Hydropower-induced selection of behavioural traits in Atlantic salmon (Salmo salar)
1.Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001).ADS
PubMed
Article
CAS
Google Scholar
2.Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human Influences on Evolution, and the Ecological and Societal Consequences (The Royal Society, 2017).Book
Google Scholar
3.Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B 285, 20182047 (2018).PubMed
PubMed Central
Article
Google Scholar
4.Dynesius, M. & Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266, 753–762 (1994).ADS
PubMed
Article
CAS
Google Scholar
5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy?. Trends Ecol. Evol. 32, 922–935 (2017).PubMed
Article
Google Scholar
6.Calles, O. & Greenberg, L. Connectivity is a two-way street—the need for a holistic approach to fish passage problems in regulated rivers. River Res. Appl. 25, 1268–1286 (2009).Article
Google Scholar
7.Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784 (1997).Article
Google Scholar
8.Haraldstad, T. et al. Anthropogenic and natural size-related selection act in concert during brown trout (Salmo trutta) smolt river descent. Hydrobiologia, 1–14 (2020).9.Limburg, K. E. & Waldman, J. R. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59, 955–965 (2009).Article
Google Scholar
10.Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).ADS
PubMed
Article
CAS
Google Scholar
11.Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish 12, 1–59 (2003).Article
Google Scholar
12.Thorstad, E. B., Økland, F., Aarestrup, K. & Heggberget, T. G. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev. Fish Biol. Fish. 18, 345–371 (2008).Article
Google Scholar
13.Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. & Reeves, G. H. Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55, 281–287 (1998).Article
Google Scholar
14.Larinier, M. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609, 97–108 (2008).Article
Google Scholar
15.Coutant, C. C. & Whitney, R. R. Fish behavior in relation to passage through hydropower turbines: a review. Trans. Am. Fish. Soc. 129, 351–380 (2000).Article
Google Scholar
16.Montèn, E. Fish and Turbines: Fish Injuries During Passage Through Power Station Turbines (Nordsteds Tryckeri, 1985).
Google Scholar
17.Pracheil, B. M., DeRolph, C. R., Schramm, M. P. & Bevelhimer, M. S. A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage. Rev. Fish Biol. Fisheries 26, 153–167 (2016).Article
Google Scholar
18.Calles, O., Rivinoja, P. & Greenberg, L. A Historical perspective on downstream passage at hydroelectric plants in swedish rivers. In: Ecohydraulics. Wiley (2013).19.Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish Fish. 19, 340–362 (2017).Article
Google Scholar
20.Noonan, M. J., Grant, J. W. A. & Jackson, C. D. A quantitative assessment of fish passage efficiency. Fish Fish. 13, 450–464 (2012).Article
Google Scholar
21.Scruton, D. A., McKinley, R. S., Kouwen, N., Eddy, W. & Booth, R. K. Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Res. Appl. 19, 605–617 (2003).Article
Google Scholar
22.Mallen-Cooper, M. & Brand, D. A. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage?. Fish. Manage. Ecol. 14, 319–332 (2007).Article
Google Scholar
23.Bunt, C., Castro-Santos, T. & Haro, A. Performance of fish passage structures at upstream barriers to migration. River Res. Appl. 28, 457–478 (2012).Article
Google Scholar
24.Haugen, T. O., Aass, P., Stenseth, N. C. & Vøllestad, L. A. Changes in selection and evolutionary responses in migratory brown trout following the construction of a fish ladder. Evol. Appl. 1, 319–335 (2008).PubMed
PubMed Central
Article
Google Scholar
25.Mallen-Cooper, M. & Stuart, I. G. Optimising Denil fishways for passage of small and large fishes. Fish. Manage. Ecol. 14, 61–71 (2007).Article
Google Scholar
26.Maynard, G. A., Kinnison, M. & Zydlewski, J. D. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population. River Res. Appl. 33, 1004–1015 (2017).Article
Google Scholar
27.Lothian, A. J. et al. Are we designing fishways for diversity? Potential selection on alternative phenotypes resulting from differential passage in brown trout. J Environ Manag 262, 110317 (2020).Article
Google Scholar
28.Haraldstad, T., Haugen, T. O., Kroglund, F., Olsen, E. M. & Höglund, E. Migratory passage structures at hydropower plants as potential physiological and behavioural selective agents. R. Soc. Open Sci. 6, 190 (2019).Article
Google Scholar
29.Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).PubMed
Article
CAS
Google Scholar
30.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. R. Soc. B: Biol. Sci. 282, 20142201 (2015).Article
Google Scholar
31.Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B: Biol. Sci. 365, 4051–4063 (2010).Article
Google Scholar
32.Haraldstad, T., Höglund, E., Kroglund, F., Haugen, T. O. & Forseth, T. Common mechanisms for guidance efficiency of descending Atlantic salmon smolts in small and large hydroelectric power plants. River Res. Appl. 34, 1179–1185 (2018).Article
Google Scholar
33.Larsen, M. H., Thorn, A. N., Skov, C. & Aarestrup, K. Effects of passive integrated transponder tags on survival and growth of juvenile Atlantic salmon Salmo salar. Anim. Biotelem. 1, 19 (2013).Article
Google Scholar
34.Vollset, K. W. et al. Systematic review and meta-analysis of PIT tagging effects on mortality and growth of juvenile salmonids. Rev. Fish Biol. Fish, 1–16 (2020).35.Adriaenssens, B. & Johnsson, J. I. Natural selection, plasticity and the emergence of a behavioural syndrome in the wild. Ecol. Lett. 16, 47–55 (2013).PubMed
Article
Google Scholar
36.Dingemanse, N. J. et al. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 76, 1128–1138 (2007).PubMed
Article
Google Scholar
37.Larsen, M. H. et al. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration. PLoS ONE 10, e0119127 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
38.Castanheira, M. F., Herrera, M., Costas, B., Conceição, L. E. & Martins, C. I. Can we predict personality in fish? Searching for consistency over time and across contexts. PLoS ONE 8, e62037 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
39.Huntingford, F. et al. Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. J. Fish Biol. 76, 1576–1591 (2010).PubMed
Article
CAS
Google Scholar
40.Brown, C., Jones, F. & Braithwaite, V. Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J. Fish Biol. 71, 1590–1601 (2007).Article
Google Scholar
41.R Development Core Team. R: A language and environment for statistical computing.). R Foundation for Statistical Computing (2016).42.Akaike, H. A. new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS
MathSciNet
MATH
Article
Google Scholar
43.Anderson, D. R. Model-Based Interference in the Life Sciences: A Primer on Evidence (Springer, 2008).MATH
Book
Google Scholar
44.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).45.Brunham, A. & Anderson D, R. Model selection and multimodel inference: A practical information-theoretic approach. 2nd edn (Springer-Verlag, New York 2002).46.Fjeldstad, H. P., Alfredsen, K. & Boissy, T. Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river. Fish. Manage. Ecol. 21, 22–31 (2014).Article
Google Scholar
47.Calles, O. et al. Anordning för upp- och nedströmspassage av fisk vid vattenanläggningar (2013).48.Larinier, M., Travade, F. The development and evaluation of downstream bypasses for juvenile salmonids at small hydroelectric plants in France. Innov. Fish Passage Technol. 25–42 (1999).49.Turnpenny, A. W. H., O`Keeffe, N. Screening for intake and Outfalls: a best practice guide (2005).50.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed
Article
Google Scholar
51.Taylor, M. K. & Cooke, S. J. Repeatability of movement behaviour in a wild salmonid revealed by telemetry. J. Fish Biol. 84, 1240–1246 (2014).PubMed
Article
CAS
Google Scholar
52.Odling-Smee, L. & Braithwaite, V. A. The role of learning in fish orientation. Fish Fish. 4, 235–246 (2003).Article
Google Scholar
53.Lucon-Xiccato, T., Montalbano, G. & Bertolucci, C. Personality traits covary with individual differences in inhibitory abilities in 2 species of fish. Curr. Zool. 66, 187–195 (2019).PubMed
PubMed Central
Article
Google Scholar
54.Endler, J. A. Natural Selection in the Wild (Princeton University Press, 1986).
Google Scholar
55.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed
PubMed Central
Article
Google Scholar
56.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed
Article
Google Scholar
57.Wuerz, Y. & Krüger, O. Personality over ontogeny in zebra finches: long-term repeatable traits but unstable behavioural syndromes. Front. Zool. 12, S9 (2015).PubMed
PubMed Central
Article
Google Scholar
58.Wolf, M. & Weissing, F. J. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed
Article
Google Scholar
59.Cordero-Rivera, A. Behavioral diversity (ethodiversity): a neglected level in the study of biodiversity. Front. Ecol. Evol. 5, 7 (2017).ADS
Article
Google Scholar
60.Biro, P. A. & Post, J. R. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl. Acad. Sci. 105, 2919–2922 (2008).ADS
PubMed
PubMed Central
Article
Google Scholar
61.Uusi-Heikkilä, S., Wolter, C., Klefoth, T. & Arlinghaus, R. A behavioral perspective on fishing-induced evolution. Trends Ecol. Evol. 23, 419–421 (2008).PubMed
Article
Google Scholar
62.Cooke, S. J., Suski, C. D., Ostrand, K. G., Wahl, D. H. & Philipp, D. P. Physiological and behavioral consequences of long-term artificial hselection for vulnerability to recreational angling in a teleost fish. Physiol. Biochem. Zool. 80, 480–490 (2007).PubMed
Article
Google Scholar More