More stories

  • in

    Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes

    1.McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113. https://doi.org/10.1016/j.tree.2014.11.006 (2015).Article 

    Google Scholar 
    2.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167. https://doi.org/10.1038/nature04246 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416. https://doi.org/10.1016/j.tree.2006.05.012 (2006).Article 
    PubMed 

    Google Scholar 
    4.Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. In Annual Review of Ecology, Evolution, and Systematics, Vol. 47 (ed Futuyma, D. J.) 333–358 (Annual Reviews, 2016).5.Drew, L. W. Are we losing the science of taxonomy?: As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946. https://doi.org/10.1525/bio.2011.61.12.4 (2011).Article 

    Google Scholar 
    6.Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794–810. https://doi.org/10.1007/s11284-006-0035-7 (2006).Article 

    Google Scholar 
    7.Packer, L., Grixti, J. C., Roughley, R. E. & Hanner, R. The status of taxonomy in Canada and the impact of DNA barcoding. Can. J. Zool. 87, 1097–1110. https://doi.org/10.1139/z09-100 (2009).CAS 
    Article 

    Google Scholar 
    8.Qin, H. W., Li, X., Liang, J., Peng, Y. G. & Zhang, C. S. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 187, 49–58. https://doi.org/10.1016/j.neucom.2015.10.122 (2016).Article 

    Google Scholar 
    9.Tharwat, A., Hemedan, A. A., Hassanien, A. E. & Gabel, T. A biometric-based model for fish species classification. Fish. Res. 204, 324–336. https://doi.org/10.1016/j.fishres.2018.03.008 (2018).Article 

    Google Scholar 
    10.Gates, D. M., Keegan, H. J., Schleter, J. C. & Weidner, V. R. Spectral properties of plants. Appl. Opt. 4, 11–000. https://doi.org/10.1364/ao.4.000011 (1965).ADS 
    Article 

    Google Scholar 
    11.Hutchison, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209. https://doi.org/10.2307/1931954 (1960).Article 

    Google Scholar 
    12.Asner, G. P. & Martin, R. E. Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219. https://doi.org/10.1016/j.gecco.2016.09.010 (2016).Article 

    Google Scholar 
    13.Baldeck, C. A. et al. Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 10, e0118403. https://doi.org/10.1371/journal.pone.0118403 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 1–5. https://doi.org/10.1038/nplants.2016.24 (2016).Article 

    Google Scholar 
    15.Leblanc, G., Francis, C. M., Soffer, R., Kalacska, M. & de Gea, J. Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens. 8, 273. https://doi.org/10.3390/rs8040273 (2016).ADS 
    Article 

    Google Scholar 
    16.Dodd, C. K. Infrared reflectance in chameleons (Chamaeleonidae) from Kenya. Biotropica 13, 161–164. https://doi.org/10.2307/2388120 (1981).Article 

    Google Scholar 
    17.Pinto, F. et al. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS ONE 8, e73234. https://doi.org/10.1371/journal.pone.0073234 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Schwalm, P., Starrett, P. & McDiarmid, R. Infrared reflectance in leaf-sitting neotropical frogs. Science 196, 1225–1226. https://doi.org/10.1126/science.860137 (1977).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Mielewczik, M., Liebisch, F., Walter, A. & Greven, H. Near-infrared (NIR)-reflectance in insects–phenetic studies of 181 species. Entomologie heute 24, 183–215 (2012).
    Google Scholar 
    20.Bajjouk, T. et al. Detection of changes in shallow coral reefs status: Towards a spatial approach using hyperspectral and multispectral data. Ecol. Ind. 96, 174–191. https://doi.org/10.1016/j.ecolind.2018.08.052 (2019).Article 

    Google Scholar 
    21.Chennu, A., Faber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-07337-y (2017).CAS 
    Article 

    Google Scholar 
    22.Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026. https://doi.org/10.3390/s18072026 (2018).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dumke, I. et al. Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-31261-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Akkaynak, D., Siemann, L. A., Barbosa, A. & Mathger, L. M. Changeable camouflage: How well can flounder resemble the colour and spatial scale of substrates in their natural habitats?. R. Soc. Open Sci. 4, 160824. https://doi.org/10.1098/rsos.160824 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chiao, C. C., Wickiser, J. K., Allen, J. J., Genter, B. & Hanlon, R. T. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl. Acad. Sci. USA. 108, 9148–9153. https://doi.org/10.1073/pnas.1019090108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).Article 

    Google Scholar 
    27.Fricke, R., Eschmeyer, W. N. & Van de Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2019).28.Orti, G., Sivasundar, A., Dietz, K. & Jégu, M. Phylogeny of the Serrasalmidae (Characiformes) based on mitochondrial DNA sequences. Genet. Mol. Biol. 31, 343–351 (2008).CAS 
    Article 

    Google Scholar 
    29.Thompson, A. W., Bentancur-R, R., López-Fernández, H. & Orti, G. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol. Phylogenet. Evol. 81, 242–257 (2014).Article 

    Google Scholar 
    30.Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Huie, J. M., Summers, A. P. & Kolmann, M. A. Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proc. Acad. Natl. Sci. Phila. 166, 1–15. https://doi.org/10.1635/053.166.0116 (2017).Article 

    Google Scholar 
    33.Schweikert, L. E., Fitak, R. R., Caves, E. M., Sutton, T. T. & Johnsen, S. Spectral sensitivity in ray-finned fishes: Diversity, ecology and shared descent. J. Exp. Biol. 221, jeb189761. https://doi.org/10.1242/jeb.189761 (2018).Article 
    PubMed 

    Google Scholar 
    34.Stockman, A. & Sharpe, L. T. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40, 1711–1737 (2000).CAS 
    Article 

    Google Scholar 
    35.Peichl, L., Behrmann, G. & Kröger, R. H. H. For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528 (2001).CAS 
    Article 

    Google Scholar 
    36.Kelber, A. Bird colour vision—From cones to perception. Curr. Opin. Behav. Sci. 30, 34–40. https://doi.org/10.1016/j.cobeha.2019.05.003 (2019).Article 

    Google Scholar 
    37.Chikashige, T. & Iwasaka, M. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals. AIP Adv. 8, 056704. https://doi.org/10.1063/1.5006135 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Churnside, J. H. & McGillivary, P. A. Optical-properties of several pacific fishes. Appl. Opt. 30, 2925–2927. https://doi.org/10.1364/ao.30.002925 (1991).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Funt, N., Palmer, B. A., Weiner, S. & Addadi, L. Koi fish-scale iridophore cells orient guanine crystals to maximize light reflection. ChemPlusChem 82, 914–923. https://doi.org/10.1002/cplu.201700151 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. The structural basis for enhanced silver reflectance in Koi fish scale and skin. J. Am. Chem. Soc. 136, 17236–17242. https://doi.org/10.1021/ja509340c (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Lythgoe, J. N. & Shand, J. Changes in spectral reflections from the iridophores of the neon tetra. J. Physiol. 325, 23–000. https://doi.org/10.1113/jphysiol.1982.sp014132 (1982).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Correa, S. B. & Winemiller, K. O. Niche partitioning among frugivore fishes in response to fluctuating resources in Amazonian floodplain forest. Ecology 95, 210–224 (2014).Article 

    Google Scholar 
    43.Van Nynatten, A., Bloom, D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536. https://doi.org/10.1098/rstb.2016.0536 (2017).Article 

    Google Scholar 
    45.Jordan, R. et al. Ultraviolet reflectivity in three species of lake Malawi rock-dwelling cichlids. J. Fish Biol. 65, 876–882. https://doi.org/10.1111/j.1095-8649.2004.00483.x (2004).Article 

    Google Scholar 
    46.Wilkins, L., Marshall, N. J., Johnsen, S. & Osorio, D. Modelling colour constancy in fish: Implications for vision and signalling in water. J. Exp. Biol. 219, 1884–1892. https://doi.org/10.1242/jeb.139147 (2016).Article 
    PubMed 

    Google Scholar 
    47.Andrade, M. C., Fitzgerald, D. B., Winemiller, K. O., Barbosa, P. S. & Giarrizzo, T. Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia 829, 265–280. https://doi.org/10.1007/s10750-018-3838-y (2019).CAS 
    Article 

    Google Scholar 
    48.Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814. https://doi.org/10.1126/science.344.6186.814 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Alberch, P. Museums, collections and biodiversity inventories. Trends Ecol. Evol. 8, 372–375 (1993).CAS 
    Article 

    Google Scholar 
    50.Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).Article 

    Google Scholar 
    51.Peterson, A. T., Soberon, J. & Krishtalka, L. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecol. 15, 15 (2015).Article 

    Google Scholar 
    52.Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. J. Fish Biol. 96, 297–306. https://doi.org/10.1111/jfb.14167 (2020).Article 
    PubMed 

    Google Scholar 
    53.Hoeksema, B. W. et al. Unforeseen importance of historical collections as baselines to determine biotic change of coral reefs: The Saba Bank case. Mar. Ecol. 32, 135–141. https://doi.org/10.1111/j.1439-0485.2011.00434.x (2011).ADS 
    Article 

    Google Scholar 
    54.Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525 (2014).ADS 
    Article 

    Google Scholar 
    55.Johansen, V. E., Onelli, O. D., Steiner, L. M. & Vignolini, S. in Functional Surfaces in Biology III, Vol. 10 (eds Gorb, S. N. & Gorb, E. V.) 53–89 (Springer, 2017).56.Wainwright, D. K., Lauder, G. & Weaver, J. C. Imaging biological surface topography in situ and in vivo. Methods Ecol. Evol. 8, 1626–1638. https://doi.org/10.1111/2041-210x.12778 (2017).Article 

    Google Scholar 
    57.Andrade, M. C., Giarrizzo, T. & Jégu, M. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, Rio Trombetas Basin, Brazil. Neotrop. Ichthyol. 11, 297–306 (2013).Article 

    Google Scholar 
    58.Généralités, I. Gery, J. Poissons characoïdes des Guyanes. II. Famille des Serrasalmidae. Zoologische Verhandelingen 122, 1–250 (1972).
    Google Scholar 
    59.Jegu, M. & Dos Santos, G. M. Le genre Serrasalmus (Pisces, Serrasalmidae) dans le bas Tocantins (Brésil, Parà), avec la description d’une espèce nouvelle, S. geryi, du bassin Araguaia-Tocantins. Revue d’Hydrobiologie Tropicale 21, 239–274 (1988).
    Google Scholar 
    60.Kolmann, M. A. et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst. Biol. 70(3), 576–592 (2021).CAS 
    Article 

    Google Scholar 
    61.Feller, K. D., Jordan, T. M., Wilby, D. & Roberts, N. W. Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160336. https://doi.org/10.1098/rstb.2016.0336 (2017).CAS 
    Article 

    Google Scholar 
    62.Gur, D., Palmer, B. A., Weiner, S. & Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 27, 1603514. https://doi.org/10.1002/adfm.201603514 (2017).CAS 
    Article 

    Google Scholar 
    63.Elmer, K., Soffer, R., Arroyo-Mora, J. P. & Kalacska, M. ASDToolkit: A novel MATLAB processing toolbox for ASD field spectroscopy data. Data 5, 96. https://doi.org/10.3390/data5040096 (2020).Article 

    Google Scholar 
    64.Kruse, F. A. et al. The spectral image-processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163. https://doi.org/10.1016/0034-4257(93)90013-n (1993).ADS 
    Article 

    Google Scholar 
    65.Cooksey, C., Tsai, B. K. & Allen, D. A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. Proc. SPIE 9082, 908201–908206. https://doi.org/10.1117/12.2053604 (2014).Article 

    Google Scholar 
    66.Manolakis, D., Marden, D. & Shaw, G. A. Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14, 79–116 (2003).
    Google Scholar 
    67.Manolakis, D., Lockwood, R., Cooley, T. & Jacobson, J. Is There a Best Hyperspectral Detection Algorithm? Vol. 7334 (SPIE, 2009).
    Google Scholar 
    68.van der Heijden, F., Duin, R., de Ridder, D. & Tax, D. Classification, Parameter Estimation and State Estimation, an Engineering Approach using Matlab (Wiley, 2004).Book 

    Google Scholar 
    69.Johnson, M. K. & Adelson, E. H. In Cvpr: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1–4, 1070–1077 (2009).70.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    Article 

    Google Scholar 
    71.Wainwright, D. K. & Lauder, G. V. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis marochirus. Zoology 119, 182–195 (2016).Article 

    Google Scholar  More

  • in

    Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

    1.Genty, B., Wonders, J. & Baker, N. R. Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth. Res. 26, 133–139 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Franck, F., Juneau, P. & Popovic, R. Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim. Biophys. Acta 1556, 239–246 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Neubauer, C. & Schreiber, U. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. f.ür. Naturforsch. C. 42, 1246–1254 (1987).CAS 
    Article 

    Google Scholar 
    4.Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. in Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration Vol. 19 (eds Papageorgiou G. C. & Govindjee) 321–362 (Springer, 2004).5.Schreiber, U., Schliwa, U. & Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Govindjee, E. 63 years since Kautsky-chlorophyll-a fluorescence. Aust. J. Plant Physiol. 22, 131–160 (1995).CAS 

    Google Scholar 
    8.Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Tikkanen, M., Rantala, S., Grieco, M. & Aro, E. Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions–from biophysical measurements to molecular mechanisms. Plant Physiol. Biochem. 112, 290–301 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kolber, Z. et al. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth. Res. 84, 121–129 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Keller, B. et al. Genotype specific photosynthesis × environment interactions captured by automated fluorescence canopy scans over two fluctuating growing seasons. Front. Plant Sci. 10, 1482 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mohammed, G. H. et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Evain, S., Camenen, L. & Moya, I. Three-channel detector for remote sensing of chlorophyll fluorescence and reflectance from vegetation. In: 8th International Symposium: Physical Measurements and Signatures in Remote Sensing (ed. Leroy, M.) 395–400 (CNES, 2001).14.Louis, J. et al. Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery. Remote Sens. Environ. 96, 37–48 (2005).Article 

    Google Scholar 
    15.Guanter, L. et al. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 34, L08401 (2007).Article 
    CAS 

    Google Scholar 
    16.Aasen, H. et al. Sun-induced chlorophyll fluorescence II: review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sens. 11, 927 (2019).Article 

    Google Scholar 
    17.Yang, X. et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).CAS 
    Article 

    Google Scholar 
    18.Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Bendig, J., Malenovský, Z., Gautam, D. & Lucieer, A. Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction. IEEE Trans. Geosci. Remote Sens. 58, 3437–3444 (2019).Article 

    Google Scholar 
    20.Vargas, J. Q. et al. Unmanned aerial systems (UAS)-based methods for solar induced chlorophyll fluorescence (SIF) retrieval with non-imaging spectrometers: state of the art. Remote Sens. 12, 1624 (2020).Article 

    Google Scholar 
    21.Rascher, U. et al. Sun-induced fluorescence—a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Change Biol. 21, 4673–4684 (2015).CAS 
    Article 

    Google Scholar 
    22.Frankenberg, C. et al. The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sens. Environ. 217, 523–536 (2018).Article 

    Google Scholar 
    23.Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 17706 (2011).Article 
    CAS 

    Google Scholar 
    24.Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI. Geophys. Res. Lett. 47, e2020GL087541 (2020).Article 
    CAS 

    Google Scholar 
    25.Drusch, M. et al. The fluorescence explorer mission concept—ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2016).Article 

    Google Scholar 
    26.Olascoaga, B., Mac Arthur, A., Atherton, J. & Porcar-Castell, A. A comparison of methods to estimate photosynthetic light absorption in leaves with contrasting morphology. Tree Physiol. 36, 368–379 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Zhang, Z. et al. Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agric. Meteorol. 295, 108147 (2020).Article 

    Google Scholar 
    28.Bittner, T., Irrgang, K., Renger, G. & Wasielewski, M. R. Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach. J. Phys. Chem. 98, 11821–11826 (1994).CAS 
    Article 

    Google Scholar 
    29.Kalaji, H. M. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132, 13–66 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Genty, B., Briantais, J. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    31.Anderson, J. M., Chow, W. S. & Goodchild, D. J. Thylakoid membrane organisation in sun/shade acclimation. Funct. Plant Biol. 15, 11–26 (1988).Article 

    Google Scholar 
    32.Ballottari, M., Dall’Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schreiber, U., Klughammer, C. & Kolbowski, J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 113, 127–144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Laisk, A. et al. A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ. 25, 923–943 (2002).CAS 
    Article 

    Google Scholar 
    35.Pfündel, E. Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Res. 56, 185–195 (1998).Article 

    Google Scholar 
    36.Peterson, R. B. et al. Fluorescence Fo of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth. Res. 122, 41–56 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pfündel, E. E. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. Photosynth. Res. 147, 345–358 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Demmig-Adams, B. & Adams, W. W. III Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. N. Phytol. 172, 11–21 (2006).CAS 
    Article 

    Google Scholar 
    39.Porcar-Castell, A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol. Plant. 143, 139–153 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Van der Tol, C., Berry, J. A., Campbell, P. & Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. 119, 2312–2327 (2014).Article 

    Google Scholar 
    41.Springer, K. R., Wang, R. & Gamon, J. A. Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees. Remote Sens. 9, 691 (2017).Article 

    Google Scholar 
    42.Zhang, C. et al. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ. 42, 3264–3279 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ensminger, I. et al. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob. Change Biol. 10, 995–1008 (2004).Article 

    Google Scholar 
    44.Verhoeven, A. Sustained energy dissipation in winter evergreens. New Phytol. 201, 57–65 (2014).Article 

    Google Scholar 
    45.Gu, L., Han, J., Wood, J. D., Chang, C. Y. & Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 223, 1179–1191 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Raczka, B. et al. Sustained nonphotochemical quenching shapes the seasonal pattern of solar-induced fluorescence at a high-elevation evergreen forest. J. Geophys. Res. 124, 2005–2020 (2019).Article 

    Google Scholar 
    47.Nixon, P. J. Chlororespiration. Philos. Trans. R. Soc. Lond. B 355, 1541–1547 (2000).CAS 
    Article 

    Google Scholar 
    48.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35, 415–442 (1984).CAS 
    Article 

    Google Scholar 
    49.Asada, K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Biol. 50, 601–639 (1999).CAS 
    Article 

    Google Scholar 
    50.Morfopoulos, C. et al. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytol. 203, 125–139 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Maseyk, K., Lin, T., Cochavi, A., Schwartz, A. & Yakir, D. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. Tree Physiol. 39, 1767–1782 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Migliavacca, M. et al. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 214, 1078–1091 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kallel, A. FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation. J. Quant. Spectrosc. Radiat. Transf. 253, 107183 (2020).CAS 
    Article 

    Google Scholar 
    54.Sabater, N. et al. Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy–leaving sun–induced chlorophyll fluorescence. Remote Sens. 10, 1551 (2018).Article 

    Google Scholar 
    55.Sabater, N., Kolmonen, P., Van Wittenberghe, S., Arola, A. & Moreno, J. Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. Remote Sens. Environ. 254, 112226 (2021).Article 

    Google Scholar 
    56.Iermak, I., Vink, J., Bader, A. N., Wientjes, E. & van Amerongen, H. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta 1857, 1473–1478 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Romero, J. M., Cordon, G. B. & Lagorio, M. G. Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sens. Environ. 204, 138–146 (2018).Article 

    Google Scholar 
    58.Magney, T. S. et al. Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. J. Geophys. Res. 124, 1491–1507 (2019).Article 

    Google Scholar 
    59.Murchie, E. H. et al. Measuring the dynamic photosynthome. Ann. Bot. 122, 207–220 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47, e2020GL091098 (2020).Article 

    Google Scholar 
    61.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences 18, 441–465 (2021).CAS 
    Article 

    Google Scholar 
    62.Liu, X. et al. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sens. Environ. 231, 110772 (2019).Article 

    Google Scholar 
    63.Joiner, J. et al. Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals. Remote Sens. 12, 2346 (2020).Article 

    Google Scholar 
    64.Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).Article 

    Google Scholar 
    65.He, L. et al. From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys. Res. Lett. 47, e2020GL087474 (2020).
    Google Scholar 
    66.Ač, A. et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 168, 420–436 (2015).Article 

    Google Scholar 
    67.Wohlfahrt, G. et al. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 14169 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J. & Samson, R. Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties: A bottom-up approach. Remote Sens. Environ. 158, 169–179 (2015).Article 

    Google Scholar 
    69.Magney, T. S. et al. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 215, 1594–1608 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Rajewicz, P. A., Atherton, J., Alonso, L. & Porcar-Castell, A. Leaf-level spectral fluorescence measurements: comparing methodologies for broadleaves and needles. Remote Sens. 11, 532 (2019).Article 

    Google Scholar 
    71.Van Wittenberghe, S., Alonso, L., Malenovský, Z. & Moreno, J. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes. Photosynth. Res. 142, 283–305 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Meeker, E. W., Magney, T. S., Bambach, N., Momayyezi, M. & McElrone, A. J. Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions. AoB Plants 13, plaa066 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Acebron, K. et al. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytol. 229, 2104–2119 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D. & Robinson, S. A. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol. Evol. 8, 1842–1857 (2017).Article 

    Google Scholar 
    75.Atherton, J., Nichol, C. J. & Porcar-Castell, A. Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics. Remote Sens. Environ. 176, 17–30 (2016).Article 

    Google Scholar 
    76.Van Wittenberghe, S. et al. Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: evidence for the multifunctional energy quenching role of xanthophylls. Biochim. Biophys. Acta 1862, 148351 (2021).Article 
    CAS 

    Google Scholar 
    77.Gamon, J. A. et al. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85, 1–7 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).Article 

    Google Scholar 
    79.Peñuelas, J., Filella, I. & Gamon, J. A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291–296 (1995).Article 

    Google Scholar 
    80.Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Costa, J. M., Grant, O. M. & Chaves, M. M. Thermography to explore plant-environment interactions. J. Exp. Bot. 64, 3937–3949 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Konings, A. G., Rao, K. & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. 223, 1166–1172 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Junttila, S. et al. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sens. Environ. 255, 112274 (2021).Article 

    Google Scholar 
    84.Whelan, M. E. Two scientific communities striving for a common cause: innovations in carbon cycle science. Bull. Am. Meteorol. Soc. 101, E1537–1543 (2020).Article 

    Google Scholar 
    85.Farquhar, G. D., von Caemmerer, S. V. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. 124, 3281–3306 (2019).Article 

    Google Scholar 
    87.Norton, A. J. et al. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16, 3069–3093 (2019).CAS 
    Article 

    Google Scholar 
    88.Thum, T. et al. Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14, 1969–1987 (2017).CAS 
    Article 

    Google Scholar 
    89.Qiu, B., Chen, J. M., Ju, W., Zhang, Q. & Zhang, Y. Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sens. Environ. 233, 111373 (2019).Article 

    Google Scholar 
    90.Johnson, J. E. & Berry, J. A. The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynth. Res. https://doi.org/10.1007/s11120-021-00840-4 (2021).91.Janoutová, R. et al. Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests 10, 292 (2019).Article 

    Google Scholar 
    92.Liu, W. et al. Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements. Remote Sens. Environ. 232, 111274 (2019).Article 

    Google Scholar 
    93.Pinto, F. et al. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39, 1500–1512 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Siegmann, B. et al. The high-performance airborne imaging spectrometer HyPlant—From raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. Remote Sens. 11, 2760 (2019).Article 

    Google Scholar 
    95.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).Article 

    Google Scholar 
    96.Zeng, Y. et al. A radiative transfer model for solar induced fluorescence using spectral invariants theory. Remote Sens. Environ. 240, 111678 (2020).Article 

    Google Scholar 
    97.Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wang, S. et al. Urban–rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 3, 1076–1085 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Long, S. P., Farage, P. K. & Garcia, R. L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 47, 1629–1642 (1996).CAS 
    Article 

    Google Scholar 
    100.Baldocchi, D. D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9, 479–492 (2003).Article 

    Google Scholar 
    101.Kaiser, Y. I., Menegat, A. & Gerhards, R. Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 53, 399–406 (2013).CAS 
    Article 

    Google Scholar 
    102.Sievänen, R., Godin, C., DeJong, T. M. & Nikinmaa, E. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Damm, A., Paul-Limoges, E., Kükenbrink, D., Bachofen, C. & Morsdorf, F. Remote sensing of forest gas exchange: considerations derived from a tomographic perspective. Glob. Change Biol. 26, 2717–2727 (2020).Article 

    Google Scholar 
    104.Ensminger, I. Fast track diagnostics: Hyperspectral reflectance differentiates disease from drought stress in trees. Tree Physiol. 40, 1143–1146 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Mutka, A. M. & Bart, R. S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 5, 734 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    108.Skidmore, A. K. et al. Environmental science: Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Tagliabue, G. et al. Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sens. Environ. 247, 111934 (2020).Article 

    Google Scholar 
    110.Pacheco-Labrador, J. et al. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sens. Environ. 234, 111362 (2019).Article 

    Google Scholar 
    111.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).Article 

    Google Scholar 
    112.Kellner, J. R., Albert, L. P., Burley, J. T. & Cushman, K. C. The case for remote sensing of individual plants. Am. J. Bot. 106, 1139–1142 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Flexas, J. et al. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 114, 231–240 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).CAS 
    Article 

    Google Scholar 
    115.Maes, W. H. et al. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens. Environ. 249, 112030 (2020).Article 

    Google Scholar 
    116.Shan, N. et al. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens. Environ. 252, 112134 (2021).Article 

    Google Scholar 
    117.Wang, X. et al. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. J. Geophys. Res. Biogeosci. 125, e2020JG005732 (2020).
    Google Scholar 
    118.Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science 358, eaam5690 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    119.Albert, L. P. et al. Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence. In Proc. SPIE 10986, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV (eds Velez-Reyes, M. & Messinger, D. W.) 109860G (SPIE, 2019).120.Meroni, M. et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009).Article 

    Google Scholar 
    121.Cendrero-Mateo, M. P. et al. Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sens. 11, 962 (2019).Article 

    Google Scholar 
    122.Vilfan, N. et al. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 211, 345–356 (2018).Article 

    Google Scholar 
    123.Yang, P., Prikaziuk, E., Verhoef, W. & van der Tol, C. SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2020-251 (2020).124.Gastellu-Etchegorry, J. et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2640–2649 (2017).Article 

    Google Scholar  More

  • in

    Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism

    1.Collier, S. M. & Moffett, P. NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci. 14, 521–529 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. & Klessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–676 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Takahashi, H. et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32, 655–667 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.de Ronde, D., Butterbach, P. & Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 5, 307 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Takahashi, H. et al. Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 79, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    6.Wright, K. et al. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Lukan, T. et al. Cell death is not sufficient for the restriction of potato virus Y spread in hypersensitive response-conferred resistance in potato. Front. Plant Sci. 9, 168 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Sekine, K. T. et al. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21, 1398–1407 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Grech-Baran, M. et al. Extreme resistance to potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor. Plant Biotechnol. J. 18, 655–667 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Patel, P. N. Genetics of cowpea reactions to two strains of cowpea mosaic virus from Tanzania. Phytopathology 72, 460–466 (1982).Article 

    Google Scholar 
    12.Kiraly, L., Cole, A. B., Bourque, J. E. & Schoelz, J. E. Systemic cell death is elicited by the interaction of a single gene in Nicotiana clevelandii and gene VI of cauliflower mosaic virus. Mol. Plant Microbe Interact. 12, 919–925 (1999).CAS 
    Article 

    Google Scholar 
    13.Jones, R. A. C. & Smith, L. J. Inheritance of hypersensitive resistance to bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Ann. Appl. Biol. 146, 539–543 (2005).Article 

    Google Scholar 
    14.Ravelo, G., Kagaya, U., Inukai, T., Sato, M. & Uyeda, I. Genetic analysis of lethal tip necrosis induced by clover yellow vein virus infection in pea. J. Gen. Plant Pathol. 73, 59–65 (2007).CAS 
    Article 

    Google Scholar 
    15.Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S. & Uyeda, I. Activation of the salicylic acid signaling pathway enhances clover yellow vein virus virulence in susceptible pea cultivars. Mol. Plant Microbe Interact. 22, 166–175 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Nyalugwe, E. P., Barbetti, M. J. & Jones, R. A. C. Studies on resistance phenotypes to turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 141, 647–666 (2015).CAS 
    Article 

    Google Scholar 
    17.Kehoe, M. A. & Jones, R. A. C. Improving potato virus Y strain nomenclature: lessons from comparing isolates obtained over a 73-year period. Plant Pathol. 65, 322–333 (2016).CAS 
    Article 

    Google Scholar 
    18.Jones, R. A. C. & Vincent, S. J. Strain-specific hypersensitive and extreme resistance phenotypes elicited by potato virus Y among 39 potato cultivars released in three world regions over a 117-year period. Plant Dis. 102, 185–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Xu, P., Blancaflor, E. B. & Roossinck, M. J. In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol. Plant Microbe Interact. 16, 467–476 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seo, Y. S. et al. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl Acad. Sci. U. S. A. 103, 11856–11861 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Kim, B., Masuta, C., Matsuura, H., Takahashi, H. & Inukai, T. Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant Microbe Interact. 21, 260–268 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Nyalugwe, E. P., Barbetti, M. J., Clode, P. L. & Jones, R. A. C. Systemic hypersensitive resistance to turnip mosaic virus in Brassica juncea is associated with multiple defense responses, especially phloem necrosis and xylem occlusion. Plant Dis. 100, 1261–1270 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Komatsu, K. et al. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol. Plant-Microbe Interact. 23, 283–293 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25, 1489–1505 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Michel, V. et al. NtTPN1: a RPP8-like R gene required for potato virus Y-induced veinal necrosis in tobacco. Plant J. 95, 700–714 (2018).CAS 
    Article 

    Google Scholar 
    26.Ando, S., Miyashita, S. & Takahashi, H. Plant defense systems against cucumber mosaic virus: lessons learned from CMV–Arabidopsis interactions. J. Gen. Plant Pathol. 85, 174–181 (2019).Article 

    Google Scholar 
    27.Takahashi, H. et al. Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol. 42, 340–347 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Takahashi, H. et al. RCY1-mediated resistance to cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol. Plant Microbe Interact. 25, 1171–1185 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ishihara, T., Sato, Y. & Takahashi, H. Microarray analysis of R-gene-mediated resistance to viruses in Plant Virology Protocols, Methods in Molecular Biology (eds Uyeda, I. & Masuta, C.) 197–218 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-1743-3_1530.Takebe, I. & Ohtsuki, Y. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proc. Natl Acad. Sci. U. S. A. 64, 843–848, https://www.pnas.org/content/64/3/843 (1969).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Hibi, T., Rezelman, G. & van Kammen, A. Infection of cowpea mesophyll protoplasts with cowpea mosaic virus. Virology 64, 308–318 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Motoyoshi, F., Hull, R. & Flack, I. H. Infection of tobacco mesophyll protoplasts by alfalfa mosaic virus. J. Gen. Virol. 27, 263–266 (1975).Article 

    Google Scholar 
    33.Renaudin, J., Bove, J. M., Otsuki, Y. & Takebe, I. Infection of brassica protoplasts by turnip yellow mosaic virus. Mol. Gen. Genet. 141, 59–68 (1975).Article 

    Google Scholar 
    34.Okuno, H., Furusawa, I. & Hiruki, C. Infection of barley protoplasts with brome mosaic virus. Phytopathology 67, 610–615 (1977).CAS 
    Article 

    Google Scholar 
    35.French, R. & Stenger, D. C. Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 41, 199–214 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Miyashita, S., Ishibashi, K., Kishino, H. & Ishikawa, M. Viruses roll the dice: the stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLoS Biol. 13, e1002094 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Nemecek, T., Fischlin, A., Derron, J. & Roth, O. Distance and direction of trivial flights of aphids in a potato field. Syst. Ecol. ETHZ (1993).39.Takahashi, H., Fukuhara, T., Kitazawa, H. & Kormelink, R. Virus latency and the impact on plants. Front. Microbiol. 10, 2764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Farkas, G., Kiraly, Z. & Solymosy, F. Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421 (1960).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiraly, L., Hafez, Y., Fodor, J. & Kiraly, Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Virol. 89, 799–808 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hafez, Y., Bacso, R., Kiraly, Z., Kunstler, A. & Kiraly, L. Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102, 848–856 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kunstler, A., Bacso, R., Gullner, G., Hafez, Y. & Kiraly, L. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 93, 75–84 (2016).Article 

    Google Scholar 
    44.Xie, Z., Fan, B., Chen, C. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl Acad. Sci. U. S. A. 98, 6516–6521 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, W. et al. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 31, 905–916 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Miyashita, S. Studies on replication and evolution mechanisms of plant RNA viruses. J. Gen. Plant Pathol. 84, 427–428 (2018).CAS 
    Article 

    Google Scholar 
    47.Qu, F. et al. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive sense RNA viruses. Virus Evol. 6, veaa86 (2020).Article 

    Google Scholar 
    48.Gonzalez-Jara, P., Fraile, A., Canto, T. & Garcia-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gutierrez, S. et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).50.Moury, B., Fabre, F., Hebrard, E. & Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 98, 862–873 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McLeish, M. J., Fraile, A. & Garcia-Arenal, F. Evolution of plant–virus interactions: host range and virus emergence. Curr. Opin. Virol. 34, 50–55 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gao, Y. et al. Out of water: the origin and early diversification of plant R-genes. Plant Physiol. 177, 82–89 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Chandra-Shekara, A. C. et al. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ando, S., Obinata, A. & Takahashi, H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 85, 8–15 (2014).CAS 
    Article 

    Google Scholar 
    55.Fukuyo, M., Sasaki, A. & Kobayashi, I. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    56.Cheng, Y., Jones, R. A. C. & Thackray, D. J. Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Ann. Appl. Biol. 140, 69–79 (2002).Article 

    Google Scholar 
    57.Thackray, D. J., Smith, L. J., Cheng, Y. & Jones, R. A. C. Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Ann. Appl. Biol. 141, 45–59 (2002).Article 

    Google Scholar 
    58.Suzuki, M. et al. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Takeshita, M. et al. Infection dynamics in viral spread and interference under the synergism between cucumber mosaic virus and turnip mosaic virus. Mol. Plant Microbe Interact. 25, 18–27 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020).62.Miyashita, S. R scripts for MOI estimation and simulation for plant suicidal population resistance by systemic hypersensitive response. Zenodo https://doi.org/10.5281/zenodo.5105622 (2021). More

  • in

    Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US

    1.Livelihoods, To Build Resilient the Impact of Natural Hazards and Disasters on Agriculture. Food Agric. Organ. UN (2015).2.Smith, A., et al. US Billion-Dollar Weather & Climate Disasters 1980-2019. NOAA National Centers for Environmental Information: Asheville, NC, USA 15 (2019).3.Stocker, Thomas F., et al. Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. (2014).4.Biasutti, M. & Seager, R. Projected changes in US rainfall erosivity. Hydrology Earth Syst. Sci. 19, 2945–2961 (2015).5.Hoomehr, S., Schwartz, J. S. & Yoder, D. C. Potential changes in rainfall erosivity under GCM climate change scenarios for the southern Appalachian region, USA. Catena 136, 141–151 (2016).Article 

    Google Scholar 
    6.Janowiak, M. et al. Adaptation resources for agriculture: responding to climate variability and change in the midwest and northeast. USDA (2018).7.Cooke, B. & Jiang, H. Outlook for US agricultural trade. Electronic Outlook Report from the Economic Research Service (2020).8.Alizadeh, M. R. et al. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv. 6, eaaz4571 (2020).Article 

    Google Scholar 
    9.Gipson, J. & Joham, H. Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). I. Fruiting and Boll Development 1. Agron. J. 60, 292–295 (1968).Article 

    Google Scholar 
    10.Ludwig, M., Wilmes, P. & Schrader, S. Measuring soil sustainability via soil resilience. Sci. Total Environ. 626, 1484–1493 (2018).CAS 
    Article 

    Google Scholar 
    11.Lal, R. Rights-of-Soil. J. Soil Water Conserv. 74, 81A–86A (2019).Article 

    Google Scholar 
    12.Hillel, D. Introduction to Environmental Soil Physics. (Elsevier, 2003).13.Yoder, D. C. et al. Soil health: meaning, measurement, and value through a critical zone lens. J. Soil Water Conserv. 76, 103–108 (2021).14.Li, J. et al. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biol. Biochem. 106, 18–27 (2017).CAS 
    Article 

    Google Scholar 
    15.Nouri, A., Lee, J., Yin, X., Tyler, D. D. & Saxton, A. M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 337, 998–1008 (2019).Article 

    Google Scholar 
    16.Lal, R. Degradation and resilience of soils. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond. Ser. B 352, 997–1010 (1997).Article 

    Google Scholar 
    17.Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325–2337 (2019).Article 

    Google Scholar 
    18.McLaughlin, B. C. et al. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Change Biol. 26, 3091–3107 (2020).Article 

    Google Scholar 
    19.Van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta‐analysis. Glob. Change Biol. 19, 33–44 (2013).Article 

    Google Scholar 
    20.Döring, T. F. et al. Resilience as a universal criterion of health. J. Sci. Food Agric. 95, 455–465 (2015).Article 

    Google Scholar 
    21.Corstanje, R., Deeks, L., Whitmore, A., Gregory, A. & Ritz, K. Probing the basis of soil resilience. Soil Use Manag. 31, 72–81 (2015).Article 

    Google Scholar 
    22.Herrick, J. E. & Wander, M. M. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity. in Soil Processes and the Carbon Cycle. 405–425 (CRC Press, 2018).23.Gaudin, A. C. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PloS ONE 10, e0113261 (2015).Article 

    Google Scholar 
    24.Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).Article 

    Google Scholar 
    25.Holt-Giménez, E. Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric. Ecosyst. Environ. 93, 87–105 (2002).Article 

    Google Scholar 
    26.Slette, I. J. et al. How ecologists define drought, and why we should do better. Glob. Change Biol. 25, 3193–3200 (2019).Article 

    Google Scholar 
    27.Tirivarombo, S., Osupile, D. & Eliasson, P. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys. Chem. Earth Parts A/B/C 106, 1–10 (2018).Article 

    Google Scholar 
    28.Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).Article 

    Google Scholar 
    29.Gitz, V., Meybeck, A., Lipper, L., Young, C. D. & Braatz, S. Climate change and food security: risks and responses. Food and Agriculture Organization of the United Nations (FAO) Report 110 (2016).30.Walthall, C. L., Anderson, C. J., Baumgard, L. H., Takle, E. & Wright-Morton, L. Climate change and agriculture in the United States: Effects and adaptation. (2013).31.USDA National Agricultural Statistics Service Cropland Data Layer. Published crop-specific data layer. (2019).32.Hake, K. & Grimes, D. in Physiology of cotton 255-264 (Springer, 2010).33.Main, C. L. W288 Cotton Production in Tennessee.  (2012).34.Lal, R. & Shukla, M. K. Principles of soil physics. (CRC Press, 2004).35.Shen, Y., McLaughlin, N., Zhang, X., Xu, M. & Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 8, 1–9 (2018).
    Google Scholar 
    36.Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).CAS 
    Article 

    Google Scholar 
    37.Nouri, A. et al. Crop species in no-tillage summer crop rotations affect soil quality and yield in an Alfisol. Geoderma 345, 51–62 (2019).Article 

    Google Scholar 
    38.Singh, S. et al. Soil organic carbon and aggregation in response to thirty-nine years of tillage management in the southeastern US. Soil Tillage Res. 197, 104523 (2020).Article 

    Google Scholar 
    39.Werner, W., Sanderman, J. & Melillo, J. Decreased soil organic matter in a long‐term soil warming experiment lowers soil water holding capacity and affects soil thermal and hydrological buffering. J. Geophys. Res. 125, e2019JG005158 (2020).CAS 

    Google Scholar 
    40.Blanco-Canqui, H., Mikha, M. M., Presley, D. R. & Claassen, M. M. Addition of cover crops enhances no‐till potential for improving soil physical properties. Soil Sci. Soc. Am. J. 75, 1471–1482 (2011).CAS 
    Article 

    Google Scholar 
    41.Jin, V. L. et al. Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands. Sci. Adv. 5, eaav9318 (2019).CAS 
    Article 

    Google Scholar 
    42.Vincent, L., Zhang, X., Mekis, É., Wan, H. & Bush, E. Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmos.-Ocean 56, 332–349 (2018).Article 

    Google Scholar 
    43.Houghton, J. T. et al. Climate change 2001: the scientific basis.  (The Press Syndicate of the University of Cambridge, 2001).44.Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 1–8 (2018).Article 

    Google Scholar 
    45.Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).Article 

    Google Scholar 
    46.Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).Article 

    Google Scholar 
    47.Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218 (2019).CAS 
    Article 

    Google Scholar 
    48.Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).Article 

    Google Scholar 
    49.Himes, F. Nitrogen, sulfur, and phosphorus and the sequestering of carbon. in Soil processes and the carbon cycle. 315–319 (CRC Press, 2018).50.Li, L. & Schaeffer, S. M. Stabilization mechanisms of isotope-labeled carbon substrates in soil under moisture pulses and conservation agricultural management. Geoderma 380, 114677 (2020).CAS 
    Article 

    Google Scholar 
    51.Nouri, A. et al. Management duration controls the synergistic effect of tillage, cover crop, and nitrogen rate on cotton yield and yield stability. Agric. Ecosyst. Environ. 301, 107007 (2020).CAS 
    Article 

    Google Scholar 
    52.Adams, J. Climate indices, an open source Python library providing reference implementations of commonly used climate indices. Climate indices in Python. (2017).53.McKee, T.B., Doesken, N.J. & Kleist, J. The Relation of Drought Frequency and Duration to Time Scales. Proceedings of the 8th Conference on Applied Climatology. 179-184 (1993).54.Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).Article 

    Google Scholar 
    55.Palmer, W. C. Meteorological Drought. Vol. 30 (US Department of Commerce, Weather Bureau, 1965).56.Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer drought severity index. J. Clim. 17, 2335–2351 (2004).Article 

    Google Scholar 
    57.Culman, S. W. et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 76, 494–504 (2012).CAS 
    Article 

    Google Scholar 
    58.Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).CAS 
    Article 

    Google Scholar 
    59.Kemper, W. & Rosenau, R. Aggregate stability and size distribution. Methods of soil analysis: Part 1 physical and mineralogical. Methods 5, 425–442 (1986).
    Google Scholar 
    60.Fuchs, B. Using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). in NDM Center. Nebraska-Lincoln, Caribbean Drought Workshop. 1–24 (2012).61.Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991).62.Racine, J. S. RStudio: a platform-independent IDE for R and Sweave. (JSTOR, 2012).63.Institute, S. SAS 9.4 Output delivery system: User’s Guide. (SAS Institute, 2014).64.Saxton, A. A macro for converting mean separation output to letter groupings in Proc Mixed. Proc. 23rd SAS Users Group International, 22–25 March 1998, Nashville, 1243–1246 (1998). More

  • in

    Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration

    1.Hotez, P. J. et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e2865 (2014).2.World Health Organization. Prevention and Control of Schistosomiasis and Soil-transmitted Helminthiasis: Report of a WHO Expert Committee (World Health Organization, 2002).3.Montresor, A., Engels, D., Ramsan, M., Foum, A. & Savioli, L. Field test of the ‘dose pole’ for praziquantel in Zanzibar. Trans. R. Soc. Trop. Med. Hyg. 96, 323–324 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.World Health Organization. Helminth Control in School-aged Children: A Guide for Managers of Control Programmes (World Health Organisation, 2006).5.World Health Organization. Schistosomiasis and soil-transmitted helminthiases: numbers of people treated in 2019. Wkly. Epidemiol. Rec. 95, 629–640 (2020).
    Google Scholar 
    6.Kabatereine, N. B. et al. Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull. World Health Organ 85, 91–99 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Bronzan, R. N. et al. Impact of community-based integrated mass drug administration on schistosomiasis and soil-transmitted helminth prevalence in Togo. PLoS Negl. Trop. Dis. 12, e0006551 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Deol, A. K. et al. Schistosomiasis—assessing progress toward the 2020 and 2025 global goals. N. Engl. J. Med. 381, 2519–2528 (2019).9.World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation. https://apps.who.int/iris/bitstream/handle/10665/338712/WHO-HTM-NTD-2012.5-eng.pdf (2012).10.World Health Organization. A road map for neglected tropical diseases 2021–2030. https://www.who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs–NTD-Roadmap.pdf (2020).11.Mutuku, M. W. et al. A search for snail-related answers to explain differences in response of Schistosoma mansoni to praziquantel treatment among responding and persistent hotspot villages along the Kenyan shore of Lake Victoria. Am. J. Tropical Med. Hyg. 101, 65–77 (2019).CAS 
    Article 

    Google Scholar 
    12.Assaré, R. K. et al. Characteristics of persistent hotspots of Schistosoma mansoni in western Côte d’Ivoire. Parasit. Vectors 13, 337 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Kittur, N. et al. Persistent hotspots in schistosomiasis consortium for operational research and evaluation studies for gaining and sustaining control of schistosomiasis after four years of mass drug administration of praziquantel. Am. J. Trop. Med. Hyg. 101, 617–627 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Wiegand, R. E. et al. A persistent hotspot of Schistosoma mansoni infection in a five-year randomized trial of praziquantel preventative chemotherapy strategies. J. Infect. Dis. 216, 1425–1433 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Hedtke, S. M. et al. Genomic epidemiology in filarial nematodes: transforming the basis for elimination program decisions. Front. Genet. 10, 1282 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Doyle, S. R. & Cotton, J. A. Genome-wide approaches to investigate anthelmintic resistance. Trends Parasitol. 35, 289–301 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Crellen, T. et al. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    18.Gower, C. M. et al. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop. 128, 261–274 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Standley, C., Kabatereine, N., Lange, C., Lwambo, N. & Stothard, J. Molecular epidemiology and phylogeography of Schistosoma mansoni around Lake Victoria. Parasitology 137, 1937–1949 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Faust, C. L. et al. Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda. Parasit. Vectors 12, 607 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Stothard, J. R. et al. Molecular epidemiology of Schistosoma mansoni in Uganda: DNA barcoding reveals substantial genetic diversity within Lake Albert and Lake Victoria populations. Parasitology 136, 1813–1824 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Norton, A. J. et al. Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in Tanzania. Am. J. Trop. Med. Hyg. 83, 951–957 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Blanton, R. E. et al. Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int. J. Parasitol. 41, 1093–1099 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Gower, C. M. et al. Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme. Parasit. Vectors 10, 593 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Chevalier, F. D. et al. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathog. 15, e1007881 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Platt, R. N. et al. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Mol. Biol. Evol. 36, 2127–2142 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Shortt, J. A. et al. Population genomic analyses of schistosome parasites highlight critical challenges facing endgame elimination efforts. Sci. Rep. 11, 6884 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Truscott, J. E. et al. A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. Epidemics 18, 29–37 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bouzat, J. L. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv. Genet. 11, 463–478 (2010).Article 

    Google Scholar 
    30.Andrews, P. Praziquantel: mechanisms of anti-schistosomal activity. Pharmacol. Ther. 29, 129–156 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Cioli, D. & Pica-Mattoccia, L. Praziquantel. Parasitol. Res. 90, S3–S9 (2003).32.Caffrey, C. R. Schistosomiasis and its treatment. Future Med. Chem. 7, 675–676 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Rose, H. et al. Widespread anthelmintic resistance in European farmed ruminants: a systematic review. Vet. Rec. 176, 546 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Schwab, A. E., Boakye, D. A., Kyelem, D. & Prichard, R. K. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am. J. Trop. Med. Hyg. 73, 234–238 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Fallon, P. G. & Doenhoff, M. J. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg. 51, 83–88 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Couto, F. F. B. et al. Schistosoma mansoni: a method for inducing resistance to praziquantel using infected Biomphalaria glabrata snails. Mem. Inst. Oswaldo Cruz 106, 153–157 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Mwangi, I. N. et al. Praziquantel sensitivity of Kenyan Schistosoma mansoni isolates and the generation of a laboratory strain with reduced susceptibility to the drug. Int. J. Parasitol. Drugs Drug Resist. 4, 296–300 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Lamberton, P. H. L., Faust, C. L. & Webster, J. P. Praziquantel decreases fecundity in Schistosoma mansoni adult worms that survive treatment: evidence from a laboratory life-history trade-offs selection study. Infect. Dis. Poverty 6, 110 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Stelma, F. F. et al. Efficacy and side effects of praziquantel in an epidemic focus of Schistosoma mansoni. Am. J. Trop. Med. Hyg. 53, 167–170 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Melman, S. D. et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 3, e504 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Crellen, T. et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis. 63, 1151–1159 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.King, C. H., Muchiri, E. M. & Ouma, J. H. Evidence against rapid emergence of praziquantel resistance in Schistosoma haematobium, Kenya. Emerg. Infect. Dis. 6, 585–594 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Gryseels, B. et al. Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop. Med. Int. Health 6, 864–873 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Fenwick, A. & Webster, J. P. Schistosomiasis: challenges for control, treatment and drug resistance. Curr. Opin. Infect. Dis. 19, 577–582 (2006).PubMed 
    Article 

    Google Scholar 
    46.Albonico, M. et al. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy. J. Glob. Antimicrob. Resist 3, 229–236 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fukushige, M., Chase-Topping, M., Woolhouse, M. E. J. & Mutapi, F. Efficacy of praziquantel has been maintained over four decades (from 1977 to 2018): a systematic review and meta-analysis of factors influence its efficacy. PLoS Negl. Trop. Dis. 15, e0009189 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hodgkinson, J. E. et al. Refugia and anthelmintic resistance: concepts and challenges. Int. J. Parasitol. Drugs Drug Resist. 10, 51–57 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Walker, M. et al. New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel. Parasit. Vectors 9, 41 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Kittur, N. et al. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with praziquantel for control of schistosomiasis. Am. J. Trop. Med. Hyg. 97, 1810–1817 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Levecke, B. et al. Evaluation of the therapeutic efficacy of praziquantel against schistosomes in seven countries with ongoing large-scale deworming programs. Int. J. Parasitol. Drugs Drug Resist. 14, 183–187 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110, 409–419 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Kohn, A. B., Anderson, P. A. V., Roberts-Misterly, J. M. & Greenberg, R. M. Schistosome Calcium Channel β Subunits: unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. J. Biol. Chem. 276, 36873–36876 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Greenberg, R. M. Are Ca2+ channels targets of praziquantel action? Int. J. Parasitol. 35, 1–9 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Pica-Mattoccia, L. et al. Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Exp. Parasitol. 115, 344–351 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Nogi, T., Zhang, D., Chan, J. D. & Marchant, J. S. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel β subunits: subversion of flatworm regenerative polarity. PLoS Negl. Trop. Dis. 3, e464 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Kohn, A. B., Roberts-Misterly, J. M., Anderson, P. A. V., Khan, N. & Greenberg, R. M. Specific sites in the Beta Interaction Domain of a schistosome Ca2+ channel beta subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127, 349–356 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Valle, C. et al. Sequence and level of endogenous expression of calcium channel β subunits in Schistosoma mansoni displaying different susceptibilities to praziquantel. Mol. Biochem. Parasitol. 130, 111–115 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Park, S.-K. et al. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J. Biol. Chem. https://doi.org/10.1074/jbc.AC119.011093 (2019).61.Park, S.-K. et al. Mechanism of praziquantel action at a parasitic flatworm ion channel. Preprint at bioRxiv https://doi.org/10.1101/2021.03.09.434291 (2021).62.Le Clec’h, W., Chevalier, F. D., Mattos, A. C. A. & Strickland, A. Genetic analysis of praziquantel resistance in schistosome parasites implicates a Transient Receptor Potential channel. Preprint at bioRxiv https://doi.org/10.1101/2021.06.09.447779 (2021).63.Standley, C. et al. Intestinal schistosomiasis and soil-transmitted helminthiasis in Ugandan schoolchildren: a rapid mapping assessment. Geospat. Health 4, 39–53 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Steinauer, M. L., Hanelt, B., Agola, L. E., Mkoji, G. M. & Loker, E. S. Genetic structure of Schistosoma mansoni in western Kenya: the effects of geography and host sharing. Int. J. Parasitol. 39, 1353–1362 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Agola, L. E. et al. Genetic diversity and population structure of Schistosoma mansoni within human infrapopulations in Mwea, central Kenya assessed by microsatellite markers. Acta Trop. 111, 219–225 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Gower, C. M. et al. Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali. Parasitology 138, 978–994 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Betson, M., Sousa-Figueiredo, J. C., Kabatereine, N. B. & Stothard, J. R. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers. PLoS Negl. Trop. Dis. 7, e2561 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Van den Broeck, F. et al. Inbreeding within human Schistosoma mansoni: do host-specific factors shape the genetic composition of parasite populations? Heredity 113, 32–41 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Thiele, E. A., Sorensen, R. E., Gazzinelli, A. & Minchella, D. J. Genetic diversity and population structuring of Schistosoma mansoni in a Brazilian village. Int. J. Parasitol. 38, 389–399 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Kebede, T., Negash, Y. & Erko, B. Schistosoma mansoni infection in human and nonhuman primates in selected areas of Oromia Regional State, Ethiopia. J. Vector Borne Dis. 55, 116–121 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Aemero, M. et al. Genetic diversity, multiplicity of infection and population structure of Schistosoma mansoni isolates from human hosts in Ethiopia. BMC Genet. 16, 137 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Neves, M. I., Webster, J. P. & Walker, M. Estimating helminth burdens using sibship reconstruction. Parasit. Vectors 12, 441 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Mawa, P. A., Kincaid-Smith, J., Tukahebwa, E. M., Webster, J. P. & Wilson, S. Schistosomiasis morbidity hotspots: roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol. 12, 751 (2021).
    Google Scholar 
    74.Theron, A., Sire, C., Rognon, A., Prugnolle, F. & Durand, P. Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology 129, 571–585 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Parker, M. et al. Border parasites: schistosomiasis control among Uganda’s fisherfolk. J. East. Afr. Stud. 6, 98–123 (2012).Article 

    Google Scholar 
    76.Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28, 659–669 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Gilleard, J. S. & Redman, E. Genetic diversity and population structure of haemonchus contortus. Adv. Parasitol. 93, 31–68 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Huyse, T. et al. Regular treatments of praziquantel do not impact on the genetic make-up of Schistosoma mansoni in Northern Senegal. Infect. Genet. Evol. 18, 100–105 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Lelo, A. E. et al. No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in mwea, central kenya, a heavy transmission area. PLoS Negl. Trop. Dis. 8, e3221 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.French, M. D. et al. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Trop. 128, 196–205 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Van den Broeck, F., Vanoverbeeke, J., Polman, K. & Huyse, T. A Darwinian outlook on schistosomiasis elimination. Preprint at bioRxiv. https://doi.org/10.1101/2020.10.28.358523 (2020).82.Hayeshi, R., Masimirembwa, C., Mukanganyama, S. & Ungell, A.-L. B. The potential inhibitory effect of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur. J. Pharm. Sci. 29, 70–81 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Hines-Kay, J. et al. Transcriptional analysis of Schistosoma mansoni treated with praziquantel in vitro. Mol. Biochem. Parasitol. 186, 87–94 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Lespine, A., Ménez, C., Bourguinat, C. & Prichard, R. K. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist. 2, 58–75 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    85.Greenberg, R. M. ABC multidrug transporters in schistosomes and other parasitic flatworms. Parasitol. Int. 62, 647–653 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Redman, E. et al. The emergence of resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps. PLoS Neglected Tropical Dis. 9, e0003494 (2015).Article 
    CAS 

    Google Scholar 
    88.Doyle, S. R. et al. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl. Trop. Dis. 11, e0005816 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Choi, Y.-J. et al. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet. 13, e1006857 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Chami, G. F. et al. Influence of Schistosoma mansoni and hookworm infection intensities on anaemia in Ugandan villages. PLoS Negl. Trop. Dis. 9, e0004193 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Adriko, M. et al. Impact of a national deworming campaign on the prevalence of soil-transmitted helminthiasis in Uganda (2004–2016): implications for national control programs. PLoS Negl. Trop. Dis. 12, e0006520 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Webster, J. P., Gower, C. M. & Norton, A. J. Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts. Evol. Appl. 1, 66–83 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Leathwick, D. M., Ganesh, S. & Waghorn, T. S. Evidence for reversion towards anthelmintic susceptibility in Teladorsagia circumcincta in response to resistance management programmes. Int. J. Parasitol. Drugs Drug Resist. 5, 9–15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kenyon, F. et al. The role of targeted selective treatments in the development of refugia-based approaches to the control of gastrointestinal nematodes of small ruminants. Vet. Parasitol. 164, 3–11 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Chabasse, D., Bertrand, G., Leroux, J. P., Gauthey, N. & Hocquet, P. Developmental bilharziasis caused by Schistosoma mansoni discovered 37 years after infestation. Bull. Soc. Pathol. Exot. Filiales 78, 643–647 (1985).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Warren, K. S., Mahmoud, A. A., Cummings, P., Murphy, D. J. & Houser, H. B. Schistosomiasis mansoni in Yemeni in California: duration of infection, presence of disease, therapeutic management. Am. J. Trop. Med. Hyg. 23, 902–909 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.William, S. et al. Stability and reproductive fitness of Schistosoma mansoni isolates with decreased sensitivity to praziquantel. Int. J. Parasitol. 31, 1093–1100 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Viana, M., Faust, C. L., Haydon, D. T., Webster, J. P. & Lamberton, P. H. L. The effects of subcurative praziquantel treatment on life‐history traits and trade‐offs in drug‐resistant Schistosoma mansoni. Evol. Appl. 11, 488–500 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Standley, C. J., Goodacre, S. L., Wade, C. M. & Stothard, J. R. The population genetic structure of Biomphalaria choanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. Parasit. Vectors 7, 524 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Mitta, G. et al. The compatibility between Biomphalaria glabrata snails and Schistosoma mansoni: an increasingly complex puzzle. Adv. Parasitol. 97, 111–145 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Rowel, C. et al. Environmental epidemiology of intestinal schistosomiasis in Uganda: population dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with observations on natural infections with digenetic trematodes. BioMed. Res. Int. 2015, 1–11 (2015).Article 

    Google Scholar 
    102.Anderson, L. C., Loker, E. S. & Wearing, H. J. Modeling schistosomiasis transmission: the importance of snail population structure. Parasit. Vectors 14, 94 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Nikolakis, Z. L. et al. Patterns of relatedness and genetic diversity inferred from whole genome sequencing of archival blood fluke miracidia (Schistosoma japonicum). PLoS Negl. Trop. Dis. 15, e0009020 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Kovač, J. et al. Pharmacokinetics of praziquantel in Schistosoma mansoni- and Schistosoma haematobium-infected school- and preschool-aged children. Antimicrob. Agents Chemother. 62, e02253-17 (2018).105.Secor, W. E. Faculty opinions recommendation of sensitivity and specificity of multiple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated-praziquantel treatment. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.718871676.793510451 (2015).106.Stothard, J. R., Sousa-Figueiredo, J. C. & Navaratnam, A. M. D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti. Infect. Ther. 11, 733–752 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Fenwick, A. et al. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136, 1719–1730 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Crellen, T. et al. Schistosoma mansoni egg count reduction data, Ugandan Primary Schools 2014. https://doi.org/10.13140/RG.2.2.12687.84640 (2018).110.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    111.Emery, A. M., Allan, F. E., Rabone, M. E. & Rollinson, D. Schistosomiasis collection at NHM (SCAN). Parasites Vectors 5, 1 (2012).Article 

    Google Scholar 
    112.Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Protasio, A. V. et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 6, e1455 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).117.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.Gómez-Rubio, V. ggplot2—elegant graphics for data analysis (2nd edn). J. Stat. Softw., Book Rev. 77, 1–3 (2017).
    Google Scholar 
    121.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2018).124.Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    126.Korunes, K. L. & Samuk, K. pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–1368 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Kassambara, A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0.25 (2018).128.Criscione, C. D., Valentim, C. L. L., Hirai, H., LoVerde, P. T. & Anderson, T. J. C. Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol. 10, R71 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    129.Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.R Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna (2013).135.Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.7.0 (2016).136.Tange, O. GNU Parallel: The Command-Line Power Tool | USENIX. https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool (2011).137.Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Berger, D. et al. Data release: Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration. https://doi.org/10.5281/ZENODO.4940588 (2021).139.Berger, D. duncanberger/PZQ_POPGEN. https://doi.org/10.5281/zenodo.4975909 (2021). More

  • in

    COVID vaccine inequity, species swaps — the week in infographics

    NEWS
    06 August 2021

    COVID vaccine inequity, species swaps — the week in infographics

    Nature highlights three key infographics from the week in science and research.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Inequity in vaccine accessRich nations’ plans to administer booster doses of COVID-19 vaccine to people who have been fully vaccinated have drawn criticism from many global health researchers, who highlight the growing disparities between wealth and access to vaccines. A July report from KFF, a health-policy organization based in San Francisco, California, finds that at current vaccination rates, low-income countries won’t achieve substantial levels of protection until at least 2023.

    Sources: KFF/Our World in Data/World Bank

    The changing face of ecosystemsDespite alarming declines in some animal and plant species, total biodiversity in many ecosystems is not decreasing. But that doesn’t mean such ecosystems are static. In fact, the mix of species in local communities is changing rapidly almost everywhere on Earth. As some inhabitants disappear, colonizers move in and add to species richness.

    Source: S. A. Blowes et al. Science 366, 339–345 (2019).

    Genetics behind the menopauseGenetic variants associated with age at onset of menopause have been identified in a large-scale genomic analysis, findings that bring scientists a step closer to predicting and treating early menopause. When the DNA of egg cells in ovaries is damaged in mice, expression of the gene Chek1 promotes DNA repair, whereas expression of Chek2 promotes destruction of the affected cell. The analysis found that variants of the human equivalent of Chek2 and other genes involved in the response to DNA damage are associated with differences in age at natural menopause. It also showed that mice carrying an extra copy of Chek1, or lacking expression of Chek2, had a longer reproductive age span than did typical mice.

    doi: https://doi.org/10.1038/d41586-021-02151-z

    Related Articles

    COVID boosters for wealthy nations spark outrage

    The world’s species are playing musical chairs: how will it end?

    Genomic analysis identifies variants that can predict the timing of menopause

    Read the paper: Genetic insights into biological mechanisms governing human ovarian ageing

    Subjects

    SARS-CoV-2

    Vaccines

    Biodiversity

    Genetics

    Latest on:

    SARS-CoV-2

    Delta threatens rural regions that dodged earlier COVID waves
    News 06 AUG 21

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Vaccines

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Text-message nudges encourage COVID vaccination
    News & Views 02 AUG 21

    Biodiversity

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Biodiversity needs every tool in the box: use OECMs
    Comment 26 JUL 21

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    Jobs

    Chief Editor – Nature Water

    Springer Nature
    London, United Kingdom

    Scientific director

    Federal Institute for Risk Assessment (BfR)
    Berlin, Germany

    PhD Student (m/f/d) in the field of Computer Vision / Data Scientist (m/f/d) in Cancer Research

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    PhD Students (m/f/d)

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Biotic threats for 23 major non-native tree species in Europe

    Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Str. 82, 1190, Wien, AustriaElisabeth PötzelsbergerEuropean Forest Institute, Platz der Vereinten Nationen 7, 53113, Bonn, GermanyElisabeth PötzelsbergerForest Entomology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandMartin M. GossnerETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, SwitzerlandMartin M. GossnerForest Protection, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandLudwig Beenken & Sophie StrohekerFaculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Kraków, PolandAnna Gazda & Srđan KerenForest Research, Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Great BritainMichal PetrNatural Resources Institute Finland, Luke, Latokartanonkaari 9, 00790, Helsinki, FinlandTiina YliojaFEM Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaThe EFI Project Centre on Mountain Forests MOUNTFOR, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaForest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, 57006, GreeceDimitrios N. AvtzisWalloon Public service (SPW), 23 av Maréchal Juin, 5030, Gembloux, BelgiumElodie Bay & Marjana WestergrenSlovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, SloveniaMaarten De Groot & Nikica OgrisInstitute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, 51006, Tartu, EstoniaRein DrenkhanFaculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229, Suceava, RomaniaMihai-Leonard DudumanInstitute for Plant Protection in Horticulture and Forests, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyRasmus EnderleDepartment of Entomology, Phytopathologyy and Game fauna, Forest Research Institute – Bulgarian Academy of Sciences, St. Kliment Ohridski 132, 1756, Sofia, BulgariaMargarita GeorgievaDepartment of Fungal Plant Pathology in Forestry, Agriculture and Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Innocamp Steinkjer, skolegata 22, 7713, Steinkjer, NorwayAri M. HietalaInstitute for National and International Plant Health, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyBjörn HoppeBiodiversité, Gènes et Communautés (BioGeCo), French National Institute for Agriculture, Food, and Environment (INRAE), University Bordeaux, F-33610, Cestas, FranceHervé JactelDepartment of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Vecna pot 83, 1000, Ljubljana, SloveniaKristjan JarniFaculty of Forestry, University of Banja Luka, Bulevar vojvode Stepe Stepanovica 75A, 51000, Banja Luka, Bosnia and HerzegovinaSrđan KerenForest Research Institute, National Agricultural Research and Innovation Centre, Farkassziget 3, H-4150, Püspökladány, HungaryZsolt KeseruDepartment of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaCentre for Climate Change Research, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaInstitute of Plant Genetics and Biotechnology SAS, Akademicka 2, P. O. Box 39A, SK-950 07, Nitra, SlovakiaAndrej KormuťákUnidade de Xestión Ambiental e Forestal Sostible, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, SpainMaría Josefa LombarderoLaboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics (NICPB), Akadeemia tee 23, 12618, Tallinn, EstoniaAljona LukjanovaFaculty of Forest Science and Ecology, Agriculture Academy, Vytautas Magnus University, Studentu 11, Akademija, 53361, Kaunas, LithuaniaVitas MarozasMediterranean Facility, European Forest Institute, Sant Pau Art Nouveau Site, Sant Antoni M. Claret 167, 08025, Barcelona, SpainEdurad MauriCentro di Ricerca Foreste e Legno, Council for agricultural research and analysis of the agricultural economy (CREA), Viale Santa Margherita, 80, 52100, Arezzo, ItalyMaria Cristina MonteverdiNorwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431, Ås, NorwayPer Holm Nygaard“Marin Drăcea” National Research-Development Institute in Forestry, Station Câmpulung Moldovenesc, Calea Bucovinei, 73bis, 725100, Câmpulung Moldovenesc, RomaniaNicolai OleniciEFI Atlantic, European Forest Institute, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioIEFC Institut Européen de la Forêt Cultivée, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioDepartment of Forest Protection, Austrian Federal Research Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131, Vienna, AustriaBernhard PernyCentre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, PortugalGlória PintoCoillte Unit 27, Coillte Forest, Danville Business Park, Kilkenny, R95 YT95, IrelandMichael PowerDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C., GermanyHans Peter RavnUCD Forestry, School of Agriculture and Food Science, University College Dublin, UCD Forestry, School of Agriculture and Food Science, University College Dublin, D04 V1W8, Dublin, IrelandIgnacio SevillanoForest Research, Forestry Commission, Northern Research Station, Roslin, Midlothian, EH25 9SY, Great BritainPaul TaylorInstitute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization “Demeter”-, Terma Alkmanos, 11528, Athens, GreecePanagiotis TsopelasFaculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00, Brno, Czech RepublicJosef UrbanSiberian Federal University, Svobodnyy Ave, 79, 660041, Krasnoyarsk, RussiaJosef UrbanInstitute of Forestry and Rural Engineering, EstonianUniversity of Life Sciences, Kreutzwaldi 5, 51006, Tartu, EstoniaKaljo VoolmaSouthern Swedish Forest Research Center, PO Box 49, SE-230 53, Alnarp, SwedenJohanna WitzellPolissya Branch, Ukrainian Research Institute of Forestry and Forest Melioration, Neskorenych st. 2, Dovzhik, UkraineOlga ZborovskaInstitute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Antona Cehova 13d, 21 000, Novi Sad, SerbiaMilica ZlatkovicE.P., A.G, M.P., T.Y. and N.L.P. developed the concept and design of the study and organised the data collection, E.P., M.M.G. and L.B. managed the database, homogenised and cleaned the data, E.P. and M.M.G. performed the analysis and all other co-authors collected and synthesised the information for their respective countries. E.P., M.M.G. and L.B. wrote the paper and all other co-authors reviewed the paper. More

  • in

    Rice paddy soils are a quantitatively important carbon store according to a global synthesis

    1.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).Article 
    CAS 

    Google Scholar 
    2.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    3.Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).4.Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).
    Google Scholar 
    5.Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).Article 

    Google Scholar 
    6.Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).7.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    8.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 
    CAS 

    Google Scholar 
    9.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    10.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).CAS 
    Article 

    Google Scholar 
    11.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    12.Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).13.Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).Article 
    CAS 

    Google Scholar 
    14.Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).CAS 
    Article 

    Google Scholar 
    15.Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 
    Article 

    Google Scholar 
    16.FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).17.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).CAS 
    Article 

    Google Scholar 
    18.Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).Article 

    Google Scholar 
    19.Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).CAS 
    Article 

    Google Scholar 
    20.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    21.Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).Article 
    CAS 

    Google Scholar 
    22.Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).Article 

    Google Scholar 
    23.Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).Article 

    Google Scholar 
    24.Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).CAS 
    Article 

    Google Scholar 
    25.Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).CAS 
    Article 

    Google Scholar 
    26.Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).Article 

    Google Scholar 
    27.Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).CAS 
    Article 

    Google Scholar 
    28.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    29.Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).CAS 
    Article 

    Google Scholar 
    30.Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).CAS 
    Article 

    Google Scholar 
    31.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    32.Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).Article 

    Google Scholar 
    33.Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).CAS 
    Article 

    Google Scholar 
    34.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    35.Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).36.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).Article 

    Google Scholar 
    37.Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).38.Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).Article 

    Google Scholar 
    39.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    40.Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).Article 

    Google Scholar 
    41.Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).Article 

    Google Scholar 
    42.Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).CAS 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).CAS 
    Article 

    Google Scholar 
    44.Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).CAS 
    Article 

    Google Scholar 
    45.Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).CAS 
    Article 

    Google Scholar 
    46.Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).Article 

    Google Scholar 
    47.Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).CAS 
    Article 

    Google Scholar 
    48.Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 
    Article 

    Google Scholar 
    49.Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).CAS 
    Article 

    Google Scholar 
    50.Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    51.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).Article 

    Google Scholar 
    52.Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).CAS 
    Article 

    Google Scholar 
    53.Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).CAS 
    Article 

    Google Scholar 
    54.Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).CAS 
    Article 

    Google Scholar 
    55.Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).CAS 
    Article 

    Google Scholar 
    56.Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).CAS 
    Article 

    Google Scholar 
    57.Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).Article 

    Google Scholar 
    58.Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).59.Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).CAS 
    Article 

    Google Scholar 
    60.Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).Article 

    Google Scholar 
    61.Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).CAS 
    Article 

    Google Scholar 
    62.Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).Article 

    Google Scholar 
    63.Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).
    Google Scholar 
    64.Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).Article 

    Google Scholar 
    65.IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).66.Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).CAS 
    Article 

    Google Scholar 
    67.Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).Article 

    Google Scholar 
    68.Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).Article 

    Google Scholar 
    69.Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).Article 

    Google Scholar 
    70.Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).CAS 

    Google Scholar 
    71.Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    CAS 

    Google Scholar 
    72.Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).Article 

    Google Scholar 
    73.Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).CAS 
    Article 

    Google Scholar 
    74.Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).Article 

    Google Scholar 
    75.Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).CAS 
    Article 

    Google Scholar 
    76.Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).Article 

    Google Scholar 
    77.Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).Article 

    Google Scholar 
    78.Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 
    Article 

    Google Scholar 
    79.Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).CAS 
    Article 

    Google Scholar 
    80.Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).Article 

    Google Scholar 
    81.Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).Article 

    Google Scholar 
    82.Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).83.Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).Article 

    Google Scholar 
    84.Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).85.Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).
    Google Scholar 
    86.FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).87.Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).88.Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).CAS 
    Article 

    Google Scholar 
    89.Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).Article 

    Google Scholar 
    90.Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).91.Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).CAS 
    Article 

    Google Scholar 
    92.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    93.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    94.Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).Article 
    CAS 

    Google Scholar  More