Altitudinal gradient affect abundance, diversity and metabolic footprint of soil nematodes in Banihal-Pass of Pir-Panjal mountain range
1.Bardgett, R. The Biology of Soil: A Community and Ecosystem Approach (Oxford University Press Inc, 2005).Book
Google Scholar
2.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Nat. Acad. Sci. 103, 626–631. https://doi.org/10.1073/pnas.0507535103 (2006).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
3.Fitter, A. H. et al. Biodiversity and ecosystem function in soil. Funct. Ecol. 19, 369–377 (2005).Article
Google Scholar
4.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article
Google Scholar
5.Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
6.Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Whitford, W. G. Pattern and Process in Desert Ecosystems 93–118 (University of New Mexico Press, 1986).
Google Scholar
8.Fisher, F. M., Parker, L. W., Anderson, J. P. & Whitford, W. G. Nitrogen mineralization in a desert soil: Interacting effects of soil moisture and nitrogen fertilizer. Soil Sci. Soc. Am. J. 51, 1033–1041 (1987).ADS
Article
Google Scholar
9.Yeates, G. W. & Bongers, T. Nematode diversity in agroecosystems. Agric Ecosyst Environ. 74,113–135. https://doi.org/10.1016/S0167-8809(99)00033-X (1999).10.Ruess, L. Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5, 179–181 (2003).Article
Google Scholar
11.Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).Article
Google Scholar
12.Bhusal, D. R., Tsiafouli, M. A. & Sgardelis, S. P. Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia 179, 187–199 (2015).ADS
PubMed
Article
PubMed Central
Google Scholar
13.Bloemers, G. F., Hodda, M., Lambshead, P. J. D., Lawton, J. H. & Wanless, F. R. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia 111, 575–582 (1997).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
14.Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).Article
Google Scholar
15.Tsiafouli, M. A., Bhusal, D. R. & Sgardelis, S. P. Nematode community indices for microhabitat type and large scale landscape properties. Ecol. Indic. 73, 472–479 (2017).Article
Google Scholar
16.Korner, C. Alpine plants: stressed or adapted? In Physiological Plant Ecology (Press, M.C. et al., eds), 297–311, (Blackwell, 1998).17.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article
Google Scholar
18.Loranger, G., Bandyopadhyaya, I., Razaka, B. & Ponge, J. F. Does soil acidity explain altitudinal sequences in collembolan communities?. Soil Biol. Biochem. 33, 381–393 (2001).CAS
Article
Google Scholar
19.Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
20.Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).Article
Google Scholar
21.Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadica sebifera) in China. Plant Ecol. 220, 965–976 (2019).Article
Google Scholar
22.Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arct. Alp. Res. 30, 133–141 (1998).Article
Google Scholar
23.Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronema hamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).Article
Google Scholar
24.Tong, F. C., Xiao, Y. H. & Wang, Q. L. Soil nematode community structure on the northern slope of Changbai Mountain, Northeast China. J. For. Res. 21, 93–98 (2010).Article
Google Scholar
25.Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).Article
Google Scholar
26.Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano, state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).Article
Google Scholar
27.Illig, J., Norton, R. A., Scheu, S. & Maraun, M. Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp. Appl. Acarol. 52, 49–62 (2010).PubMed
PubMed Central
Article
Google Scholar
28.Devetter, M., Háněl, L., Řeháková, K. & Doležal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS One 12, e0187646 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
29.Bird, A. F. & Wallace, H. R. The influence of temperature on Meloidogyne hapla and M. javanica. Nematologica 11, 581–589 (1965).Article
Google Scholar
30.Wang, Z. & Wu, H. Study towards the eco-geographic community of mountain soil nematode in the middle of Hunan. J. Nat. Sci. 15, 72–78 (1992).
Google Scholar
31.Landesman, W. J., Treonis, A. M. & Dighton, J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia 54, 87–91 (2011).Article
Google Scholar
32.Luo, Y. & Zhou, X. Soil Respiration and the Environment (Academic Press, 2006).
Google Scholar
33.Yan, D. et al. Community structure of soil nematodes under different drought conditions. Geoderma 325, 110–116 (2018).ADS
Article
Google Scholar
34.Quist, C. W. et al. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol. Biochem. 136, 107542 (2019).CAS
Article
Google Scholar
35.Margesin, R., Minerbi, S. & Schinner, F. Litter decomposition at two forest sites in the Italian Alps: A field study. Arct. Antarct. Alp. Res. 48, 127–138 (2016).Article
Google Scholar
36.Kappes, H., Lay, R. & Topp, W. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems 10, 734–744 (2007).Article
Google Scholar
37.Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).Article
Google Scholar
38.Gerber, K. Nematodenfauna alpine Böden im Glocknergebiet (Hohe Tauern, Österreich). Veröffentlichungen des Österreichischen Mass-Hochgebirgsprogramms 4, 80–90 (1981).
Google Scholar
39.Zhang, X. et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol. Biochem. 80, 118–126 (2015).CAS
Article
Google Scholar
40.Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape References [40] are given in list but not cited in text. Please cite in text or delete them from listrootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).CAS
PubMed
PubMed Central
Google Scholar
41.Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13–29 (2001).Article
Google Scholar
42.Sánchez-Moreno, S., Nicola, N. L., Ferris, H. & Zalom, F. G. Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol. 41, 107–117 (2009).Article
Google Scholar
43.Dar, T. A., Uddin, M., Khan, M. M. A., Hakeem, K. R. & Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 115, 49–57 (2015).CAS
Article
Google Scholar
44.Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).ADS
Article
Google Scholar
45.Van, B. J. Methods and Techniques for Nematology 20 (Wageningen University, 2006).
Google Scholar
46.Goodey, T. Soil and Freshwater Nematodes (Methuen and Cooperation Limited, 1963).
Google Scholar
47.Jairajpuri, M. S. & Ahmad, W. Dorylaimida: Free-Living, Predaceous and Plant-Parasitic Nematodes (Brill, 1992).
Google Scholar
48.Ahmad, W. Plant Parasitic Nematodes of India (Litho Offset Printers, 1996).
Google Scholar
49.Andrássy, I. Free-living nematodes of Hungary (Nematoda errantia), I. In Pedozoologica Hungarica No. 3 (eds Csuzdi, C. & Mahunka, S.) (Hungarian Natural History Museum, 2005).
Google Scholar
50.Ahmad, W. & Jairajpuri, M. S. Mononchida: The Predaceous Nematodes. Nematology Monographs and Prespectives (Brill, 2010).Book
Google Scholar
51.Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 10, 239–251 (1998).Article
Google Scholar
52.Hammer, O., Harper, D. & Ryan, P. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Google Scholar
53.Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).ADS
PubMed
Article
PubMed Central
Google Scholar
54.Andrassy, I. The determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).
Google Scholar
55.Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).Article
Google Scholar
56.Sperman’s correlation and linear regression was performed using GraphPad Prism version 8.0.2 for Windows, GraphPad Software, La Jolla California USA. www.graphpad.com. Accessed 20 Jan 2021. More