature at coastal hydrographic station. Bull. Jpn. Soc. Fish. Oceanogr. 56, 434–448 (1992) (in Japanese with English abstract).
    Google Scholar 
    56.Takasugi, S. & Yasuda, I. Variation of the Oyashio water in the Iwate coastal region and in the vicinity of east coast of Japan. Bull. Jpn. Soc. Fish. Oceanogr. 58, 253–259 (1994) (in Japanese with English abstract).
    Google Scholar 
    57.Conlon, D. M. On the outflow modes of the Tsugaru Warm Current. La Mer. 20, 60–64 (1982).
    Google Scholar 
    58.Isoda, Y. & Suzuki, K. Interannual variations of the Tsugaru gyre. Bull. Fac. Fish. Hokkaido Univ. 55, 71–74 (2004) (in Japanese with English abstract).
    Google Scholar 
    59.Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).Article 

    Google Scholar 
    60.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018). More

  • in

    Historical warming consistently decreased size, dispersal and speciation rate of fish

    1.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    3.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    4.McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).Article 

    Google Scholar 
    5.Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).Article 

    Google Scholar 
    6.Amigo, I. The Amazon’s fragile future. Nature 578, 505–507 (2020).CAS 
    Article 

    Google Scholar 
    7.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Change 10, 249–253 (2020).Article 

    Google Scholar 
    8.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).Article 

    Google Scholar 
    9.Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).Article 

    Google Scholar 
    10.Chen, I., Hill, J. K., Ohlemûller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    11.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    12.Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).Article 

    Google Scholar 
    13.Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in fish. Evol. Appl. 7, 68–87 (2014).Article 

    Google Scholar 
    14.Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    15.Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).Article 

    Google Scholar 
    16.Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Front. Ecol. Evol. 7, 271 (2019).Article 

    Google Scholar 
    17.Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).Article 
    CAS 

    Google Scholar 
    18.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).CAS 
    Article 

    Google Scholar 
    19.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    20.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).Article 

    Google Scholar 
    21.Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).CAS 
    Article 

    Google Scholar 
    22.Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. Biol. Sci. 287, 20192615 (2020).
    Google Scholar 
    23.Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. B 285, 20172214 (2018).Article 

    Google Scholar 
    24.Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).CAS 
    Article 

    Google Scholar 
    25.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    26.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    27.Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).Article 

    Google Scholar 
    28.Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999).Article 

    Google Scholar 
    29.Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: perspectives for a changing world. Science 313, 789–791 (2006).CAS 
    Article 

    Google Scholar 
    30.Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. J. & Nishida, M. Mitogenomic evidence for an indo-west Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8, e56485 (2013).Article 
    CAS 

    Google Scholar 
    31.Bloom, D. D., Burns, M. D. & Schriever, T. A. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies). Biol. J. Linn. Soc. 125, 302–314 (2018).Article 

    Google Scholar 
    32.O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of an evolutionary radiation. Nat. Ecol. Evol. 2, 452–458 (2018).Article 

    Google Scholar 
    33.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    34.Pinek, L., Mansour, I., Lakovic, M., Ryo, M. & Rillig, M. C. Rate of environmental change across scales in ecology. Biol. Rev. 95, 1798–1811 (2020).Article 

    Google Scholar 
    35.Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572, 651–654 (2019).CAS 
    Article 

    Google Scholar 
    36.Gaston, K. J. Species-range size distributions: products of speciation, extinction and transformation. Philos. Trans. R. Soc. B 353, 219–230 (1998).Article 

    Google Scholar 
    37.Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from phylogenies. Biol. J. Linn. Soc. 118, 95–115 (2016).Article 

    Google Scholar 
    38.Angilletta, M. J. & Dunham, A. E. The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).Article 

    Google Scholar 
    39.Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).Article 

    Google Scholar 
    40.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr Fishing down marine food webs. Science 279, 860–863 (1998).CAS 
    Article 

    Google Scholar 
    41.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    Article 

    Google Scholar 
    42.Whitehead, P. J. P. FAO species catalogue: vol. 7 Clupeoid fishes of the world. FAO Fish. Synop. 7, 303 (1985).
    Google Scholar 
    43.Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).Article 

    Google Scholar 
    44.Önsoy, B., Tarkan, A. S., Filiz, H. & Bilge, G. Determination of the best length measurement of fish. North. West. J. Zool. 7, 178–180 (2011).
    Google Scholar 
    45.Mohseni, O. & Stefan, H. G. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol. 218, 128–141 (1999).Article 

    Google Scholar 
    46.Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng. 131, 139–146 (2005).CAS 
    Article 

    Google Scholar 
    47.Sharma, S., Jackson, D. A., Minns, C. K. & Shuter, B. J. Will northern fish populations be in hot water because of climate change? Glob. Change Biol. 13, 2052–2064 (2007).Article 

    Google Scholar 
    48.Avaria-Llautureo, J. et al. Data for: Historical Warming Consistently Decreased Size, Dispersal and Speciation Rate of Fish (Dryad, 2021); https://doi.org/10.5061/dryad.cfxpnvx5g49.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).Article 

    Google Scholar 
    50.Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).CAS 
    Article 

    Google Scholar 
    51.Kocsis, Á. T. & Raja, N. B. chronosphere (Zenodo, 2020); https://doi.org/10.5281/zenodo.353070352.Raftery, A. E. in Markov Chain Monte Carlo in Practice (eds Gilks, W. et al.) 163–187 (Chapman & Hall, 1996).53.Hijmans, R. J. geosphere: spherical trigonometry. R package version 1.5-10 https://CRAN.R-project.org/package=geosphere (2019).54.Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).Article 

    Google Scholar 
    55.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    Article 

    Google Scholar 
    57.Shafir, A., Azouri, D., Goldberg, E. E. & Mayrose, I. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 74, 1620–1639 (2020).Article 

    Google Scholar 
    58.Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235–247 (1997).Article 

    Google Scholar 
    59.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    60.Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar  More

  • in

    Assessing effectiveness of exclusion fences in protecting threatened plants

    1.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Chapin, F. S., Sala, O. E. & Huber-Sannwald, E. Global Biodiversity in a Changing Environment Vol 152 (Springer, 2001).Book 

    Google Scholar 
    3.Hobohm, C. Endemism in Vascular Plants (Springer, 2014). https://doi.org/10.1007/978-94-007-6913-7.Book 

    Google Scholar 
    4.Al-Rowaily, S. L. et al. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 22, 430–437 (2015).Article 

    Google Scholar 
    5.Alonso, I., Hartley, S. E. & Thurlow, M. Competition between heather and grasses on Scottish moorlands: Interacting effects of nutrient enrichment and grazing regime. J. Veg. Sci. 12, 249–260 (2001).Article 

    Google Scholar 
    6.Diamond, J. Guns, Germs and Steel: The Fate of Human Societies (W.W. Norton & Company, 1997). https://doi.org/10.4324/9781912128273.Book 

    Google Scholar 
    7.Hayward, M. W. & Kerley, G. I. H. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).Article 

    Google Scholar 
    8.Hayward, M. W. et al. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).Article 

    Google Scholar 
    9.Santoro, R. et al. Effects of trampling limitation on coastal dune plant communities. Environ. Manag. 49, 534–542 (2012).ADS 
    Article 

    Google Scholar 
    10.Fenu, G. et al. A common approach to the conservation of threatened island vascular plants: First results in the Mediterranean Basin. Diversity 12, 157 (2020).Article 

    Google Scholar 
    11.Fenu, G., Cogoni, D. & Bacchetta, G. The role of fencing in the success of threatened plant species translocation. Plant Ecol. 217, 207–217 (2016).Article 

    Google Scholar 
    12.Fazan, L. et al. Free behind bars: Effects of browsing exclusion on the growth and regeneration of Zelkova abelicea. For. Ecol. Manag. 488, 118967 (2021).Article 

    Google Scholar 
    13.Aschero, V. & García, D. The fencing paradigm in woodland conservation: Consequences for recruitment of a semi-arid tree. Appl. Veg. Sci. 15, 307–317 (2012).Article 

    Google Scholar 
    14.Bessega, C., Pometti, C., Campos, C., Saidman, B. O. & Vilardi, J. C. Implications of mating system and pollen dispersal indices for management and conservation of the semi-arid species Prosopis flexuosa (Leguminosae). For. Ecol. Manag. 400, 218–227 (2017).Article 

    Google Scholar 
    15.Scofield, R. P., Cullen, R. & Wang, M. Are predator-proof fences the answer to New Zealand’s terrestrial faunal biodiversity crisis?. N. Z. J. Ecol. 35, 312–317 (2011).
    Google Scholar 
    16.Tanentzap, A. J. & Lloyd, K. M. Fencing in nature? Predator exclusion restores habitat for native fauna and leads biodiversity to spill over into the wider landscape. Biol. Conserv. 214, 119–126 (2017).Article 

    Google Scholar 
    17.Valderrábano, E. M., Gil, T., Heywood, V. & Montmollin, B. D. Conserving Wild Plants in the South and East Mediterranean Region (IUCN, International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.21.en.Book 

    Google Scholar 
    18.Bañares, A., Blanca, G., Guemes, J., Moreno, J. & Ortiz, S. Atlas y Libro Rojo de la Flora Vascular Amenazada de España (Ministerio de Medio Ambiente Medio Rural y Marino, 2004).
    Google Scholar 
    19.Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article 

    Google Scholar 
    20.Gutiérrez, L., García, S., Cuerda, D. & Marchal, F. Aportaciones al conocimiento de la distribución y el estado de conservación del endemismo amenazado Solenanthus reverchonii Debeaux ex Degen (Boraginaceae ) en Andalucía ( España ). An. Biol. 36, 135–140 (2014).
    Google Scholar 
    21.Spooner, P., Lunt, I. & Robinson, W. Is fencing enough? The short-term effects of stock exclusion in remnant grassy woodlands in southern NSW. Ecol. Manag. Restor. 3, 117–126 (2002).Article 

    Google Scholar 
    22.Prober, S. M., Standish, R. J. & Wiehl, G. After the fence: Vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Aust. J. Bot. 59, 369–381 (2011).Article 

    Google Scholar 
    23.Newman, M., Mitchell, F. J. G. & Kelly, D. L. Exclusion of large herbivores: Long-term changes within the plant community. For. Ecol. Manag. 321, 136–144 (2014).Article 

    Google Scholar 
    24.Cogoni, D., Fenu, G., Concas, E. & Bacchetta, G. The effectiveness of plant conservation measures: The Dianthus morisianus reintroduction. Oryx 47, 203–206 (2013).Article 

    Google Scholar 
    25.Schowalter, T. D. Herbivory. Insect Ecology 347–382 (Elsevier, 2006). https://doi.org/10.1016/B978-012088772-9/50038-8.Book 

    Google Scholar 
    26.van der Waal, C. et al. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165, 1095–1107 (2011).ADS 
    Article 

    Google Scholar 
    27.Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).Article 

    Google Scholar 
    28.Körner, C. Alpine Treelines (Springer, 2012). https://doi.org/10.1007/978-3-0348-0396-0.Book 

    Google Scholar 
    29.Anderson, P. M. L. & Hoffman, M. T. Grazing response in the vegetation communities of the Kamiesberg, South Africa: Adopting a plant functional type approach. J. Arid Environ. 75, 255–264 (2011).ADS 
    Article 

    Google Scholar 
    30.Hardin, G. The tragedy of the commons. Science (80–) 162, 1243–1248 (1968).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Vera, J. A. Geología de Andalucía. Enseñanza Cien. Tierra 2, 306–317 (1994).
    Google Scholar 
    32.Gómez-Mercado, F. Vegetación y flora de la Sierra de Cazorla. Guineana 17, 1–481 (2011).
    Google Scholar 
    33.Benavente, A. Flora y vegetacion: Parque Natural de las Sierras de Cazorla, Segura y Las Villas. Anu. Adelantamiento Cazorla 50, 149–153 (2008).
    Google Scholar 
    34.Soriguer, R., Fandos, P., Granados, J., Castillo, A. & Serrano, E. Herbivoría por ungulados silvestres en el piso mesomediterráneo de las Sierras de Cazorla, Segura y Las Villas. In “In memoriam” al profesor Dr Isidoro Ruiz Martínez 479–504 (Universidad de Jaén, 2003).
    Google Scholar 
    35.García-González, R. & Cuartas, P. A comparison of the diets of the wild goat (Capra pyrenaica), Domesc Goat (Capra hircus), Mouflon (Ovis musimon) and the domestic sheep (Ovis aries) in the Cazorla Mountain range. Acta Biol. 9, 123–132 (1989).
    Google Scholar 
    36.Araque, E. Territorio y patrimonio rural en las sierras de Cazorla, Segura y las Villas. Nuevas perspectivas de investigación. Rev. PH 84, 28–47 (2013).
    Google Scholar 
    37.Tíscar Oliver, P. Patterns of shrub diversity and tree regeneration across topographic and stand-structural gradients in a Mediterranean forest. For. Syst. 24, 1–11 (2015).
    Google Scholar 
    38.Lorite, J., Navarro, F. B. & Valle, F. Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosyst. 141, 1–14 (2007).Article 

    Google Scholar 
    39.Blanca, G. et al. Flora Vascular de Andalucía Oriental. vol. 4 (Servicios de Publicaciones de las universidades de Granada, Almería, Jaén y Málaga, 2011).
    Google Scholar 
    40.Mateos, M. et al. FAME. Aplicación Web de apoyo al seguimiento, localización e integración de la información sobre flora amenazada y de interés generada en Andalucía. In Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos 222–229 (2010).41.Valle, F. et al. Mapa de Series de Vegetación de Andalucía (Editorial Rueda, 2003).
    Google Scholar 
    42.Sutherland, W. J. Ecological Census Techniques: A Handbook 2nd edn. (Cambridge University Press, 2006).Book 

    Google Scholar 
    43.Lorite, J., Peñas, J., Benito, B., Cañadas, E. & Valle, F. Conservation status of the first known population of Polygala balansae in Europe. Ann. Bot. Fenn. 47, 45–50 (2010).Article 

    Google Scholar 
    44.Blanca, G., Cabezudo, B., Cueto, M., Morales, C. & Salazar, C. Flora vascular de Andalucía oriental (2a Edición Corregida y Aumentada) (Universidad de Granada, 2011).
    Google Scholar 
    45.R Core Development Team. R: A Language and Environment for Statistical Computing (R Core Development Team, 2019).
    Google Scholar 
    46.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. (2018).47.Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. (2020).48.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    49.Wheeler, R. E. R. et al. lmPerm: Permutation tests for linear models. 24 (2016).50.Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches

    1.Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).Article 

    Google Scholar 
    3.Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).ADS 
    Article 

    Google Scholar 
    4.Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    5.Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).Article 

    Google Scholar 
    6.Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).Article 

    Google Scholar 
    7.Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).Article 

    Google Scholar 
    8.Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).CAS 
    Article 

    Google Scholar 
    9.WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).
    Google Scholar 
    10.Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).ADS 
    Article 

    Google Scholar 
    11.Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).Article 

    Google Scholar 
    12.Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).Book 

    Google Scholar 
    13.Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).Article 

    Google Scholar 
    14.Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).Article 

    Google Scholar 
    15.Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).
    Google Scholar 
    16.Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).
    Google Scholar 
    17.Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).
    Google Scholar 
    18.Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).
    Google Scholar 
    19.Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).Article 

    Google Scholar 
    20.Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).Article 

    Google Scholar 
    21.Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).Chapter 

    Google Scholar 
    22.Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).
    Google Scholar 
    23.Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).CAS 
    Article 

    Google Scholar 
    24.Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    27.Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).Article 

    Google Scholar 
    28.Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).Article 

    Google Scholar 
    30.Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).ADS 
    CAS 

    Google Scholar 
    31.Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).PubMed 
    Article 

    Google Scholar 
    36.Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    39.de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).Article 

    Google Scholar 
    40.Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).CAS 
    Article 

    Google Scholar 
    41.Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed 
    Article 

    Google Scholar 
    46.Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).Article 

    Google Scholar 
    50.Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).Article 
    CAS 

    Google Scholar 
    51.Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).Article 

    Google Scholar 
    52.Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).
    Google Scholar 
    53.Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).Article 

    Google Scholar 
    54.Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).Article 

    Google Scholar 
    55.Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).56.Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).
    Google Scholar 
    57.Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).
    Google Scholar 
    58.Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).
    Google Scholar 
    59.Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).
    Google Scholar 
    60.Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).
    Google Scholar 
    61.Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).
    Google Scholar 
    63.Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article 

    Google Scholar 
    64.Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).Article 

    Google Scholar 
    65.Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).Article 

    Google Scholar 
    66.Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).
    Google Scholar 
    67.Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)71.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).Article 

    Google Scholar 
    73.Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).
    Google Scholar 
    76.Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).PubMed 
    Article 

    Google Scholar 
    79.Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).PubMed 
    Article 

    Google Scholar 
    81.Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).Article 

    Google Scholar 
    82.Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article 
    CAS 

    Google Scholar 
    84.Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).Article 

    Google Scholar 
    85.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    86.Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed 
    Article 

    Google Scholar 
    87.Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
    Google Scholar 
    89.Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).
    Google Scholar  More

  • in

    Effect of EPSPS gene copy number and glyphosate selection on fitness of glyphosate-resistant Bassia scoparia in the field

    Seed sourceSeeds of a segregating GR B. scoparia population identified from a wheat field (45°54′54.76″N; 108°14′44.15″W) in 2013 in Hill County, Montana, USA (designated as MT009) were used. The field was under a continuous no-till wheat-fallow rotation for  > 8 years and had a history of repeated glyphosate use (at least 3 applications per year) for weed control during the summer fallow phase prior to winter wheat planting. The permission of land owner was obtained prior to B. scoparia seed collection. All experimental research and field studies on plants, including the collection of plant material complied with the Montana State University guidelines and state/US legislation. Seeds of the field-collected population were used to generate GS and GR B. scoparia subpopulations through recurrent group selection procedure as described below.Development of GS and GR subpopulationsField collected seeds of MT009 population were sown on the surface of plastic trays (53 by 35 by 10 cm) filled with commercial potting soil (VERMISOIL, Vermicrop Organics, 4265 Duluth Avenue, Rocklin, CA, USA) in a greenhouse in the fall of 2013 at the Montana State University Southern Agricultural Research Center (MSU-SARC) near Huntley, MT, USA. Growth conditions in greenhouse were maintained at 25/22 ± 2 °C day/night temperatures and 16/8 h day/night photoperiods supplemented with metal halide lamps (450 μmol m-2 s-1). After emergence, approximately 200 uniform seedlings were individually transplanted in plastic pots (10-cm diam) containing the same potting mixture and grown for 6 weeks. A set of three clones (3 shoot cuttings) from each plant were then prepared and transplanted in plastic pots (10-cm diam) as described by Kumar and Jha22. At the 8- to 10-cm height, all cloned seedlings were separately treated with 435 (0.5×), 870 (1×), and 1740 (2×) g ae ha−1 of glyphosate (Roundup Powermax, Bayer Crop Science, Saint Louis, MO, USA) where 1× = field-use rate of glyphosate. All three glyphosate treatments included ammonium sulfate (2% w/v). Glyphosate applications were made using a cabinet spray chamber (Research Track Sprayer, De Vries Manufacturing, RR 1 Box 184, Hollandale, MN, USA) equipped with an even flat-fan nozzle tip (Teejet 8001EXR, Spraying System Co., Wheaton, IL, USA), calibrated to deliver 140 L ha−1 of spray solution at 276 kPa. Treated seedlings were returned to the greenhouse, watered as needed, and fertilized [Miracle-Gro water soluble fertilizer (24-8-16), Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH, USA] bi-weekly to maintain good plant growth. At 21 days after treatment, clones surviving the 2× rate of glyphosate were considered as ‘glyphosate-resistant (GR)’ and the clones that did not survive 1× rate of glyphosate were considered as ‘glyphosate-susceptible (GS)’. The parent B. scoparia plants corresponding to survived (resistant) or not-survived (susceptible) clones were transplanted separately in 20-L plastic pots (group of 3 to 4 plants pot−1) containing same potting soil for seed production. All 3- to 4 plants in each pot were collectively covered with a single pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flower initiation to restrict cross-pollination between GR and GS plants. At maturity, seeds from the respective GR and GS parent plants were collected and cleaned separately using an air column blower. The collected seeds from GR plants were subjected to three generations of recurrent group selection with the 2× rate of glyphosate in each generation. Seeds of GS plants were also subjected to recurrent group selection for three generations without glyphosate. Progenies of the GS plants were grown and sprayed with 1× rate of glyphosate to confirm the susceptibility to glyphosate in each generation23. This procedure allowed the development of relatively genetically homogenous GR and GS subpopulations from within a single B. scoparia population.Determination of EPSPS gene copy numberPreviously established protocols were adopted to estimate the relative EPSPS gene copy number in seedlings of GR and GS subpopulations through quantitative real-time polymerase chain reaction (qPCR)16,17,18. The ALS gene was used as reference since the relative ALS gene copy number and transcript abundance did not vary across B. scoparia samples17,18,29. Relative EPSPS:ALS gene copy number is a ratio of EPSPS to ALS PCR product fluorescence. Due to small differences in amplicon size, qPCR run conditions, and fluorescence detection, the values presented were estimates of relative gene copy number29.A total of 600 seedlings from the GR (450 seedlings) and GS (150 seedlings) B. scoparia subpopulations (developed by recurrent group selection) were grown in a greenhouse at MSU-SARC near Huntley, MT, USA in 2015 and 2016 to select enough plants for the field study each year. At 4-to 6-cm height, young leaf tissues (100 mg) from each seedling were sampled, frozen with liquid nitrogen and ground into powder using mortar and pestle. Genomic DNA were extracted from the tissue samples using the protocol from Qiagen Dneasy plant mini kit (Qiagen Inc., Valencia, CA, USA). Genomic DNA quantity and quality were determined using a Smartspec Plus spectrophotometer (Bio-Rad Company, CA, USA) and gel electrophoresis with 1% agarose, respectively. High quality genomic DNA (260/280 ratio of ≥ 1.8) were used to determine the relative EPSPS gene copy number. Two sets of primers to amplify the EPSPS and ALS genes, the final reaction volume and reagents used for each qPCR reaction, and the qPCR conditions used in this study were the same as previously described by Kumar and Jha22. Each qPCR reaction was performed on a Bio-Rad 96-well PCR plate in triplicates and fluorescence was detected using CFX Connect Real-Time PCR detection system. A negative control consisting of 250 nM of each forward and reverse primer, 1× Perfecta SYBR Green supermix, and deionized water with no DNA template was included. The EPSPS genomic copy number relative to ALS gene was estimated by ΔCT method (ΔCT = CT, ALS-CT, EPSPS)18,29. The relative increase in the EPSPS gene copy number was calculated as 2ΔCT.Survival and fecundity traits of GR and GS B. scoparia subpopulationsSeedlings (4- to 6-cm tall) of GR and GS B. scoparia subpopulations with known EPSPS gene copy numbers were transplanted into a fallow field in the summer of 2015 and 2016 at the MSU-SARC near Huntley, MT, USA. All transplanted B. scoparia seedlings were equally spaced at 1.5 m apart from each other and all plants were fertilized biweekly [2 to 3 g of MIRACLE-GRO water soluble fertilizer (24-8-16)] and irrigated as and when needed to avoid moisture stress. Experiments were conducted with a factorial arrangement of treatments (Factor A and Factor B) in a randomized complete block design, with 6 replications. Each transplanted B. scoparia seedling was an experimental unit. The factor A (4 levels) was comprised of B. scoparia plants with 1, 2–4, 5–6, and ≥ 8 EPSPS gene copy numbers, which were categorized as susceptible, low, moderate, and highly resistant plants, respectively based on their percent visible injury response to glyphosate. The factor B (ten levels) was comprised of increasing rates of glyphosate applied as single or sequential applications. Current labels of glyphosate allow a total of 3954 g ae ha−1 in split POST applications in GR sugar beet. As per the label, the maximum glyphosate rate of 2214 g ae ha−1 is allowed from crop emergence to 8-leaf stage of sugar beet and 1740 g ae ha−1 of glyphosate from 8-leaf stage to canopy closure or 30 days prior to sugar beet harvest. Hence, the tested total glyphosate rates were 0, 108, 217, 435, 870, 1265, 1740 [870 followed by ( +) 870], 2214 [1265 + 949], 3084 [1265 + 949 + 870], and 3954 [1265 + 949 + 870 + 870] g ae ha−1 along with ammonium sulfate (2% w/v). Sequential applications were made at 7- to 14-day intervals, with first application at 8- to 10-cm tall B. scoparia seedlings using a CO2-operated backpack sprayer fitted with a single AIXR 8001 flat-fan nozzle calibrated to deliver 94 L ha−1. Glyphosate rates and applications timings were selected to simulate the 2-leaf, 6-leaf, 8–10 leaf, and the canopy closure stage of GR sugar beet.Data collectionPercent visible control (relative to the non-treated) on a scale of 0 to 100 (0 means no control and 100 means complete plant death30) for each individual plant (240 plants total each year) were assessed at 7, 14, and 21 days after glyphosate treatment. Data on number of days from transplanting to 50% flowering (half of the inflorescences from each plant were covered with visible flowers) and seed set (seeds on half of the inflorescences from each plant were turned brown) were recorded for an individual plant. Each plant was covered with a pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flowering to prevent any cross-pollination. At the time of flowering, pollens from each survived plant were collected in early morning hours (between 8 to 10 am). At maturity, each individual plant was harvested and threshed to determine 1000-seed weight and seeds plant−1.Pollen and progeny seed viabilityPollens and seeds collected from individual B. scoparia plants (240 plants total each year) were tested for viability using a tetrazolium test. Pollens were collected in petri dishes by shaking the whole plant at the time of flowering. Four sub-samples of pollens from each petri dish were transferred into glass slides. The pollens in the glass slides were soaked with a tetrazolium chloride solution (10 g L−1), sealed with a cover slip using a nail polish and were incubated at room temperature for an hour. Viable (red) and non-viable pollens (yellow/white) were counted using a simple microscope. The physical structure of viable and non-viable pollens was also checked for any deformity using a compound microscope. Pollen viability for individual plants (240 plants total each year) was calculated as percent viable pollens of the total number of pollens counted.For seed viability test, twenty-five intact seeds collected from each individual plant (240 plants total each year) from the field were evenly placed in between two layers of filter papers (WHATMAN Grade 2, SigmaAldrich, St Louis, MO, USA) inside a 10-cm-diameter petri dish. Seeds were soaked with a 5-ml of distilled water and the filter papers were kept moist for the entire duration of the germination test. Light is not required for B. scoparia seed germination31, so the petri dishes were wrapped with a thin aluminum foil and placed inside an incubator (VMR International, Sheldon Manufacturing, Cornelius, OR, USA) with alternating day/night temperatures set to 20/25 °C23. Seeds with a visible uncoiled radicle tip longer than the seed diameter was considered germinated32,33. Radicle length was measured from three randomly selected germinated seeds 24 h after incubation to test the seedling vigor. The number of germinated seeds in each petri dish were counted daily until no further germination was observed for 10 consecutive days. Non-germinated seeds were tested for viability by soaking the seeds with tetrazolium chloride solution (10 g L−1) for 24 h23,34. Seeds with a red-stained embryo examined under a dissecting microscope (tenfold magnification) were considered viable35. Seed viability was expressed as the percentage of total viable seeds.Relative fitness (w)Fitness is the evolutionary potential for success of a genotype based on survival, competitive ability, and reproduction. Individuals with the greatest number of offspring and with the most genes contributing to the gene pool of a population are considered most fit genotypes36. Fitness of a genotype is determined by comparison of its vigor, productivity or competitiveness relative to the other genotype by quantifying specific traits such as seed dormancy, flowering date, seedling vigor, seed production, and other factors that can possibly influence the survival and reproductive success of a genotype36,37. In this study, relative fitness (w) of GR B. scoparia was calculated as the reproductive rate (seed production plant−1) of a resistant genotype (B. scoparia plants with 2–4, 5–6, and ≥ 8 EPSPS gene copies) relative to the maximum reproductive rate of the susceptible genotype (B. scoparia plants with 1 EPSPS gene copy) in the population. The relative fitness (w) of susceptible plants was assumed to be one.Statistical analysesA natural logarithm transformation was performed on data for time to 50% flowering, time to seed set, seeds plant−1. An arcsine square root transformation was performed on data for pollen viability, visible control, seed viability, and relative fitness (w) before subjecting to analysis of variance, however all data were presented in their back-transformed values. No transformation was needed for 1000-seed weight and radicle length data. Experimental year, B. scoparia plants with different EPSPS copy number groups, glyphosate rate, and their interactions were considered fixed effects and replication nested within a year was considered as a random effect in the model. Data on percent visible control, time to 50% flowering, pollen viability, time to seed set, 1000-seed weight, and seeds plant−1, seed viability and radicle length were subjected to ANOVA using Proc Mixed in SAS (SAS version 9.4, SAS Institute, Cary, NC, USA) to test the significance of experimental run, treatment factors, and interactions. The ANOVA assumptions for normality of residuals and homogeneity of variance were tested using Proc Univariate and PROC GLM in SAS. Means were separated using Tukey–Kramer’s HSD with α = 0.05. Furthermore, data on percent visible control and seeds plant-1 for each group of B. scoparia plants with different EPSPS gene copy number were regressed against total glyphosate rates using a four-parameter log-logistic model Eq. (1)38,39:$$Y=c+{d-c/{1+mathrm{exp}[bleft(mathrm{log}left(xright)-mathrm{log}left(ED50right)right)]}$$
    (1)
    where Y is the percent visible control or seed production plant−1 (% of nontreated); d is the upper asymptote (the highest estimated % control or % seed reduction); c is the lower asymptote (the lowest estimated % control or % seed reduction); ED50 is the effective rate of glyphosate needed to achieve 50% control or 50% reduction in seed production; and b denotes the slope around the inflection point “ED50.” Slope parameter (b) indicates the response rate of each group of B. scoparia plants with different EPSPS gene copy number to glyphosate rates (i.e., a slope with a large negative value suggests a rapid response of selected B. scoparia group). The Akaike Information Criterion (AIC) was used to select the nonlinear four-parameter model. A lack-of-fit test (P  > 0.10) was used to confirm that the nonlinear regression model Eq. (1) described the response data for each B. scoparia group38. Parameter estimates, ED90, and SR99 values (i.e. effective rate required for 90% control or effective rate required for 99% reduction in seed production) for each group of B. scoparia plants with different EPSPS gene copy number were determined using the ‘drc’ package in R software37,39. Parameter estimates of B. scoparia groups were compared using the approximate t-test with the ‘compParm’ and ‘EDcomp’ functions in the ‘drc’ package of the R software39,40. More

  • in

    Social communication activates the circadian gene Tctimeless in Tribolium castaneum

    1.Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213–229 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Perez-Mendoza, J., Campbell, J. & Throne, J. Influence of age, mating status, sex, quantity of food, and long-term food deprivation on red four beetle (Coleoptera: Tenebrionidae) fight initiation. J. Econ. Entomol. 104, 2078–2086 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ahmad, F., Ridley, A., Daglish, G. J., Burrill, P. R. & Walter, G. H. Response of Tribolium castaneum and Rhyzopertha dominica to various resources, near and far from grain storage. J. Appl. Entomol. 137, 773–781 (2013).Article 

    Google Scholar 
    4.Ridley, A. W. et al. The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol. Ecol. 20, 1635–1646 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Suzuki, T. & Sugawara, R. Isolation of an aggregation pheromone from the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). J. Appl. Entomol. 14, 228–230 (1979).CAS 

    Google Scholar 
    6.Suzuki, T. 4,8-Dimethyldecanal: the aggregation pheromone of the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Agric. Biol. Chem. 44, 2519–2520 (1980).CAS 

    Google Scholar 
    7.Suzuki, T. A facile synthesis of 4, 8-dimethyldecanal, aggregation pheromone of flour beetles and its analogues. Agric. Biol. Chem. 45, 2641–2643 (1981).CAS 

    Google Scholar 
    8.Suzuki, T., Kozaki, J., Sugawara, R. & Mori, K. Biological activities of the analogs of the aggregation pheromone of Tribolium castaneum (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 19, 15–20 (1984).CAS 
    Article 

    Google Scholar 
    9.Oerke, E. C. & Dehne, H. W. Safeguarding production—losses in major crops and the role of crop protection. Crop. Protect. 23, 275–285 (2004).Article 

    Google Scholar 
    10.Fan, J., Zhang, T., Bai, S., Wang, Z. & He, K. Evaluation of Bt corn with pyramided genes on efficacy and Insect resistance management for the Asian corn borer in China. PLoS ONE 11, e0168442 (2016).Article 
    CAS 

    Google Scholar 
    11.He, K. et al. Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera: Crambidae). Crop. Protect. 25, 167–173 (2006).CAS 
    Article 

    Google Scholar 
    12.Koutroumpa, F. A. & Jacquin-Joly, E. Sex in the night: Fatty acid derived sex pheromones and corresponding membrane pheromone receptors in insects. Biochimie 107, 15–21 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Harari, A.R., Sharon, R. & Weintraub, P.G. Manipulation of insect reproductive systems as a tool in pest control. In Advances in insect control and resistance management. 93–119 Springer, Cham, (2016).14.Hussain, A. Chemical ecology of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae): Factors affecting biology and application of pheromone. Dissertation, Oregon State University (1993).15.Liebhold, A. M. & Tobin, P. C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53, 387–408 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Levinson, H. Z. & Mori, K. Chirality determines pheromone activity for flour beetles. Naturwissenschaften 70, 190–192 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Olsson, P. O. C. et al. Male-produced sex pheromone in Tribolium confusum: Behavior and investigation of pheromone production locations. J. Stored. Prod. Res. 42, 173–182 (2006).Article 
    CAS 

    Google Scholar 
    18.Duehl, A. J., Arbogast, R. T. & Teal, P. E. Age and sex related responsiveness of Tribolium castaneum (Coleoptera: Tenebrionidae) in novel behavioral bioassays. Environ. Entomol. 40, 82–87 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Verheggen, F. et al. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle Tribolium confusum. J. Chem. Ecol. 33, 525–539 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Obeng-Ofori, D. & Coaker, T. H. Some factors affecting responses of four stored product beetles (Coleoptera: Tenebrionidae & Bostrichidae) to pheromones. Bull. Entomol. Res. 80, 433–441 (1990).Article 

    Google Scholar 
    21.Obeng-Ofori, D. & Coaker, T. Tribolium aggregation pheromone: Monitoring, range of attraction and orientation behavior of T. castaneum (Coleoptera: Tenebrionidae). Bull. Entomol. Res. 80, 443–451 (1990).Article 

    Google Scholar 
    22.Saunders, D. S. Insect circadian rhythms and photoperiodism. Invert. Neurosci. 3, 155–164 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Beer, K. & Helfrich-Förster, C. Model and non-model insects in chronobiology. Front. Behav. Neurosci. 14, 601676 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Li, C. J., Yun, X. P., Yu, X. J. & Li, B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. Insect Sci. 25, 418–428 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hideharu, N., Yosuke, M. & Tomoko, I. Common features in diverse insect clocks. Zool. Lett. 1, 1–17 (2015).Article 

    Google Scholar 
    27.Yujie, L. et al. Anatomical localization and stereoisomeric composition of Tribolium castaneum aggregation pheromones. Naturwissenschaften 98, 755 (2011).Article 
    CAS 

    Google Scholar 
    28.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bates, D., Mächler, M., Bolker, S. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar 
    30.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Software. 82, 1–26 (2017).Article 

    Google Scholar 
    31.Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).32.Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms. 25, 372–380 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Swihart, B. et al. R package version 1.1.2. https://CRAN.R-project.org/package=repeated (2019).34.Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Krupp, J. J. et al. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18, 1373–1383 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Holman, L., Trontti, K. & Helanterä, K. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biol. Lett. 12, 2015103 (2016).Article 
    CAS 

    Google Scholar 
    37.Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 159 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    38.Grozinger, C. M., Sharabash, N. M., Whitfield, C. W. & Robinson, G. E. Pheromone mediated gene expression in the honeybee brain. Proc. Natl. Acad. Sci. USA 100, 14519–14525 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Wanner, K. W. A honey bee odorant receptor for the queen substance 9-oxo-2- decenoic acid. Proc. Natl. Acad. Sci. USA 104, 14383–14388 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Beggs, K. T. et al. Queen pheromone modulates brain dopamine function in worker honey bees. Proc. Natl. Acad. Sci. USA 104, 2460–2464 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Ma, R., Rangel, J. & Grozinger, C. M. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genom. 20, 592 (2019).Article 
    CAS 

    Google Scholar 
    42.Alaux, C. & Robinson, G. E. Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J. Chem. Ecol. 33, 1346–1350 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.O’ceallachain, D. P. & Ryan, M. F. Production and perception of pheromones by the beetle Tribolium confusum. J. Insect Physiol. 23, 1303–1309 (1977).CAS 
    Article 

    Google Scholar 
    44.Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Zhang, T. et al. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae). PLoS ONE 10, 0128550 (2015).
    Google Scholar 
    46.Balakrishnan, K., Holighaus, G., Weißbecker, B. & Schütz, S. Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. J. Appl. Entomol. 141, 477–486 (2017).CAS 
    Article 

    Google Scholar 
    47.Webb, I. C., Antle, M. C. & Mistlberger, R. E. Regulation of circadian rhythms in mammals by behavioral arousal. Behav. Neurosci. 128, 304 (2014).PubMed 
    Article 

    Google Scholar 
    48.Angelousi, A. et al. Clock genes alterations and endocrine disorders. Eur. J. Clin. Invest. 48, 12927 (2018).Article 
    CAS 

    Google Scholar 
    49.Silvegren, G., Löfstedt, C. & Rosén, W. Q. Circadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J. Insect. Phys. 51, 277–286 (2005).CAS 
    Article 

    Google Scholar 
    50.Lam, V. H. & Chiu, V. C. Evolution and design of invertebrate circadian clocks. Oxford Handbook Invertebrate Neurobiol. https://doi.org/10.1093/oxfordhb/9780190456757.013.25 (2018).Article 

    Google Scholar 
    51.Chiba, Y., Cutkomp, L. K. & Halberg, F. Circadian oxygen consumption rhythm of the flour beetle Tribolium confusum. J. Insect. Physiol. 19, 2163–2172 (1973).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Rafter, M. A. Behavior in the presence of resource excess—flight of Tribolium castaneum around heavily-infested grain storage facilities. J. Pest. Sci. 92, 1227–1238 (2019).Article 

    Google Scholar 
    53.Harano, T. & Miyatake, T. Genetic basis of incidence and period length of circadian rhythm for locomotor activity in populations of a seed beetle. Heredity 105, 268–273 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cheng, Y. & Hardin, P. E. Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. J. Neurosci. 18, 741–750 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Short, C. A., Meuti, M. E., Zhang, Q. & Denlinger, D. L. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 93, 28–35 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Wexler, Y. et al. Mating alters the link between movement activity and pattern in the red flour beetle: the effects of mating on behavior. Physiol. Entomol. 42, 299–306 (2017).ADS 
    Article 

    Google Scholar 
    57.Gottlieb, D. Agro-chronobiology: Integrating circadian clocks/time biology into storage management. J. Stored. Prod. Res. 82, 9–16 (2019).Article 

    Google Scholar  More

  • in

    From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser)

    1.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 37, 637–669 (2006).Article 

    Google Scholar 
    3.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 (2012).Article 

    Google Scholar 
    5.Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290. https://doi.org/10.1890/110278 (2012).Article 

    Google Scholar 
    6.Zohner, C. M. Phenology and the city. Nat. Ecol. Evol. 3, 1618–1619. https://doi.org/10.1038/s41559-019-1043-7 (2019).Article 
    PubMed 

    Google Scholar 
    7.Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. Lond. B 272, 2561–2569. https://doi.org/10.1098/rspb.2005.3356 (2005).Article 

    Google Scholar 
    8.Visser, M. E., Holleman, L. J. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    9.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).Article 
    PubMed 

    Google Scholar 
    10.Renner, S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).Article 

    Google Scholar 
    11.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150. https://doi.org/10.1111/j.1523-1739.2007.00852.x (2008).Article 
    PubMed 

    Google Scholar 
    13.Wingfield, J. C. et al. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen. Comp. Endocrinol. 227, 16–26. https://doi.org/10.1016/j.ygcen.2015.10.007 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88(7), 1803–1812. https://doi.org/10.1890/06-1072.1 (2007).Article 
    PubMed 

    Google Scholar 
    15.Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15(8), 1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x (2009).ADS 
    Article 

    Google Scholar 
    16.Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105(36), 13492–13496. https://doi.org/10.1073/pnas.0800999105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9(2), e1000585. https://doi.org/10.1371/journal.pbio.1000585 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394 (2003).Article 

    Google Scholar 
    19.Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Change Biol. 15, 760–771. https://doi.org/10.1111/j.1365-2486.2008.01751.x (2009).ADS 
    Article 

    Google Scholar 
    20.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Rev. Ecol. Evol. Syst. 44, 367–368 (2013).Article 

    Google Scholar 
    21.Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Altmann, J., Alberts, S. C., Altmann, S. A. & Roy, S. B. Dramatic change in local climate patterns in the Amboseli basin, Kenya. Afr. J. Ecol. 40, 248–251. https://doi.org/10.1046/j.1365-2028.2002.00366.x (2002).Article 

    Google Scholar 
    23.Charmantier, A. R. H. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Balbontin, J. et al. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78, 981–989. https://doi.org/10.1111/j.1365-2656.2009.01573.x (2009).Article 
    PubMed 

    Google Scholar 
    25.Clermont, J., Réale, D. & Giroux, J.-F. Plasticity in laying dates of Canada Geese in response to spring phenology. Ibis 160, 597–607. https://doi.org/10.1111/ibi.12560 (2018).Article 

    Google Scholar 
    26.Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799. https://doi.org/10.1126/science.3363360 (1988).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626. https://doi.org/10.1111/j.1558-5646.1992.tb02070.x (1991).Article 

    Google Scholar 
    28.Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B 283, 20161887. https://doi.org/10.1098/rspb.2016.1887 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190. https://doi.org/10.1111/1365-2435.13406 (2019).Article 

    Google Scholar 
    30.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097. https://doi.org/10.1098/rspb.2014.1097 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lameris, T. K. et al. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Oecologia 191, 1003–1014. https://doi.org/10.1007/s00442-019-04533-7 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Phil. Trans. R. Soc. B 374, 20180178. https://doi.org/10.1098/rstb.2018.0178 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ball, G. F. & Ketterson, E. D. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 36, 3231–3246. https://doi.org/10.1098/rstb.2007.2137 (2007).Article 

    Google Scholar 
    34.Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, 2010).
    Google Scholar 
    35.Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B 286(1908), 20190952. https://doi.org/10.1098/rspb.2019.0952 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. https://doi.org/10.1038/nature01333 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87. https://doi.org/10.1016/S0065-2504(04)35004-X (2004).Article 

    Google Scholar 
    38.Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B. 266, 2487–2490. https://doi.org/10.1098/rspb.1999.0950 (1999).CAS 
    Article 

    Google Scholar 
    39.Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110. https://doi.org/10.1016/S0065-2504(04)35005-1 (2004).Article 

    Google Scholar 
    40.Both, C., Bijlsma, R. G. & Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 36, 368–373. https://doi.org/10.1111/j.0908-8857.2005.03484.x (2005).Article 

    Google Scholar 
    41.D’Alba, L., Monaghan, P. & Neger, R. G. Advances in laying date and increasing population size suggest positive responses to climate change in Common Eiders Somateria mollissima in Iceland. Ibis 152, 19–28. https://doi.org/10.1111/j.1474-919X.2009.00978.x (2009).Article 

    Google Scholar 
    42.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: Date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).Article 

    Google Scholar 
    43.Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055. https://doi.org/10.1111/1365-2656.12518 (2016).Article 
    PubMed 

    Google Scholar 
    44.Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Perrins, C. M. The timing of birds’ breeding seasons. Ibis 112(2), 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x (1970).Article 

    Google Scholar 
    46.Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).Article 

    Google Scholar 
    47.van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 (2009).Article 

    Google Scholar 
    48.Drent, R. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    49.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. TREE 10, 374–378. https://doi.org/10.1016/S0169-5347(00)89141-7 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Sergio, F., Blas, J., Forero, M. G., Donzar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821. https://doi.org/10.1093/beheco/arm052 (2007).Article 

    Google Scholar 
    51.Lorenz, K. Here I Am–Where Are You? (Hartcourt Brace Jovanovich, 1991).
    Google Scholar 
    52.Frigerio, D., Dittami, J., Möstl, E. & Kotrschal, K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen. Comp. Endocrinol. 137, 29–36 (2004).CAS 
    Article 

    Google Scholar 
    53.Hemetsberger, J. Populationsbiologische Aspekte der Grünauer Graugansschar (Anser anser). PhD Thesis (University of Vienna, 2002).54.Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: The role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).Article 

    Google Scholar 
    56.Rozenfeld, S. B. & Sheremetiev, I. S. Barnacle Goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Biol. Bull. Russ. Acad. Sci. 41, 645–656. https://doi.org/10.1134/S106235901408007X (2014).Article 

    Google Scholar 
    57.Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).Article 
    PubMed 

    Google Scholar 
    58.Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 1, No. 8 (Lynx edicions, 1992).59.Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).Article 

    Google Scholar 
    60.Acquaotta, F., Fratianni, S. & Garzena, D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor. Appl. Climatol. 122(3–4), 619–634. https://doi.org/10.1007/s00704-014-1316-7 (2014).ADS 
    Article 

    Google Scholar 
    61.Angilletta, M. J. Jr. & Sears, M. W. Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr. Comp. Biol. 51(5), 653–661. https://doi.org/10.1093/icb/icr091 (2011).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. Ecological Adaptations for Breeding in Birds (Methuen, 1968).
    Google Scholar 
    63.Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).Article 

    Google Scholar 
    64.Drent, R. H. The timing of birds’ breeding seasons: The Perrins hypothesis revisited especially for migrants. Ardea 94, 305–322 (2006).
    Google Scholar 
    65.Prop, J. & de Vries, J. Impact of snow and food conditions on the reproductive performance of Barnacle Geese Branta leucopsis. Ornis Scand. 24, 110–121 (1993).Article 

    Google Scholar 
    66.Eichhorn, G., van der Jeugd, H. P., Meijer, H. A. J. & Drent, R. H. Fueling Incubation: Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127, 162–172. https://doi.org/10.1525/auk.2009.09057 (2010).Article 

    Google Scholar 
    67.Newton, I. The role of food in limiting bird numbers. Ardea 68, 11–30. https://doi.org/10.5253/arde.v68.p11 (1980).Article 

    Google Scholar 
    68.Daunt, F., Wanless, S., Harris, M. & Monaghan, P. Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc. R. Soc. B 266(1427), 1489–1493. https://doi.org/10.1098/rspb.1999.0805 (1999).Article 
    PubMed Central 

    Google Scholar 
    69.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76(7), 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    70.Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68(5), 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x (1999).Article 

    Google Scholar 
    71.Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12(8), 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x (2006).ADS 
    Article 

    Google Scholar 
    72.Heard, M. J., Riskin, S. H. & Flight, P. A. Identifying potential evolutionary consequences of climate-driven phenological shifts. Evol. Ecol. 26(3), 465–473. https://doi.org/10.1007/s10682-011-9503-9 (2012).Article 

    Google Scholar 
    73.McLean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19(6), 595–608. https://doi.org/10.1111/ele.12599 (2016).Article 
    PubMed 

    Google Scholar 
    74.Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151. https://doi.org/10.1111/ecog.02411 (2017).Article 

    Google Scholar 
    75.Cunningham, S. J., Madden, C. F., Barnard, P. & Amar, A. Electric crows: Powerlines, climate change and the emergence of a native invader. Divers. Distrib. 22, 17–29. https://doi.org/10.1111/ddi.12381 (2016).Article 

    Google Scholar 
    76.Gienapp, P. & Brommer, J. E. Evolutionary dynamics in response to climate change. In Quantitative Genetics in the Wild, 254–273 (Oxford University Press, 2014)77.Tombre, I. M., Erikstad, K. E. & Bunes, V. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985–992. https://doi.org/10.1007/s00300-011-1145-4 (2012).Article 

    Google Scholar 
    78.Poussart, C., Gauthier, G. & Larochelle, J. Incubation behaviour of greater snow geese in relation to weather conditions. Can. J. Zool. 79(4), 671–678. https://doi.org/10.1139/z01-023 (2001).Article 

    Google Scholar 
    79.Lamprecht, J. Predicting current reproductive success of goose Pairs Anser indicus from male and female reproductive history. Ethology 85, 123–131 (1990).Article 

    Google Scholar 
    80.Daunt, F., Wanless, S., Harris, M. P., Money, L. & Monaghan, P. Older and wiser: Improvements in breeding success are linked to better foraging performance in European shags. Funct. Ecol. 21, 561–567. https://doi.org/10.1111/j.1365-2435.2007.01260.x (2007).Article 

    Google Scholar 
    81.Sæther, B.-E. Age-specific variation in reproductive performance of birds. Curr. Ornithol. 7, 251–283 (1990).
    Google Scholar 
    82.Goutte, A., Antoine, E., Weimerskirch, H. & Chastel, O. Age and the timing of breeding in a long-lived bird: A role for stress hormones?. Funct. Ecol. 24, 1007–1016. https://doi.org/10.1111/j.1365-2435.2010.01712.x (2010).Article 

    Google Scholar 
    83.Szipl, G. et al. Parental behaviour and family proximity as key to reproductive success in Greylag geese (Anser anser). J. Ornithol. 160, 473. https://doi.org/10.1007/s10336-019-01638-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Fletcher, Q. E. & Selman, C. Aging in the wild: Insights from free-living and non-model organisms. Exp. Gerontol. 71, 1–3. https://doi.org/10.1016/j.exger.2015.09.015 (2015).Article 
    PubMed 

    Google Scholar 
    85.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008. https://doi.org/10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2() (1997).Article 

    Google Scholar 
    86.Van de Pol, M. & Verhulst, S. Age-dependent traits: A new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773. https://doi.org/10.1086/503331 (2006).Article 
    PubMed 

    Google Scholar 
    87.Schoech, S. J. & Hahn, T. P. Food supplementation and timing of reproduction: Does the responsiveness to supplementary information vary with latitude?. J. Ornithol. 148, 625–632. https://doi.org/10.1007/s10336-007-0177-6 (2007).Article 

    Google Scholar 
    88.Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28(15), 2467-2473.e4. https://doi.org/10.1016/j.cub.2018.05.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob Change Biol. 24, 3780–3790. https://doi.org/10.1111/gcb.14160 (2018).ADS 
    Article 

    Google Scholar 
    90.Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272. https://doi.org/10.1111/gcb.13302 (2016).ADS 
    Article 

    Google Scholar 
    92.Hemetsberger, J., Weiß, B. M. & Scheiber, I. B. R. Greylag geese: from general principles to the Konrad Lorenz flock. In The social life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    93.Scheiber, I. B. R. “Tend and befriend”: the importance of social allies in coping with social stress. In The Social Life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian Model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    94.R Development Core Team. A Language and Environment for Statistical Computing. R version 4.1.0 (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    95.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    96.Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).MathSciNet 
    Article 

    Google Scholar 
    97.Zuur, A. F., Ieno, E. N. & Freckleton, R. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645. https://doi.org/10.1111/2041-210x.12577 (2016).Article 

    Google Scholar 
    98.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).Article 

    Google Scholar 
    99.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Soft. 34(2), 1–24 (2010).Article 

    Google Scholar 
    100.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    101.Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd ed. https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (2019).102.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).Book 

    Google Scholar 
    103.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    104.Tremblay, A., Statistics Canada, Ransijn, J. & University of Copenhagen. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).105.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Performance: Assessment of Regression Models Performance. R package version 0.4 5 (2020).106.Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    107.Morrissey, M. B. & Ruxton, G. D. Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0010.003 (2018).Article 

    Google Scholar 
    108.Barton, K. MuMIn: Multi-model Inference. R package version 1.10.5 (2014).109.Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.0-1. (2014).110.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Corrigendum to “Multimodel inference in ecology and evolution: Challenges and solutions”. J. Evol. Biol. 24, 1627–1627 (2011).Article 

    Google Scholar 
    111.Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, In R package version 2.8.7. (2021)112.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    113.Anderson, D. R., Link, W. A., Johnson, D. H. & Burnham, K. P. Suggestions for presenting the results of data analyses. J. Wildl. Manag. 65, 373–378. https://doi.org/10.2307/3803088 (2001).Article 

    Google Scholar 
    114.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).Article 

    Google Scholar 
    115.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11(1), 54–71. https://doi.org/10.1037/1082-989X.11.1.54 (2006).Article 
    PubMed 

    Google Scholar 
    116.Harris, M. P., Albon, S. D. & Wanless, S. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311–318. https://doi.org/10.1080/00063657.2016.1202889 (2016).Article 

    Google Scholar 
    117.Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. https://doi.org/10.1111/jav.02247 (2019).Article 

    Google Scholar 
    118.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744. https://doi.org/10.1007/s00265-016-2096-0 (2016).Article 

    Google Scholar 
    119.Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182(5), E161–E173. https://doi.org/10.1086/673263 (2013).Article 
    PubMed 

    Google Scholar 
    120.Frigerio, D. et al. From individual to population level: temperature and snow cover modulate fledging success through breeding phenology in Greylag geese (Anser anser), Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbztd (2021). More