More stories

  • in

    The importance of species interactions in eco-evolutionary community dynamics under climate change

    Modeling frameworkWe consider S species distributed in L distinct habitat patches. The patches form a linear latitudinal chain going around the globe, with dispersal between adjacent patches (Fig. 1). The state variables are species’ local densities and local temperature optima (the temperature at which species achieve maximum intrinsic population growth). This temperature optimum is a trait whose evolution is governed by quantitative genetics18,19,20,21,22: each species, in every patch, has a normally distributed temperature optimum with a given mean and variance. The variance is the sum of a genetic and an environmental contribution. The genetic component is given via the infinitesimal model23,24, whereby a very large number of loci each contribute a small additive effect to the trait. This has two consequences. First, a single round of random mating restores the normal shape of the trait distribution, even if it is distorted by selection or migration. Second, the phenotypic variance is unchanged by these processes, with only the mean being affected25 (we apply a reduction in genetic variance at very low population densities to prevent such species from evolving rapidly; see the Supplementary Information [SI], Section 3.4). Consequently, despite selection and the mixing of phenotypes from neighboring patches, each species retains a normally-shaped phenotypic distribution with the same phenotypic variance across all patches—but the mean temperature optimum may evolve locally and can therefore differ across patches (Fig. 1).Fig. 1: Illustration of our modeling framework.There are several patches hosting local communities, arranged linearly along a latitudinal gradient. Patch color represents the local average temperature, with warmer colors corresponding to higher temperatures. The graph depicts the community of a single patch, with four species present. They are represented by the colored areas showing the distributions of their temperature optima, with the area under each curve equal to the population density of the corresponding species. The green species is highlighted for purposes of illustration. Each species has migrants to adjacent patches (independent of local adaptedness), as well as immigrants from them (arrows from and to the green species; the distributions with dashed lines show the trait distributions of the green species’ immigrant individuals). The purple line is the intrinsic growth rate of a phenotype in the patch, as a function of its local temperature optimum (this optimum differs across patches, which is why the immigrants are slightly maladapted to the temperature of the focal patch.) Both local population densities and local adaptedness are changed by the constant interplay of temperature-dependent intrinsic growth, competition with other species in the same patch, immigration to or emigration from neighboring patches, and (in certain realizations of the model) pressure from consumer species.Full size imageSpecies in our setup may either be resources or consumers. Their local dynamics are governed by the following processes. First, within each patch, we allow for migration to and from adjacent patches (changing both local population densities and also local adaptedness, due to the mixing of immigrant individuals with local ones). Second, each species’ intrinsic rate of increase is temperature-dependent, influenced by how well their temperature optima match local temperatures (Fig. 2a). For consumers, metabolic loss and mortality always result in negative intrinsic growth, which must be compensated by sufficient consumption to maintain their populations. Third, there is a local competition between resource species, which can be thought of as exploitative competition for a set of shared substitutable lower-level resources26. Consumers, when present, compete only indirectly via their shared resource species. Fourth, each consumer has feeding links to five of the resource species (pending their presence in patches where the consumer is also present), which are randomly determined but always include the one resource which matches the consumer’s initial mean temperature optimum. Feeding rates follow a Holling type II functional response. Consumers experience growth from consumption, and resource species experience loss due to being consumed.Fig. 2: Temperature optima and climate curves.a Different growth rates at various temperatures. Colors show species with different mean temperature optima, with warmer colors corresponding to more warm-adapted species. The curves show the maximum growth rate achieved when a phenotype matches the local temperature, and how the growth rate decreases with an increased mismatch between a phenotype and local temperature, for each species. The dashed line shows zero growth: below this point, the given phenotype of a species mismatches the local temperature to the extent that it is too maladapted to be able to grow. Note the tradeoff between the width and height of the growth curves, with more warm-tolerant species having larger maximum growth at the cost of being viable for only a narrower range of temperatures62,63. b Temperature changes over time. After an initial establishment phase of 4000 years during which the pre-climate change community dynamics stabilize, temperatures start increasing at t = 0 for 300 years (vertical dotted line, indicating the end of climate change). Colors show temperature change at different locations along the spatial gradient, with warmer colors indicating lower latitudes. The magnitude and latitudinal dependence of the temperature change is based on region-specific predictions by 2100 CE, in combination with estimates giving an approximate increase by 2300 CE, for the IPCC intermediate emission scenario27.Full size imageFollowing the previous methodology, we derive our equations in the weak selection limit22 (see also the Discussion). We have multiple selection forces acting on the different components of our model. Species respond to local climate (frequency-independent directional selection, unless a species is at the local environmental optimum), to consumers and resources (frequency-dependent selection), and competitors (also frequency-dependent selection, possibly complicated by the temperature-dependence of the competition coefficients mediating frequency dependence). These different modes of selection do not depend on the parameterization of evolution and dispersal, which instead are used to adjust the relative importance of these processes.Communities are initiated with 50 species per trophic level, subdividing the latitudinal gradient into 50 distinct patches going from pole to equator (results are qualitatively unchanged by increasing either the number of species or the number of patches; SI, Section 5.9–5.10). We assume that climate is symmetric around the equator; thus, only the pole-to-equator region needs to be modeled explicitly (SI, Section 3.5). The temperature increase is based on predictions from the IPCC intermediate emission scenario27 and corresponds to predictions for the north pole to the equator. The modeled temperature increase is represented by annual averages and the increase is thus smooth. Species are initially equally spaced, and adapted to the centers of their ranges. We then integrate the model for 6500 years, with three main phases: (1) an establishment period from t = −4000 to t = 0 years, during which local temperatures are constant; (2) climate change, between t = 0 and t = 300 years, during which local temperatures increase in a latitude-specific way (Fig. 2b); and (3) the post-climate change period from t = 300 to t = 2500 years, where temperatures remain constant again at their elevated values.To explore the influence and importance of dispersal, evolution, and interspecific interactions, we considered the fully factorial combination of high and low average dispersal rates, high and low average available genetic variance (determining the speed and extent of species’ evolutionary responses), and four different ecological models. These were: (1) the baseline model with a single trophic level and constant, patch- and temperature-independent competition between species; (2) two trophic levels and constant competition; (3) single trophic level with temperature-dependent competition (where resource species compete more if they have similar temperature optima); and (4) two trophic levels as well as temperature-dependent competition. Trophic interactions can strongly influence diversity in a community, either by apparent competition28 or by acting as extra regulating agents boosting prey coexistence29. Temperature-dependent competition means that the strength of interaction between two phenotypes decreases with an increasing difference in their temperature optima. Importantly, while differences in temperature adaptation may influence competition, they do not influence trophic interactions.The combination of high and low genetic variance and dispersal rates, and four model setups, gives a total of 2 × 2 × 4 = 16 scenarios. For each of them, some parameters (competition coefficients, tradeoff parameters, genetic variances, dispersal rates, consumer attack rates, and handling times; SI, Section 6) were randomly drawn from pre-specified distributions. We, therefore, obtained 100 replicates for each of these 16 scenarios. While replicates differed in the precise identity of the species which survived or went extinct, they varied little in the overall patterns they produced.We use the results from these numerical experiments to explore patterns of (1) local species diversity (alpha diversity), (2) regional trends, including species range breadths and turnover (beta diversity), (3) global (gamma) diversity, and global changes in community composition induced by climate change. In addition, we also calculated the interspecific community-wide trait lag (the difference between the community’s density-weighted mean temperature optima and the current temperature) as a function of the community-wide weighted trait dispersion (centralized variance in species’ density-weighted mean temperature optima; see Methods). The response capacity is the ability of the biotic community to close this trait lag over time30 (SI, Section 4). Integrating trait lag through time31 gives an overall measure of different communities’ ability to cope with changing climate over this time period; furthermore, this measure is comparable across communities. The integrated trait lag summarizes, in a single functional metric, the performance and adaptability of a community over space and time. The reason it is related to performance is that species that on average live more often under temperatures closer to their optima (creating lower trait lags) will perform better than species whose temperature optima are far off from local conditions in space and/or time. Thus, a lower trait lag (higher response capacity) may also be related to other ecosystem functions, such as better carbon uptake which in turn has the potential to feedback to global temperatures32.Overview of resultsWe use our framework to explore the effect of species interactions on local, regional, and global biodiversity patterns, under various degrees of dispersal and available genetic variance. For simplicity, we focus on the dynamics of the resource species, which are present in all scenarios. Results for consumers, when present, are in the SI (Section 5.8). First, we display a snapshot of species’ movement across the landscape with time; before, during, and after climate change. Then we proceed with analyzing local patterns, followed by regional trends, and finally, global trends.Snapshots from the time series of species’ range distributions reveal useful information about species’ movement and coexistence (Fig. 3). Regardless of model setup and parameterization, there is a northward shift in species’ ranges: tropical species expand into temperate regions and temperate species into polar regions. This is accompanied by a visible decline in the number of species globally, with the northernmost species affected most. The models do differ in the predicted degree of range overlap: trophic interactions and temperature-dependent competition both lead to broadly overlapping ranges, enhancing local coexistence (the overlap in spatial distribution is particularly pronounced with high available genetic variance). Without these interactions, species ranges overlap to a substantially lower degree, diminishing local diversity. Below we investigate whether these patterns, observed for a single realization of the dynamics for each scenario, play out more generally as well.Fig. 3: Species’ range shift through time, along a latitudinal gradient ranging from polar to tropical climates (ordinate).Species distributions are shown by colored curves, with the height of each curve representing local density in a single replicate (abscissa; note the different scales in the panels), with the color indicating the species’ initial (i.e., at t = 0) temperature adaptation. The model was run with only 10 species, for better visibility. The color of each species indicates its temperature adaptation at the start of the climate change period, with warmer colors belonging to species with a higher temperature optimum associated with higher latitudes. Rows correspond to a specific combination of genetic variance and dispersal ability of species, columns show species densities at different times (t = 0 start of climate change, t = 300 end of climate change, t = 2500 end of simulations). Each panel corresponds to a different model setup; a the baseline model, b an added trophic level of consumers, c temperature-dependent competition coefficients, and d the combined influence of consumers and temperature-dependent competition.Full size imageLocal trendsTrophic interactions and temperature-dependent competition indeed result in elevated local species richness levels (Fig. 4). The fostering of local coexistence by trophic interactions and temperature-dependent competition is in line with general ecological expectations. Predation pressure can enhance diversity by providing additional mechanisms of density regulation and thus prey coexistence through predator partitioning28,29. In turn, temperature-dependent competition means species can reduce interspecific competition by evolving locally suboptimal mean temperature optima22, compared with the baseline model’s fixed competition coefficients. Hence with temperature-dependent competition, the advantages of being sufficiently different from other locally present species can outweigh the disadvantages of being somewhat maladapted to the local temperatures. If competition is not temperature-dependent, interspecific competition is at a fixed level independent of the temperature optima of each species. An important question is how local diversity is affected when the two processes act simultaneously. In fact, any synergy between their effects is very weak, and is even slightly negative when both the available genetic variance and dispersal abilities are high (Fig. 4, top row).Fig. 4: Local species richness of communities over time, from the start of climate change to the end of the simulation, averaged over replicates.Values are given in 100-year steps. At each point in time, the figure shows the mean number of species per patch over the landscape (points) and their standard deviation (shaded region, extending one standard deviation both up- and downwards from the mean). Panel rows show different parameterizations (all four combinations of high and low genetic variance and dispersal ability); columns represent various model setups (the baseline model; an added trophic level of consumers; temperature-dependent competition coefficients; and the combined influence of consumers and temperature-dependent competition). Dotted vertical lines indicate the time at which climate change ends.Full size imageRegional trendsWe see a strong tendency for poleward movement of species when looking at the altered distributions of species over the spatial landscape (Fig. 3). Indeed, looking at the effects of climate change on the fraction of patches occupied by species over the landscape reveals that initially cold-adapted species lose suitable habitat during climate change, and even afterwards (Fig. 5). For the northernmost species, this always eventuate to the point where all habitat is lost, resulting in their extinction. This pattern holds universally in every model setup and parameterization. Only initially warm-adapted species can expand their ranges, and even they only do so under highly restrictive conditions, requiring both good dispersal ability and available genetic variance as well as consumer pressure (Fig. 5, top row, second and third panel).Fig. 5: Range breadth of each species expressed as the percentage of the whole landscape they occupy (ordinate) at three different time stamps (colors).The mean (points) and plus/minus one standard deviation range (colored bands) are shown over replicates. Numbers along the abscissa represent species, with initially more warm-adapted species corresponding to higher values. The range breadth of each species is shown at three time stamps: at the start of climate change (t = 0, blue), the end of climate change (t = 300, green), and at the end of our simulations (t = 2500, yellow). Panel layout as in Fig. 4.Full size imageOne can also look at larger regional changes in species richness, dividing the landscape into three equal parts: the top third (polar region), the middle third (temperate region), and the bottom third (tropical region). Region-wise exploration of changes in species richness (Fig. 6) shows that the species richness of the polar region is highly volatile. It often experiences the greatest losses; however, with high dispersal ability and temperature-dependent competition, the regional richness can remain substantial and even increase compared to its starting level (Fig. 6, first and third rows, last two columns). Of course, change in regional species richness is a result of species dispersing to new patches and regions as well as of local extinctions. Since the initially most cold-adapted species lose their habitat and go extinct, altered regional species richness is connected to having altered community compositions along the spatial gradient. All regions experience turnover in species composition (SI, Section 5.1), but in general, the polar region experiences the largest turnover, where the final communities are at least 50% and sometimes more than 80% dissimilar to the community state right before the onset of climate change—a result in agreement with previous studies as well7,33.Fig. 6: Relative change in global species richness from the community state at the onset of climate change (ordinate) over time (abscissa), averaged over replicates and given in 100-year steps (points).Black points correspond to species richness over the whole landscape; the blue points to richness in the top third of all patches (the polar region), green points to the middle third (temperate region), and yellow points to the last third (tropical region). Panel layout as in Fig. 4; dotted horizontal lines highlight the point of no net change in global species richness.Full size imageGlobal trendsHence, the identity of the species undergoing global extinction is not random, but strongly biased towards initially cold-adapted species. On a global scale, these extinctions cause decreased richness, and the model predicts large global biodiversity losses for all scenarios (Fig. 6). These continue during the post-climate change period with stable temperatures, indicating a substantial extinction debt which has been previously demonstrated34. Temperature-dependent competition reduces the number of global losses compared to the baseline and trophic models.A further elucidating global pattern is revealed by analyzing the relationship between the time-integrated temperature trait lag and community-wide trait dispersion (Fig. 7). There is an overall negative correlation between the two, but more importantly, within each scenario (unique combination of model and parameterization) a negative relationship is evident. Furthermore, the slopes are very similar: the main difference between scenarios is in their mean trait lag and trait dispersion values (note that the panels do not share axis value ranges). The negative trend reveals the positive effect of more varied temperature tolerance strategies among the species on the community’s ability to respond to climate change. This is analogous to Fisher’s fundamental theorem35, stating that the speed of the evolution of fitness r is proportional to its variance: dr/dt ~ var(r). More concretely, this relationship is also predicted by trait-driver theory, a mathematical framework that focuses explicitly on linking spatiotemporal variation in environmental drivers to the resulting trait distributions30. Communities generated by different models reveal differences in the magnitude of this relationship: trait dispersion is much higher in models with temperature-dependent competition (essentially, niche differentiation with respect to temperature), resulting in lower trait lag. The temperature-dependent competition also separates communities based on their spatial dispersal ability, with faster dispersal corresponding to greater trait dispersion and thus lower trait lag. Interestingly, trophic interactions tend to erode the relationship between trait lag and trait dispersion slightly (R2 values are lower in communities with trophic interactions, both with and without temperature-dependent competition). We have additionally explored the relationship between species richness and trait dispersion, finding a positive relationship between the two (SI, Section 4.1).Fig. 7: The ability of communities in four different models (panels) to track local climatic conditions (ordinate), against observed variation in traits within those communities (abscissa).Larger values along the ordinate indicate that species’ temperature optima are lagging behind local temperatures, meaning a low ability of communities to track local climate conditions. Both quantities are averaged over the landscape and time from the beginning to the end of the climate change period, yielding a single number for every community (points). The greater the average local diversity of mean temperature optima in a community, the closer it is able to match the prevailing temperature conditions. Species’ dispersal ability and available genetic variance (colors) are clustered along this relationship.Full size image More

  • in

    Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration

    1.Hotez, P. J. et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e2865 (2014).2.World Health Organization. Prevention and Control of Schistosomiasis and Soil-transmitted Helminthiasis: Report of a WHO Expert Committee (World Health Organization, 2002).3.Montresor, A., Engels, D., Ramsan, M., Foum, A. & Savioli, L. Field test of the ‘dose pole’ for praziquantel in Zanzibar. Trans. R. Soc. Trop. Med. Hyg. 96, 323–324 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.World Health Organization. Helminth Control in School-aged Children: A Guide for Managers of Control Programmes (World Health Organisation, 2006).5.World Health Organization. Schistosomiasis and soil-transmitted helminthiases: numbers of people treated in 2019. Wkly. Epidemiol. Rec. 95, 629–640 (2020).
    Google Scholar 
    6.Kabatereine, N. B. et al. Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull. World Health Organ 85, 91–99 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Bronzan, R. N. et al. Impact of community-based integrated mass drug administration on schistosomiasis and soil-transmitted helminth prevalence in Togo. PLoS Negl. Trop. Dis. 12, e0006551 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Deol, A. K. et al. Schistosomiasis—assessing progress toward the 2020 and 2025 global goals. N. Engl. J. Med. 381, 2519–2528 (2019).9.World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation. https://apps.who.int/iris/bitstream/handle/10665/338712/WHO-HTM-NTD-2012.5-eng.pdf (2012).10.World Health Organization. A road map for neglected tropical diseases 2021–2030. https://www.who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs–NTD-Roadmap.pdf (2020).11.Mutuku, M. W. et al. A search for snail-related answers to explain differences in response of Schistosoma mansoni to praziquantel treatment among responding and persistent hotspot villages along the Kenyan shore of Lake Victoria. Am. J. Tropical Med. Hyg. 101, 65–77 (2019).CAS 
    Article 

    Google Scholar 
    12.Assaré, R. K. et al. Characteristics of persistent hotspots of Schistosoma mansoni in western Côte d’Ivoire. Parasit. Vectors 13, 337 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Kittur, N. et al. Persistent hotspots in schistosomiasis consortium for operational research and evaluation studies for gaining and sustaining control of schistosomiasis after four years of mass drug administration of praziquantel. Am. J. Trop. Med. Hyg. 101, 617–627 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Wiegand, R. E. et al. A persistent hotspot of Schistosoma mansoni infection in a five-year randomized trial of praziquantel preventative chemotherapy strategies. J. Infect. Dis. 216, 1425–1433 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Hedtke, S. M. et al. Genomic epidemiology in filarial nematodes: transforming the basis for elimination program decisions. Front. Genet. 10, 1282 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Doyle, S. R. & Cotton, J. A. Genome-wide approaches to investigate anthelmintic resistance. Trends Parasitol. 35, 289–301 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Crellen, T. et al. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    18.Gower, C. M. et al. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop. 128, 261–274 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Standley, C., Kabatereine, N., Lange, C., Lwambo, N. & Stothard, J. Molecular epidemiology and phylogeography of Schistosoma mansoni around Lake Victoria. Parasitology 137, 1937–1949 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Faust, C. L. et al. Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda. Parasit. Vectors 12, 607 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Stothard, J. R. et al. Molecular epidemiology of Schistosoma mansoni in Uganda: DNA barcoding reveals substantial genetic diversity within Lake Albert and Lake Victoria populations. Parasitology 136, 1813–1824 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Norton, A. J. et al. Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in Tanzania. Am. J. Trop. Med. Hyg. 83, 951–957 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Blanton, R. E. et al. Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int. J. Parasitol. 41, 1093–1099 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Gower, C. M. et al. Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme. Parasit. Vectors 10, 593 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Chevalier, F. D. et al. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathog. 15, e1007881 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Platt, R. N. et al. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Mol. Biol. Evol. 36, 2127–2142 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Shortt, J. A. et al. Population genomic analyses of schistosome parasites highlight critical challenges facing endgame elimination efforts. Sci. Rep. 11, 6884 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Truscott, J. E. et al. A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. Epidemics 18, 29–37 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bouzat, J. L. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv. Genet. 11, 463–478 (2010).Article 

    Google Scholar 
    30.Andrews, P. Praziquantel: mechanisms of anti-schistosomal activity. Pharmacol. Ther. 29, 129–156 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Cioli, D. & Pica-Mattoccia, L. Praziquantel. Parasitol. Res. 90, S3–S9 (2003).32.Caffrey, C. R. Schistosomiasis and its treatment. Future Med. Chem. 7, 675–676 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Rose, H. et al. Widespread anthelmintic resistance in European farmed ruminants: a systematic review. Vet. Rec. 176, 546 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Schwab, A. E., Boakye, D. A., Kyelem, D. & Prichard, R. K. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am. J. Trop. Med. Hyg. 73, 234–238 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Fallon, P. G. & Doenhoff, M. J. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg. 51, 83–88 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Couto, F. F. B. et al. Schistosoma mansoni: a method for inducing resistance to praziquantel using infected Biomphalaria glabrata snails. Mem. Inst. Oswaldo Cruz 106, 153–157 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Mwangi, I. N. et al. Praziquantel sensitivity of Kenyan Schistosoma mansoni isolates and the generation of a laboratory strain with reduced susceptibility to the drug. Int. J. Parasitol. Drugs Drug Resist. 4, 296–300 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Lamberton, P. H. L., Faust, C. L. & Webster, J. P. Praziquantel decreases fecundity in Schistosoma mansoni adult worms that survive treatment: evidence from a laboratory life-history trade-offs selection study. Infect. Dis. Poverty 6, 110 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Stelma, F. F. et al. Efficacy and side effects of praziquantel in an epidemic focus of Schistosoma mansoni. Am. J. Trop. Med. Hyg. 53, 167–170 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Melman, S. D. et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 3, e504 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Crellen, T. et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis. 63, 1151–1159 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.King, C. H., Muchiri, E. M. & Ouma, J. H. Evidence against rapid emergence of praziquantel resistance in Schistosoma haematobium, Kenya. Emerg. Infect. Dis. 6, 585–594 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Gryseels, B. et al. Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop. Med. Int. Health 6, 864–873 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Fenwick, A. & Webster, J. P. Schistosomiasis: challenges for control, treatment and drug resistance. Curr. Opin. Infect. Dis. 19, 577–582 (2006).PubMed 
    Article 

    Google Scholar 
    46.Albonico, M. et al. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy. J. Glob. Antimicrob. Resist 3, 229–236 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fukushige, M., Chase-Topping, M., Woolhouse, M. E. J. & Mutapi, F. Efficacy of praziquantel has been maintained over four decades (from 1977 to 2018): a systematic review and meta-analysis of factors influence its efficacy. PLoS Negl. Trop. Dis. 15, e0009189 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hodgkinson, J. E. et al. Refugia and anthelmintic resistance: concepts and challenges. Int. J. Parasitol. Drugs Drug Resist. 10, 51–57 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Walker, M. et al. New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel. Parasit. Vectors 9, 41 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Kittur, N. et al. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with praziquantel for control of schistosomiasis. Am. J. Trop. Med. Hyg. 97, 1810–1817 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Levecke, B. et al. Evaluation of the therapeutic efficacy of praziquantel against schistosomes in seven countries with ongoing large-scale deworming programs. Int. J. Parasitol. Drugs Drug Resist. 14, 183–187 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110, 409–419 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Kohn, A. B., Anderson, P. A. V., Roberts-Misterly, J. M. & Greenberg, R. M. Schistosome Calcium Channel β Subunits: unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. J. Biol. Chem. 276, 36873–36876 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Greenberg, R. M. Are Ca2+ channels targets of praziquantel action? Int. J. Parasitol. 35, 1–9 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Pica-Mattoccia, L. et al. Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Exp. Parasitol. 115, 344–351 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Nogi, T., Zhang, D., Chan, J. D. & Marchant, J. S. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel β subunits: subversion of flatworm regenerative polarity. PLoS Negl. Trop. Dis. 3, e464 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Kohn, A. B., Roberts-Misterly, J. M., Anderson, P. A. V., Khan, N. & Greenberg, R. M. Specific sites in the Beta Interaction Domain of a schistosome Ca2+ channel beta subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127, 349–356 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Valle, C. et al. Sequence and level of endogenous expression of calcium channel β subunits in Schistosoma mansoni displaying different susceptibilities to praziquantel. Mol. Biochem. Parasitol. 130, 111–115 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Park, S.-K. et al. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J. Biol. Chem. https://doi.org/10.1074/jbc.AC119.011093 (2019).61.Park, S.-K. et al. Mechanism of praziquantel action at a parasitic flatworm ion channel. Preprint at bioRxiv https://doi.org/10.1101/2021.03.09.434291 (2021).62.Le Clec’h, W., Chevalier, F. D., Mattos, A. C. A. & Strickland, A. Genetic analysis of praziquantel resistance in schistosome parasites implicates a Transient Receptor Potential channel. Preprint at bioRxiv https://doi.org/10.1101/2021.06.09.447779 (2021).63.Standley, C. et al. Intestinal schistosomiasis and soil-transmitted helminthiasis in Ugandan schoolchildren: a rapid mapping assessment. Geospat. Health 4, 39–53 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Steinauer, M. L., Hanelt, B., Agola, L. E., Mkoji, G. M. & Loker, E. S. Genetic structure of Schistosoma mansoni in western Kenya: the effects of geography and host sharing. Int. J. Parasitol. 39, 1353–1362 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Agola, L. E. et al. Genetic diversity and population structure of Schistosoma mansoni within human infrapopulations in Mwea, central Kenya assessed by microsatellite markers. Acta Trop. 111, 219–225 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Gower, C. M. et al. Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali. Parasitology 138, 978–994 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Betson, M., Sousa-Figueiredo, J. C., Kabatereine, N. B. & Stothard, J. R. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers. PLoS Negl. Trop. Dis. 7, e2561 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Van den Broeck, F. et al. Inbreeding within human Schistosoma mansoni: do host-specific factors shape the genetic composition of parasite populations? Heredity 113, 32–41 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Thiele, E. A., Sorensen, R. E., Gazzinelli, A. & Minchella, D. J. Genetic diversity and population structuring of Schistosoma mansoni in a Brazilian village. Int. J. Parasitol. 38, 389–399 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Kebede, T., Negash, Y. & Erko, B. Schistosoma mansoni infection in human and nonhuman primates in selected areas of Oromia Regional State, Ethiopia. J. Vector Borne Dis. 55, 116–121 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Aemero, M. et al. Genetic diversity, multiplicity of infection and population structure of Schistosoma mansoni isolates from human hosts in Ethiopia. BMC Genet. 16, 137 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Neves, M. I., Webster, J. P. & Walker, M. Estimating helminth burdens using sibship reconstruction. Parasit. Vectors 12, 441 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Mawa, P. A., Kincaid-Smith, J., Tukahebwa, E. M., Webster, J. P. & Wilson, S. Schistosomiasis morbidity hotspots: roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol. 12, 751 (2021).
    Google Scholar 
    74.Theron, A., Sire, C., Rognon, A., Prugnolle, F. & Durand, P. Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology 129, 571–585 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Parker, M. et al. Border parasites: schistosomiasis control among Uganda’s fisherfolk. J. East. Afr. Stud. 6, 98–123 (2012).Article 

    Google Scholar 
    76.Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28, 659–669 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Gilleard, J. S. & Redman, E. Genetic diversity and population structure of haemonchus contortus. Adv. Parasitol. 93, 31–68 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Huyse, T. et al. Regular treatments of praziquantel do not impact on the genetic make-up of Schistosoma mansoni in Northern Senegal. Infect. Genet. Evol. 18, 100–105 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Lelo, A. E. et al. No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in mwea, central kenya, a heavy transmission area. PLoS Negl. Trop. Dis. 8, e3221 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.French, M. D. et al. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Trop. 128, 196–205 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Van den Broeck, F., Vanoverbeeke, J., Polman, K. & Huyse, T. A Darwinian outlook on schistosomiasis elimination. Preprint at bioRxiv. https://doi.org/10.1101/2020.10.28.358523 (2020).82.Hayeshi, R., Masimirembwa, C., Mukanganyama, S. & Ungell, A.-L. B. The potential inhibitory effect of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur. J. Pharm. Sci. 29, 70–81 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Hines-Kay, J. et al. Transcriptional analysis of Schistosoma mansoni treated with praziquantel in vitro. Mol. Biochem. Parasitol. 186, 87–94 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Lespine, A., Ménez, C., Bourguinat, C. & Prichard, R. K. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist. 2, 58–75 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    85.Greenberg, R. M. ABC multidrug transporters in schistosomes and other parasitic flatworms. Parasitol. Int. 62, 647–653 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Redman, E. et al. The emergence of resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps. PLoS Neglected Tropical Dis. 9, e0003494 (2015).Article 
    CAS 

    Google Scholar 
    88.Doyle, S. R. et al. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl. Trop. Dis. 11, e0005816 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Choi, Y.-J. et al. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet. 13, e1006857 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Chami, G. F. et al. Influence of Schistosoma mansoni and hookworm infection intensities on anaemia in Ugandan villages. PLoS Negl. Trop. Dis. 9, e0004193 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Adriko, M. et al. Impact of a national deworming campaign on the prevalence of soil-transmitted helminthiasis in Uganda (2004–2016): implications for national control programs. PLoS Negl. Trop. Dis. 12, e0006520 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Webster, J. P., Gower, C. M. & Norton, A. J. Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts. Evol. Appl. 1, 66–83 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Leathwick, D. M., Ganesh, S. & Waghorn, T. S. Evidence for reversion towards anthelmintic susceptibility in Teladorsagia circumcincta in response to resistance management programmes. Int. J. Parasitol. Drugs Drug Resist. 5, 9–15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kenyon, F. et al. The role of targeted selective treatments in the development of refugia-based approaches to the control of gastrointestinal nematodes of small ruminants. Vet. Parasitol. 164, 3–11 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Chabasse, D., Bertrand, G., Leroux, J. P., Gauthey, N. & Hocquet, P. Developmental bilharziasis caused by Schistosoma mansoni discovered 37 years after infestation. Bull. Soc. Pathol. Exot. Filiales 78, 643–647 (1985).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Warren, K. S., Mahmoud, A. A., Cummings, P., Murphy, D. J. & Houser, H. B. Schistosomiasis mansoni in Yemeni in California: duration of infection, presence of disease, therapeutic management. Am. J. Trop. Med. Hyg. 23, 902–909 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.William, S. et al. Stability and reproductive fitness of Schistosoma mansoni isolates with decreased sensitivity to praziquantel. Int. J. Parasitol. 31, 1093–1100 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Viana, M., Faust, C. L., Haydon, D. T., Webster, J. P. & Lamberton, P. H. L. The effects of subcurative praziquantel treatment on life‐history traits and trade‐offs in drug‐resistant Schistosoma mansoni. Evol. Appl. 11, 488–500 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Standley, C. J., Goodacre, S. L., Wade, C. M. & Stothard, J. R. The population genetic structure of Biomphalaria choanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. Parasit. Vectors 7, 524 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Mitta, G. et al. The compatibility between Biomphalaria glabrata snails and Schistosoma mansoni: an increasingly complex puzzle. Adv. Parasitol. 97, 111–145 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Rowel, C. et al. Environmental epidemiology of intestinal schistosomiasis in Uganda: population dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with observations on natural infections with digenetic trematodes. BioMed. Res. Int. 2015, 1–11 (2015).Article 

    Google Scholar 
    102.Anderson, L. C., Loker, E. S. & Wearing, H. J. Modeling schistosomiasis transmission: the importance of snail population structure. Parasit. Vectors 14, 94 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Nikolakis, Z. L. et al. Patterns of relatedness and genetic diversity inferred from whole genome sequencing of archival blood fluke miracidia (Schistosoma japonicum). PLoS Negl. Trop. Dis. 15, e0009020 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Kovač, J. et al. Pharmacokinetics of praziquantel in Schistosoma mansoni- and Schistosoma haematobium-infected school- and preschool-aged children. Antimicrob. Agents Chemother. 62, e02253-17 (2018).105.Secor, W. E. Faculty opinions recommendation of sensitivity and specificity of multiple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated-praziquantel treatment. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.718871676.793510451 (2015).106.Stothard, J. R., Sousa-Figueiredo, J. C. & Navaratnam, A. M. D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti. Infect. Ther. 11, 733–752 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Fenwick, A. et al. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136, 1719–1730 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Crellen, T. et al. Schistosoma mansoni egg count reduction data, Ugandan Primary Schools 2014. https://doi.org/10.13140/RG.2.2.12687.84640 (2018).110.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    111.Emery, A. M., Allan, F. E., Rabone, M. E. & Rollinson, D. Schistosomiasis collection at NHM (SCAN). Parasites Vectors 5, 1 (2012).Article 

    Google Scholar 
    112.Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Protasio, A. V. et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 6, e1455 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).117.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.Gómez-Rubio, V. ggplot2—elegant graphics for data analysis (2nd edn). J. Stat. Softw., Book Rev. 77, 1–3 (2017).
    Google Scholar 
    121.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2018).124.Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    126.Korunes, K. L. & Samuk, K. pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–1368 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Kassambara, A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0.25 (2018).128.Criscione, C. D., Valentim, C. L. L., Hirai, H., LoVerde, P. T. & Anderson, T. J. C. Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol. 10, R71 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    129.Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.R Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna (2013).135.Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.7.0 (2016).136.Tange, O. GNU Parallel: The Command-Line Power Tool | USENIX. https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool (2011).137.Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Berger, D. et al. Data release: Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration. https://doi.org/10.5281/ZENODO.4940588 (2021).139.Berger, D. duncanberger/PZQ_POPGEN. https://doi.org/10.5281/zenodo.4975909 (2021). More

  • in

    Advancement in long-distance bird migration through individual plasticity in departure

    Study site and populationThe Manawatu River estuary (40.47°S, 175.22°E; Fig. 1) is a small (ca. 1 × 2 km) intertidal mudflat area on the west coast of the North Island, New Zealand. Since 2006, we have captured bar-tailed godwits by cannon-net or mist-net, and marked individuals with a numbered metal band, plus either a unique combination of the white flag and four colorbands, or an engraved white flag with a field-readable three-digit alphabetical code. During 2008–2020, 35% (range: 23–48% per year) of adult (i.e., migratory) individuals were marked in the estuary’s highly site-faithful population of 170–280 godwits.At capture, godwits were aged (≥/ males), most (89%) individuals were sexed by bill length (length of exposed culmen: >99 mm = female; More

  • in

    COVID vaccine inequity, species swaps — the week in infographics

    NEWS
    06 August 2021

    COVID vaccine inequity, species swaps — the week in infographics

    Nature highlights three key infographics from the week in science and research.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Inequity in vaccine accessRich nations’ plans to administer booster doses of COVID-19 vaccine to people who have been fully vaccinated have drawn criticism from many global health researchers, who highlight the growing disparities between wealth and access to vaccines. A July report from KFF, a health-policy organization based in San Francisco, California, finds that at current vaccination rates, low-income countries won’t achieve substantial levels of protection until at least 2023.

    Sources: KFF/Our World in Data/World Bank

    The changing face of ecosystemsDespite alarming declines in some animal and plant species, total biodiversity in many ecosystems is not decreasing. But that doesn’t mean such ecosystems are static. In fact, the mix of species in local communities is changing rapidly almost everywhere on Earth. As some inhabitants disappear, colonizers move in and add to species richness.

    Source: S. A. Blowes et al. Science 366, 339–345 (2019).

    Genetics behind the menopauseGenetic variants associated with age at onset of menopause have been identified in a large-scale genomic analysis, findings that bring scientists a step closer to predicting and treating early menopause. When the DNA of egg cells in ovaries is damaged in mice, expression of the gene Chek1 promotes DNA repair, whereas expression of Chek2 promotes destruction of the affected cell. The analysis found that variants of the human equivalent of Chek2 and other genes involved in the response to DNA damage are associated with differences in age at natural menopause. It also showed that mice carrying an extra copy of Chek1, or lacking expression of Chek2, had a longer reproductive age span than did typical mice.

    doi: https://doi.org/10.1038/d41586-021-02151-z

    Related Articles

    COVID boosters for wealthy nations spark outrage

    The world’s species are playing musical chairs: how will it end?

    Genomic analysis identifies variants that can predict the timing of menopause

    Read the paper: Genetic insights into biological mechanisms governing human ovarian ageing

    Subjects

    SARS-CoV-2

    Vaccines

    Biodiversity

    Genetics

    Latest on:

    SARS-CoV-2

    Delta threatens rural regions that dodged earlier COVID waves
    News 06 AUG 21

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Vaccines

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Text-message nudges encourage COVID vaccination
    News & Views 02 AUG 21

    Biodiversity

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Biodiversity needs every tool in the box: use OECMs
    Comment 26 JUL 21

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    Jobs

    Chief Editor – Nature Water

    Springer Nature
    London, United Kingdom

    Scientific director

    Federal Institute for Risk Assessment (BfR)
    Berlin, Germany

    PhD Student (m/f/d) in the field of Computer Vision / Data Scientist (m/f/d) in Cancer Research

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    PhD Students (m/f/d)

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Biotic threats for 23 major non-native tree species in Europe

    Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Str. 82, 1190, Wien, AustriaElisabeth PötzelsbergerEuropean Forest Institute, Platz der Vereinten Nationen 7, 53113, Bonn, GermanyElisabeth PötzelsbergerForest Entomology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandMartin M. GossnerETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, SwitzerlandMartin M. GossnerForest Protection, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandLudwig Beenken & Sophie StrohekerFaculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Kraków, PolandAnna Gazda & Srđan KerenForest Research, Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Great BritainMichal PetrNatural Resources Institute Finland, Luke, Latokartanonkaari 9, 00790, Helsinki, FinlandTiina YliojaFEM Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaThe EFI Project Centre on Mountain Forests MOUNTFOR, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaForest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, 57006, GreeceDimitrios N. AvtzisWalloon Public service (SPW), 23 av Maréchal Juin, 5030, Gembloux, BelgiumElodie Bay & Marjana WestergrenSlovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, SloveniaMaarten De Groot & Nikica OgrisInstitute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, 51006, Tartu, EstoniaRein DrenkhanFaculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229, Suceava, RomaniaMihai-Leonard DudumanInstitute for Plant Protection in Horticulture and Forests, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyRasmus EnderleDepartment of Entomology, Phytopathologyy and Game fauna, Forest Research Institute – Bulgarian Academy of Sciences, St. Kliment Ohridski 132, 1756, Sofia, BulgariaMargarita GeorgievaDepartment of Fungal Plant Pathology in Forestry, Agriculture and Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Innocamp Steinkjer, skolegata 22, 7713, Steinkjer, NorwayAri M. HietalaInstitute for National and International Plant Health, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyBjörn HoppeBiodiversité, Gènes et Communautés (BioGeCo), French National Institute for Agriculture, Food, and Environment (INRAE), University Bordeaux, F-33610, Cestas, FranceHervé JactelDepartment of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Vecna pot 83, 1000, Ljubljana, SloveniaKristjan JarniFaculty of Forestry, University of Banja Luka, Bulevar vojvode Stepe Stepanovica 75A, 51000, Banja Luka, Bosnia and HerzegovinaSrđan KerenForest Research Institute, National Agricultural Research and Innovation Centre, Farkassziget 3, H-4150, Püspökladány, HungaryZsolt KeseruDepartment of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaCentre for Climate Change Research, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaInstitute of Plant Genetics and Biotechnology SAS, Akademicka 2, P. O. Box 39A, SK-950 07, Nitra, SlovakiaAndrej KormuťákUnidade de Xestión Ambiental e Forestal Sostible, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, SpainMaría Josefa LombarderoLaboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics (NICPB), Akadeemia tee 23, 12618, Tallinn, EstoniaAljona LukjanovaFaculty of Forest Science and Ecology, Agriculture Academy, Vytautas Magnus University, Studentu 11, Akademija, 53361, Kaunas, LithuaniaVitas MarozasMediterranean Facility, European Forest Institute, Sant Pau Art Nouveau Site, Sant Antoni M. Claret 167, 08025, Barcelona, SpainEdurad MauriCentro di Ricerca Foreste e Legno, Council for agricultural research and analysis of the agricultural economy (CREA), Viale Santa Margherita, 80, 52100, Arezzo, ItalyMaria Cristina MonteverdiNorwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431, Ås, NorwayPer Holm Nygaard“Marin Drăcea” National Research-Development Institute in Forestry, Station Câmpulung Moldovenesc, Calea Bucovinei, 73bis, 725100, Câmpulung Moldovenesc, RomaniaNicolai OleniciEFI Atlantic, European Forest Institute, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioIEFC Institut Européen de la Forêt Cultivée, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioDepartment of Forest Protection, Austrian Federal Research Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131, Vienna, AustriaBernhard PernyCentre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, PortugalGlória PintoCoillte Unit 27, Coillte Forest, Danville Business Park, Kilkenny, R95 YT95, IrelandMichael PowerDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C., GermanyHans Peter RavnUCD Forestry, School of Agriculture and Food Science, University College Dublin, UCD Forestry, School of Agriculture and Food Science, University College Dublin, D04 V1W8, Dublin, IrelandIgnacio SevillanoForest Research, Forestry Commission, Northern Research Station, Roslin, Midlothian, EH25 9SY, Great BritainPaul TaylorInstitute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization “Demeter”-, Terma Alkmanos, 11528, Athens, GreecePanagiotis TsopelasFaculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00, Brno, Czech RepublicJosef UrbanSiberian Federal University, Svobodnyy Ave, 79, 660041, Krasnoyarsk, RussiaJosef UrbanInstitute of Forestry and Rural Engineering, EstonianUniversity of Life Sciences, Kreutzwaldi 5, 51006, Tartu, EstoniaKaljo VoolmaSouthern Swedish Forest Research Center, PO Box 49, SE-230 53, Alnarp, SwedenJohanna WitzellPolissya Branch, Ukrainian Research Institute of Forestry and Forest Melioration, Neskorenych st. 2, Dovzhik, UkraineOlga ZborovskaInstitute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Antona Cehova 13d, 21 000, Novi Sad, SerbiaMilica ZlatkovicE.P., A.G, M.P., T.Y. and N.L.P. developed the concept and design of the study and organised the data collection, E.P., M.M.G. and L.B. managed the database, homogenised and cleaned the data, E.P. and M.M.G. performed the analysis and all other co-authors collected and synthesised the information for their respective countries. E.P., M.M.G. and L.B. wrote the paper and all other co-authors reviewed the paper. More

  • in

    Rice paddy soils are a quantitatively important carbon store according to a global synthesis

    1.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).Article 
    CAS 

    Google Scholar 
    2.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    3.Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).4.Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).
    Google Scholar 
    5.Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).Article 

    Google Scholar 
    6.Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).7.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    8.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 
    CAS 

    Google Scholar 
    9.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    10.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).CAS 
    Article 

    Google Scholar 
    11.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    12.Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).13.Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).Article 
    CAS 

    Google Scholar 
    14.Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).CAS 
    Article 

    Google Scholar 
    15.Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 
    Article 

    Google Scholar 
    16.FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).17.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).CAS 
    Article 

    Google Scholar 
    18.Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).Article 

    Google Scholar 
    19.Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).CAS 
    Article 

    Google Scholar 
    20.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    21.Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).Article 
    CAS 

    Google Scholar 
    22.Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).Article 

    Google Scholar 
    23.Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).Article 

    Google Scholar 
    24.Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).CAS 
    Article 

    Google Scholar 
    25.Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).CAS 
    Article 

    Google Scholar 
    26.Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).Article 

    Google Scholar 
    27.Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).CAS 
    Article 

    Google Scholar 
    28.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    29.Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).CAS 
    Article 

    Google Scholar 
    30.Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).CAS 
    Article 

    Google Scholar 
    31.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    32.Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).Article 

    Google Scholar 
    33.Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).CAS 
    Article 

    Google Scholar 
    34.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    35.Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).36.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).Article 

    Google Scholar 
    37.Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).38.Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).Article 

    Google Scholar 
    39.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    40.Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).Article 

    Google Scholar 
    41.Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).Article 

    Google Scholar 
    42.Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).CAS 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).CAS 
    Article 

    Google Scholar 
    44.Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).CAS 
    Article 

    Google Scholar 
    45.Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).CAS 
    Article 

    Google Scholar 
    46.Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).Article 

    Google Scholar 
    47.Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).CAS 
    Article 

    Google Scholar 
    48.Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 
    Article 

    Google Scholar 
    49.Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).CAS 
    Article 

    Google Scholar 
    50.Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    51.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).Article 

    Google Scholar 
    52.Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).CAS 
    Article 

    Google Scholar 
    53.Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).CAS 
    Article 

    Google Scholar 
    54.Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).CAS 
    Article 

    Google Scholar 
    55.Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).CAS 
    Article 

    Google Scholar 
    56.Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).CAS 
    Article 

    Google Scholar 
    57.Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).Article 

    Google Scholar 
    58.Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).59.Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).CAS 
    Article 

    Google Scholar 
    60.Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).Article 

    Google Scholar 
    61.Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).CAS 
    Article 

    Google Scholar 
    62.Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).Article 

    Google Scholar 
    63.Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).
    Google Scholar 
    64.Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).Article 

    Google Scholar 
    65.IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).66.Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).CAS 
    Article 

    Google Scholar 
    67.Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).Article 

    Google Scholar 
    68.Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).Article 

    Google Scholar 
    69.Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).Article 

    Google Scholar 
    70.Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).CAS 

    Google Scholar 
    71.Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    CAS 

    Google Scholar 
    72.Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).Article 

    Google Scholar 
    73.Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).CAS 
    Article 

    Google Scholar 
    74.Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).Article 

    Google Scholar 
    75.Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).CAS 
    Article 

    Google Scholar 
    76.Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).Article 

    Google Scholar 
    77.Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).Article 

    Google Scholar 
    78.Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 
    Article 

    Google Scholar 
    79.Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).CAS 
    Article 

    Google Scholar 
    80.Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).Article 

    Google Scholar 
    81.Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).Article 

    Google Scholar 
    82.Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).83.Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).Article 

    Google Scholar 
    84.Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).85.Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).
    Google Scholar 
    86.FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).87.Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).88.Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).CAS 
    Article 

    Google Scholar 
    89.Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).Article 

    Google Scholar 
    90.Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).91.Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).CAS 
    Article 

    Google Scholar 
    92.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    93.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    94.Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).Article 
    CAS 

    Google Scholar  More

  • in

    An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

    1.Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).Article 

    Google Scholar 
    2.Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).Book 

    Google Scholar 
    3.Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).Article 

    Google Scholar 
    4.Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).Article 

    Google Scholar 
    8.Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).Article 

    Google Scholar 
    10.Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).Article 

    Google Scholar 
    13.Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).Article 

    Google Scholar 
    17.Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).18.Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).19.McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).Article 

    Google Scholar 
    21.Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).
    Google Scholar 
    24.Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).
    Google Scholar 
    28.Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).Article 

    Google Scholar 
    29.Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).Article 

    Google Scholar 
    31.Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).
    Google Scholar 
    32.Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).CAS 
    Article 

    Google Scholar 
    34.Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).
    Google Scholar 
    35.Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).CAS 

    Google Scholar 
    38.Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).
    Google Scholar 
    39.Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).CAS 

    Google Scholar 
    40.Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).Article 

    Google Scholar 
    41.Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).CAS 
    Article 

    Google Scholar 
    42.Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).Article 

    Google Scholar 
    44.Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).45.Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Harnessing the power of host–microbe symbioses to address grand challenges

    1.McFall-Ngai, M. et al. Animals in a bacterial world: a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    Article 

    Google Scholar 
    2.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    Article 

    Google Scholar 
    3.Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).CAS 
    Article 

    Google Scholar 
    4.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    Article 

    Google Scholar 
    6.Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968 (2018).Article 

    Google Scholar 
    7.Bosch, T. C. G., Guillemin, K. & McFall-Ngai, M. Evolutionary “experiments” in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host–microbe interactions. Bioessays 41, e1800256 (2019).8.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 
    PubMed 

    Google Scholar 
    9.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 
    PubMed 

    Google Scholar 
    10.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).Article 

    Google Scholar  More