More stories

  • in

    Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge

    Habitat typesThe sampled stations were classified into 5 habitat types (Fig. 1a,b) as described by Weber et al.35: young plume core (YPC), old plume core (OPC), west plume margin (WPM), east plume margin (EPM) and oceanic seawater (OSW). Each habitat was characterized by a unique combination of sea surface salinity, sea surface temperature, nitrate availability index, mixed layer depth and chlorophyll maximum depth35. Geographically, the different habitats were unevenly distributed along the transect (Fig. 1c), illustrating the dynamic and patchy nature of the ARP. At each station, the temperature and salinity profiles confirmed the stratification of the water column. Maximum Brunt–Väisälä buoyancy frequency was high (3–15 × 10–3 s−1) and close to the surface in the plume core (YPC and OPC), restricting turbulent mixing between the plume waters and the underlying ocean waters. The plume margin stations (WPM and EPM) showed deeper and more muted (1–2 × 10–3 s−1) maximum buoyancy frequency peaks while OSW stations exhibited turbulent mixing from the surface to ~ 100 m (Supplementary Fig. S1). Fluorescence profiles provided guidance to sample within the chlorophyll maximum (Supplementary Fig. S1). In the plume core, the chlorophyll peak was located above the halocline. At plume margin stations, multiple chlorophyll maxima were detected at the halocline or just below, while the oceanic seawater stations did not have haloclines, and chlorophyll peaks were far below the surface (deeper than 50 m). Surface samples from the core plume stations corresponded to high temperature-low salinity waters, with low density. These plume waters mixed with coastal waters at the surface of plume margin stations, but this was not the case at OSW stations (Supplementary Fig. S2).Figure 1Location of the study (A), distribution of sampling stations (B) and identification of the habitat types using a principal component analysis (C) and Ward’s hierarchical cluster analysis (D). The map in B shows the monthly composite surface chlorophyll concentration for May 2018 from satellite observations Reprocessed L4 (ESA-CCI: OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_093) downloaded from Copernicus Marine Service (https://resources.marine.copernicus.eu). The map was created using the NASA SeaDAS 7.5.3 software with land and exclusive economic zones boundaries (yellow lines) added with gmt v5.4.5 software. Note that all stations from EN614 were used to establish habitat types, but only the 10 stations highlighted in bold and shown on the map were used in this study. SSS, sea surface salinity; SST, sea surface temperature; NAI, nitrogen availability index; MLD, mixed layer depth; ChlMD, chlorophyll maximum depth.Full size imageSmall-sized pigmented eukaryote populations, size, abundance and biomass:Overall, the small pigmented eukaryote communities were composed of a variable combination of 3 to 4 populations per sample, with a total of 6 different populations (named P1, P2, P3, P4, P5 and P6) among all samples, identified by flow cytometry according to cell size range and pigment content (Fig. 2). Based on relative estimates from flow cytometry calibrations using beads of known sizes, most populations belonged to the picoplankton (≤ 2–3 µm). Cells in P1 were approx. 0.8 µm. P2 was a very diverse cluster resulting in a size range from ≤ 0.8 to 5 µm, with a majority of cells clustered around 2 µm, while P3 and P6 were characterized by cells of 0.8–2 µm and P4 by cells of 2–3.5 µm. Cells identified within P5 were larger, ranging from 3.5 to  > 5 µm, therefore encompassing small-sized members of the nanoplankton (3–20 µm). Studies that provide size calibrations for sorted picoeukaryote populations are rare37, making direct comparisons unreliable.Figure 2Example of a cytogram illustrating the gates used for small pigmented eukaryote population counts and sorting. Populations were first discriminated based on their position in the chlorophyll vs forward scatter cytogram (A, all events represented) and then redefined in the chlorophyll vs phycoerythrine (PE) autofluorescence cytogram (B, only events gated in A represented). In the later, we avoided Synechococcus overlapping with small pigmented eukaryote populations in A and cells exhibiting high PE fluorescence among the populations from cytogram B. Note that all 6 populations were never found present in the same sample. In particular, the sample represented here (S003 surface) did not contain P1 or P6, but the gates are represented nonetheless in panel A to provide an illustration for these populations. Note that the gating had to be adjusted between samples but the relative positions stayed similar to those illustrated here. The positions of standard size-calibrated non-fluorescent beads (dashed lines) along the x-axis were used to determine the size range of each gated population in cytogram A. Red ellipses mark the position of yellow-green reference beads of 1 and 2 µm (1-YG and 2-YG, respectively) used to maintain instrument alignment, although the bead clusters are not apparent in the sample since they were run separately (for details see “Methods”).Full size imageThe different small pigmented eukaryote populations had variable cell abundances relative to each other and varied with sampling location (Table 1). Surface communities were either dominated by population P3 (57–74% of small pigmented eukaryote abundance, hereafter counts) in the WPM (S003, S031 cast 03 (henceforth S031_03), and S031 cast 11 (henceforth S031_11)) as well as one station from EPM (S022) and one from OSW (S020), or by P2 (52–66% of counts) at the OPC (S024) and stations of the EPM (S025) and OSW (S027). All stations had lower abundances of P4 (5.7–32% of counts), and only four stations (S003, S020, S022, S031_11) also presented a small P5 population (3.1–6.3% of counts). The small pigmented eukaryote communities collected from chlorophyll maxima were all dominated by P2 (69–94% of counts) and accompanied by much less abundant P3 (5.6–23% of counts), except for station S022 whose chlorophyll maximum small pigmented eukaryote community was dominated by P3 (93% of counts). All chlorophyll maximum communities were characterized by a low contribution of P4 (0.6–6.2% of counts). The small pigmented eukaryote community collected from 40 m at S017 was characterized by the presence of population P6 (16% of counts), absent from the other stations. P1 was only present at the chlorophyll maximum of the OPC station (11% of counts). However, the amount of DNA extracted from P1 was too small to allow for sequencing of the 18S rDNA and it is therefore not part of the subsequent analyses.Table 1 Cell counts per population, as the proportion of the summed total cell density for all 6 gated populations. CM, chlorophyll maximum.Full size tableAt the surface, small pigmented eukaryotes contributed on average 1.3 ± 0.4% of the total small phytoplankton abundance (Supplementary Table S1), indicating that picocyanobacteria dominated all stations. Synechococcus dominated cell abundances at most stations (57–97%), except in the OSW (S020, S027) where Prochlorococcus dominated (92–97%). These results reflect the established paradigm that the eukaryotic component of small phytoplankton communities is less abundant than the prokaryotic component10,16,37. Nonetheless, in terms of biomass, small pigmented eukaryote dominated the small phytoplankton in all surface samples (11–44 × 103 µg C/m3; 47–71%), representing a biomass greater than or equal to the picocyanobacteria (Supplementary Table S2). The horizontal shift in surface nutrient concentrations among habitats was too modest to affect the relative contribution of small pigmented eukaryote to total small phytoplankton abundances, contrary to reports for much larger spatial scales involving greater differences in nutrient concentrations, ranging from coastal systems to the open ocean10,16. Small photosynthetic eukaryote abundance and biomass were not significantly correlated to nutrient concentrations, salinity or temperature (Spearman rho  0.05).At the chlorophyll maxima and in deeper waters, despite a consistent predominance of Prochlorococcus, small pigmented eukaryotes generally contributed more to the total small phytoplankton abundance than at the surface, similar to previous reports from the Indian Ocean7 and the south Pacific Ocean8,9. These samples showed decreased absolute abundances of ≤ 5 µm phytoplankton (Supplementary Table S1), with the plume core stations (S017, S024) exhibiting the lowest overall absolute abundances (8.2–32 × 103 cells/mL). This decrease in absolute numbers of the picocyanobacteria, concomitant with increased small pigmented eukaryote relative abundances (6–18%), indicated that eukaryotes fared better than the picocyanobacteria in the low light conditions of waters shaded by the plume. Dominance of the small phytoplankton biomass by small eukaryotes (5.9–50 µg C/m3; 53–95% of the total biomass), representing more than twice the picocyanobacterial biomass at the chlorophyll maxima and deeper water, is reminiscent of reports that small pigmented eukaryotes can contribute significantly to primary production in coastal regions12. Although this contrasts with findings from open oceans where Prochlorococcus dominates small phytoplankton biomass11,37, small pigmented eukaryotes were found to be similarly biomass-dominant and contributing up to a third of total primary production in surface seawater of the western subtropical North Atlantic under phosphorus depletion13.Taxonomic composition of small pigmented eukaryote populationsHigh-throughput sequencing of the small ribosomal subunit gene provided insights into the taxonomic composition of resident (live, inactive and recently dead) small pigmented eukaryote populations. A total of 234 operational taxonomic units (OTUs) were obtained, covering the full diversity of the populations in each sample (Supplementary Fig. S3) and after removal of metazoan OTUs and OTUs  1,000 OTUs38,39,40,41,42, the low OTU richness is a reminder that our cell sorting protocol allowed the focused targeting of small pigmented eukaryote populations. The low OTU counts (3–42) for each population (Table 2) further reflect the accuracy of the sorting method and the near taxonomic purity of some of the sorted populations.Table 2 Operational taxonomic units (OTUs) counts per population. CM, chlorophyll maximum.Full size tableMajor OTUs, constituting at least 20% of the total reads per population for at least one sample, represented 29 out of the 201 OTUs (Fig. 3; Supplementary Table S1). The most frequent OTU was a Chloropicophyceae (Chlorophyta), averaging 19.55% of total reads/sample. The second most frequent Chlorophyta OTU belonged to prasinophyte clade IX with an average of 4.36% of the total reads/sample. The Ochrophyta were represented by two Marine Ochrophyta clade 5 (MOCH-5) OTUs and five Bacillariophyceae OTUs ranging on average from 5.5 to 2.1%, and 5.3 to 1.6% of total reads per sample, respectively. Only one major OTU was associated with the prymnesiophytes, classified within the order Isochrysidales, representing 1.3% of the total reads/sample (Fig. 3). The rest of the major OTUs had lower average abundances throughout the samples ( 8 µm cells from our sorted populations. Furthermore, the consistently low abundance or absence of P5 throughout our samples suggests that this Isochrysidales OTU5 (Noelaerhabdaceae) did not dominate the small pigmented eukaryote communities of the ARP in the spring.Distinguishing the small pigmented eukaryote community composition between habitat typesA UniFrac unweighted paired group method with arithmetic mean analysis revealed stronger clustering among populations than among stations or depths, suggesting a consistency in the phylogenetic composition of the sorted populations (Supplementary Fig. S4). The only exceptions were S031_03 chlorophyll maximum and S031_11 surface samples for which the three populations clustered distinctly from the rest. A canonical correspondence analysis based on assemblages of major OTUs separated populations P2 and P4 of the OPC surface and subsurface and all four populations of S031_11 surface from the rest of the samples (Fig. 6a). The low abundance OTU composition of the surface and subsurface OPC populations and the deep YPC sample were distinct from the rest of the samples, the latter being strongly driven by salinity (Fig. 6b). The environmental variables used in the canonical correspondence analysis explain a sizable portion of the variability (33–50%), although it seems that an important driver of community composition was unaccounted for.Figure 6Canonical correspondence analysis with A major OTUs, and B low abundance OTUs.Full size imageThe YPC populations had low OTU richness (Table 2), and most of their major OTUs were shared with other stations, namely the Chloropicophyceae OTU192 and OTU165, detected in all 4 populations (16–86% of total reads/population). Notably, this sample was only distinguished from the rest by its low abundance OTU composition (Fig. 6b). Of the 15 low-abundance OTUs among the 4 populations detected, a few were shared with other samples, but only one or two at a time (Supplementary Table S3). The OPC surface was also characterized by a low OTU richness (Table 2), each population dominated by one or two major OTUs (Fig. 5). P2 was dominated by Bacillariophyta Nitzschia (OTU86), also found at other stations in lower abundance, and by a Syndiniales GrpI OTU108 unique to this station. P3 was composed of the ubiquitous Chloropicophyceae OTU192, classified as Chloropicon, and two MOCH-5 OTUs, which were also found in P4. The chlorophyll maximum sample was composed of a very similar small pigmented eukaryote community, albeit with a larger proportion of low abundance OTUs in P2. Interestingly, P3 at both surface and chlorophyll maximum was distinguished from other samples by the low abundance OTUs that accompanied the dominant Chloropicophyceae OTUs (Fig. 6b). The small pigmented eukaryote community of the sample below the chlorophyll maximum was characterized by an abundant P3 dominated by Chloropicon OTU192, accompanied by the Pelagophyceae Pelagomonas OTU232, which was also detected at S025 (EPM) and S027 (OSW). This sample collected below the halocline was distinct from the upper water column and more similar to the margin and oceanic samples. Such a pattern is consistent with the plume overriding the surrounding margin or oceanic waters and submerging the endemic communities that were there previously at the surface.In contrast to our first hypothesis regarding small pigmented eukaryote variability across the horizontal gradients of the ARP, the composition of small pigmented eukaryote communities was stable among the different habitat types. This is attributable to a combination of variability in OTU composition among samples from the same habitats and similarity of the small pigmented eukaryote assemblages between stations of different habitats. Indeed, the populations exhibited no significant differences between average UniFrac distances among habitats, stations of the same habitats and depths of the same stations (ANOVA, p  > 0.164 for P2, p  > 0.251 for P3 and p  > 0.735 for P4). The lack of statistical differences, particularly among the plume margins and oceanic waters, are indicative of the dynamic nature of large river plumes, such as reported for the Columbia River67. The meandering of the ARP creates a very dynamic system with a variable influence on local oligotrophic ocean waters68,69. It is possible that each station is too unique to establish a consensus small pigmented eukaryote community structure per habitat type, while abundant populations are shared between stations of different habitats limiting the detectable distinctions between the assemblages. For instance, the dominant Nitzschia OTU86 was shared between the OPC, one of the WPM stations and one of the EPM stations. Similarly, Chloropicon OTU192 dominated P3 at all stations, except in the surface waters of one WPM station (S031_11) and one OSW station (S027). Furthermore, our use of DNA as template for the taxonomic survey might have masked changes in the active communities among different habitats that would have been more apparent with RNA templates.The progressive mixing of oceanic waters into the plume is likely to exchange small pigmented eukaryote communities between the adjacent environments. This hydrodynamic phenomenon would allow the unrestrained dispersal of small pigmented eukaryotes between habitats, resulting in the observed similarities between the plume and surrounding ocean surface waters. In the dynamic environment of the ARP margins, the similarity between communities of different habitats is a function of time since the onset of the mixing event that exposed oceanic and plume small pigmented eukaryote communities to adjacent environments. Time-since-mixing might be the environmental parameter unaccounted for in our dataset that would explain the intra-habitat variability in major OTU composition, incidentally, obscuring the differences between habitats.Contrary to picocyanobacteria, which mostly use recycled, reduced forms of nitrogen (ammonium and urea), small pigmented eukaryotes rely more on nitrate70,71, making them more sensitive to the low nitrate concentrations in and around the ARP. While the uniformity of small pigmented eukaryote biomass between the oligotrophic ocean waters and the plume margins is likely the product of low nutrient concentrations in both environments, the variability of the OTU composition might be explained by a variable nitrate metabolism among small pigmented eukaryote taxa70. Alternatively, mixotrophy, the combination of photosynthesis and bacterivory common among small pigmented eukaryotes13,72,73,74, might confer a generalist advantage relative to picocyanobacteria by allowing maintenance of activity and abundance in rapidly varying habitats.Corroborating our second hypothesis that the small pigmented eukaryote diversity should vary with depth within the euphotic layer, the small pigmented eukaryote diversity and abundance varied vertically, with higher cell counts at the chlorophyll maximum. The taxonomic composition of chlorophyll maximum communities differed from those at the surface with populations characterized by high abundances of OTUs associated with Bacillariophecae, Pelagophyceae, radiolarians or Dinophyceae. The presence of Dinophyceae or Pelagophyceae OTUs at the chlorophyll maxima of plume stations (OPC, WPM and EPM), which were absent from surface waters, reflects the strong stratification at plume-influenced stations, reducing mixing between the surface and the bottom of the euphotic zone, the latter of which can be strongly influenced by oceanic waters. In particular at these stations (S024, S031 and S022), the chlorophyll maximum samples were collected below the halocline depth. Hence, these Dinophyceae and Pelagophyceae OTUs, uniquely shared with one of the oceanic stations, suggest that water masses under the plume-influenced surface might correspond to the oceanic water masses at the OSW stations.Station S031, a time-series station, showed a variation in major OTU assemblages between the cast conducted at 3 pm on May 26th (S031_03) and another cast carried out at 11am on May 27th (S031_11). Within this 19-h interval, in which environmental conditions remained consistent with the habitat type (Fig. 1), the OTU composition underwent a shift (Figs. 5, 6a). The relative cell abundances of each population remained similar, except for a P5 population appearing in samples from the second time point (Fig. 5). At the surface, the shift was characterized by the replacement of all OTUs from S031_03 with major OTUs assigned to Syndiniales in S031_11. The only common OTU, MAST-3A (OTU115), had low abundances (0.4–3.7%) in S031_03 and reached 14–24% in the S031_11 populations (Supplementary Table S3). Interestingly, the major Syndiniales OTUs in S031_11 were unique to this station, and different from the Syndiniales OTUs detected in the OPC and EPM stations (Fig. 5). This unexpected abundance in unpigmented Syndiniales OTUs in S031_11 might be due to the presence of dinospores in transitory free-living form, attached to or inside alveolate hosts or predators75,76. The large proportion of low abundance OTUs, which represented 70% of total reads in P3, were related to Syndiniales, ciliates and dinoflagellates (Supplementary Material SM2).Changes were also observed at the chlorophyll maximum where the unique radiolarian Collophidium OTU that dominated S031_03 disappeared in S031_11. This abundance of sequences related to the Radiolaria, large heterotrophic protozoa (≥ 100 µm), was unexpected among our targeted populations sorted by size and chlorophyll content. However, radiolarian sequences have been found among small size fractions before77,78, particularly at depth79,80 where they are suspected to descend and release small flagellate gametes called swarmers81. Hence, if attached to exopolymer-producing pigmented cells such as in the late stages of a phytoplankton bloom82, these swarmers could have been indiscriminately sorted into the three populations. In addition, three dinoflagellate OTUs appeared in P2 and P4 in cast S031_11, of which one was only found in the deep YPC, and one was shared with the chlorophyll maximum of S022 (EPM) and the surface of S027 (OSW).The radical shift in small pigmented eukaryote community composition between the two casts from station S031 reflects the dynamic nature of the ARP ecosystem and the multiple scales of heterogeneity within this system that is unlikely to be uncovered without the multiple approaches used in this study. It is unlikely that this interval of 19 h was sufficient for the resident small pigmented eukaryote community to change so radically as to completely replace the original taxa, as taxonomic turnover on daily time scales is usually very limited83,84. The salinity profiles indicated a stronger stratification at the time of cast 11, with a deeper mixing depth (22 m) compared to cast 03 (16 m), reflected in the chlorophyll profiles showing more homogenous concentrations in the top 22 m of cast 11 (Supplementary Fig. S1). In addition, the chlorophyll maximum peak sampled at 27 m was much smaller in cast 11 compared to cast 03, with a stronger secondary peak at 39 m. Satellite observations show the river plume defined as high surface chlorophyll, spreading north and eastward between the 25th and 29th of May (Supplementary Fig. S9—higher chlorophyll concentrations north of 17°N), suggesting a plume that was advecting past the ship during this time. This likely caused the deepening of the mixing depth, forcing the surface small pigmented eukaryote community northwards and the chlorophyll maximum community deeper below the mixing depth, effectively displacing the communities identified during cast 03.As a first study of the small pigmented eukaryotes and their response to the environmental habitats of the ARP, this work provides new insights into the detailed 18S rDNA-based taxonomy of an underexplored fraction of the phytoplankton. Our results illustrate that FACS is a reliable tool to enrich targeted taxonomic groups, such as Bacillariophyta, Chlorophyta and MOCH-5. The small pigmented eukaryote taxonomic composition was influenced by the ARP only at the plume core (OPC) where surface assemblages showed a strong dissimilarity with other stations, which were otherwise similar despite belonging to different habitat types. This result stands in apparent contrast to the drastic succession in community composition of the microphytoplankton driven by the nutrient gradients in the ARP1,3,4,6. The surprisingly limited influence of the ARP on surface small pigmented eukaryote communities warrants further inquiry. Sampling at different times of the year and using 18S rRNA as template for sequencing might reveal small pigmented eukaryotes to be more reactive to the habitat types earlier in the season, at the beginning of the massive discharge period from the Amazon River, or at the end of the summer when the ARP is entrained toward the east by the north equatorial countercurrent. More

  • in

    Quantifying the dynamics of rocky intertidal sessile communities along the Pacific coast of Japan: implications for ecological resilience

    1.Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996).Article 

    Google Scholar 
    2.Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    3.Gunderson, L. H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    4.Thrush, S. F. et al. Forecasting the limits of resilience: Integrating empirical research with theory. Proc. R. Soc. B Biol. Sci. 276, 3209–3217 (2009).Article 

    Google Scholar 
    5.Bagchi, S. et al. Quantifying long-term plant community dynamics with movement models: Implications for ecological resilience. Ecol. Appl. 27, 1514–1528 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Radchuk, V. et al. The dimensionality of stability depends on disturbance type. Ecol. Lett. 22, 674–684 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).ADS 
    Article 

    Google Scholar 
    11.Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Raffaelli, D. & Hawkins, S. J. Intertidal Ecology (Chapman & Hall, 1996).Book 

    Google Scholar 
    15.Tsujino, M. et al. Distance decay of community dynamics in rocky intertidal sessile assemblages evaluated by transition matrix models. Popul. Ecol. 52, 171–180 (2010).Article 

    Google Scholar 
    16.Kanamori, Y., Fukaya, K. & Noda, T. Seasonal changes in community structure along a vertical gradient: Patterns and processes in rocky intertidal sessile assemblages. Popul. Ecol. 59, 301–313 (2017).Article 

    Google Scholar 
    17.Menge, B. A. et al. Benthic–pelagic links and rocky intertidal communities: Bottom-up effects on top-down control?. Proc. Natl. Acad. Sci. 94, 14530–14535 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Sanford, E. Regulation of keystone predation by small changes in ocean temperature. Science 283, 2095–2097 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Menge, B. A. Top-down and bottom-up community regulation in marine rocky intertidal habitats. J. Exp. Mar. Biol. Ecol. 250, 257–289 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Connolly, S. R., Menge, B. A. & Roughgarden, J. A. Latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).Article 

    Google Scholar 
    21.Menge, B. A. et al. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc. Natl. Acad. Sci. 100, 12229–12234 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Nielsen, K. J. & Navarrete, S. A. Mesoscale regulation comes from the bottom-up: Intertidal interactions between consumers and upwelling. Ecol. Lett. 7, 31–41 (2004).Article 

    Google Scholar 
    23.Schoch, G. C. et al. Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnol. Oceanogr. 51, 2564–2585 (2006).ADS 
    Article 

    Google Scholar 
    24.Vinueza, L. R., Menge, B. A., Ruiz, D. & Palacios, D. M. Oceanographic and climatic variation drive top-down/bottom-up coupling in the Galápagos intertidal meta-ecosystem. Ecol. Monogr. 84, 411–434 (2014).Article 

    Google Scholar 
    25.Menge, B. A., Gouhier, T. C., Hacker, S. D., Chan, F. & Nielsen, K. J. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol. Monogr. 85, 213–233 (2015).Article 

    Google Scholar 
    26.Hacker, S. D., Menge, B. A., Nielsen, K. J., Chan, F. & Gouhier, T. C. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology https://doi.org/10.1002/ecy.2763 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Qiu, B. Kuroshio and Oyashio currents. In Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1413–1425 (Academic Press, 2001).Chapter 

    Google Scholar 
    28.Qiu, B. Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr. 32, 353–375 (2002).ADS 
    Article 

    Google Scholar 
    29.Sakurai, Y. An overview of the Oyashio ecosystem. Deep Sea Res. Pt. II 54, 2526–2542 (2007).ADS 
    Article 

    Google Scholar 
    30.Yatsu, A. et al. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 70, 922–933 (2013).Article 

    Google Scholar 
    31.Kawabe, M. Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. J. Oceanogr. 61, 529–537 (2005).Article 

    Google Scholar 
    32.Okunishi, T. et al. Characteristics of oceanographic condition of Tohoku prefecture in 2018. in Bulletin of Liaison Conference of Tohoku Marine Surveys and Technology , Vol. 68, 4–5 (2018) (in Japanese).33.Japan Meteorological Agency. Fluctuations in the Kuroshio Current on a Scale of Months to Decades (Paths). http://www.data.jma.go.jp/gmd/kaiyou/data/shindan/b_2/kuroshio_stream/kuroshio_stream.html (in Japanese, accessed 11 March 2021).34.Taniguchi, K., Sato, M. & Owada, K. On the characteristics of the structural variation in the Eisenia bicyclis population on Joban coast, Japan. Bull Tohoku Natl. Fish. Res. Inst. 48, 49–57 (1986) (in Japanese with English abstract).
    Google Scholar 
    35.Nomura, K., & Hirabayashi, I. Mass mortality of coral communities caused by abnormality low water temperature observed at Kii peninsula west coast for winter season in 2018. Marine Pavilion. Supplement 7 (2018) (in Japanese).36.Yamaguchi, M. Acanthaster planci infestations of reefs and coral assemblages in Japan: A retrospective analysis of control efforts. Coral Reefs 5, 23–30 (1986).ADS 
    Article 

    Google Scholar 
    37.Ohgaki, S. I. et al. Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan. Ecol. Indic. 96, 684–693 (2019).Article 

    Google Scholar 
    38.Kawajiri, M., Sasaki, T. & Kageyama, Y. Extensive deterioration of Ecklonia kelp stands and death of the plants, and fluctuations in abundance of the abalone off Toji, southern Izu peninsula. Bull. Shizuoka Pref. Fish. Exp. Stn. 15, 19–30 (1981) (in Japanese).
    Google Scholar 
    39.Takami, H. et al. Overwinter mortality of young-of-the-year Ezo abalone in relation to seawater temperature on the North Pacific coast of Japan. Mar. Ecol. Prog. Ser. 367, 203–212 (2008).ADS 
    Article 

    Google Scholar 
    40.Okuda, T., Noda, T., Yamamoto, T., Ito, N. & Nakaoka, M. Latitudinal gradient of species diversity: Multi-scale variability in rocky intertidal sessile assemblages along the Northwestern Pacific coast. Popul. Ecol. 46, 159–170 (2004).Article 

    Google Scholar 
    41.Nakaoka, M., Ito, N., Yamamoto, T., Okuda, T. & Noda, T. Similarity of rocky intertidal assemblages along the Pacific coast of Japan: Effects of spatial scales and geographic distance. Ecol. Res. 21, 425–435 (2006).Article 

    Google Scholar 
    42.Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315. https://doi.org/10.1126/sciadv.1700315 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Iwasaki, A., Fukaya, K. & Noda, T. Quantitative evaluation of the impact of the Great East Japan Earthquake and tsunami on the rocky intertidal community. In Ecological Impacts of Tsunamis on Coastal Ecosystems (eds Urabe, J. & Nakashizuka, T.) 35–46 (Springer Japan, 2016).Chapter 

    Google Scholar 
    45.Noda, T., Iwasaki, A. & Fukaya, K. Recovery of rocky intertidal zonation: Two years after the 2011 Great East Japan Earthquake. J. Mar. Biol. Assoc. UK 96, 1549–1555 (2016).Article 

    Google Scholar 
    46.Noda, T., Sakaguchi, M., Iwasaki, A. & Fukaya, K. Influence of the 2011 Tohoku Earthquake on population dynamics of a rocky intertidal barnacle: Cause and consequence of alternation in larval recruitment. Coast. Mar. Sci. 40, 35–43 (2017).
    Google Scholar 
    47.Nuvoloni, F. M., Feres, R. J. F. & Gilbert, B. Species turnover through time: Colonization and extinction dynamics across metacommunities. Am. Nat. 187, 786–796 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Clarke, A. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. A Rev. 21, 341–453 (1983).
    Google Scholar 
    49.Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).Article 

    Google Scholar 
    50.Bulleri, F. et al. Temporal stability of European rocky shore assemblages: Variation across a latitudinal gradient and the role of habitat-formers. Oikos 121, 1801–1809 (2012).Article 

    Google Scholar 
    51.Noda, T. Spatial hierarchical approach in community ecology: A way beyond high context-dependency and low predictability in local phenomena. Popul. Ecol. 46, 105–117 (2004).Article 

    Google Scholar 
    52.Sahara, R. et al. Larval dispersal dampens population fluctuation and shapes the interspecific spatial distribution patterns of rocky intertidal gastropods. Ecography 39, 487–495 (2015).Article 

    Google Scholar 
    53.Hanawa, K. & Mitsudera, H. Variation of water system distribution in the Sanriku coastal area. J. Oceanogr. 42, 435–446 (1987).Article 

    Google Scholar 
    54.Ohtani, K. Westward inflow of the coastal Oyashio Water into the Tsugaru Strait. Bull. Fac. Fish Hokkaido Univ. 38, 209–220 (1987) (in Japanese with English abstract).
    Google Scholar 
    55.Takasugi, S. Distribution of Tsugaru Warm Current water in the Iwate coastal area and their influence to sea surface temperature at coastal hydrographic station. Bull. Jpn. Soc. Fish. Oceanogr. 56, 434–448 (1992) (in Japanese with English abstract).
    Google Scholar 
    56.Takasugi, S. & Yasuda, I. Variation of the Oyashio water in the Iwate coastal region and in the vicinity of east coast of Japan. Bull. Jpn. Soc. Fish. Oceanogr. 58, 253–259 (1994) (in Japanese with English abstract).
    Google Scholar 
    57.Conlon, D. M. On the outflow modes of the Tsugaru Warm Current. La Mer. 20, 60–64 (1982).
    Google Scholar 
    58.Isoda, Y. & Suzuki, K. Interannual variations of the Tsugaru gyre. Bull. Fac. Fish. Hokkaido Univ. 55, 71–74 (2004) (in Japanese with English abstract).
    Google Scholar 
    59.Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).Article 

    Google Scholar 
    60.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018). More

  • in

    Historical warming consistently decreased size, dispersal and speciation rate of fish

    1.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    3.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    4.McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).Article 

    Google Scholar 
    5.Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).Article 

    Google Scholar 
    6.Amigo, I. The Amazon’s fragile future. Nature 578, 505–507 (2020).CAS 
    Article 

    Google Scholar 
    7.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Change 10, 249–253 (2020).Article 

    Google Scholar 
    8.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).Article 

    Google Scholar 
    9.Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).Article 

    Google Scholar 
    10.Chen, I., Hill, J. K., Ohlemûller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    11.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    12.Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).Article 

    Google Scholar 
    13.Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in fish. Evol. Appl. 7, 68–87 (2014).Article 

    Google Scholar 
    14.Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    15.Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).Article 

    Google Scholar 
    16.Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Front. Ecol. Evol. 7, 271 (2019).Article 

    Google Scholar 
    17.Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).Article 
    CAS 

    Google Scholar 
    18.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).CAS 
    Article 

    Google Scholar 
    19.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    20.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).Article 

    Google Scholar 
    21.Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).CAS 
    Article 

    Google Scholar 
    22.Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. Biol. Sci. 287, 20192615 (2020).
    Google Scholar 
    23.Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. B 285, 20172214 (2018).Article 

    Google Scholar 
    24.Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).CAS 
    Article 

    Google Scholar 
    25.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    26.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    27.Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).Article 

    Google Scholar 
    28.Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999).Article 

    Google Scholar 
    29.Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: perspectives for a changing world. Science 313, 789–791 (2006).CAS 
    Article 

    Google Scholar 
    30.Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. J. & Nishida, M. Mitogenomic evidence for an indo-west Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8, e56485 (2013).Article 
    CAS 

    Google Scholar 
    31.Bloom, D. D., Burns, M. D. & Schriever, T. A. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies). Biol. J. Linn. Soc. 125, 302–314 (2018).Article 

    Google Scholar 
    32.O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of an evolutionary radiation. Nat. Ecol. Evol. 2, 452–458 (2018).Article 

    Google Scholar 
    33.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    34.Pinek, L., Mansour, I., Lakovic, M., Ryo, M. & Rillig, M. C. Rate of environmental change across scales in ecology. Biol. Rev. 95, 1798–1811 (2020).Article 

    Google Scholar 
    35.Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572, 651–654 (2019).CAS 
    Article 

    Google Scholar 
    36.Gaston, K. J. Species-range size distributions: products of speciation, extinction and transformation. Philos. Trans. R. Soc. B 353, 219–230 (1998).Article 

    Google Scholar 
    37.Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from phylogenies. Biol. J. Linn. Soc. 118, 95–115 (2016).Article 

    Google Scholar 
    38.Angilletta, M. J. & Dunham, A. E. The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).Article 

    Google Scholar 
    39.Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).Article 

    Google Scholar 
    40.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr Fishing down marine food webs. Science 279, 860–863 (1998).CAS 
    Article 

    Google Scholar 
    41.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    Article 

    Google Scholar 
    42.Whitehead, P. J. P. FAO species catalogue: vol. 7 Clupeoid fishes of the world. FAO Fish. Synop. 7, 303 (1985).
    Google Scholar 
    43.Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).Article 

    Google Scholar 
    44.Önsoy, B., Tarkan, A. S., Filiz, H. & Bilge, G. Determination of the best length measurement of fish. North. West. J. Zool. 7, 178–180 (2011).
    Google Scholar 
    45.Mohseni, O. & Stefan, H. G. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol. 218, 128–141 (1999).Article 

    Google Scholar 
    46.Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng. 131, 139–146 (2005).CAS 
    Article 

    Google Scholar 
    47.Sharma, S., Jackson, D. A., Minns, C. K. & Shuter, B. J. Will northern fish populations be in hot water because of climate change? Glob. Change Biol. 13, 2052–2064 (2007).Article 

    Google Scholar 
    48.Avaria-Llautureo, J. et al. Data for: Historical Warming Consistently Decreased Size, Dispersal and Speciation Rate of Fish (Dryad, 2021); https://doi.org/10.5061/dryad.cfxpnvx5g49.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).Article 

    Google Scholar 
    50.Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).CAS 
    Article 

    Google Scholar 
    51.Kocsis, Á. T. & Raja, N. B. chronosphere (Zenodo, 2020); https://doi.org/10.5281/zenodo.353070352.Raftery, A. E. in Markov Chain Monte Carlo in Practice (eds Gilks, W. et al.) 163–187 (Chapman & Hall, 1996).53.Hijmans, R. J. geosphere: spherical trigonometry. R package version 1.5-10 https://CRAN.R-project.org/package=geosphere (2019).54.Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).Article 

    Google Scholar 
    55.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    Article 

    Google Scholar 
    57.Shafir, A., Azouri, D., Goldberg, E. E. & Mayrose, I. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 74, 1620–1639 (2020).Article 

    Google Scholar 
    58.Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235–247 (1997).Article 

    Google Scholar 
    59.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    60.Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar  More

  • in

    Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches

    1.Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).Article 

    Google Scholar 
    3.Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).ADS 
    Article 

    Google Scholar 
    4.Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    5.Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).Article 

    Google Scholar 
    6.Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).Article 

    Google Scholar 
    7.Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).Article 

    Google Scholar 
    8.Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).CAS 
    Article 

    Google Scholar 
    9.WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).
    Google Scholar 
    10.Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).ADS 
    Article 

    Google Scholar 
    11.Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).Article 

    Google Scholar 
    12.Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).Book 

    Google Scholar 
    13.Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).Article 

    Google Scholar 
    14.Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).Article 

    Google Scholar 
    15.Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).
    Google Scholar 
    16.Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).
    Google Scholar 
    17.Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).
    Google Scholar 
    18.Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).
    Google Scholar 
    19.Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).Article 

    Google Scholar 
    20.Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).Article 

    Google Scholar 
    21.Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).Chapter 

    Google Scholar 
    22.Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).
    Google Scholar 
    23.Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).CAS 
    Article 

    Google Scholar 
    24.Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    27.Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).Article 

    Google Scholar 
    28.Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).Article 

    Google Scholar 
    30.Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).ADS 
    CAS 

    Google Scholar 
    31.Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).PubMed 
    Article 

    Google Scholar 
    36.Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    39.de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).Article 

    Google Scholar 
    40.Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).CAS 
    Article 

    Google Scholar 
    41.Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed 
    Article 

    Google Scholar 
    46.Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).Article 

    Google Scholar 
    50.Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).Article 
    CAS 

    Google Scholar 
    51.Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).Article 

    Google Scholar 
    52.Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).
    Google Scholar 
    53.Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).Article 

    Google Scholar 
    54.Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).Article 

    Google Scholar 
    55.Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).56.Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).
    Google Scholar 
    57.Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).
    Google Scholar 
    58.Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).
    Google Scholar 
    59.Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).
    Google Scholar 
    60.Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).
    Google Scholar 
    61.Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).
    Google Scholar 
    63.Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article 

    Google Scholar 
    64.Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).Article 

    Google Scholar 
    65.Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).Article 

    Google Scholar 
    66.Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).
    Google Scholar 
    67.Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)71.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).Article 

    Google Scholar 
    73.Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).
    Google Scholar 
    76.Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).PubMed 
    Article 

    Google Scholar 
    79.Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).PubMed 
    Article 

    Google Scholar 
    81.Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).Article 

    Google Scholar 
    82.Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article 
    CAS 

    Google Scholar 
    84.Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).Article 

    Google Scholar 
    85.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    86.Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed 
    Article 

    Google Scholar 
    87.Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
    Google Scholar 
    89.Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).
    Google Scholar  More

  • in

    Effect of EPSPS gene copy number and glyphosate selection on fitness of glyphosate-resistant Bassia scoparia in the field

    Seed sourceSeeds of a segregating GR B. scoparia population identified from a wheat field (45°54′54.76″N; 108°14′44.15″W) in 2013 in Hill County, Montana, USA (designated as MT009) were used. The field was under a continuous no-till wheat-fallow rotation for  > 8 years and had a history of repeated glyphosate use (at least 3 applications per year) for weed control during the summer fallow phase prior to winter wheat planting. The permission of land owner was obtained prior to B. scoparia seed collection. All experimental research and field studies on plants, including the collection of plant material complied with the Montana State University guidelines and state/US legislation. Seeds of the field-collected population were used to generate GS and GR B. scoparia subpopulations through recurrent group selection procedure as described below.Development of GS and GR subpopulationsField collected seeds of MT009 population were sown on the surface of plastic trays (53 by 35 by 10 cm) filled with commercial potting soil (VERMISOIL, Vermicrop Organics, 4265 Duluth Avenue, Rocklin, CA, USA) in a greenhouse in the fall of 2013 at the Montana State University Southern Agricultural Research Center (MSU-SARC) near Huntley, MT, USA. Growth conditions in greenhouse were maintained at 25/22 ± 2 °C day/night temperatures and 16/8 h day/night photoperiods supplemented with metal halide lamps (450 μmol m-2 s-1). After emergence, approximately 200 uniform seedlings were individually transplanted in plastic pots (10-cm diam) containing the same potting mixture and grown for 6 weeks. A set of three clones (3 shoot cuttings) from each plant were then prepared and transplanted in plastic pots (10-cm diam) as described by Kumar and Jha22. At the 8- to 10-cm height, all cloned seedlings were separately treated with 435 (0.5×), 870 (1×), and 1740 (2×) g ae ha−1 of glyphosate (Roundup Powermax, Bayer Crop Science, Saint Louis, MO, USA) where 1× = field-use rate of glyphosate. All three glyphosate treatments included ammonium sulfate (2% w/v). Glyphosate applications were made using a cabinet spray chamber (Research Track Sprayer, De Vries Manufacturing, RR 1 Box 184, Hollandale, MN, USA) equipped with an even flat-fan nozzle tip (Teejet 8001EXR, Spraying System Co., Wheaton, IL, USA), calibrated to deliver 140 L ha−1 of spray solution at 276 kPa. Treated seedlings were returned to the greenhouse, watered as needed, and fertilized [Miracle-Gro water soluble fertilizer (24-8-16), Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH, USA] bi-weekly to maintain good plant growth. At 21 days after treatment, clones surviving the 2× rate of glyphosate were considered as ‘glyphosate-resistant (GR)’ and the clones that did not survive 1× rate of glyphosate were considered as ‘glyphosate-susceptible (GS)’. The parent B. scoparia plants corresponding to survived (resistant) or not-survived (susceptible) clones were transplanted separately in 20-L plastic pots (group of 3 to 4 plants pot−1) containing same potting soil for seed production. All 3- to 4 plants in each pot were collectively covered with a single pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flower initiation to restrict cross-pollination between GR and GS plants. At maturity, seeds from the respective GR and GS parent plants were collected and cleaned separately using an air column blower. The collected seeds from GR plants were subjected to three generations of recurrent group selection with the 2× rate of glyphosate in each generation. Seeds of GS plants were also subjected to recurrent group selection for three generations without glyphosate. Progenies of the GS plants were grown and sprayed with 1× rate of glyphosate to confirm the susceptibility to glyphosate in each generation23. This procedure allowed the development of relatively genetically homogenous GR and GS subpopulations from within a single B. scoparia population.Determination of EPSPS gene copy numberPreviously established protocols were adopted to estimate the relative EPSPS gene copy number in seedlings of GR and GS subpopulations through quantitative real-time polymerase chain reaction (qPCR)16,17,18. The ALS gene was used as reference since the relative ALS gene copy number and transcript abundance did not vary across B. scoparia samples17,18,29. Relative EPSPS:ALS gene copy number is a ratio of EPSPS to ALS PCR product fluorescence. Due to small differences in amplicon size, qPCR run conditions, and fluorescence detection, the values presented were estimates of relative gene copy number29.A total of 600 seedlings from the GR (450 seedlings) and GS (150 seedlings) B. scoparia subpopulations (developed by recurrent group selection) were grown in a greenhouse at MSU-SARC near Huntley, MT, USA in 2015 and 2016 to select enough plants for the field study each year. At 4-to 6-cm height, young leaf tissues (100 mg) from each seedling were sampled, frozen with liquid nitrogen and ground into powder using mortar and pestle. Genomic DNA were extracted from the tissue samples using the protocol from Qiagen Dneasy plant mini kit (Qiagen Inc., Valencia, CA, USA). Genomic DNA quantity and quality were determined using a Smartspec Plus spectrophotometer (Bio-Rad Company, CA, USA) and gel electrophoresis with 1% agarose, respectively. High quality genomic DNA (260/280 ratio of ≥ 1.8) were used to determine the relative EPSPS gene copy number. Two sets of primers to amplify the EPSPS and ALS genes, the final reaction volume and reagents used for each qPCR reaction, and the qPCR conditions used in this study were the same as previously described by Kumar and Jha22. Each qPCR reaction was performed on a Bio-Rad 96-well PCR plate in triplicates and fluorescence was detected using CFX Connect Real-Time PCR detection system. A negative control consisting of 250 nM of each forward and reverse primer, 1× Perfecta SYBR Green supermix, and deionized water with no DNA template was included. The EPSPS genomic copy number relative to ALS gene was estimated by ΔCT method (ΔCT = CT, ALS-CT, EPSPS)18,29. The relative increase in the EPSPS gene copy number was calculated as 2ΔCT.Survival and fecundity traits of GR and GS B. scoparia subpopulationsSeedlings (4- to 6-cm tall) of GR and GS B. scoparia subpopulations with known EPSPS gene copy numbers were transplanted into a fallow field in the summer of 2015 and 2016 at the MSU-SARC near Huntley, MT, USA. All transplanted B. scoparia seedlings were equally spaced at 1.5 m apart from each other and all plants were fertilized biweekly [2 to 3 g of MIRACLE-GRO water soluble fertilizer (24-8-16)] and irrigated as and when needed to avoid moisture stress. Experiments were conducted with a factorial arrangement of treatments (Factor A and Factor B) in a randomized complete block design, with 6 replications. Each transplanted B. scoparia seedling was an experimental unit. The factor A (4 levels) was comprised of B. scoparia plants with 1, 2–4, 5–6, and ≥ 8 EPSPS gene copy numbers, which were categorized as susceptible, low, moderate, and highly resistant plants, respectively based on their percent visible injury response to glyphosate. The factor B (ten levels) was comprised of increasing rates of glyphosate applied as single or sequential applications. Current labels of glyphosate allow a total of 3954 g ae ha−1 in split POST applications in GR sugar beet. As per the label, the maximum glyphosate rate of 2214 g ae ha−1 is allowed from crop emergence to 8-leaf stage of sugar beet and 1740 g ae ha−1 of glyphosate from 8-leaf stage to canopy closure or 30 days prior to sugar beet harvest. Hence, the tested total glyphosate rates were 0, 108, 217, 435, 870, 1265, 1740 [870 followed by ( +) 870], 2214 [1265 + 949], 3084 [1265 + 949 + 870], and 3954 [1265 + 949 + 870 + 870] g ae ha−1 along with ammonium sulfate (2% w/v). Sequential applications were made at 7- to 14-day intervals, with first application at 8- to 10-cm tall B. scoparia seedlings using a CO2-operated backpack sprayer fitted with a single AIXR 8001 flat-fan nozzle calibrated to deliver 94 L ha−1. Glyphosate rates and applications timings were selected to simulate the 2-leaf, 6-leaf, 8–10 leaf, and the canopy closure stage of GR sugar beet.Data collectionPercent visible control (relative to the non-treated) on a scale of 0 to 100 (0 means no control and 100 means complete plant death30) for each individual plant (240 plants total each year) were assessed at 7, 14, and 21 days after glyphosate treatment. Data on number of days from transplanting to 50% flowering (half of the inflorescences from each plant were covered with visible flowers) and seed set (seeds on half of the inflorescences from each plant were turned brown) were recorded for an individual plant. Each plant was covered with a pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flowering to prevent any cross-pollination. At the time of flowering, pollens from each survived plant were collected in early morning hours (between 8 to 10 am). At maturity, each individual plant was harvested and threshed to determine 1000-seed weight and seeds plant−1.Pollen and progeny seed viabilityPollens and seeds collected from individual B. scoparia plants (240 plants total each year) were tested for viability using a tetrazolium test. Pollens were collected in petri dishes by shaking the whole plant at the time of flowering. Four sub-samples of pollens from each petri dish were transferred into glass slides. The pollens in the glass slides were soaked with a tetrazolium chloride solution (10 g L−1), sealed with a cover slip using a nail polish and were incubated at room temperature for an hour. Viable (red) and non-viable pollens (yellow/white) were counted using a simple microscope. The physical structure of viable and non-viable pollens was also checked for any deformity using a compound microscope. Pollen viability for individual plants (240 plants total each year) was calculated as percent viable pollens of the total number of pollens counted.For seed viability test, twenty-five intact seeds collected from each individual plant (240 plants total each year) from the field were evenly placed in between two layers of filter papers (WHATMAN Grade 2, SigmaAldrich, St Louis, MO, USA) inside a 10-cm-diameter petri dish. Seeds were soaked with a 5-ml of distilled water and the filter papers were kept moist for the entire duration of the germination test. Light is not required for B. scoparia seed germination31, so the petri dishes were wrapped with a thin aluminum foil and placed inside an incubator (VMR International, Sheldon Manufacturing, Cornelius, OR, USA) with alternating day/night temperatures set to 20/25 °C23. Seeds with a visible uncoiled radicle tip longer than the seed diameter was considered germinated32,33. Radicle length was measured from three randomly selected germinated seeds 24 h after incubation to test the seedling vigor. The number of germinated seeds in each petri dish were counted daily until no further germination was observed for 10 consecutive days. Non-germinated seeds were tested for viability by soaking the seeds with tetrazolium chloride solution (10 g L−1) for 24 h23,34. Seeds with a red-stained embryo examined under a dissecting microscope (tenfold magnification) were considered viable35. Seed viability was expressed as the percentage of total viable seeds.Relative fitness (w)Fitness is the evolutionary potential for success of a genotype based on survival, competitive ability, and reproduction. Individuals with the greatest number of offspring and with the most genes contributing to the gene pool of a population are considered most fit genotypes36. Fitness of a genotype is determined by comparison of its vigor, productivity or competitiveness relative to the other genotype by quantifying specific traits such as seed dormancy, flowering date, seedling vigor, seed production, and other factors that can possibly influence the survival and reproductive success of a genotype36,37. In this study, relative fitness (w) of GR B. scoparia was calculated as the reproductive rate (seed production plant−1) of a resistant genotype (B. scoparia plants with 2–4, 5–6, and ≥ 8 EPSPS gene copies) relative to the maximum reproductive rate of the susceptible genotype (B. scoparia plants with 1 EPSPS gene copy) in the population. The relative fitness (w) of susceptible plants was assumed to be one.Statistical analysesA natural logarithm transformation was performed on data for time to 50% flowering, time to seed set, seeds plant−1. An arcsine square root transformation was performed on data for pollen viability, visible control, seed viability, and relative fitness (w) before subjecting to analysis of variance, however all data were presented in their back-transformed values. No transformation was needed for 1000-seed weight and radicle length data. Experimental year, B. scoparia plants with different EPSPS copy number groups, glyphosate rate, and their interactions were considered fixed effects and replication nested within a year was considered as a random effect in the model. Data on percent visible control, time to 50% flowering, pollen viability, time to seed set, 1000-seed weight, and seeds plant−1, seed viability and radicle length were subjected to ANOVA using Proc Mixed in SAS (SAS version 9.4, SAS Institute, Cary, NC, USA) to test the significance of experimental run, treatment factors, and interactions. The ANOVA assumptions for normality of residuals and homogeneity of variance were tested using Proc Univariate and PROC GLM in SAS. Means were separated using Tukey–Kramer’s HSD with α = 0.05. Furthermore, data on percent visible control and seeds plant-1 for each group of B. scoparia plants with different EPSPS gene copy number were regressed against total glyphosate rates using a four-parameter log-logistic model Eq. (1)38,39:$$Y=c+{d-c/{1+mathrm{exp}[bleft(mathrm{log}left(xright)-mathrm{log}left(ED50right)right)]}$$
    (1)
    where Y is the percent visible control or seed production plant−1 (% of nontreated); d is the upper asymptote (the highest estimated % control or % seed reduction); c is the lower asymptote (the lowest estimated % control or % seed reduction); ED50 is the effective rate of glyphosate needed to achieve 50% control or 50% reduction in seed production; and b denotes the slope around the inflection point “ED50.” Slope parameter (b) indicates the response rate of each group of B. scoparia plants with different EPSPS gene copy number to glyphosate rates (i.e., a slope with a large negative value suggests a rapid response of selected B. scoparia group). The Akaike Information Criterion (AIC) was used to select the nonlinear four-parameter model. A lack-of-fit test (P  > 0.10) was used to confirm that the nonlinear regression model Eq. (1) described the response data for each B. scoparia group38. Parameter estimates, ED90, and SR99 values (i.e. effective rate required for 90% control or effective rate required for 99% reduction in seed production) for each group of B. scoparia plants with different EPSPS gene copy number were determined using the ‘drc’ package in R software37,39. Parameter estimates of B. scoparia groups were compared using the approximate t-test with the ‘compParm’ and ‘EDcomp’ functions in the ‘drc’ package of the R software39,40. More

  • in

    Social communication activates the circadian gene Tctimeless in Tribolium castaneum

    1.Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213–229 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Perez-Mendoza, J., Campbell, J. & Throne, J. Influence of age, mating status, sex, quantity of food, and long-term food deprivation on red four beetle (Coleoptera: Tenebrionidae) fight initiation. J. Econ. Entomol. 104, 2078–2086 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ahmad, F., Ridley, A., Daglish, G. J., Burrill, P. R. & Walter, G. H. Response of Tribolium castaneum and Rhyzopertha dominica to various resources, near and far from grain storage. J. Appl. Entomol. 137, 773–781 (2013).Article 

    Google Scholar 
    4.Ridley, A. W. et al. The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol. Ecol. 20, 1635–1646 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Suzuki, T. & Sugawara, R. Isolation of an aggregation pheromone from the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). J. Appl. Entomol. 14, 228–230 (1979).CAS 

    Google Scholar 
    6.Suzuki, T. 4,8-Dimethyldecanal: the aggregation pheromone of the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Agric. Biol. Chem. 44, 2519–2520 (1980).CAS 

    Google Scholar 
    7.Suzuki, T. A facile synthesis of 4, 8-dimethyldecanal, aggregation pheromone of flour beetles and its analogues. Agric. Biol. Chem. 45, 2641–2643 (1981).CAS 

    Google Scholar 
    8.Suzuki, T., Kozaki, J., Sugawara, R. & Mori, K. Biological activities of the analogs of the aggregation pheromone of Tribolium castaneum (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 19, 15–20 (1984).CAS 
    Article 

    Google Scholar 
    9.Oerke, E. C. & Dehne, H. W. Safeguarding production—losses in major crops and the role of crop protection. Crop. Protect. 23, 275–285 (2004).Article 

    Google Scholar 
    10.Fan, J., Zhang, T., Bai, S., Wang, Z. & He, K. Evaluation of Bt corn with pyramided genes on efficacy and Insect resistance management for the Asian corn borer in China. PLoS ONE 11, e0168442 (2016).Article 
    CAS 

    Google Scholar 
    11.He, K. et al. Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera: Crambidae). Crop. Protect. 25, 167–173 (2006).CAS 
    Article 

    Google Scholar 
    12.Koutroumpa, F. A. & Jacquin-Joly, E. Sex in the night: Fatty acid derived sex pheromones and corresponding membrane pheromone receptors in insects. Biochimie 107, 15–21 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Harari, A.R., Sharon, R. & Weintraub, P.G. Manipulation of insect reproductive systems as a tool in pest control. In Advances in insect control and resistance management. 93–119 Springer, Cham, (2016).14.Hussain, A. Chemical ecology of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae): Factors affecting biology and application of pheromone. Dissertation, Oregon State University (1993).15.Liebhold, A. M. & Tobin, P. C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53, 387–408 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Levinson, H. Z. & Mori, K. Chirality determines pheromone activity for flour beetles. Naturwissenschaften 70, 190–192 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Olsson, P. O. C. et al. Male-produced sex pheromone in Tribolium confusum: Behavior and investigation of pheromone production locations. J. Stored. Prod. Res. 42, 173–182 (2006).Article 
    CAS 

    Google Scholar 
    18.Duehl, A. J., Arbogast, R. T. & Teal, P. E. Age and sex related responsiveness of Tribolium castaneum (Coleoptera: Tenebrionidae) in novel behavioral bioassays. Environ. Entomol. 40, 82–87 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Verheggen, F. et al. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle Tribolium confusum. J. Chem. Ecol. 33, 525–539 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Obeng-Ofori, D. & Coaker, T. H. Some factors affecting responses of four stored product beetles (Coleoptera: Tenebrionidae & Bostrichidae) to pheromones. Bull. Entomol. Res. 80, 433–441 (1990).Article 

    Google Scholar 
    21.Obeng-Ofori, D. & Coaker, T. Tribolium aggregation pheromone: Monitoring, range of attraction and orientation behavior of T. castaneum (Coleoptera: Tenebrionidae). Bull. Entomol. Res. 80, 443–451 (1990).Article 

    Google Scholar 
    22.Saunders, D. S. Insect circadian rhythms and photoperiodism. Invert. Neurosci. 3, 155–164 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Beer, K. & Helfrich-Förster, C. Model and non-model insects in chronobiology. Front. Behav. Neurosci. 14, 601676 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Li, C. J., Yun, X. P., Yu, X. J. & Li, B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. Insect Sci. 25, 418–428 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hideharu, N., Yosuke, M. & Tomoko, I. Common features in diverse insect clocks. Zool. Lett. 1, 1–17 (2015).Article 

    Google Scholar 
    27.Yujie, L. et al. Anatomical localization and stereoisomeric composition of Tribolium castaneum aggregation pheromones. Naturwissenschaften 98, 755 (2011).Article 
    CAS 

    Google Scholar 
    28.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bates, D., Mächler, M., Bolker, S. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar 
    30.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Software. 82, 1–26 (2017).Article 

    Google Scholar 
    31.Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).32.Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms. 25, 372–380 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Swihart, B. et al. R package version 1.1.2. https://CRAN.R-project.org/package=repeated (2019).34.Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Krupp, J. J. et al. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18, 1373–1383 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Holman, L., Trontti, K. & Helanterä, K. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biol. Lett. 12, 2015103 (2016).Article 
    CAS 

    Google Scholar 
    37.Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 159 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    38.Grozinger, C. M., Sharabash, N. M., Whitfield, C. W. & Robinson, G. E. Pheromone mediated gene expression in the honeybee brain. Proc. Natl. Acad. Sci. USA 100, 14519–14525 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Wanner, K. W. A honey bee odorant receptor for the queen substance 9-oxo-2- decenoic acid. Proc. Natl. Acad. Sci. USA 104, 14383–14388 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Beggs, K. T. et al. Queen pheromone modulates brain dopamine function in worker honey bees. Proc. Natl. Acad. Sci. USA 104, 2460–2464 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Ma, R., Rangel, J. & Grozinger, C. M. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genom. 20, 592 (2019).Article 
    CAS 

    Google Scholar 
    42.Alaux, C. & Robinson, G. E. Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J. Chem. Ecol. 33, 1346–1350 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.O’ceallachain, D. P. & Ryan, M. F. Production and perception of pheromones by the beetle Tribolium confusum. J. Insect Physiol. 23, 1303–1309 (1977).CAS 
    Article 

    Google Scholar 
    44.Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Zhang, T. et al. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae). PLoS ONE 10, 0128550 (2015).
    Google Scholar 
    46.Balakrishnan, K., Holighaus, G., Weißbecker, B. & Schütz, S. Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. J. Appl. Entomol. 141, 477–486 (2017).CAS 
    Article 

    Google Scholar 
    47.Webb, I. C., Antle, M. C. & Mistlberger, R. E. Regulation of circadian rhythms in mammals by behavioral arousal. Behav. Neurosci. 128, 304 (2014).PubMed 
    Article 

    Google Scholar 
    48.Angelousi, A. et al. Clock genes alterations and endocrine disorders. Eur. J. Clin. Invest. 48, 12927 (2018).Article 
    CAS 

    Google Scholar 
    49.Silvegren, G., Löfstedt, C. & Rosén, W. Q. Circadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J. Insect. Phys. 51, 277–286 (2005).CAS 
    Article 

    Google Scholar 
    50.Lam, V. H. & Chiu, V. C. Evolution and design of invertebrate circadian clocks. Oxford Handbook Invertebrate Neurobiol. https://doi.org/10.1093/oxfordhb/9780190456757.013.25 (2018).Article 

    Google Scholar 
    51.Chiba, Y., Cutkomp, L. K. & Halberg, F. Circadian oxygen consumption rhythm of the flour beetle Tribolium confusum. J. Insect. Physiol. 19, 2163–2172 (1973).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Rafter, M. A. Behavior in the presence of resource excess—flight of Tribolium castaneum around heavily-infested grain storage facilities. J. Pest. Sci. 92, 1227–1238 (2019).Article 

    Google Scholar 
    53.Harano, T. & Miyatake, T. Genetic basis of incidence and period length of circadian rhythm for locomotor activity in populations of a seed beetle. Heredity 105, 268–273 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cheng, Y. & Hardin, P. E. Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. J. Neurosci. 18, 741–750 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Short, C. A., Meuti, M. E., Zhang, Q. & Denlinger, D. L. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 93, 28–35 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Wexler, Y. et al. Mating alters the link between movement activity and pattern in the red flour beetle: the effects of mating on behavior. Physiol. Entomol. 42, 299–306 (2017).ADS 
    Article 

    Google Scholar 
    57.Gottlieb, D. Agro-chronobiology: Integrating circadian clocks/time biology into storage management. J. Stored. Prod. Res. 82, 9–16 (2019).Article 

    Google Scholar  More

  • in

    From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser)

    1.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 37, 637–669 (2006).Article 

    Google Scholar 
    3.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 (2012).Article 

    Google Scholar 
    5.Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290. https://doi.org/10.1890/110278 (2012).Article 

    Google Scholar 
    6.Zohner, C. M. Phenology and the city. Nat. Ecol. Evol. 3, 1618–1619. https://doi.org/10.1038/s41559-019-1043-7 (2019).Article 
    PubMed 

    Google Scholar 
    7.Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. Lond. B 272, 2561–2569. https://doi.org/10.1098/rspb.2005.3356 (2005).Article 

    Google Scholar 
    8.Visser, M. E., Holleman, L. J. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    9.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).Article 
    PubMed 

    Google Scholar 
    10.Renner, S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).Article 

    Google Scholar 
    11.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150. https://doi.org/10.1111/j.1523-1739.2007.00852.x (2008).Article 
    PubMed 

    Google Scholar 
    13.Wingfield, J. C. et al. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen. Comp. Endocrinol. 227, 16–26. https://doi.org/10.1016/j.ygcen.2015.10.007 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88(7), 1803–1812. https://doi.org/10.1890/06-1072.1 (2007).Article 
    PubMed 

    Google Scholar 
    15.Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15(8), 1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x (2009).ADS 
    Article 

    Google Scholar 
    16.Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105(36), 13492–13496. https://doi.org/10.1073/pnas.0800999105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9(2), e1000585. https://doi.org/10.1371/journal.pbio.1000585 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394 (2003).Article 

    Google Scholar 
    19.Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Change Biol. 15, 760–771. https://doi.org/10.1111/j.1365-2486.2008.01751.x (2009).ADS 
    Article 

    Google Scholar 
    20.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Rev. Ecol. Evol. Syst. 44, 367–368 (2013).Article 

    Google Scholar 
    21.Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Altmann, J., Alberts, S. C., Altmann, S. A. & Roy, S. B. Dramatic change in local climate patterns in the Amboseli basin, Kenya. Afr. J. Ecol. 40, 248–251. https://doi.org/10.1046/j.1365-2028.2002.00366.x (2002).Article 

    Google Scholar 
    23.Charmantier, A. R. H. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Balbontin, J. et al. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78, 981–989. https://doi.org/10.1111/j.1365-2656.2009.01573.x (2009).Article 
    PubMed 

    Google Scholar 
    25.Clermont, J., Réale, D. & Giroux, J.-F. Plasticity in laying dates of Canada Geese in response to spring phenology. Ibis 160, 597–607. https://doi.org/10.1111/ibi.12560 (2018).Article 

    Google Scholar 
    26.Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799. https://doi.org/10.1126/science.3363360 (1988).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626. https://doi.org/10.1111/j.1558-5646.1992.tb02070.x (1991).Article 

    Google Scholar 
    28.Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B 283, 20161887. https://doi.org/10.1098/rspb.2016.1887 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190. https://doi.org/10.1111/1365-2435.13406 (2019).Article 

    Google Scholar 
    30.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097. https://doi.org/10.1098/rspb.2014.1097 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lameris, T. K. et al. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Oecologia 191, 1003–1014. https://doi.org/10.1007/s00442-019-04533-7 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Phil. Trans. R. Soc. B 374, 20180178. https://doi.org/10.1098/rstb.2018.0178 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ball, G. F. & Ketterson, E. D. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 36, 3231–3246. https://doi.org/10.1098/rstb.2007.2137 (2007).Article 

    Google Scholar 
    34.Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, 2010).
    Google Scholar 
    35.Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B 286(1908), 20190952. https://doi.org/10.1098/rspb.2019.0952 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. https://doi.org/10.1038/nature01333 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87. https://doi.org/10.1016/S0065-2504(04)35004-X (2004).Article 

    Google Scholar 
    38.Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B. 266, 2487–2490. https://doi.org/10.1098/rspb.1999.0950 (1999).CAS 
    Article 

    Google Scholar 
    39.Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110. https://doi.org/10.1016/S0065-2504(04)35005-1 (2004).Article 

    Google Scholar 
    40.Both, C., Bijlsma, R. G. & Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 36, 368–373. https://doi.org/10.1111/j.0908-8857.2005.03484.x (2005).Article 

    Google Scholar 
    41.D’Alba, L., Monaghan, P. & Neger, R. G. Advances in laying date and increasing population size suggest positive responses to climate change in Common Eiders Somateria mollissima in Iceland. Ibis 152, 19–28. https://doi.org/10.1111/j.1474-919X.2009.00978.x (2009).Article 

    Google Scholar 
    42.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: Date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).Article 

    Google Scholar 
    43.Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055. https://doi.org/10.1111/1365-2656.12518 (2016).Article 
    PubMed 

    Google Scholar 
    44.Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Perrins, C. M. The timing of birds’ breeding seasons. Ibis 112(2), 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x (1970).Article 

    Google Scholar 
    46.Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).Article 

    Google Scholar 
    47.van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 (2009).Article 

    Google Scholar 
    48.Drent, R. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    49.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. TREE 10, 374–378. https://doi.org/10.1016/S0169-5347(00)89141-7 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Sergio, F., Blas, J., Forero, M. G., Donzar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821. https://doi.org/10.1093/beheco/arm052 (2007).Article 

    Google Scholar 
    51.Lorenz, K. Here I Am–Where Are You? (Hartcourt Brace Jovanovich, 1991).
    Google Scholar 
    52.Frigerio, D., Dittami, J., Möstl, E. & Kotrschal, K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen. Comp. Endocrinol. 137, 29–36 (2004).CAS 
    Article 

    Google Scholar 
    53.Hemetsberger, J. Populationsbiologische Aspekte der Grünauer Graugansschar (Anser anser). PhD Thesis (University of Vienna, 2002).54.Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: The role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).Article 

    Google Scholar 
    56.Rozenfeld, S. B. & Sheremetiev, I. S. Barnacle Goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Biol. Bull. Russ. Acad. Sci. 41, 645–656. https://doi.org/10.1134/S106235901408007X (2014).Article 

    Google Scholar 
    57.Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).Article 
    PubMed 

    Google Scholar 
    58.Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 1, No. 8 (Lynx edicions, 1992).59.Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).Article 

    Google Scholar 
    60.Acquaotta, F., Fratianni, S. & Garzena, D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor. Appl. Climatol. 122(3–4), 619–634. https://doi.org/10.1007/s00704-014-1316-7 (2014).ADS 
    Article 

    Google Scholar 
    61.Angilletta, M. J. Jr. & Sears, M. W. Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr. Comp. Biol. 51(5), 653–661. https://doi.org/10.1093/icb/icr091 (2011).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. Ecological Adaptations for Breeding in Birds (Methuen, 1968).
    Google Scholar 
    63.Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).Article 

    Google Scholar 
    64.Drent, R. H. The timing of birds’ breeding seasons: The Perrins hypothesis revisited especially for migrants. Ardea 94, 305–322 (2006).
    Google Scholar 
    65.Prop, J. & de Vries, J. Impact of snow and food conditions on the reproductive performance of Barnacle Geese Branta leucopsis. Ornis Scand. 24, 110–121 (1993).Article 

    Google Scholar 
    66.Eichhorn, G., van der Jeugd, H. P., Meijer, H. A. J. & Drent, R. H. Fueling Incubation: Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127, 162–172. https://doi.org/10.1525/auk.2009.09057 (2010).Article 

    Google Scholar 
    67.Newton, I. The role of food in limiting bird numbers. Ardea 68, 11–30. https://doi.org/10.5253/arde.v68.p11 (1980).Article 

    Google Scholar 
    68.Daunt, F., Wanless, S., Harris, M. & Monaghan, P. Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc. R. Soc. B 266(1427), 1489–1493. https://doi.org/10.1098/rspb.1999.0805 (1999).Article 
    PubMed Central 

    Google Scholar 
    69.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76(7), 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    70.Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68(5), 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x (1999).Article 

    Google Scholar 
    71.Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12(8), 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x (2006).ADS 
    Article 

    Google Scholar 
    72.Heard, M. J., Riskin, S. H. & Flight, P. A. Identifying potential evolutionary consequences of climate-driven phenological shifts. Evol. Ecol. 26(3), 465–473. https://doi.org/10.1007/s10682-011-9503-9 (2012).Article 

    Google Scholar 
    73.McLean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19(6), 595–608. https://doi.org/10.1111/ele.12599 (2016).Article 
    PubMed 

    Google Scholar 
    74.Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151. https://doi.org/10.1111/ecog.02411 (2017).Article 

    Google Scholar 
    75.Cunningham, S. J., Madden, C. F., Barnard, P. & Amar, A. Electric crows: Powerlines, climate change and the emergence of a native invader. Divers. Distrib. 22, 17–29. https://doi.org/10.1111/ddi.12381 (2016).Article 

    Google Scholar 
    76.Gienapp, P. & Brommer, J. E. Evolutionary dynamics in response to climate change. In Quantitative Genetics in the Wild, 254–273 (Oxford University Press, 2014)77.Tombre, I. M., Erikstad, K. E. & Bunes, V. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985–992. https://doi.org/10.1007/s00300-011-1145-4 (2012).Article 

    Google Scholar 
    78.Poussart, C., Gauthier, G. & Larochelle, J. Incubation behaviour of greater snow geese in relation to weather conditions. Can. J. Zool. 79(4), 671–678. https://doi.org/10.1139/z01-023 (2001).Article 

    Google Scholar 
    79.Lamprecht, J. Predicting current reproductive success of goose Pairs Anser indicus from male and female reproductive history. Ethology 85, 123–131 (1990).Article 

    Google Scholar 
    80.Daunt, F., Wanless, S., Harris, M. P., Money, L. & Monaghan, P. Older and wiser: Improvements in breeding success are linked to better foraging performance in European shags. Funct. Ecol. 21, 561–567. https://doi.org/10.1111/j.1365-2435.2007.01260.x (2007).Article 

    Google Scholar 
    81.Sæther, B.-E. Age-specific variation in reproductive performance of birds. Curr. Ornithol. 7, 251–283 (1990).
    Google Scholar 
    82.Goutte, A., Antoine, E., Weimerskirch, H. & Chastel, O. Age and the timing of breeding in a long-lived bird: A role for stress hormones?. Funct. Ecol. 24, 1007–1016. https://doi.org/10.1111/j.1365-2435.2010.01712.x (2010).Article 

    Google Scholar 
    83.Szipl, G. et al. Parental behaviour and family proximity as key to reproductive success in Greylag geese (Anser anser). J. Ornithol. 160, 473. https://doi.org/10.1007/s10336-019-01638-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Fletcher, Q. E. & Selman, C. Aging in the wild: Insights from free-living and non-model organisms. Exp. Gerontol. 71, 1–3. https://doi.org/10.1016/j.exger.2015.09.015 (2015).Article 
    PubMed 

    Google Scholar 
    85.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008. https://doi.org/10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2() (1997).Article 

    Google Scholar 
    86.Van de Pol, M. & Verhulst, S. Age-dependent traits: A new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773. https://doi.org/10.1086/503331 (2006).Article 
    PubMed 

    Google Scholar 
    87.Schoech, S. J. & Hahn, T. P. Food supplementation and timing of reproduction: Does the responsiveness to supplementary information vary with latitude?. J. Ornithol. 148, 625–632. https://doi.org/10.1007/s10336-007-0177-6 (2007).Article 

    Google Scholar 
    88.Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28(15), 2467-2473.e4. https://doi.org/10.1016/j.cub.2018.05.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob Change Biol. 24, 3780–3790. https://doi.org/10.1111/gcb.14160 (2018).ADS 
    Article 

    Google Scholar 
    90.Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272. https://doi.org/10.1111/gcb.13302 (2016).ADS 
    Article 

    Google Scholar 
    92.Hemetsberger, J., Weiß, B. M. & Scheiber, I. B. R. Greylag geese: from general principles to the Konrad Lorenz flock. In The social life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    93.Scheiber, I. B. R. “Tend and befriend”: the importance of social allies in coping with social stress. In The Social Life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian Model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    94.R Development Core Team. A Language and Environment for Statistical Computing. R version 4.1.0 (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    95.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    96.Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).MathSciNet 
    Article 

    Google Scholar 
    97.Zuur, A. F., Ieno, E. N. & Freckleton, R. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645. https://doi.org/10.1111/2041-210x.12577 (2016).Article 

    Google Scholar 
    98.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).Article 

    Google Scholar 
    99.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Soft. 34(2), 1–24 (2010).Article 

    Google Scholar 
    100.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    101.Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd ed. https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (2019).102.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).Book 

    Google Scholar 
    103.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    104.Tremblay, A., Statistics Canada, Ransijn, J. & University of Copenhagen. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).105.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Performance: Assessment of Regression Models Performance. R package version 0.4 5 (2020).106.Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    107.Morrissey, M. B. & Ruxton, G. D. Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0010.003 (2018).Article 

    Google Scholar 
    108.Barton, K. MuMIn: Multi-model Inference. R package version 1.10.5 (2014).109.Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.0-1. (2014).110.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Corrigendum to “Multimodel inference in ecology and evolution: Challenges and solutions”. J. Evol. Biol. 24, 1627–1627 (2011).Article 

    Google Scholar 
    111.Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, In R package version 2.8.7. (2021)112.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    113.Anderson, D. R., Link, W. A., Johnson, D. H. & Burnham, K. P. Suggestions for presenting the results of data analyses. J. Wildl. Manag. 65, 373–378. https://doi.org/10.2307/3803088 (2001).Article 

    Google Scholar 
    114.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).Article 

    Google Scholar 
    115.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11(1), 54–71. https://doi.org/10.1037/1082-989X.11.1.54 (2006).Article 
    PubMed 

    Google Scholar 
    116.Harris, M. P., Albon, S. D. & Wanless, S. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311–318. https://doi.org/10.1080/00063657.2016.1202889 (2016).Article 

    Google Scholar 
    117.Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. https://doi.org/10.1111/jav.02247 (2019).Article 

    Google Scholar 
    118.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744. https://doi.org/10.1007/s00265-016-2096-0 (2016).Article 

    Google Scholar 
    119.Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182(5), E161–E173. https://doi.org/10.1086/673263 (2013).Article 
    PubMed 

    Google Scholar 
    120.Frigerio, D. et al. From individual to population level: temperature and snow cover modulate fledging success through breeding phenology in Greylag geese (Anser anser), Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbztd (2021). More

  • in

    Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes

    1.McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113. https://doi.org/10.1016/j.tree.2014.11.006 (2015).Article 

    Google Scholar 
    2.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167. https://doi.org/10.1038/nature04246 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416. https://doi.org/10.1016/j.tree.2006.05.012 (2006).Article 
    PubMed 

    Google Scholar 
    4.Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. In Annual Review of Ecology, Evolution, and Systematics, Vol. 47 (ed Futuyma, D. J.) 333–358 (Annual Reviews, 2016).5.Drew, L. W. Are we losing the science of taxonomy?: As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946. https://doi.org/10.1525/bio.2011.61.12.4 (2011).Article 

    Google Scholar 
    6.Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794–810. https://doi.org/10.1007/s11284-006-0035-7 (2006).Article 

    Google Scholar 
    7.Packer, L., Grixti, J. C., Roughley, R. E. & Hanner, R. The status of taxonomy in Canada and the impact of DNA barcoding. Can. J. Zool. 87, 1097–1110. https://doi.org/10.1139/z09-100 (2009).CAS 
    Article 

    Google Scholar 
    8.Qin, H. W., Li, X., Liang, J., Peng, Y. G. & Zhang, C. S. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 187, 49–58. https://doi.org/10.1016/j.neucom.2015.10.122 (2016).Article 

    Google Scholar 
    9.Tharwat, A., Hemedan, A. A., Hassanien, A. E. & Gabel, T. A biometric-based model for fish species classification. Fish. Res. 204, 324–336. https://doi.org/10.1016/j.fishres.2018.03.008 (2018).Article 

    Google Scholar 
    10.Gates, D. M., Keegan, H. J., Schleter, J. C. & Weidner, V. R. Spectral properties of plants. Appl. Opt. 4, 11–000. https://doi.org/10.1364/ao.4.000011 (1965).ADS 
    Article 

    Google Scholar 
    11.Hutchison, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209. https://doi.org/10.2307/1931954 (1960).Article 

    Google Scholar 
    12.Asner, G. P. & Martin, R. E. Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219. https://doi.org/10.1016/j.gecco.2016.09.010 (2016).Article 

    Google Scholar 
    13.Baldeck, C. A. et al. Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 10, e0118403. https://doi.org/10.1371/journal.pone.0118403 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 1–5. https://doi.org/10.1038/nplants.2016.24 (2016).Article 

    Google Scholar 
    15.Leblanc, G., Francis, C. M., Soffer, R., Kalacska, M. & de Gea, J. Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens. 8, 273. https://doi.org/10.3390/rs8040273 (2016).ADS 
    Article 

    Google Scholar 
    16.Dodd, C. K. Infrared reflectance in chameleons (Chamaeleonidae) from Kenya. Biotropica 13, 161–164. https://doi.org/10.2307/2388120 (1981).Article 

    Google Scholar 
    17.Pinto, F. et al. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS ONE 8, e73234. https://doi.org/10.1371/journal.pone.0073234 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Schwalm, P., Starrett, P. & McDiarmid, R. Infrared reflectance in leaf-sitting neotropical frogs. Science 196, 1225–1226. https://doi.org/10.1126/science.860137 (1977).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Mielewczik, M., Liebisch, F., Walter, A. & Greven, H. Near-infrared (NIR)-reflectance in insects–phenetic studies of 181 species. Entomologie heute 24, 183–215 (2012).
    Google Scholar 
    20.Bajjouk, T. et al. Detection of changes in shallow coral reefs status: Towards a spatial approach using hyperspectral and multispectral data. Ecol. Ind. 96, 174–191. https://doi.org/10.1016/j.ecolind.2018.08.052 (2019).Article 

    Google Scholar 
    21.Chennu, A., Faber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-07337-y (2017).CAS 
    Article 

    Google Scholar 
    22.Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026. https://doi.org/10.3390/s18072026 (2018).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dumke, I. et al. Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-31261-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Akkaynak, D., Siemann, L. A., Barbosa, A. & Mathger, L. M. Changeable camouflage: How well can flounder resemble the colour and spatial scale of substrates in their natural habitats?. R. Soc. Open Sci. 4, 160824. https://doi.org/10.1098/rsos.160824 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chiao, C. C., Wickiser, J. K., Allen, J. J., Genter, B. & Hanlon, R. T. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl. Acad. Sci. USA. 108, 9148–9153. https://doi.org/10.1073/pnas.1019090108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).Article 

    Google Scholar 
    27.Fricke, R., Eschmeyer, W. N. & Van de Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2019).28.Orti, G., Sivasundar, A., Dietz, K. & Jégu, M. Phylogeny of the Serrasalmidae (Characiformes) based on mitochondrial DNA sequences. Genet. Mol. Biol. 31, 343–351 (2008).CAS 
    Article 

    Google Scholar 
    29.Thompson, A. W., Bentancur-R, R., López-Fernández, H. & Orti, G. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol. Phylogenet. Evol. 81, 242–257 (2014).Article 

    Google Scholar 
    30.Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Huie, J. M., Summers, A. P. & Kolmann, M. A. Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proc. Acad. Natl. Sci. Phila. 166, 1–15. https://doi.org/10.1635/053.166.0116 (2017).Article 

    Google Scholar 
    33.Schweikert, L. E., Fitak, R. R., Caves, E. M., Sutton, T. T. & Johnsen, S. Spectral sensitivity in ray-finned fishes: Diversity, ecology and shared descent. J. Exp. Biol. 221, jeb189761. https://doi.org/10.1242/jeb.189761 (2018).Article 
    PubMed 

    Google Scholar 
    34.Stockman, A. & Sharpe, L. T. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40, 1711–1737 (2000).CAS 
    Article 

    Google Scholar 
    35.Peichl, L., Behrmann, G. & Kröger, R. H. H. For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528 (2001).CAS 
    Article 

    Google Scholar 
    36.Kelber, A. Bird colour vision—From cones to perception. Curr. Opin. Behav. Sci. 30, 34–40. https://doi.org/10.1016/j.cobeha.2019.05.003 (2019).Article 

    Google Scholar 
    37.Chikashige, T. & Iwasaka, M. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals. AIP Adv. 8, 056704. https://doi.org/10.1063/1.5006135 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Churnside, J. H. & McGillivary, P. A. Optical-properties of several pacific fishes. Appl. Opt. 30, 2925–2927. https://doi.org/10.1364/ao.30.002925 (1991).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Funt, N., Palmer, B. A., Weiner, S. & Addadi, L. Koi fish-scale iridophore cells orient guanine crystals to maximize light reflection. ChemPlusChem 82, 914–923. https://doi.org/10.1002/cplu.201700151 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. The structural basis for enhanced silver reflectance in Koi fish scale and skin. J. Am. Chem. Soc. 136, 17236–17242. https://doi.org/10.1021/ja509340c (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Lythgoe, J. N. & Shand, J. Changes in spectral reflections from the iridophores of the neon tetra. J. Physiol. 325, 23–000. https://doi.org/10.1113/jphysiol.1982.sp014132 (1982).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Correa, S. B. & Winemiller, K. O. Niche partitioning among frugivore fishes in response to fluctuating resources in Amazonian floodplain forest. Ecology 95, 210–224 (2014).Article 

    Google Scholar 
    43.Van Nynatten, A., Bloom, D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536. https://doi.org/10.1098/rstb.2016.0536 (2017).Article 

    Google Scholar 
    45.Jordan, R. et al. Ultraviolet reflectivity in three species of lake Malawi rock-dwelling cichlids. J. Fish Biol. 65, 876–882. https://doi.org/10.1111/j.1095-8649.2004.00483.x (2004).Article 

    Google Scholar 
    46.Wilkins, L., Marshall, N. J., Johnsen, S. & Osorio, D. Modelling colour constancy in fish: Implications for vision and signalling in water. J. Exp. Biol. 219, 1884–1892. https://doi.org/10.1242/jeb.139147 (2016).Article 
    PubMed 

    Google Scholar 
    47.Andrade, M. C., Fitzgerald, D. B., Winemiller, K. O., Barbosa, P. S. & Giarrizzo, T. Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia 829, 265–280. https://doi.org/10.1007/s10750-018-3838-y (2019).CAS 
    Article 

    Google Scholar 
    48.Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814. https://doi.org/10.1126/science.344.6186.814 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Alberch, P. Museums, collections and biodiversity inventories. Trends Ecol. Evol. 8, 372–375 (1993).CAS 
    Article 

    Google Scholar 
    50.Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).Article 

    Google Scholar 
    51.Peterson, A. T., Soberon, J. & Krishtalka, L. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecol. 15, 15 (2015).Article 

    Google Scholar 
    52.Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. J. Fish Biol. 96, 297–306. https://doi.org/10.1111/jfb.14167 (2020).Article 
    PubMed 

    Google Scholar 
    53.Hoeksema, B. W. et al. Unforeseen importance of historical collections as baselines to determine biotic change of coral reefs: The Saba Bank case. Mar. Ecol. 32, 135–141. https://doi.org/10.1111/j.1439-0485.2011.00434.x (2011).ADS 
    Article 

    Google Scholar 
    54.Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525 (2014).ADS 
    Article 

    Google Scholar 
    55.Johansen, V. E., Onelli, O. D., Steiner, L. M. & Vignolini, S. in Functional Surfaces in Biology III, Vol. 10 (eds Gorb, S. N. & Gorb, E. V.) 53–89 (Springer, 2017).56.Wainwright, D. K., Lauder, G. & Weaver, J. C. Imaging biological surface topography in situ and in vivo. Methods Ecol. Evol. 8, 1626–1638. https://doi.org/10.1111/2041-210x.12778 (2017).Article 

    Google Scholar 
    57.Andrade, M. C., Giarrizzo, T. & Jégu, M. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, Rio Trombetas Basin, Brazil. Neotrop. Ichthyol. 11, 297–306 (2013).Article 

    Google Scholar 
    58.Généralités, I. Gery, J. Poissons characoïdes des Guyanes. II. Famille des Serrasalmidae. Zoologische Verhandelingen 122, 1–250 (1972).
    Google Scholar 
    59.Jegu, M. & Dos Santos, G. M. Le genre Serrasalmus (Pisces, Serrasalmidae) dans le bas Tocantins (Brésil, Parà), avec la description d’une espèce nouvelle, S. geryi, du bassin Araguaia-Tocantins. Revue d’Hydrobiologie Tropicale 21, 239–274 (1988).
    Google Scholar 
    60.Kolmann, M. A. et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst. Biol. 70(3), 576–592 (2021).CAS 
    Article 

    Google Scholar 
    61.Feller, K. D., Jordan, T. M., Wilby, D. & Roberts, N. W. Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160336. https://doi.org/10.1098/rstb.2016.0336 (2017).CAS 
    Article 

    Google Scholar 
    62.Gur, D., Palmer, B. A., Weiner, S. & Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 27, 1603514. https://doi.org/10.1002/adfm.201603514 (2017).CAS 
    Article 

    Google Scholar 
    63.Elmer, K., Soffer, R., Arroyo-Mora, J. P. & Kalacska, M. ASDToolkit: A novel MATLAB processing toolbox for ASD field spectroscopy data. Data 5, 96. https://doi.org/10.3390/data5040096 (2020).Article 

    Google Scholar 
    64.Kruse, F. A. et al. The spectral image-processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163. https://doi.org/10.1016/0034-4257(93)90013-n (1993).ADS 
    Article 

    Google Scholar 
    65.Cooksey, C., Tsai, B. K. & Allen, D. A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. Proc. SPIE 9082, 908201–908206. https://doi.org/10.1117/12.2053604 (2014).Article 

    Google Scholar 
    66.Manolakis, D., Marden, D. & Shaw, G. A. Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14, 79–116 (2003).
    Google Scholar 
    67.Manolakis, D., Lockwood, R., Cooley, T. & Jacobson, J. Is There a Best Hyperspectral Detection Algorithm? Vol. 7334 (SPIE, 2009).
    Google Scholar 
    68.van der Heijden, F., Duin, R., de Ridder, D. & Tax, D. Classification, Parameter Estimation and State Estimation, an Engineering Approach using Matlab (Wiley, 2004).Book 

    Google Scholar 
    69.Johnson, M. K. & Adelson, E. H. In Cvpr: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1–4, 1070–1077 (2009).70.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    Article 

    Google Scholar 
    71.Wainwright, D. K. & Lauder, G. V. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis marochirus. Zoology 119, 182–195 (2016).Article 

    Google Scholar  More