More stories

  • in

    Bird–plant dispersal limits

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil

    1.CONAB—Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos. V.7 – SAFRA 2019/20 – N. 12 – Décimo segundo levantamento. https://www.conab.gov.br/info-agro/safras (2020).2.Panizzi, A. R. & Corrêa-Ferreira, B. S. Dynamics in the insect fauna adaption to soybeans in the tropics. Trends Entomol. 1, 71–88 (1997).
    Google Scholar 
    3.Cattelan, A. J. & Dall’Agnol, A. The rapid soybean growth in Brazil. Oilseeds Fats Crops Lipids 25, D102 (2018).
    Google Scholar 
    4.Freitas, P. L. & Landers, J. N. The transformation of agriculture in Brazil through development and adoption of Zero Tillage Conservation Agriculture. Int. Soil Wat. Cons. Res. 2, 35–46 (2014).
    Google Scholar 
    5.Brookes, G., Taheripour, F. & Tyner, W. E. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8, 216–228 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bueno, R. C. O. F., Bueno, A. F., Moscardi, F., Parra, J. R. P. & Hoffmann-Campo, C. B. Lepidopteran larva consumption of soybean foliage: Basis for developing multiple-species economic thresholds for pest management decisions. Pest Manag. Sci. 67, 170–174 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Panizzi, A. R. History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop. Entomol. 42, 119–127 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Bortolotto, A. et al. The use of soybean integrated pest management in Brazil: A review. Embrapa Soja-Artigo em periódico indexado (ALICE) Agron. Sci. Biotechnol. 1, 25–32 (2015).
    Google Scholar 
    9.CIB; AGROCONSULT. Impactos Econômicos e Sócio-ambientais da Tecnologia de Plantas Resistentes a Insetos no Brasil – Análise Histórica, Perspectivas e Desafios Futuros. http://apps.agr.br/wp-content/uploads/2018/12/Impactos-do-Milho-Bt-no-Brasil.pdf (2018).10.Brookes, G. The farm level economic and environmental contribution of Intacta soybeans in South America: The first five years. GM Crops Food 9, 140–151 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Macrae, T. C. et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J. Econ. Entomol. 98, 577–587 (2005).PubMed 
    Article 

    Google Scholar 
    12.Bernardi, O. et al. Assessment of the high-dose concept and level of control provided by MON 87701× MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Bernardi, O. et al. High levels of biological activity of Cry1Ac protein expressed on MON 87701× MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag. Sci. 70, 588–594 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dourado, P. M. et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS ONE 11, e0161388 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Bernardi, O. et al. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 58, 33–40 (2014).CAS 
    Article 

    Google Scholar 
    16.Edgerton, M. D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Carrière, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 100, 1519–1523 (2003).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y. & Zhao, J. Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321, 1676–1678 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Dively, G. P. et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 115, 3320–3325 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Lu, Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 1151–1154 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Zhao, J. H., Ho, P. & Azadi, H. Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ. Monit. Assess. 173, 985–994 (2011).PubMed 
    Article 

    Google Scholar 
    24.Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Van Rensburg, J. B. J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).Article 

    Google Scholar 
    26.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).PubMed 
    Article 

    Google Scholar 
    27.Dhurua, S. & Gujar, G. T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).ADS 
    Article 

    Google Scholar 
    30.Fatoretto, J. C., Michel, A. P., Silva Filho, M. C. & Silva, N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integr. Pest Manag. 8, 17 (2017).Article 

    Google Scholar 
    31.Silva, C. S. et al. Population expansion and genomic adaptation to agricultural environments of the soybean looper, Chrysodeixis includens. Evol. Appl. 13, 2071–2085 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Herzog, D. C. Sampling soybean looper on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 141–168 (Springer, 1980).Chapter 

    Google Scholar 
    33.Sosa-Gómez, D. R. et al. Manual de Identificação de Insetos e Outros Invertebrados da Cultura da Soja (Embrapa Soja-Documentos (INFOTECA-E), 2014).
    Google Scholar 
    34.Gilligan, T. M. & Passoa, S. C. LepIntercept–An identification resource for intercepted Lepidoptera larvae. (Identification Technology Program (ITP), 2014). http://idtools.org/id/leps/lepintercept/key.html.35.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.36.Kaster, M. & Farias, J. R. B. Regionalização dos Testes de Valor de Cultivo e Uso e da indicação de Cultivares de Soja-terceira Aproximação (Embrapa Soja-Documentos (INFOTECA-E), 2012).
    Google Scholar 
    37.Sosa-Gómez, D. R., Delpin, K. E., Moscardi, F. & Nozaki, M. D. H. The impact of fungicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop. Entomol. 32, 287–291 (2003).Article 

    Google Scholar 
    38.Specht, A., Paula-Moraes, S. V. & Sosa-Gómez, D. R. Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae). Rev. Bras. Entomol. 59, 343–345 (2015).Article 

    Google Scholar 
    39.Andrade, K. et al. Bioecological characteristics of Chrysodeixis includens (Lepidoptera: Noctuidae) fed on different hosts. Austral. Entomol. 55, 449–454 (2016).Article 

    Google Scholar 
    40.Moonga, M. N. & Davis, J. A. Partial life history of Chrysodeixis includens (Lepidoptera: Noctuidae) on summer hosts. J. Econ. Entomol. 109, 1713–1719 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Specht, A. et al. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 19, 8 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Zulin, D., Ávila, C. J. & Schlick-Souza, E. C. Population fluctuation and vertical distribution of the soybean looper (Chrysodeixis includes) in soybean culture. Am. J. Plant Sci. 9, 1544–1556 (2018).Article 

    Google Scholar 
    43.Stacke, R. F. et al. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere 259, 127499 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Stacke, R. F. et al. Inheritance of lambda-cyhalothrin resistance, fitness costs and cross-resistance to other pyrethroids in soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). Crop Prot. 131, 105096 (2020).CAS 
    Article 

    Google Scholar 
    45.Yano, S. A. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Silva, M. T. B. & Moscardi, F. Field efficacy of the nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of formulations, water pH, volume and time of application, and type of spray nozzle. Neotrop. Entomol. 31, 75–83 (2002).Article 

    Google Scholar 
    47.Herzog, D. C. & Todd, J. W. Sampling velvetbean caterpillar on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 107–140 (Springer, 1980).Chapter 

    Google Scholar 
    48.Panizzi, A. R., Oliveira, L. J. & Silva, J. J. Survivorship, larval development and pupal weight of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) feeding on potential leguminous host plants. Neotrop. Entomol. 33, 563–567 (2004).Article 

    Google Scholar 
    49.Leite, N. A., Alves-Pereira, A., Corrêa, A. S., Zucchi, M. I. & Omoto, C. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil. PLoS ONE 9, e113286 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Leite, N. A. et al. Pan-American similarities in genetic structures of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) with implications for hybridization. Environ. Entomol. 46, 1024–1034 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Sosa-Gómez, D. R. et al. Timeline and geographical distribution of Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae: Heliothinae) in Brazil. Rev. Bras. Entomol. 60, 101–104 (2016).Article 

    Google Scholar 
    52.Dourado, P. M. et al. Host plant use of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Brazilian agricultural landscape. Pest Manag. Sci. 77, 780–794 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Czepak, C., Albernaz, K. C., Vivan, L. M., Guimarães, H. O. & Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesqui. Agropecu. Trop. 43, 110–113 (2013).Article 

    Google Scholar 
    54.Gomes, E. S., Santos, V. & Ávila, C. J. Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomol. Sci. 20, 419–426 (2017).Article 

    Google Scholar 
    55.Luttrell, R. G. & Mink, J. S. Damage to cotton fruiting structures by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Cotton Sci. 3, 35–44 (1999).
    Google Scholar 
    56.Martinelli, S., Barata, R. M., Zucchi, M. I., DeCastroSilva-Filho, M. & Omoto, C. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. J. Econ. Entomol. 99, 519–526 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Barros, E. M., Torres, J. B., Ruberson, J. R. & Oliveira, M. D. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Ent. Exp. Appl. 137, 237–245 (2010).Article 

    Google Scholar 
    58.Silva, D. M. D. et al. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 74, 18–31 (2017).Article 

    Google Scholar 
    59.Machado, E. P. et al. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    60.Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).Article 

    Google Scholar 
    61.Nagoshi, R. N. & Meagher, R. L. Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554 (2008).
    Google Scholar 
    62.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest Sci. 92, 429–441 (2019).Article 

    Google Scholar 
    64.Diez-Rodríguez, G. I. & Omoto, C. Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina. Neotrop. Entomol. 30, 311–316 (2001).Article 

    Google Scholar 
    65.Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S. & Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 8, e62268 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Nascimento, A. R. B. et al. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Manag. Sci. 72, 810–815 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    67.Okuma, D. M. et al. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to Spinosad in Brazil. Pest Manag. Sci. 74, 1441–1448 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Bolzan, A. et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag. Sci. 75, 2682–2689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Lira, E. C. et al. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Manag. Sci. 76, 2674–2680 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Paulillo, L. C. M. et al. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. J. Econ. Entomol. 93, 892–896 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Silva-Brandão, K. L. et al. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genom. 18, 1–15 (2017).Article 
    CAS 

    Google Scholar 
    72.Montezano, D. G., Specht, A., Sosa-Gomez, D. R., Roque-Specht, V. F. & Barros, N. M. Immature stages of Spodoptera eridania (Lepidoptera: Noctuidae): Developmental parameters and host plants. J. Insect Sci. 14, 238 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Santos, K. B., Meneguim, A. M. & Neves, P. M. O. J. Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotrop. Entomol. 34, 903–910 (2005).Article 

    Google Scholar 
    74.Justiniano, W., Fernandes, M. G. & Viana, C. L. T. P. Diversity, composition and population dynamics of arthropods in the genetically modified soybeans Roundup Ready® RR1 (GT 40-3-2) and Intacta RR2 PRO (MON87701 x MON89788). J. Agric. Sci. 6, 33 (2014).
    Google Scholar 
    75.Specht, A. et al. Owlet moths (Lepidoptera: Noctuoidea) associated with Bt and non-Bt soybean in the Brazilian savanna. Braz. J. Biol. 79, 248–256 (2019).PubMed 
    Article 

    Google Scholar 
    76.Specht, A. & Roque-Specht, V. F. Immature stages of Spodoptera cosmioides (Lepidoptera: Noctuidae): Developmental parameters and host plants. Zoologia 33, e20160053 (2016).Article 

    Google Scholar 
    77.Habib, M. E. M., Paleari, M. L. & Amaral, M. E. C. Effect of three larval diets on the development of the armyworm, Spodoptera latifascia Walker, 1856 (Lepidoptera: Noctuidae). Rev. Bras. Zool. 1, 177–182 (1983).Article 

    Google Scholar 
    78.Silva, D. M. et al. Biology of Spodoptera eridania and Spodoptera cosmioides (Lepidoptera: Noctuidae) on different host plants. Fla. Entomol. 100, 752–760 (2017).Article 

    Google Scholar 
    79.Tomquelski, G. V. & Maruyama, L. C. T. Lagarta-da-macã em soja. Rev. Cultiv. 117, 20–22 (2009).
    Google Scholar 
    80.Blanco, C. A. Heliothis virescens and Bt cotton in the United States. GM Crops Food 3, 201–212 (2012).PubMed 
    Article 

    Google Scholar 
    81.Barrionuevo, M. J., Murúa, M. G., Goane, L., Meagher, R. & Navarro, F. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Fla. Entomol. 95, 944–951 (2012).Article 

    Google Scholar 
    82.Specht, A. et al. Ocorrência de Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) em Fumo (Nicotiana tabacum L.) no Rio Grande do Sul. Neotrop. Entomol. 35, 705–706 (2006).PubMed 
    Article 

    Google Scholar 
    83.Trentin, L. B. et al. The complete genome of Rachiplusia nu nucleopolyhedrovirus (RanuNPV) and the identification of a baculoviral CPD-photolyase homolog. Virology 534, 64–71 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Perini, C. R. et al. Genetic structure of two Plusiinae species suggests recent expansion of Chrysodeixis includens in the American continent. Agric. For. Entomol. 23, 2502–3260 (2020).
    Google Scholar 
    85.Bacalhau, F. B. et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key Lepidopteran pests in Brazil. J. Econ. Entomol. 113, 2883–2889 (2020).PubMed 
    Article 

    Google Scholar 
    86.Machado, E. P. et al. Survival and development of Spodoptera eridania, Spodoptera cosmioides and Spodoptera albula (Lepidoptera: Noctuidae) on genetically-modified soybean expressing Cry1Ac and Cry1F proteins. Pest Manag. Sci. 76, 4029–4035 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Horikoshi, R. J. et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: Implications for resistance management. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

    1.Kumar, V. et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 252, 132–147 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ladha, J. K. et al. How extensive are yield declines in long-term rice-wheat experiments in Asia?. For. Crop. Res. 81, 159–180 (2003).Article 

    Google Scholar 
    3.Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S. & Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 4, 64–74 (2016).Article 

    Google Scholar 
    4.Sidhu, H. S. et al. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agric. Water Manag. 216, 273–283 (2019).Article 

    Google Scholar 
    5.Singh, M. et al. intercomparison of crop establishment methods for improving yield and profitability in the rice-wheat system of Eastern India. For. Crop. Res. 250, 107776 (2020).Article 

    Google Scholar 
    6.Jat, H. S. et al. Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renew. Energy 155, 1372–1382 (2020).Article 

    Google Scholar 
    7.Lohan, S. K. et al. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 81, 693–706 (2018).Article 

    Google Scholar 
    8.Buhler, D. D. Weed population responses to weed control practices. II. Residual effects on weed populations, control, and Glycine max yield. Weed Sci. 47, 423–426 (1999).CAS 
    Article 

    Google Scholar 
    9.Armengot, L. et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 222, 276–285 (2016).Article 

    Google Scholar 
    10.Chhokar, R. S., Singh, S., Sharma, R. K. & Singh, M. Influence of straw management on Phalaris minor Retz control. Indian J. Weed Sci. 41, 150–156 (2009).
    Google Scholar 
    11.Chhokar, R. S. & Malik, R. K. Isoproturon-resistant Littleseed Canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technol. 16, 116–123 (2002).CAS 
    Article 

    Google Scholar 
    12.Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    13.Hassan, G., Khan, I., Khan, H. & Munir, M. Effect of different herbicides on weed density and some agronomic traits of wheat. Pak. J. Weed Sci. Res. 11, 17–22 (2005).
    Google Scholar 
    14.Chhokar, R. S. Ã., Sharma, R. K., Jat, G. R., Pundir, A. K. & Gathala, M. K. Effect of tillage and herbicides on weeds and productivity of wheat under rice–wheat growing system. Crop Prot. 26, 1689–1696 (2007).CAS 
    Article 

    Google Scholar 
    15.Yadav, D. B., Yadav, A., Punia, S. S. & Chauhan, B. S. Management of herbicide-resistant Phalaris minor in wheat by sequential or tank-mix applications of pre- and post-emergence herbicides in north-western Indo-Gangetic Plains. Crop Prot. 89, 239–247 (2016).Article 

    Google Scholar 
    16.Harker, K. N. & O’Donovan, J. T. Recent weed control, weed management, and integrated weed management. Weed Technol. 27, 1–11 (2013).Article 

    Google Scholar 
    17.Scherner, A., Melander, B. & Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Tillage Res. 161, 135–142 (2016).Article 

    Google Scholar 
    18.Hillocks, R. J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 31, 85–93 (2012).Article 

    Google Scholar 
    19.Nikolić, L., Šeremešić, S., Ljevnaić-Mašić, B., Latković, D. & Konstantinović, B. Weeds and their ecological indicator values in a long-term experiment. Appl. Ecol. Environ. Res. 18, 4775–4790 (2020).Article 

    Google Scholar 
    20.Blubaugh, C. K. & Kaplan, I. Tillage compromises weed seed predator activity across developmental stages. Biol. Control 81, 76–82 (2015).Article 

    Google Scholar 
    21.Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. For. Crop. Res. 183, 56–68 (2015).Article 

    Google Scholar 
    22.Sepat, S. et al. Effects of weed control strategy on weed dynamics, soybean productivity and profitability under conservation agriculture in India. For. Crop. Res. 210, 61–70 (2017).Article 

    Google Scholar 
    23.Sharma, P., Singh, M. K., Verma, K. & Prasad, S. K. Changes in the weed seed bank in long-term establishment methods trials under rice-wheat cropping system. Agronomy 10, 1–14 (2020).
    Google Scholar 
    24.Plaza-Bonilla, D. et al. Carbon management in dryland agricultural systems. A review. Agron. Sustain. Dev. 35, 1319–1334 (2015).Article 

    Google Scholar 
    25.Nandan, R. et al. Viable weed seed density and diversity in soil and crop productivity under conservation agriculture practices in rice-based cropping systems. Crop Prot. 136, 105210 (2020).CAS 
    Article 

    Google Scholar 
    26.Choudhary, M., Vivek Sharma, P. C., Yadav, A. K. & Jat, H. S. Influence of management practices on weed dynamics, crop productivity and profitability in Wheat under Rice-Wheat cropping system in reclaimed sodic soils. J. Soil Salin. Water Qual. 9, 78–83 (2017).
    Google Scholar 
    27.Menalled, F. D., Smith, R. G., Dauer, J. T. & Fox, T. B. Impact of agricultural management on carabid communities and weed seed predation. Agric. Ecosyst. Environ. 118, 49–54 (2007).Article 

    Google Scholar 
    28.Shahzad, M., Farooq, M. & Hussain, M. Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil Tillage Res. 163, 71–79 (2016).Article 

    Google Scholar 
    29.Kumar, V. et al. Weed management strategies to reduce herbicide use in zero-till Rice–Wheat cropping systems of the Indo-Gangetic Plains. Weed Technol. 27, 241–254 (2013).Article 

    Google Scholar 
    30.Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14, 1–12 (2019).
    Google Scholar 
    31.Melander, B. et al. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol. 27, 231–240 (2013).Article 

    Google Scholar 
    32.Nandan, R. et al. Comparative assessment of the relative proportion of weed morphology, diversity, and growth under new generation tillage and crop establishment techniques in rice-based cropping systems. Crop Prot. 111, 23–32 (2018).Article 

    Google Scholar 
    33.Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).Article 

    Google Scholar 
    34.Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).Article 

    Google Scholar 
    35.Jat, H. S. et al. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Tillage Res. 199, 104595 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Liebman, M. & Davis, A. S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 20, 27–47 (2000).Article 

    Google Scholar 
    37.Lee, S. H., Yoo, S. H., Choi, J. Y. & Bae, S. Assessment of the impact of climate change on drought characteristics in the Hwanghae Plain, North Korea using time series SPI and SPEI: 1981–2100. Water (Switzerland) 9, 20 (2017).
    Google Scholar 
    38.Jat, H. S. et al. Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Sci. Rep. 9, 1–14 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Jat, H. S. et al. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of north-west India. CATENA 181, 104059 (2019).CAS 
    Article 

    Google Scholar 
    40.Hernández Plaza, E., Navarrete, L. & González-Andújar, J. L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 207, 101–108 (2015).Article 

    Google Scholar 
    41.Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).Article 

    Google Scholar 
    42.Franke, A. C. et al. Phalaris minor seedbank studies: Longevity, seedling emergence and seed production as affected by tillage regime. Weed Res. 47, 73–83 (2007).Article 

    Google Scholar 
    43.Usman, K. et al. Integrated weed management through tillage and herbicides for Wheat production in Rice-Wheat cropping system in northwestern Pakistan. J. Integr. Agric. 11, 946–953 (2012).CAS 
    Article 

    Google Scholar 
    44.Naresh, R. K. et al. Conservation agriculture improving soil quality for sustainable production systems under smallholder farming conditions in north west India: A review. Int. J. life Sci. Biotechnol. Pharm. Res. 2, 65 (2013).CAS 

    Google Scholar 
    45.Kumar, V. et al. Conservation agriculture (CA)-based practices reduced weed problem in wheat and caused shifts in weed seedbank community in rice-wheat cropping systems. In Weed Science for Sustainable Agriculture, Environment, and Biodiversity. (Eds. Rao A. N and Yaduraju N. T), Proceedings of 25th Asian Pacific Weed Science Society Conference 142 (2015).46.Malik, R. K., Kumar, V. & McDonald, A. Conservation agriculture-based resource-conserving practices and weed management in the rice-wheat cropping systems of the Indo-Gangetic Plains. Indian J. Weed Sci. 50, 218 (2018).Article 

    Google Scholar 
    47.Roth, C. M., Shroyer, J. P. & Paulsen, G. M. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 20, 855–860 (2000).Article 

    Google Scholar 
    48.Ayodele, O. P. & Aluko, O. A. Weed management strategies for conservation agriculture and environmental sustainability in Nigeria. IOSR J. Agric. Vet. Sci. Ver. I(10), 2319–2372 (2017).
    Google Scholar 
    49.Crutchfield, D. A., Wicks, G. A. & Burnside, O. C. Effect of winter wheat (Triticum aestivum) straw mulch level on weed control. Weed Sci. 34, 110–114 (1986).CAS 
    Article 

    Google Scholar 
    50.Khanh, T. D., Xuan, T. D. & Chung, I. M. Rice allelopathy and the possibility for weed management. Ann. Appl. Biol. 151, 325–339 (2007).CAS 
    Article 

    Google Scholar 
    51.Santín-Montanyá, M. I., Martín-Lammerding, D., Walter, I., Zambrana, E. & Tenorio, J. L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 48, 43–49 (2013).Article 

    Google Scholar 
    52.Heggenstaller, A. H., Liebman, M. & Anex, R. P. Growth analysis of biomass production in sole-crop and double-crop corn systems. Crop Sci. 49, 2215–2224 (2009).Article 

    Google Scholar 
    53.Liebman, M. & Mohler, C. L. Weeds and the soil environment. In Ecological Management of Agricultural Weeds, (M. Liebman et al. eds.) 210–268 (2001). https://doi.org/10.1071/ea04026.54.Shrestha, A., Jeffrey, P. M. & Lanini, W. T. Subsurface drip irrigation as a weed management tool for conventional and conservation tillage Tomato (Lycopersicon esculentum Mill.) production in semi-arid agroecosystems. J. Sustain. Agric. 31, 37–41 (2007).Article 

    Google Scholar 
    55.Coolong, T. Using irrigation to manage weeds: A focus on drip irrigation. In Weed and Pest Control—Conventional and New Challenges (ed. Goyal, M. R.) 162–182 (Apple Academic Press, 2013).
    Google Scholar 
    56.Chhokar, R. S., Malik, R. K. & Balyan, R. S. Effect of moisture stress and seeding depth on germination of littleseed Canarygrass (Phalaris minor Retz.). Indian J. Weed Sci. 31, 78–79 (1999).
    Google Scholar 
    57.Singh, R., Gajri, P. R., Gill, K. S. & Khera, R. Puddling intensity and nitrogen use efficiency of rice (Oryza sativa) on a sandy loam soil of Punjab. Indian J. Agric. Sci. 65, 749–751 (1995).
    Google Scholar 
    58.Bajwa, A., Anjum, S. A. & Tanveer, M. Impact of fertilizer use on weed management in conservation agriculture—a review. Paki. J. Agric. Res. 69, 20 (2014).
    Google Scholar 
    59.Derksen, D. A., Anderson, R. L., Blackshaw, R. E. & Maxwell, B. Weed dynamics and management in the Northern Great Plains. Agron. J. 94, 174–185 (2002).Article 

    Google Scholar 
    60.Gathala, M. K. et al. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year Rice-Wheat rotation. Soil Sci. Soc. Am 75, 1851–1863 (2011).CAS 
    Article 

    Google Scholar 
    61.Dong, H., Ma, Y., Wu, H., Jiang, W. & Ma, X. Germination of Solanum nigrum l (black nightshade) in response to different abiotic factors. Planta Daninha 2016, 1–12 (2020).
    Google Scholar 
    62.Farooq, M., Flower, K. C., Jabran, K., Wahid, A. & Siddique, K. H. M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 117, 172–183 (2011).Article 

    Google Scholar 
    63.Swanton, C. J., Clements, D. R. & Derksen, D. A. Weed succession under conservation tillage: A hierarchical framework for research and management. Weed Technol. 7, 286–297 (1993).Article 

    Google Scholar 
    64.Humphreys, E., Kukal, S. S., Christen, E. W. & Hira, G. S. Halting the groundwater decline in North-West India—which crop technologies will be Winners?. Adv. Agron. 109, 155–217 (2010).Article 

    Google Scholar 
    65.Gomez, K. A. & Gomez, A. Statistical Procedures for Agricultural Research. (1984).66.Microsoft Corporation. (2010). Microsoft Excel. https://office.microsoft.com/excel. More

  • in

    Plant pathogen infection risk tracks global crop yields under climate change

    1.Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).
    Google Scholar 
    2.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).CAS 

    Google Scholar 
    3.Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 

    Google Scholar 
    4.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).
    Google Scholar 
    5.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 637–669 (2006).
    Google Scholar 
    6.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).
    Google Scholar 
    7.Yan, Y., Wang, Y.-C., Feng, C.-C., Wan, P.-H. M. & Chang, K. T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).
    Google Scholar 
    8.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    9.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    Google Scholar 
    10.Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).
    Google Scholar 
    11.Bregaglio, S., Donatelli, M. & Confalonieri, R. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron. Sustain. Dev. 33, 767–776 (2013).
    Google Scholar 
    12.Bebber, D. P. Climate Change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B 374, 20180269 (2019).
    Google Scholar 
    13.Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).
    Google Scholar 
    14.Ostberg, S., Schewe, J., Childers, K. & Frieler, K. Changes in crop yields and their variability at different levels of global warming. Earth Syst. Dyn. 9, 479–496 (2018).
    Google Scholar 
    15.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).CAS 

    Google Scholar 
    16.Magarey, R. D., Sutton, T. B. & Thayer, C. L. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95, 92–100 (2005).CAS 

    Google Scholar 
    17.Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).
    Google Scholar 
    18.Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).
    Google Scholar 
    19.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. N. Phytol. 202, 901–910 (2014).
    Google Scholar 
    20.Sparks, A. H., Forbes, G. A., Hijmans, R. J. & Garrett, K. A. Climate change may have limited effect on global risk of potato late blight. Glob. Change Biol. 20, 3621–3631 (2014).
    Google Scholar 
    21.Chen, X. M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 27, 314–337 (2005).
    Google Scholar 
    22.Zhan, J. & McDonald, B. A. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol. Ecol. 20, 1689–1701 (2011).
    Google Scholar 
    23.Robin, C., Andanson, A., Saint-Jean, G., Fabreguettes, O. & Dutech, C. What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen. Mol. Ecol. 26, 1952–1963 (2017).
    Google Scholar 
    24.Rowlandson, T. et al. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 99, 310–319 (2014).
    Google Scholar 
    25.IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).26.Dunn, R. J. H., Willett, K. M., Ciavarella, A. & Stott, P. A. Comparison of land surface humidity between observations and CMIP5 models. Earth Syst. Dyn. 8, 719–747 (2017).
    Google Scholar 
    27.Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).
    Google Scholar 
    28.Liu, X. et al. Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. N. Phytol. 221, 1574–1584 (2019).
    Google Scholar 
    29.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).30.Sohl, T. L., Wimberly, M. C., Radeloff, V. C., Theobald, D. M. & Sleeter, B. M. Divergent projections of future land use in the United States arising from different models and scenarios. Ecol. Model. 337, 281–297 (2016).
    Google Scholar 
    31.Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).
    Google Scholar 
    32.Folberth, C. et al. Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE 14, e0221862 (2019).CAS 

    Google Scholar 
    33.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
    Google Scholar 
    34.Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, 1–24 (2010).
    Google Scholar 
    35.Liu, J., Williams, J. R., Zehnder, A. J. B. & Yang, H. GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 94, 478–493 (2007).
    Google Scholar 
    36.Liu, W. et al. Global investigation of impacts of PET methods on simulating crop–water relations for maize. Agric. Meteorol. 221, 164–175 (2016).
    Google Scholar 
    37.Williams, J. R. & Sharpley, A. N. EPIC—Erosion/Productivity Impact Calculator: 1. Model Documentation (USDA, 1989).38.Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).
    Google Scholar 
    39.Collins, W. J. et al. Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).
    Google Scholar 
    40.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
    Google Scholar 
    41.Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).
    Google Scholar 
    42.Bebber, D. P., Chaloner, T. M. & Gurr, S. J. Fungal and Oomycete Cardinal Temperatures (the Togashi Dataset) (Dryad, 2020); https://doi.org/10.5061/DRYAD.TQJQ2BVW643.Viswanath, K. et al. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Clim. Change 142, 155–167 (2017).
    Google Scholar 
    44.Boixel, A.-L., Delestre, G., Legeay, J., Chelle, M. & Suffert, F. Phenotyping thermal responses of yeasts and yeast-like microorganisms at the individual and population levels: proof-of-concept, development and application of an experimental framework to a plant pathogen. Microb. Ecol. 78, 42–56 (2019).
    Google Scholar 
    45.Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package v.3.1-5 (2020).46.Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).
    Google Scholar 
    47.Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 

    Google Scholar 
    48.Chen, Y. A new methodology of spatial cross-correlation analysis. PLoS ONE 10, e0126158 (2015).
    Google Scholar  More

  • in

    Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects

    ModelWe model a tri-trophic food chain of one plant, one herbivore and one predator population on one or two habitat patches and complex meta-food-webs consisting of 10 plants and 30 animals in different landscapes containing 50 patches. The feeding dynamics are constant overall patches and are determined by the allometric food-web model by Schneider et al. 201633. We integrate dispersal as species-specific biomass flux between habitat patches according to Ryser et al. 201934. With the use of a dynamic bioenergetic model we formulate feeding and dispersal dynamics in terms of ordinary differential equations. The rate of change in biomass densities of a species are the sum of its biomass loss by metabolism, being preyed upon and emigration and its biomass gain by feeding and immigration. For detailed equations and for model parameters see section Equations and parameters and the supplement (Supplementary Table 1).Local food-web dynamicsFollowing the allometric food-web model by Schneider et al. 201633 each species is fully characterised by its average adult body mass. For the complex food-web log10 body masses were randomly drawn from a uniform distribution from 0 to 3 for plants and from 2 to 6 for animals. For the food chain the plant body mass was set to 102, the herbivore body mass to 104 and the predator body mass to 106. We set mass ratios of the herbivore to the plant and the predator to the herbivore to the optimum of 100, thus the respective resource being a one-hundredth of its consumer’s body mass. This simplifies feeding efficiency rates (see section Equations and parameters; Li,j, Eq. (5)) to 1 in the case of a food chain. Trophic dynamical parameters, such as metabolic rates and feeding rates, scale with body masses of model species. Also, we assume a type-II functional response for the food chain and a slight nonlinearity of the functional response in the food web as this stabilises persistence in more complex systems. Compared to Ryser et al 2019, capture rates were reduced to 5% to achieve viable food chains and food webs to increase the stability in the absence of interference competition.Nutrient modelWe have an underlying nutrient model with one nutrient that is driving the nutrient uptake and therefore the growth rate of the plant population11,33. The nutrient model consists of one nutrient, a nutrient turnover rate of 0.25 and a nutrient supply concentration. The nutrient supply concentration was varied to get eutrophic and oligotrophic patches (see Setup).Spatial dynamicsWe model dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal to occur at the same timescale as the local population dynamics35. Thus, biomass flows change dynamically between local populations and the dispersal dynamics directly influence local population dynamics and vice versa25.Dispersal rates of animals are modelled with an adaptive emigration rate depending on the net growth rate on the given patch. Dispersal ranges depend on the body masses of our model species with larger species having a higher dispersal range. We model a hostile matrix between habitat patches that does not allow feeding interactions to occur during dispersal. Depending on the scenario, we define a landscape with one, two or 50 patches. In cases with two or 50 patches, their locations are spatially explicit and were chosen in a way that the distances between reflect the dispersal loss of the predator across the matrix hostility gradient.Emigration and immigrationBased on empirical observations36 and previous theoretical frameworks13,22,37, we assume that the maximum dispersal distance of animal species increases with their body mass. For simplicity, we do not let the plants disperse, as they do not move themselves and the dispersal of plant propagules strongly depends on their dispersal strategy. We model emigration rates as a function of each species’ per capita net growth rate, which is summarising local conditions such as resource availability, predation pressure, and inter- and intra-specific competition25 (but see Sensitivity Analyses for dispersal models with constant dispersal or non-body-mass-scaled dispersal ranges). Dispersal losses scale linearly with the distance between two patches and are 100% in scenarios with only one patch or when the distance between the two patches surpasses the dispersal range of an animal. Even though we model dispersal losses according to dispersal distances, this loss term could also represent any other sort of dispersal loss. For numerical reasons, we did not allow dispersal flows smaller than 10−10.Numerical simulationsWe initialised each local population with a biomass density randomly sampled from a uniform probability density within the interval (0,10). Starting from these random initial conditions, we numerically simulated food web and dispersal dynamics over 100,000 time steps by integrating the system of differential equations implemented in C++ using procedures of the SUNDIALS CVODE solver version 2.7.0 (backward differentiation formula with absolute and relative error tolerances of 10−10) and the time series of biomass densities were saved for last 10,000 time steps. For numerical reasons, a local population was considered extinct and was set to 0 once its biomass density dropped below 10−20. Based on the empirically derived metabolic rates, these 100,000 time steps correspond to ~11 years. Our model does, however, not account for time spent for organisms’ other non-trophic activities such as sleeping or mating. Thus, the time scales of the simulation should only be compared with caution to natural time scales of population dynamics. Transient dynamics usually equilibrate within the first few thousand time steps.Equations and parametersOur model formulates the change of biomass densities over time in ordinary differential equations. Given the empirical origin of metabolic rates used in our model, one time step corresponds to an hour and body masses are in mg, areas of patches are not defined. The feeding links (i.e. who eats whom) are constant overall patches and are as well as the feeding dynamics determined by the allometric food-web model by Schneider et al. 201633. We integrate dispersal as species-specific biomass flow between habitat patches. Using ordinary differential equations to describe the feeding and dispersal dynamics, the rate of change in biomass density Bi,z of species i on patch z is given by$$frac{d{B}_{i,z}}{{dt}}[{mg}* {{{{{{{mathrm{Area}}}}}}}}^{-1}* {h}^{-1}]={B}_{i,z}mathop{sum}limits_{j}{e}_{j}{F}_{{ij},z}-mathop{sum}limits_{j}{{B}_{j,z}F}_{{ji},z}-{x}_{i}{B}_{i,z}-{E}_{i,z}+{I}_{i,z}({{{{{rm{for}}}}}}; {{{{{rm{animals}}}}}})$$
    (1)
    $$frac{d{B}_{i,z}}{{dt}}[{mg}* {{{{{{{mathrm{Area}}}}}}}}^{-1}* {h}^{-1}]={r}_{i}{G}_{i}{B}_{i,z}-mathop{sum}limits_{j}{B}_{j,z}{F}_{{ji},z}-{x}_{i}{B}_{i,z}({{{{{rm{for}}}}}}; {{{{{rm{plants}}}}}})$$
    (2)
    with the first three terms describing local trophic dynamics and the last two terms describing emigration, Ei,z (Eq. 9), and immigration, Ii,z (Eq. 11). For simplicity, we do not let plants disperse. Trophic dynamics are driven by following three processes. First, predation or herbivory on species j with assimilation efficiency e (ej = 0.545, if j is a plant, typical for herbivory; ej = 0.906 if j is an animal, typical for carnivory38) and the functional response Fij,z (Eq. 3) for animals, and a nutrient dependent growth (Eq. 7) for plants. Second, losses due to predation or herbivory, respectively. Third, losses by metabolic demands with xi = xAmi−0.305 with scaling constant xA = 0.141 (tenfold laboratory metabolic rate39 at a temperature of 20° Celsius to represent field metabolic rates) for animals and xi = xPmi−0.25 with xP = 0.138 for plants. We used a dynamic nutrient model (Eq. 8) as the energetic basis of our food web. Each species i is fully characterised by its average adult body mass mi. Body masses determine the interaction strengths of feeding links as well as the metabolic demands of species. Data from empirical feeding interactions are used to parametrise the functions that characterise the optimal prey body mass and the location and width of the feeding niche of a predator33. From each mi a unimodal attack kernel, called feeding efficiency Lij is constructed which determines the probability of consumer species i to attack and capture an encountered resource species j. We model Lij as an asymmetrical hump-shaped Ricker’s function (Eq. 5) that is maximised for an energetically optimal resource body mass (optimal consumer-resource body mass ratio Ropt = 100) and has a width of γ. The maximum of the feeding efficiency Lij equals 1. Supplementary table 1 is an overview of the standard parameter set for the equations. See also Schneider et al. 201633 for further information regarding the allometric food-web model.Functional response$${F}_{{ij},z}=frac{{omega }_{i}{b}_{i,j}{R}_{j,z}^{1+q}}{1+{omega }_{i}{sum }_{k}{b}_{{ik}}{h}_{{ik}}{R}_{k,z}^{1+q}}cdot frac{1}{{m}_{i}}$$
    (3)
    Per unit biomass feeding rate of consumer i as function of the biomass density of the resource Rj, with bi,j, resource-specific capture coefficient (Eq. 4); hi,j, resource-specific handling time (Eq. 6); ωi = 1/(number of resource species of i), an inefficiency parameter for generalists assuming that generalist are less adapted in for example search patterns or hunting strategies to a specific prey species; and q, the Hill coefficient for nonlinearities in density dependency (if q = 0 it is a Type-II functional response, if q = 1 it is a Type-III functional response).Capture coefficient$${b}_{{ij}}=f{a}_{k}{m}_{i}^{{beta }_{i}}{m}_{j}^{{beta }_{j}}{L}_{{ij}}$$
    (4)
    Resource-specific capture coefficient of consumer species i on resource species j scaling the feeding kernel Lij by a power function of consumer and resource body mass, assuming that the encounter rate between consumer and resource scales with their respective movement speed. This body mass scaling of encounter rates is assumed to occur before the attempt of a predator to capture its prey is made. We differentiate between carnivorous and herbivorous interactions with each comprising a constant scaling factor for their capture coefficients ak with k ∈ 0, 1 (a0 = 15 for carnivorous species and a1 = 3500 for herbivorous species). For plant resources, ({m}_{j}^{{beta }_{j}}) was replaced with the constant value of 1 (as plants do not move).Feeding efficiency$${L}_{i,j}={left(frac{{m}_{i}}{{m}_{j}{R}_{{{{{{{mathrm{opt}}}}}}}}}{e}^{1-frac{{m}_{i}}{{m}_{j}{R}_{{{{{{{mathrm{opt}}}}}}}}}}right)}^{gamma }$$
    (5)
    The probability of consumer i to attack and capture an encountered resource j (which can be either plant or animal), described by an asymmetrical hump-shaped curve (Ricker’s function), centered around an optimal consumer-resource body mass ratio Ropt = 10033 and with γ that that affects the width of the hump. An increase in γ results in a decrease in the width.Handling time$${h}_{{ij}}={h}_{0}{m}_{i}^{{eta }_{i}}{m}_{j}^{{eta }_{j}}$$
    (6)
    The time consumer i needs to kill, ingest, and digest resource species j, with scaling constant h0 = 0.4 and allometric exponents ηi = −0.48 and ηj = −0.6640.Growth factor for plants$${G}_{i}=frac{N}{{K}_{i}+N}$$
    (7)
    Species-specific growth factor of plants determined dynamically by the nutrient; with Ki, half-saturation densities determining the nutrient uptake efficiency assigned randomly for each plant species i and (uniform distribution within (0.1, 0.2)).Nutrient dynamics$$frac{d{N}_{z}}{{dt}}=Dleft(S-Nright)-mathop{sum}limits_{i,z}{r}_{i}{G}_{i}{P}_{i,z}$$
    (8)
    Rate of change of nutrient concentration N of nutrient on patch z, with global turnover rate D = 0.25, determining the rate at which nutrients are refreshed and the nutrient supply concentration S.Generating landscapesWe generated different fragmented landscapes, represented by random geometric graphs, by randomly drawing the locations of Z patches from a uniform distribution between 0 and 1 for x- and y-coordinates, respectively.DispersalWe model dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal to occur at the same timescale as the local population dynamics. Thus, biomass flows dynamically between local populations and the dispersal dynamics directly influence local population dynamics and vice versa. We model a hostile matrix between habitat patches that does not allow for feeding interactions to occur during dispersal. The total rate of emigration of animal species i from patch z is$${E}_{i,z}={d}_{i,z}{B}_{i,z}$$
    (9)
    with di,z as the corresponding per capita dispersal rate. We model di,z as$${d}_{i,z}=frac{a}{1+{{{{{{rm{e}}}}}}}^{-b({x}_{i}-{v}_{i,z})}}$$
    (10)
    with a, the maximum dispersal rate, b = 10, a parameter determining the shape of the dispersal rate, xi, the inflection point determined by the metabolic demands per unit biomass of species i, and υi,z, the net growth rate of species i on patch z. The net growth rate consists of the biomass gain by feeding, the biomass loss by being fed upon and the metabolic loss (({v}_{i,z}=frac{{B}_{i,z}mathop{sum}limits_{j}{e}_{j}{F}_{{ij},z}-mathop{sum}limits_{j}{{B}_{j,z}F}_{{ji},z}-{x}_{i}{B}_{i,z}}{{B}_{i,z}})). We chose to model di,z as a function of each species’ net growth rate to account for emigration triggers, such as resource availability, predation pressure, and inter- and intra-specific competition. If for example an animal species’ net growth is positive, there is no need for dispersal and emigration will be low. However, if the local environmental conditions deteriorate, the growing incentives to search for a better habitat increase the fraction of individuals emigrating.ImmigrationThe rate of immigration of biomass density of species i into patch z follows$${I}_{i,z}=mathop{sum}limits_{n,epsilon, {N}_{z}}{E}_{i,n}{max }(1-{delta }_{i,{nz}},0)frac{{max }(1-{delta }_{i,{nz}},0)}{mathop{sum}limits_{m,epsilon, {N}_{n}}{max }(1-{delta }_{i,{nz}},0)}$$
    (11)
    where Nz and Nn are the sets of all patches within the dispersal range of species i on patches z and n, respectively. In this equation, Ei,n is the emigration rate of species i from patch n, ({max }(1-{delta }_{i,{nz}},0)) is the fraction of successfully dispersing biomass, i.e. the fraction of biomass not lost to the matrix, and δi,nz is the distance between patches n and z relative to species i’s maximum dispersal distance δi (see below paragraph Maximum dispersal distance). The term (frac{{max }(1-{delta }_{i,{nz}},0)}{mathop{sum}limits_{m,epsilon, {N}_{n}}{max }(1-{delta }_{i,nz},0)})determines the fraction of biomass of species i emigrating from source patch n towards target patch z. This fraction depends on the relative distance between the patches, δi,nz, and the relative distances to all other potential target patches m of species i on the source patch n, δi,nm. Thus, the flow of biomass is greatest between patches with small distances to account for the logic that the first patch dispersing organism come across is closer. In other words, the further a destination is, the more likely it is to come across another patch before.For numerical reasons, we did not allow for dispersal flows with Ii,z  More

  • in

    Dulled dragonfly displays

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses

    1.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    2.Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    3.Gigliotti, L. C. et al. Latitudinal variation in snowshoe hare (Lepus americanus) body mass: a test of Bergmann’s rule. Can. J. Zool. 98, 88–95 (2020).Article 

    Google Scholar 
    4.Best, T. L. Intraspecific Variation in the Agile Kangaroo Rat (Dipodomys agilis). J. Mammal. 64, 426–436. https://doi.org/10.2307/1380355 (1983).Article 

    Google Scholar 
    5.Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Gigliotti, L. C., Diefenbach, D. R. & Sheriff, M. J. Geographic variation in winter adaptations of snowshoe hares (Lepus americanus). Can. J. Zool. 95, 539–545 (2017).Article 

    Google Scholar 
    7.Singaravelan, N. et al. Adaptation of pelage color and pigment variations in Israeli subterranean blind mole rats, Spalax ehrenbergi. PloS ONE 8, 119 (2013).Article 

    Google Scholar 
    8.Price, T., Ndiaye, O., Hammerschmidt, K. & Fischer, J. Limited geographic variation in the acoustic structure of and responses to adult male alarm barks of African green monkeys. Behav. Ecol. Sociobiol. 68, 815–825 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lagos, L. & Bárcena, F. Spatial variability in wolf diet and prey selection in Galicia (NW Spain). Mammal Res. 63, 125–139. https://doi.org/10.1007/s13364-018-0352-6 (2018).Article 

    Google Scholar 
    10.Ashton, K. G., Tracy, M. C. & Queiroz, A. D. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).PubMed 
    Article 

    Google Scholar 
    11.Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster?. Oikos 119, 89–100 (2010).Article 

    Google Scholar 
    12.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed 
    Article 

    Google Scholar 
    13.Basuony, M., Mohamed, W. & Shalabi, M. Food and feeding ecology of the Egyptian Mongoose, Herpestes ichneumon (Linnaeus, 1758) in Egypt. J. Appl. Sci. Res. 9, 5811–5816 (2013).
    Google Scholar 
    14.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    15.Wang, M. et al. Ambient temperature correlates with geographic variation in body size of least horseshoe bats. Curr. Zool. 2, 19 (2020).
    Google Scholar 
    16.Taggart, D. A. et al. Environmental factors influencing hairy-nosed wombat abundance in semi-arid rangelands. J. Wildl. Manag. 84, 921–929 (2020).Article 

    Google Scholar 
    17.Brandimarti, M. E. et al. Reference intervals for parameters of health of eastern grey kangaroos Macropus giganteus and management implications across their geographic range. Wildl. Biol. 2020 (2020).18.Fancourt, B. A., Hawkins, C. E. & Nicol, S. C. Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll. Wildl. Res. 45, 737–750 (2019).Article 

    Google Scholar 
    19.Phillips, B. L. & Shine, R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc. Natl. Acad. Sci. 101, 17150–17155 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Global Change Biol. 11, 1606–1613 (2005).ADS 
    Article 

    Google Scholar 
    21.Borg, C., Majolo, B., Qarro, M. & Semple, S. A comparison of body size, coat condition and endoparasite diversity of wild Barbary macaques exposed to different levels of tourism. Anthrozoös 27, 49–63 (2014).Article 

    Google Scholar 
    22.Maceda-Veiga, A., Green, A. J. & De Sostoa, A. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshwat. Biol. 59, 1145–1160 (2014).Article 

    Google Scholar 
    23.Thatcher, H. R., Downs, C. T. & Koyama, N. F. Using parasitic load to measure the effect of anthropogenic disturbance on vervet monkeys. EcoHealth 15, 676–681 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    25.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    26.Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D. & Frankham, R. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113, 23–34 (2003).Article 

    Google Scholar 
    27.Stevenson, R. & Woods, W. A. Jr. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46, 1169–1190 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass–size residuals: validating body condition indices. Ecology 86, 155–163 (2005).Article 

    Google Scholar 
    29.Weiss, D. J. & Wardrop, K. J. Schalm’s Veterinary Hematology (Wiley, 2011).
    Google Scholar 
    30.Hanks, J., Fowler, C. & Smith, T. Dynamics of large mammal populations. Dyn. Large Mamm. Popul. 2, 47–73 (1981).
    Google Scholar 
    31.Mapfumo, L., Muchenje, V., Mupangwa, J. F. & Scholtz, M. M. Changes in biochemical proxy indicators for nutritional stress resilience from Boran and Nguni cows reared in dry arid rangeland. Trop. Anim. Health Prod. 49, 1383–1392 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Miller, D. S. et al. Biomedical evaluation of free-ranging ring-tailed lemurs (Lemur catta) in three habitats at the Beza Mahafaly Special Reserve, Madagascar. J. Zoo Wildl. Med. 38, 201–216 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Pérez, J. M. et al. Distinguishing disease effects from environmental effects in a mountain ungulate: seasonal variation in body weight, hematology, and serum chemistry among Iberian ibex (Capra pyrenaica) affected by sarcoptic mange. J. Wildl. Dis. 51, 148–156 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Webster, K. N., Hill, N. J., Burnett, L. & Deane, E. M. Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possums. Wildl. Biol. 20, 206–216 (2014).Article 

    Google Scholar 
    35.Perrault, J. R. & Stacy, N. I. Note on the unique physiologic state of loggerhead sea turtles (Caretta caretta) during nesting season as evidenced by a suite of health variables. Mar. Biol. 165, 71 (2018).Article 

    Google Scholar 
    36.O’Brien, J., Schmitt, T., Nollens, H., Dubach, J. & Robeck, T. Reproductive physiology of the female Magellanic penguin (Spheniscus magellanicus): insights from the study of a zoological colony. Gen. Comp. Endocrinol. 225, 81–94 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Robert, K. A. & Schwanz, L. E. Monitoring the health status of free-ranging tammar wallabies using hematology, serum biochemistry, and parasite loads. J. Wildl. Manag. 77, 1232–1243 (2013).Article 

    Google Scholar 
    38.Portas, T. J. et al. Beyond morbidity and mortality in reintroduction programmes: changing health parameters in reintroduced eastern bettongs Bettongia gaimardi. Oryx 50, 674–683 (2016).Article 

    Google Scholar 
    39.Lücker, A., Secomb, T. W., Weber, B. & Jenny, P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24, e12337. https://doi.org/10.1111/micc.12337 (2017).CAS 
    Article 

    Google Scholar 
    40.Shield, J. A seasonal change in blood cell volume of the Rottnest Island quokka, Setonix brachyurus. J. Zool. 165, 343–354 (1971).Article 

    Google Scholar 
    41.Sealander, J. A. Seasonal changes in blood values of deer mice and other small mammals. Ecology 12, 107–119 (1962).Article 

    Google Scholar 
    42.Trumble, S. J., Castellini, M. A., Mau, T. L. & Castellini, J. M. Dietary and seasonal influences on blood chemistry and hematology in captive harbor seals. Mar. Mamm. Sci. 22, 104–123 (2006).Article 

    Google Scholar 
    43.Boonstra, R., McColl, C. J. & Karels, T. J. Reproduction at all costs: The adaptive stress response of male Arctic ground squirrels. Ecology 82, 1930–1946. (2001).Article 

    Google Scholar 
    44.Stockham, S. L. & Scott, M. A. Fundamentals of Veterinary Clinical Pathology (Wiley, 2013).
    Google Scholar 
    45.Thrall, M. A., Weiser, G., Allison, R. W. & Campbell, T. W. Veterinary Hematology and Clinical Chemistry (Wiley, 2012).
    Google Scholar 
    46.Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6, 1045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Serrano, E. et al. The use of total serum proteins and triglycerides for monitoring body condition in the Iberian wild goat (Capra pyrenaica). J. Zoo Wildl. Med. 39, 646–649 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Stevens, L. A. & Levey, A. S. Measurement of kidney function. . Med. Clin. 89, 457–473 (2005).
    Google Scholar 
    49.Vanholder, R., Glorieux, G., De Smet, R. & Lameire, N. New insights in uremic toxins. Kidney Int. 63, S6–S10 (2003).Article 

    Google Scholar 
    50.Caldeira, R., Belo, A., Santos, C., Vazques, M. & Portugal, A. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 68, 233–241 (2007).Article 

    Google Scholar 
    51.Schutte, J. E., Longhurst, J. C., Gaffney, F. A., Bastian, B. C. & Blomqvist, C. G. Total plasma creatinine: an accurate measure of total striated muscle mass. J. Appl. Physiol. 51, 762–766 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kaneko, J. J., Harvey, J. W. & Bruss, M. L. Clinical Biochemistry of Domestic Animals. (Academic Press, 2008).53.Stirrat, S. C. Body condition and blood chemistry of agile wallabies (Macropus agilis) in the wet–dry tropics. Wildl. Res. 30, 59–67 (2003).CAS 
    Article 

    Google Scholar 
    54.Lassen, E. Perspectives in data interpretation. Vet. Hematol. Clini. Chem. 5, 45–49 (2004).
    Google Scholar 
    55.Maceda-Veiga, A. et al. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. Sci. Total Environ. 514, 322–332 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Brandimarti, M. E., Gray, R., Silva, F. R. & Herbert, C. A. Kangaroos at maximum capacity: health assessment of free-ranging eastern grey kangaroos on a coastal headland. J. Mamm. 2, 96 (2021).
    Google Scholar 
    57.Clark, P. Haematology of Australian Mammals. (CSIRO Publishing, 2004).58.Solberg, H. A guide to IFCC recommendations on reference values. J. Int. Fed. Clin. Chem. 5, 162–165 (1993).CAS 
    PubMed 

    Google Scholar 
    59.Gongora, J. et al. Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. J. Zool. 286, 110–119 (2012).Article 

    Google Scholar 
    60.Grant, T. & Fanning, D. The Platypus: A Unique Mammal. (University of New South Wales Press, 1995).61.Furlan, E. et al. Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?. Aust. J. Zool. 59, 201–215 (2012).Article 

    Google Scholar 
    62.Allen, A. Allens rule. The influence of Physical conditions in the genesis of species. Rad. Rev. 1, 108–140 (1877).
    Google Scholar 
    63.Bergmann, C. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger Studien 3, 595–708 (1847).
    Google Scholar 
    64.Grant, T., Griffiths, M. & Temple-Smith, P. in Proc. Linn. Soc. N.S.W. 227 (Linnean Society of New South Wales).65.Munks, S., Otley, H., Bethge, P. & Jackson, J. Reproduction, diet and daily energy expenditure of the platypus in a sub-alpine Tasmanian lake. Aust. Mamm. 21, 260–261 (2000).
    Google Scholar 
    66.Temple-Smith, P. & Grant, T. Uncertain breeding: a short history of reproduction in monotremes. Reprod. Fertil. Dev. 13, 487–497 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Chessman, B. C. & Williams, S. A. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: western Sydney, New South Wales, Australia. Pac. Conserv. Biol. 5, 36–55 (1999).Article 

    Google Scholar 
    68.Magierowski, R. H., Davies, P. E., Read, S. M. & Horrigan, N. Impacts of land use on the structure of river macroinvertebrate communities across Tasmania, Australia: spatial scales and thresholds. Mar. Freshw. Res. 63, 762–776 (2012).Article 

    Google Scholar 
    69.Verkaik, I., Prat, N., Rieradevall, M., Reich, P. & Lake, P. S. Effects of bushfire on macroinvertebrate communities in south-east Australian streams affected by a megadrought. Mar. Freshw. Res. 65, 359–369 (2014).Article 

    Google Scholar 
    70.Stitz, L., Fabbro, L. & Kinnear, S. Response of macroinvertebrate communities to seasonal hydrologic changes in three sub-tropical Australian streams. Environ. Monit. Assess. 189, 254 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    71.McLachlan-Troup, T., Dickman, C. & Grant, T. Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J. Zool. 280, 237–246 (2010).Article 

    Google Scholar 
    72.Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mamm. 100, 308–327 (2019).Article 

    Google Scholar 
    73.Grant, T. & Temple-Smith, P. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).Article 

    Google Scholar 
    74.Gust, N. et al. Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 57, 245–254 (2009).Article 

    Google Scholar 
    75.Klamt, M., Thompson, R. & Davis, J. Early response of the platypus to climate warming. Global Change Biol. 17, 3011–3018 (2011).ADS 
    Article 

    Google Scholar 
    76.Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Scheelings, T. Morbidity and mortality of monotremes admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Australia, 2000–2014. Aust. Vet. J. 94, 121–124 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Global Ecol. Conserv. 20, 720 (2019).
    Google Scholar 
    79.Connolly, J., Obendorf, D. & Whittington, R. Haematological, serum biochemical and serological features of platypuses with and without mycotic granulomatous dermatitis. Aust. Vet. J. 77, 809–813 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Geraghty, D. P., Griffiths, J., Stewart, N., Robertson, I. K. & Gust, N. Hematologic, plasma biochemical, and other indicators of the health of Tasmanian platypuses (Ornithorhynchus anatinus): predictors of mucormycosis. J. Wildl. Dis. 47, 483–493 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Macgregor, J. W. et al. A need for dynamic hematology and serum biochemistry reference tools: Novel use of sine wave functions to produce seasonally varying reference curves in platypuses (Ornithorhynchus anatinus). J. Wildl. Dis. 53, 235–247. https://doi.org/10.7589/2015-12-336 (2017).Article 
    PubMed 

    Google Scholar 
    82.Booth, R. & Connolly, J. in Medicine in Australian Mammals 103–132 (CSIRO Publishing, 2008).83.Whittington, R. & Grant, T. Haematology and blood chemistry of the free-living platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 31, 475–482 (1983).CAS 
    Article 

    Google Scholar 
    84.Whittington, R. & Grant, T. Haematology and Blood Chemistry of the Conscious Platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 32, 631–635. https://doi.org/10.1071/ZO9840631 (1984).CAS 
    Article 

    Google Scholar 
    85.Grant, T. & Carrick, F. Some aspects of the ecology of the platypus, Ornithorhynchus anatinus, in the upper Shoalhaven River. New South Wales. Australian Zool. 20, 181–199 (1978).
    Google Scholar 
    86.Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    87.Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: impacts and implications of river regulation on platypus populations. Aquatic Conservation in press (2020).88.Gallant, J. & Read, A. A near-global bare-Earth DEM from SRTM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, B4 (2016).
    Google Scholar 
    89.Temple-Smith, P. D. M. Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. (1973).90.Williams, G., Serena, M. & Grant, T. Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35, 107–114 (2013).Article 

    Google Scholar 
    91.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    93.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing., (R Foundation for Statistical Computing., 2020).94.Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing, 2016).MATH 

    Google Scholar 
    95.Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. R Package Version, 1.8–23 (2018).96.Wood, S. & Wood, M. S. Package ‘mgcv’. R Package Ver. 1, 29 (2015).
    Google Scholar 
    97.Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56 (2017).Article 

    Google Scholar 
    98.Geffré, A., Concordet, D., Braun, J. P. & Trumel, C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 40, 107–112 (2011).PubMed 
    Article 

    Google Scholar 
    99.Friedrichs, K. R. et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 41, 441–453 (2012).PubMed 
    Article 

    Google Scholar 
    100.Calver, M. C., Goldman, B., Hutchings, P. A. & Kingsford, R. T. Why discrepancies in searching the conservation biology literature matter. Biol. Conserv. 213, 19–26 (2017).Article 

    Google Scholar 
    101.Pfeffermann, D. The role of sampling weights when modeling survey data. International Statistical Review/Revue Internationale de Statistique, 317–337 (1993).102.Deem, S. L., Karesh, W. B. & Weisman, W. Putting theory into practice: wildlife health in conservation. Conserv. Biol. 15, 1224–1233 (2001).Article 

    Google Scholar 
    103.Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).Article 

    Google Scholar 
    104.Karesh, W. B. & Cook, R. A. Applications of veterinary medicine to in situ conservation efforts. Oryx 29, 244–252 (1995).Article 

    Google Scholar 
    105.Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).Article 

    Google Scholar 
    106.Elmore, R. D. et al. Implications of the thermal environment for terrestrial wildlife management. Wildl. Soc. Bull. 41, 183–193 (2017).Article 

    Google Scholar 
    107.Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comput. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    108.Brice, P. H. Thermoregulation in monotremes: riddles in a mosaic. Aust. J. Zool. 57, 255–263 (2009).Article 

    Google Scholar 
    109.Grant, T. Body temperatures of free-ranging platypuses, Ornithorhynchus anatinus (Monotremata), with observations on their use of burrows. Aust. J. Zool. 31, 117–122 (1983).Article 

    Google Scholar 
    110.Grant, T. & Dawson, T. Temperature regulation in the platypus, Ornithorhynchus anatinus: maintenance of body temperature in air and water. Physiol. Zool. 51, 1–6 (1978).Article 

    Google Scholar 
    111.Grant, T. & Dawson, T. J. Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol. Zool. 51, 315–332 (1978).Article 

    Google Scholar 
    112.Connolly, J. H., Claridge, T., Cordell, S. M., Nielsen, S. & Dutton, G. J. Distribution and characteristics of the platypus (Ornithorhynchus anatinus) in the Murrumbidgee catchment. Aust. Mamm. 38, 58–67 (2016).Article 

    Google Scholar 
    113.Grant, T. Historical and current distribution of the platypus, Ornithorhynchus anatinus. Australia. In Platypus and echidnas (ed. ML Augee), 232–254 (1992).114.Grant, T., Gehrke, P., Harris, J. & Hartley, S. Distribution of the platypus (Ornithorhynchus anatinus) in NSW: results of the 1994–96 NSW Rivers Survey. Aust. Mamm. 21, 177–184 (2000).Article 

    Google Scholar 
    115.Nazifi, S., Gheisari, H. & Poorabbas, H. The influences of thermal stress on serum biochemical parameters of dromedary camels and their correlation with thyroid activity. Comp. Haematol. Int. 9, 49–54 (1999).Article 

    Google Scholar 
    116.Singh, K. M. et al. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 141, 113–117 (2016).Article 

    Google Scholar 
    117.Zhang, Y. & Kieffer, J. D. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Can. J. Zool. 92, 215–221 (2014).CAS 
    Article 

    Google Scholar 
    118.Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Carr, M., Li, L., Sadeghian, A., Phillips, I. D. & Lindenschmidt, K. E. Modelling the possible impacts of climate change on the thermal regime and macroinvertebrate species of a regulated prairie river. Ecohydrology 12, e2102 (2019).Article 

    Google Scholar 
    120.Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    121.Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol. 13, 942–957 (2007).ADS 
    Article 

    Google Scholar 
    122.Walsh, C. J. Biological indicators of stream health using macroinvertebrate assemblage composition: a comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 57, 37–47 (2006).Article 

    Google Scholar 
    123.Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).Article 

    Google Scholar 
    124.Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time–Synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).125.Ambrosio, A. M. et al. Significant hematocrit decrease in healthy horses during clinical anesthesia. Braz. j. vet. Res. Anim. Sci. 49, 139–145 (2012).Article 

    Google Scholar 
    126.Dhumeaux, M. P. et al. Effects of a standardized anesthetic protocol on hematologic variables in healthy cats. J. Feline Med. Surg. 14, 701–705 (2012).PubMed 
    Article 

    Google Scholar 
    127.Marini, R. et al. Effect of isoflurane on hematologic variables in ferrets. Am. J. Vet. Res. 55, 1479–1483 (1994).CAS 
    PubMed 

    Google Scholar 
    128.Bejaei, M. & Cheng, K. Effects of pretransport handling stress on physiological and behavioral response of ostriches. Poult. Sci. 93, 1137–1148 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Delgiudice, G. D., Kunkel, K. E., Mech, L. D. & Seal, U. S. Minimizing capture-related stress on white-tailed deer with a capture collar. J. Wildl. Manag. 11, 299–303 (1990).Article 

    Google Scholar 
    130.Harvey, J. W. Veterinary Hematology-E-Book: A Diagnostic Guide and Color Atlas. (Elsevier Health Sciences, 2011).131.Raskin, R. E. Hematologic disorders 6. Clinical medicine of the dog and cat, Schaer M, editor. Manson Publishing, London, UK, 227–288 (2009).132.Mayer, J. & Donnelly, T. M. Clinical Veterinary Advisor-E-Book: Birds and Exotic Pets. (Elsevier Health Sciences, 2012).133.Bino, G., Grant, T. R. & Kingsford, R. T. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Sci. Rep. 5, 16073 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Gust, N. & Handasyde, K. Seasonal-variation in the ranging behavior of the platypus (Ornithorhynchus-anatinus) on the Goulburn River, Victoria. Aust. J. Zool. 43, 193–208 (1995).Article 

    Google Scholar 
    135.Handasyde, K., McDonald, I. & Evans, B. Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 136, 895–902 (2003).CAS 
    Article 

    Google Scholar 
    136.Wang, J.-C., Gray, N. E., Kuo, T. & Harris, C. A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2, 19–19. https://doi.org/10.1186/2045-3701-2-19 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    137.Griffiths, M. Reproduction and embryology. Biol. Monotremes, 209–254 (1978).138.Hawkins, M. & Battaglia, A. Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust. J. Zool. 57, 283–293 (2009).Article 

    Google Scholar 
    139.Thomas, J., Handasyde, K., Parrott, M. & Temple-Smith, P. The platypus nest: burrow structure and nesting behaviour in captivity. Aust. J. Zool. 65, 347–356 (2018).Article 

    Google Scholar 
    140.Holland, N. & Jackson, S. M. Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J. Zool. 256, 279–288 (2002).Article 

    Google Scholar 
    141.Thomas, J. L., Handasyde, K. A., Temple-Smith, P. & Parrott, M. L. Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 65, 319–327. https://doi.org/10.1071/ZO18004 (2017).Article 

    Google Scholar 
    142.Kruger, B., Hunter, S. & Serena, M. Husbandry, diet and behaviour of platypus Ornithorhynchus anatinus at Healesville Sanctuary. International Zoo Yearbook 31, 64–71 (1992).Article 

    Google Scholar 
    143.El-Sherif, M. & Assad, F. Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small Rumin. Res. 40, 269–277 (2001).PubMed 
    Article 

    Google Scholar 
    144.Hõrak, P., Jenni-Eiermann, S., Ots, I. & Tegelmann, L. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244 (1998).Article 

    Google Scholar 
    145.dos Santos Schmidt, E. M. et al. Serum biochemical parameters of female bronze turkeys (Meleagris gallopavo) during egg-laying season. Int J Poult Sci 9, 177–179 (2010).146.Lumeij, J. in Clinical biochemistry of domestic animals 857–883 (Elsevier, 1997).147.Whittington, C. M. & Belov, K. Tracing monotreme venom evolution in the genomics era. Toxins 6, 1260–1273 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    148.Grant, T. & Temple–Smith, P. Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 1081–1091 (1998).149.Handasyde, K. & McDonald, I. Reproductive hormones and reproduction in the platypus. Progress Comp. Endocrinol., 184–185 (1993).150.Wikelski, M., Lynn, S., Breuner, J., Wingfield, J. & Kenagy, G. Energy metabolism, testosterone and corticosterone in white-crowned sparrows. J. Comp. Physiol. A. 185, 463–470 (1999).CAS 
    Article 

    Google Scholar 
    151.Thomas, J. L., Parrott, M. L., Handasyde, K. A. & Temple-Smith, P. Female control of reproductive behaviour in the platypus (Ornithorhynchus anatinus), with notes on female competition for mating. Behaviour 155, 27–53 (2018).Article 

    Google Scholar 
    152.Hawke, T. et al. Long term movements and activity patterns of platypus on regulated rivers. Scientific Reports in press (2020).153.Andersen, N. A., Mesch, U., Lovell, D. J. & Nicol, S. C. The effects of sex, season, and hibernation on haematology and blood viscosity of free-ranging echidnas (Tachyglossus aculeatus). Can. J. Zool. 78, 174–181 (2000).Article 

    Google Scholar 
    154.Barnett, J., How, R. & Humphreys, W. Blood parameters in natural populations of Trichosurus species (Marsupialia: Phalangeridae). I. Age, sex and seasonal variation in T. caninus and T. vulpecula. II. Influence of habitat and population strategies of T. caninus and T. vulpecula. Aust. J. Zool. 27, 913–926 (1979).155.Fancourt, B. A. & Nicol, S. C. Hematologic and serum biochemical reference intervals for wild eastern quolls (Dasyurus viverrinus): variation by age, sex, and season. Vet. Clin. Pathol. 48, 114–124 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    156.McKenzie, S., Deane, E. & Burnett, L. Haematology and serum biochemistry of the tammar wallaby, Macropus eugenii. Comp. Clin. Pathol. 11, 229–237 (2002).CAS 
    Article 

    Google Scholar 
    157.Schultz, D. J. et al. Investigations into the health of brush-tailed rock-wallabies (Petrogale penicillata) before and after reintroduction. Aust. Mamm. 33, 235–244 (2011).Article 

    Google Scholar 
    158.Warren, K. S., Holyoake, C. S., Friend, T. J., Yeap, L. & McConnell, M. Hematologic and serum biochemical reference intervals for the bilby (Macrotis lagotis). J. Wildl. Dis. 51, 889–895 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Woolford, L. et al. Serum biochemistry of free-ranging southern hairy-nosed wombats (Lasiorhinus latifrons). J. Zool. Wildl. Med. 50, 937–946 (2020).Article 

    Google Scholar 
    160.Sidman, C. L. et al. Increased expression of major histocompatibility complex antigens on lymphocytes from aged mice. Proc. Natl. Acad. Sci. 84, 7624–7628 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    161.Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Australasian Mycol. 28, 1–8 (2009).
    Google Scholar 
    162.MacGregor, J. W. et al. Assessing body condition in the platypus (Ornithorhynchus anatinus): A comparison of new and old methods. Aust. J. Zool. 64, 421–429. https://doi.org/10.1071/ZO16071 (2016).Article 

    Google Scholar 
    163.Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).Article 

    Google Scholar 
    164.Woinarski, J. C., Burbidge, A. A. & Harrison, P. L. The action plan for Australian mammals 2012. (2014).165.Parer, J. & Metcalfe, J. Respiratory studies of monotremes. I. Blood of the platypus (Ornithorynchus anatinus). Respir. Physiol. 3, 136–142 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    166.Isaacks, R., Nicol, S., Sallis, J., Zeidler, R. & Kim, H. D. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R236–R241 (1984).CAS 
    Article 

    Google Scholar  More

  • in

    Climate amenities

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More