More stories

  • in

    An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

    1.Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).Article 

    Google Scholar 
    2.Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).Book 

    Google Scholar 
    3.Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).Article 

    Google Scholar 
    4.Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).Article 

    Google Scholar 
    8.Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).Article 

    Google Scholar 
    10.Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).Article 

    Google Scholar 
    13.Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).Article 

    Google Scholar 
    17.Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).18.Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).19.McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).Article 

    Google Scholar 
    21.Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).
    Google Scholar 
    24.Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).
    Google Scholar 
    28.Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).Article 

    Google Scholar 
    29.Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).Article 

    Google Scholar 
    31.Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).
    Google Scholar 
    32.Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).CAS 
    Article 

    Google Scholar 
    34.Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).
    Google Scholar 
    35.Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).CAS 

    Google Scholar 
    38.Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).
    Google Scholar 
    39.Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).CAS 

    Google Scholar 
    40.Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).Article 

    Google Scholar 
    41.Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).CAS 
    Article 

    Google Scholar 
    42.Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).Article 

    Google Scholar 
    44.Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).45.Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Harnessing the power of host–microbe symbioses to address grand challenges

    1.McFall-Ngai, M. et al. Animals in a bacterial world: a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    Article 

    Google Scholar 
    2.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    Article 

    Google Scholar 
    3.Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).CAS 
    Article 

    Google Scholar 
    4.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    Article 

    Google Scholar 
    6.Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968 (2018).Article 

    Google Scholar 
    7.Bosch, T. C. G., Guillemin, K. & McFall-Ngai, M. Evolutionary “experiments” in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host–microbe interactions. Bioessays 41, e1800256 (2019).8.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 
    PubMed 

    Google Scholar 
    9.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 
    PubMed 

    Google Scholar 
    10.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).Article 

    Google Scholar  More

  • in

    Gene drives gaining speed

    1.Serebrovsky, A. S. On the possibility of a new method for the control of insect pests. Zool. Zh. 19, 618–630 (1940).
    Google Scholar 
    2.Curtis, C. F. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218, 368–369 (1968). This paper is one of the first to describe how reciprocal chromosomal translocations could be used to drive a favoured linked trait in a threshold-dependent fashion.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Dawkins, R. The Selfish Gene Vol. 345 (Oxford University Press, 1976).4.Bastide, H. et al. Rapid rise and fall of selfish sex-ratio X chromosomes in Drosophila simulans: spatiotemporal analysis of phenotypic and molecular data. Mol. Biol. Evol. 28, 2461–2470 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Corbett-Detig, R., Medina, P., Frerot, H., Blassiau, C. & Castric, V. Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. Evol. Lett. 3, 93–103 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Kingan, S. B., Garrigan, D. & Hartl, D. L. Recurrent selection on the Winters sex-ratio genes in Drosophila simulans. Genetics 184, 253–265 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McLaughlin, R. N. Jr. & Malik, H. S. Genetic conflicts: the usual suspects and beyond. J. Exp. Biol. 220, 6–17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Presgraves, D. C., Gerard, P. R., Cherukuri, A. & Lyttle, T. W. Large-scale selective sweep among segregation distorter chromosomes in African populations of Drosophila melanogaster. PLoS Genet. 5, e1000463 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Seymour, D. K., Chae, E., Arioz, B. I., Koenig, D. & Weigel, D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity 122, 294–304 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Courret, C., Chang, C. H., Wei, K. H., Montchamp-Moreau, C. & Larracuente, A. M. Meiotic drive mechanisms: lessons from Drosophila. Proc. Biol. Sci. 286, 20191430 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Kusano, A., Staber, C., Chan, H. Y. & Ganetzky, B. Closing the (Ran)GAP on segregation distortion in Drosophila. Bioessays 25, 108–115 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Merel, V., Boulesteix, M., Fablet, M. & Vieira, C. Transposable elements in Drosophila. Mob. DNA 11, 23 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Boulesteix, M. & Biemont, C. Transposable elements in mosquitoes. Cytogenet. Genome Res. 110, 500–509 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Lee, Y. C. & Langley, C. H. Transposable elements in natural populations of Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1219–1228 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Kelleher, E. S. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics 203, 1513–1531 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Majumdar, S. & Rio, D. C. P transposable elements in drosophila and other eukaryotic organisms. Microbiol. Spectr. 3, MDNA3–0004-2014 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    17.Burns, K. H. & Boeke, J. D. Human transposon tectonics. Cell 149, 740–752 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Doring, H. P., Tillmann, E. & Starlinger, P. DNA sequence of the maize transposable element Dissociation. Nature 307, 127–130 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Wallau, G. L., Capy, P., Loreto, E. & Hua-Van, A. Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 15, 727 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Hawkins, J. S., Hu, G., Rapp, R. A., Grafenberg, J. L. & Wendel, J. F. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51, 11–18 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Biemont, C., Vieira, C., Borie, N. & Lepetit, D. Transposable elements and genome evolution: the case of Drosophila simulans. Genetica 107, 113–120 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Buchman, A. B., Ivy, T., Marshall, J. M., Akbari, O. S. & Hay, B. A. Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in drosophila. ACS Synth. Biol. 7, 1359–1370 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Akbari, O. S. et al. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. ACS Synth. Biol. 3, 915–928 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Buchman, A., Marshall, J. M., Ostrovski, D., Yang, T. & Akbari, O. S. Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proc. Natl Acad. Sci. USA 115, 4725–4730 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Champer, J., Zhao, J., Champer, S. E., Liu, J. & Messer, P. W. Population dynamics of underdominance gene drive systems in continuous space. ACS Synth. Biol. 9, 779–792 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Chen, C. C. et al. EXO1 suppresses double-strand break induced homologous recombination between diverged sequences in mammalian cells. DNA Repair. 57, 98–106 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Leftwich, P. T. et al. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Raban, R. R., Marshall, J. M. & Akbari, O. S. Progress towards engineering gene drives for population control. J. Exp. Biol. 223 (Suppl. 1), jeb208181 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Ward, C. M. et al. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution 65, 1149–1162 (2011).PubMed 
    Article 

    Google Scholar 
    30.Oberhofer, G., Ivy, T. & Hay, B. A. Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements. Proc. Natl Acad. Sci. USA 117, 9013–9021 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Oberhofer, G., Ivy, T. & Hay, B. A. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc. Natl Acad. Sci. USA 116, 6250–6259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Champer, J. et al. A toxin-antidote CRISPR gene drive system for regional population modification. Nat. Commun. 11, 1082 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Yen, P. S. & Failloux, A. B. A review: Wolbachia-based population replacement for mosquito control shares common points with genetically modified control approaches. Pathogens 9, 404 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    34.O’Neill, S. L. The use of wolbachia by the world mosquito program to interrupt transmission of aedes aegypti transmitted viruses. Adv. Exp. Med. Biol. 1062, 355–360 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    35.Niang, E. H. A., Bassene, H., Fenollar, F. & Mediannikov, O. Biological control of mosquito-borne diseases: the potential of wolbachia-based interventions in an IVM framework. J. Trop. Med. 2018, 1470459 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Chevalier, B. S. & Stoddard, B. L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 29, 3757–3774 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Macreadie, I. G., Scott, R. M., Zinn, A. R. & Butow, R. A. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41, 395–402 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Rong, Y. S. & Golic, K. G. The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165, 1831–1842 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Chan, Y. S., Huen, D. S., Glauert, R., Whiteway, E. & Russell, S. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience. PLoS ONE 8, e54130 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011). This study is the first demonstration of nuclease-mediated gene drive in mosquitoes based on the homing endonuclease gene I-SceI.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409–439 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This foundational study developed the most widely used dual synthetic CRISPR system consisting of Cas9 endonuclease and gRNA components.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Doudna, J. A., Sternberg, S. H. A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution 281 (Houghton Mifflin Harcourt, 2017).45.Gantz, V. M. & Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015). This study reported the first CRISPR-based gene drive in a metazoan organism (D. melanogaster) with a specialized germline.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA 112, E6736–E6743 (2015). This study describes the first efficient CRISPR-based gene drive system in mosquitoes, which carried a dual anti-malarial effector cassette.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016). This study describes the first efficient CRISPR-based suppression gene drive system in mosquitoes.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Kyrou, K. et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018). This study describes a highly efficient suppression gene drive system in mosquitoes targeting an invariant genome target site in the doublesex locus.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Li, M. et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife 9, e51701 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Grunwald, H. A. et al. Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline. Nature 566, 105–109 (2019). This study provided the first proof-of-principle gene drive system in mammals, which selectively sustained drive via the female germline.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. & Church, G. M. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 33, 1250–1255 (2015). This study demonstrated CRISPR-based gene conversion in diploid yeast, which could then be transmitted meiotically.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Valderrama, J. A., Kulkarni, S. S., Nizet, V. & Bier, E. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat. Commun. 10, 5726 (2019). This study generalizes the concept of gene drive to bacteria, where it is applied to efficiently reduce the frequency of antibiotic reistance.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, e03401 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Adolfi, A. et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat. Commun. 11, 5553 (2020). This study reports on the first recoded gene drive in mosquitoes that drove efficiently through both males and females based on the process of lethal/sterile mosaicism.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Champer, J. et al. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proc. Natl Acad. Sci. USA 117, 24377–24383 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Kandul, N. P., Liu, J., Bennett, J. B., Marshall, J. M. & Akbari, O. S. A confinable home-and-rescue gene drive for population modification. eLife 10, e65939 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Terradas, G. et al. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1480 (2021). This study further develops the strategy of inserting a recoded gene drive in genes essential for viability or reproduction in the context of split drive systems.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Xu, X. S., Gantz, V. M., Siomava, N. & Bier, E. CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity. eLife 6, e30281 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lopez Del Amo, V. et al. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nat. Commun. 11, 352 (2020). This study reports on the reconstitution of a full gene drive from split constituent parts.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Guichard, A. et al. Efficient allelic-drive in Drosophila. Nat. Commun. 10, 1640 (2019). The study develops two allelic drive systems, copy-cutting and copy-grafting, to propagate favoured alleles of an essential gene.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Kandul, N. P. et al. Assessment of a split homing based gene drive for efficient knockout of multiple genes. G3 10, 827–837 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Xu, X.-R. S. et al. Active-genetic neutralizing elements for halting or deleting gene-drives. Mol. Cell 80, 246–262 (2020). This study reports on two drive-neutralizing systems that either inactivate (e-CHACR) or delete and replace (ERACR) a gene drive.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. Biol. Sci. 270, 921–928 (2003). This seminal modelling study provides the theoretical underpinnings for the modern gene-drive field.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.North, A. R., Burt, A. & Godfray, H. C. J. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 17, 26 (2019). This study provides a comprehensive analysis of the perfomance of suppressive gene drives following iterative releases across various topographies.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.North, A. R., Burt, A. & Godfray, H. C. J. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biol. 18, 98 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1–15 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.James, A. A. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol. 21, 64–67 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Gantz, V. M. & Bier, E. The dawn of active genetics. Bioessays 38, 50–63 (2016).PubMed 
    Article 

    Google Scholar 
    69.Macias, V. M. & James, A. A. in Genetic Control of Malaria and Dengue (ed. Adelman, Z. N.) 423–444 (Elsevier Academic Press, 2015).70.Eckhoff, P. A., Wenger, E. A., Godfray, H. C. & Burt, A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc. Natl Acad. Sci. USA 114, E255–E264 (2017). This study provides a detailed analysis of drive parameters relevant to both suppression-based and modification-based drives and is the first to model a drive in the context of a two-dimensional environment.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Hammond, A. M. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 13, e1007039 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Joyce, E. F., Paul, A., Chen, K. E., Tanneti, N. & McKim, K. S. Multiple barriers to nonhomologous DNA end joining during meiosis in Drosophila. Genetics 191, 739–746 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bozas, A., Beumer, K. J., Trautman, J. K. & Carroll, D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 182, 641–651 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Do, A. T., Brooks, J. T., Le Neveu, M. K. & LaRocque, J. R. Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3 4, 425–432 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    75.Wei, D. S. & Rong, Y. S. A genetic screen for DNA double-strand break repair mutations in Drosophila. Genetics 177, 63–77 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Lin, C. C. & Potter, C. J. Non-Mendelian dominant maternal effects caused by CRISPR/Cas9 transgenic components in Drosophila melanogaster. G3 6, 3685–3691 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 13, e1006796 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Anopheles gambiae 1000 Genomes Consortiumet al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96–100 (2017).Article 
    CAS 

    Google Scholar 
    79.Deredec, A., Burt, A. & Godfray, H. C. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179, 2013–2026 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Fasulo, B. et al. A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet. 16, e1008647 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Turner, J. M. Meiotic sex chromosome inactivation. Development 134, 1823–1831 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Simoni, A. et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat. Biotechnol. 38, 1054–1060 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Carballar-Lejarazu, R. & et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae.Proc. Natl Acad. Sci. USA 117, 22805–22814 (2020). This study describes a modification gene drive that propagates with high efficiency through both males and females.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Pham, T. B. et al. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet. 15, e1008440 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Dong, Y., Simoes, M. L. & Dimopoulos, G. Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles. Sci. Adv. 6, eaay5898 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Dong, Y. et al. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 7, e1002458 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Isaacs, A. T. et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc. Natl Acad. Sci. USA 109, E1922–E1930 (2012). This study demonstrates 100% protection against parasite transmission in transgenic mosquitoes carrying a dual anti-parasite effector cassette.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Haber, J. E. TOPping off meiosis. Mol. Cell 57, 577–581 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Hammond, A. et al. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet. 17, e1009321 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Lee, Y. et al. Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics 20, 204 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Callaway, E. Gene drives thwarted by emergence of resistant organisms. Nature 542, 15 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).PubMed 
    Article 

    Google Scholar 
    95.Drury, D. W., Dapper, A. L., Siniard, D. J., Zentner, G. E. & Wade, M. J. CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci. Adv. 3, e1601910 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Schmidt, H. et al. Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nat. Commun. 11, 1425 (2020). This study provides computational evidence that conserved CRISPR cleavage sites are abundant in the genome.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Akbari, O. S. et al. Safeguarding gene drive experiments in the laboratory. Science 349, 927–929 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Li, J. et al. Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae. Proc. Natl Acad. Sci. USA 110, 20675–20680 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Niu, G. et al. The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen. J. Biol. Chem. 292, 11960–11969 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Zhang, G. et al. Anopheles midgut FREP1 mediates plasmodium invasion. J. Biol. Chem. 290, 16490–16501 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Dong, Y., Simoes, M. L., Marois, E. & Dimopoulos, G. CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog. 14, e1006898 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    102.Simoes, M. L., Caragata, E. P. & Dimopoulos, G. Diverse host and restriction factors regulate mosquito-pathogen interactions. Trends Parasitol. 34, 603–616 (2018).PubMed 
    Article 

    Google Scholar 
    103.Nash, A. et al. Integral gene drives for population replacement. Biol. Open 8, bio037762 (2019). This study describes a bipartite drive system that can enable testing of anti-parasite effector cassettes under standard mosquito confinement protocols.CAS 
    PubMed 

    Google Scholar 
    104.Enayati, A., Hanafi-Bojd, A. A., Sedaghat, M. M., Zaim, M. & Hemingway, J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar. J. 19, 258 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Silva, J. J. & Scott, J. G. Conservation of the voltage-sensitive sodium channel protein within the Insecta. Insect Mol. Biol. 29, 9–18 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Casida, J. E. & Durkin, K. A. Novel GABA receptor pesticide targets. Pestic. Biochem. Physiol. 121, 22–30 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Ihara, M., Buckingham, S. D., Matsuda, K. & Sattelle, D. B. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors. Curr. Med. Chem. 24, 2925–2934 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Thapa, S., Lv, M. & Xu, H. Acetylcholinesterase: a primary target for drugs and insecticides. Mini Rev. Med. Chem. 17, 1665–1676 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct; Board on Life Sciences; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values (The National Academies Press, 2016). This comprehensive advisory and historical review document summarizes consensus views for how to safely rear and study gene-drive systems in the laboratory.113.Adelman, Z. et al. Rules of the road for insect gene drive research and testing. Nat. Biotechnol. 35, 716–718 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.James, S. et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in Sub-Saharan Africa: recommendations of a scientific working group(dagger). Am. J. Trop. Med. Hyg. 98, 1–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.James, S. L., Marshall, J. M., Christophides, G. K., Okumu, F. O. & Nolan, T. Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing. Vector Borne Zoonotic Dis. 20, 237–251 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Warmbrod, K. L. et al. Gene Drives: Pursuing Opportunities, Minimizing Risk – A Johns Hopkins University Report on Responsible Governance (Johns Hopkins Bloomberg School of Public Health, Center for Health Security, Johns Hopkins University, 2020).117.Vella, M. R., Gunning, C. E., Lloyd, A. L. & Gould, F. Evaluating strategies for reversing CRISPR-Cas9 gene drives. Sci. Rep. 7, 11038 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    118.Rode, N. O., Courtier-Orgogozo, V. & Debarre, F. Can a population targeted by a CRISPR-based homing gene drive be rescued? G3 10, 3403–3415 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Fedoroff, N., Wessler, S. & Shure, M. Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.Paix, A. et al. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc. Natl Acad. Sci. USA 114, E10745–E10754 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Wu, B., Luo, L. & Gao, X. J. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat. Biotechnol. 34, 137–138 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    122.Taxiarchi, C. et al. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Nat. Commun. 12, 3977 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Conklin, B. R. On the road to a gene drive in mammals. Nature 566, 43–45 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Salkeld, D. J. Vaccines for conservation: plague, prairie dogs & black-footed ferrets as a case study. Ecohealth 14, 432–437 (2017).PubMed 
    Article 

    Google Scholar 
    125.Teem, J. L. et al. Genetic biocontrol for invasive species. Front. Bioeng. Biotechnol. 8, 452 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Godwin, J. et al. Rodent gene drives for conservation: opportunities and data needs. Proc. Biol. Sci. 286, 20191606 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    127.McFarlane, G. R., Whitelaw, C. B. A. & Lillico, S. G. CRISPR-based gene drives for pest control. Trends Biotechnol. 36, 130–133 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    128.Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Koonin, E. V., Makarova, K. S., Wolf, Y. I. & Krupovic, M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21, 119–131 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    130.Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Wiegand, T. & Wiedenheft, B. CRISPR Surveillance Turns Transposon Taxi. CRISPR J. 3, 10–12 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Hamilton, T. A. et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 10, 4544 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Price, V. J. et al. Enterococcus faecalis CRISPR-cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere 4, e00464-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L. & Duerkop, B. A. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob. Agents Chemother. 63, e01454-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    136.Carraro, N. et al. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. Microbiology 162, 622–632 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    137.Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    138.Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    140.Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    141.Park, J. Y. et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci. Rep. 7, 44929 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    142.Pazda, M., Kumirska, J., Stepnowski, P. & Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems – a review. Sci. Total. Env. 697, 134023 (2019).CAS 
    Article 

    Google Scholar 
    143.Kraemer, S. A., Ramachandran, A. & Perron, G. G. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7, 180 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    144.Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I. & Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol. 36, 971–976 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Bier, E. & Nizet, V. Driving to safety: CRISPR-based genetic approaches to reducing antibiotic resistance. Trends Genet. https://doi.org/10.1016/j.tig.2021.02.007 (2021).Article 
    PubMed 

    Google Scholar 
    146.Rossati, A. et al. Climate, environment and transmission of malaria. Infez. Med. 24, 93–104 (2016).PubMed 

    Google Scholar 
    147.Fontenille, D. & Powell, J. R. From anonymous to public enemy: how does a mosquito become a feared arbovirus vector? Pathogens 9, 265 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    148.Lidani, K. C. F. et al. Chagas disease: from discovery to a worldwide health problem. Front. Public Health 7, 166 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    149.Buscher, P., Cecchi, G., Jamonneau, V. & Priotto, G. Human African trypanosomiasis. Lancet 390, 2397–2409 (2017).PubMed 
    Article 

    Google Scholar 
    150.Desjeux, P. Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 27, 305–318 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    151.Saxena, V., Bolling, B. G. & Wang, T. West nile virus. Clin. Lab. Med. 37, 243–252 (2017).PubMed 
    Article 

    Google Scholar 
    152.Simon, L. V., Kong, E. L. & Graham, C. in St. Louis Encephalitis (StatPearls, 2020).153.Feng, X. et al. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nat. Commun. 12, 2960 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    154.Nepomichene, T. N., Andrianaivolambo, L., Boyer, S. & Bourgouin, C. Efficient method for establishing F1 progeny from wild populations of Anopheles mosquitoes. Malar. J. 16, 21 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    155.Marchand, R. P. A new cage for observing mating behavior of wild Anopheles gambiae in the laboratory. J. Am. Mosq. Control. Assoc. 1, 234–236 (1985).CAS 
    PubMed 

    Google Scholar 
    156.Nunes-da-Fonseca, R., Berni, M., Tobias-Santos, V., Pane, A. & Araujo, H. M. Rhodnius prolixus: from classical physiology to modern developmental biology. Genesis https://doi.org/10.1002/dvg.22995 (2017).Article 
    PubMed 

    Google Scholar 
    157.Chaverra-Rodriguez, D. et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9, 3008 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    158.Macias, V. M. et al. Cas9-mediated gene-editing in the malaria mosquito anopheles stephensi by ReMOT Control. G3 10, 1353–1360 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    159.Chaverra-Rodriguez, D. et al. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein. Insect Mol. Biol. 29, 569–577 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    160.Heu, C. C., McCullough, F. M., Luan, J. & Rasgon, J. L. CRISPR-Cas9-based genome editing in the silverleaf whitefly (Bemisia tabaci). CRISPR J. 3, 89–96 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    161.Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. eLife 8, e41873 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    162.Carballar-Lejarazu, R. & James, A. A. Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health 111, 424–435 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Annas, G. J. et al. A code of ethics for gene drive research. CRISPR J. 4, 19–24 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Bier, E. & Sober, E. Gene editing and the war against malaria. Am. Sci. 108, 162–169 (2020).Article 

    Google Scholar 
    165.Long, K. C. et al. Core commitments for field trials of gene drive organisms. Science 370, 1417–1419 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    166.Kormos, A. et al. Application of the relationship-based model to engagement for field trials of genetically engineered malaria vectors.Am. J. Trop. Med. Hyg. 104, 805–811 (2020).PubMed Central 
    PubMed 

    Google Scholar 
    167.World Health Organization. Guidance framework for testing of genetically modified mosquitoes. WHO http://apps.who.int/iris/bitstream/10665/127889/1/9789241507486_eng.pdf (2014).168.Smith, D. L., McKenzie, F. E., Snow, R. W. & Hay, S. I. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 5, e42 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    169.Brauer, F., Castillo-Chavez, C., Mubayi, A. & Towers, S. Some models for epidemics of vector-transmitted diseases. Infect. Dis. Model. 1, 79–87 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    170.Deredec, A., Godfray, H. C. & Burt, A. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl Acad. Sci. USA 108, E874–E880 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    171.Escalante, A. A. & Pacheco, M. A. Malaria molecular epidemiology: an evolutionary genetics perspective. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.AME-0010-2019 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    172.Selvaraj, P. et al. Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination. PLoS Comput. Biol. 16, e1008121 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure

    1.Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 36, 533–543 (2011).Article 

    Google Scholar 
    2.Popa, V., Deziel, E., Lavallee, R., Bauce, E. & Guertin, C. The complex symbiotic relationships of bark beetles with microorganisms: A potential practical approach for biological control in forestry. Pest Manag. Sci. 68, 963–975. https://doi.org/10.1002/ps.3307 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Qadri, M., Short, S., Gast, K., Hernandez, J. & Wong, A.C.-N. Microbiome innovation in agriculture: Development of microbial based tools for insect pest management. Front. Sustain. Food Syst. 4, 547751. https://doi.org/10.3389/fsufs (2020).Article 

    Google Scholar 
    4.Vasanthakumar, A., Handelsman, J., Schloss, P. D., Bauer, L. S. & Raffa, K. F. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ. Entomol. 37, 1344–1353 (2008).PubMed 
    Article 

    Google Scholar 
    5.Zhang, Z., Jiao, S., Li, X. & Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8, 15634. https://doi.org/10.1038/s41598-018-34127-x (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    6.Franzini, P. Z., Ramond, J.-B., Scholtz, C. H., Sole, C. L., Ronca, S. & Cowan, D. A. The gut microbiomes of two Pachysoma MacLeay desert dung beetle species (Coleoptera: Scarabaeidae: Scarabaeinae) feeding on different diets. PLoS ONE 11, e0161118 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kim, J. M. Choi, M.-Y., Kim, J.-W., Lee, S. A., Ahn, J.-H., Song, J., Kim, S.-H. & Weon, H.-Y. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J. Microbiol. 55, 21–30 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Ferguson, L. V.  Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair B. J. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32, 2357–2368 (2018).Article 

    Google Scholar 
    10.Mason, C. J., Hanshew, A. S. & Raffa, K. F. Contributions by host trees and insect activity to bacterial communities in Dendroctonus valens (Coleoptera: Curculionidae) galleries, and their high overlap with other microbial assemblages of bark beetles. Environ. Entomol. 45, 348–356. https://doi.org/10.1093/ee/nvv184 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Mogouong, J., Constant, P., Lavallée, R. & Guertin, C. Gut microbiome of the emerald ash borer, Agrilus planipennis Fairmaire, and its relationship with insect population density. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaa141 (2020).Article 
    PubMed 

    Google Scholar 
    12.Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl. Acad. Sci. 112, 2093–2096 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    13.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    14.Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 

    Google Scholar 
    15.Cappaert, D., McCullough, D. G., Poland, T. M. & Siegert, N. W. Emerald ash borer in North America: A research and regulatory challenge. (2005).16.Kovacs, K. F., Haight, R. G., McCullough, D. G., Mercader, R. J., Siegert, N. W. & Liebhold, A. M. Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol. Econ. 69, 569–578 (2010).Article 

    Google Scholar 
    17.Aukema, J. E., Leung, B., Kovacs, K., Chivers, C., Britton, K. O., Englin, J., Frankel, S. J., Haight, R. G., Holmes, T. P., Liebhold, A. M., McCullough, D. G. & Von Holle, B. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6, e24587 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    18.Poland, T. M. & McCullough, D. G. Emerald ash borer: Invasion of the urban forest and the threat to North America’s ash resource. J. For. 104, 118–124 (2006).
    Google Scholar 
    19.Herms, D. A. & McCullough, D. G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 59, 13–30. https://doi.org/10.1146/annurev-ento-011613-162051 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.McCullough, D. G. Challenges, tactics and integrated management of emerald ash borer in North America. For. Int. J. For. Res. 93, 197–211 (2020).
    Google Scholar 
    21.Gandhi, K. J. & Herms, D. A. North American arthropods at risk due to widespread Fraxinus mortality caused by the alien emerald ash borer. Biol. Invasions 12, 1839–1846 (2010).Article 

    Google Scholar 
    22.Slesak, R. A., Lenhart, C. F., Brooks, K. N., D’Amato, A. W. & Palik, B. J. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA. Can. J. For. Res. 44, 961–968 (2014).Article 

    Google Scholar 
    23.Wielkopolan, B. & Obrepalska-Steplowska, A. Three-way interaction among plants, bacteria, and coleopteran insects. Planta 244, 313–332. https://doi.org/10.1007/s00425-016-2543-1 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Stam, J. M., Kroes, A., Li, Y., Gols, R., van Loon, J. J. A., Poelman, E. H. & Dicke, M. Plant interactions with multiple insect herbivores: from community to genes. Annu. Rev. Plant Biol. 65, 689–713 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Shikano, I., Rosa, C., Tan, C.-W. & Felton, G. W. Tritrophic interactions: Microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol. 55, 313–331 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Schowalter, T. D. Insect Ecology: An Ecosystem Approach (Academic Press, 2016).
    Google Scholar 
    30.Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    31.Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. MBio 9, e00637-e618. https://doi.org/10.1128/mBio.00637-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Yutthammo, C., Thongthammachat, N., Pinphanichakarn, P. & Luepromchai, E. Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microb. Ecol. 59, 357–368 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kadivar, H. & Stapleton, A. E. Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb. Ecol. 45, 353–361 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).CAS 
    Article 

    Google Scholar 
    36.Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J. & Green, J. L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. 111, 13715–13720 (2014).37.Biedermann, P. H. & Vega, F. E. Ecology and evolution of insect–fungus mutualisms. Annu. Rev. Entomol. 65, 431–455 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fischer, R., Ostafe, R. & Twyman, R. M. In: Yellow Biotechnology II: Insect Biotechnology in Plant Protection and Industry. Ch. Cellulases from insects, 51–64 (Springer, 2013).39.Watanabe, H. & Tokuda, G. Cellulolytic systems in insects. Ann. Rev. Entomol. 55, 609–632 (2010).CAS 
    Article 

    Google Scholar 
    40.Mittapalli, O., Bai, X., Mamidala, P., Rajarapu, S. P., Bonello, P. & Herms, D. A. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis). PLoS ONE 5, e13708 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    41.Vacheron, J., Péchy-Tarr, M., Brochet, S., Heiman, C. M., Stojiljkovic, M., Maurhofer, M. & Keel, C. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J. 13, 1318–1329. https://doi.org/10.1038/s41396-019-0353-8 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Smith, C. C., Snowberg, L. K., Caporaso, J. G., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D. & Kemen, E. M. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Gupta, A. & Nair, S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.AFSQ. La clé forestière. https://afsq.org/cle-forestiere/accueil.html. Association forestière du Sud du Québec (2018).46.Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum. PLoS ONE 6, e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    47.Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863. https://doi.org/10.1371/journal.pone.0040863 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 081257 (2016).49.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Glassman, S. I. & Martiny, J. B. H. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere 3, e00148-e118. https://doi.org/10.1128/mSphere.00148-18 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y.,  Brown, C. T.,  Porras-Alfaro, A., Kuske, C. R. & Tiedje J. M. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633-642. https://doi.org/10.1093/nar/gkt1244 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    54.Chen, Y. & Poland, T. M. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development. J. Chem. Ecol. 35, 806–815. https://doi.org/10.1007/s10886-009-9661-1 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Bi, J. L., Toscano, N. C. & Madore, M. A. Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations. J. Chem. Ecol. 29, 747–761. https://doi.org/10.1023/a:1022880905834 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Torti, S. D., Dearing, M. D. & Kursar, T. A. Extraction of phenolic compounds from fresh leaves: A comparison of methods. J. Chem. Ecol. 21, 117–125 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Hagerman, A. E. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14, 453–461 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Beauchemin, N. J., Furnholm,T., Lavenus, J., Svistoonoff, S., Doumas, P., Bogusz, D., Laplaze, L. & Tisa L. S. Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl. Environ. Microbiol. 78, 575–580 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    59.Garg, B. Plant Analysis: Comprehensive Methods and Protocols (Scientific Publishers, 2012).
    Google Scholar 
    60.Wellburn, R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994).CAS 
    Article 

    Google Scholar 
    61.Marquis, R. J., Newell, E. A. & Villegas, A. C. Non-structural carbohydrate accumulation and use in an understorey rain-forest shrub and relevance for the impact of leaf herbivory. Funct. Ecol. 11, 636–643. https://doi.org/10.1046/j.1365-2435.1997.00139.x (1997).Article 

    Google Scholar 
    62.Garcia, A. M. N., Moumen, A., Ruiz, D. Y. & Alcaide, E. M. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 107, 61–74 (2003).Article 
    CAS 

    Google Scholar 
    63.Van Soest, P. V., Robertson, J. & Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991).PubMed 
    Article 

    Google Scholar 
    64.Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R. & O’Hara, R. B. Package ‘vegan’. R package version 2.5-6 (2019)65.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2018).MATH 
    Book 

    Google Scholar 
    66.Kembel, S. W., Eisen, J. A., Pollard, K. S. & Green, J. L. The phylogenetic diversity of metagenomes. PLoS ONE 6, e23214 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    67.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).Article 

    Google Scholar 
    68.Kembel, S. W.,  Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 

    Google Scholar 
    70.Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N, Wagner H. H. Package ‘adespatial’, version 0.3-14. R Package version 2.5.6 (2018).71.De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    72.De Caceres, M., Jansen, F. & Caceres, D. Package ‘indicspecies’, version 1.7.9. R package version 2.5.6 (2016).73.Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar  More

  • in

    Ghostly conduits

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil

    1.CONAB—Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos. V.7 – SAFRA 2019/20 – N. 12 – Décimo segundo levantamento. https://www.conab.gov.br/info-agro/safras (2020).2.Panizzi, A. R. & Corrêa-Ferreira, B. S. Dynamics in the insect fauna adaption to soybeans in the tropics. Trends Entomol. 1, 71–88 (1997).
    Google Scholar 
    3.Cattelan, A. J. & Dall’Agnol, A. The rapid soybean growth in Brazil. Oilseeds Fats Crops Lipids 25, D102 (2018).
    Google Scholar 
    4.Freitas, P. L. & Landers, J. N. The transformation of agriculture in Brazil through development and adoption of Zero Tillage Conservation Agriculture. Int. Soil Wat. Cons. Res. 2, 35–46 (2014).
    Google Scholar 
    5.Brookes, G., Taheripour, F. & Tyner, W. E. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8, 216–228 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bueno, R. C. O. F., Bueno, A. F., Moscardi, F., Parra, J. R. P. & Hoffmann-Campo, C. B. Lepidopteran larva consumption of soybean foliage: Basis for developing multiple-species economic thresholds for pest management decisions. Pest Manag. Sci. 67, 170–174 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Panizzi, A. R. History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop. Entomol. 42, 119–127 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Bortolotto, A. et al. The use of soybean integrated pest management in Brazil: A review. Embrapa Soja-Artigo em periódico indexado (ALICE) Agron. Sci. Biotechnol. 1, 25–32 (2015).
    Google Scholar 
    9.CIB; AGROCONSULT. Impactos Econômicos e Sócio-ambientais da Tecnologia de Plantas Resistentes a Insetos no Brasil – Análise Histórica, Perspectivas e Desafios Futuros. http://apps.agr.br/wp-content/uploads/2018/12/Impactos-do-Milho-Bt-no-Brasil.pdf (2018).10.Brookes, G. The farm level economic and environmental contribution of Intacta soybeans in South America: The first five years. GM Crops Food 9, 140–151 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Macrae, T. C. et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J. Econ. Entomol. 98, 577–587 (2005).PubMed 
    Article 

    Google Scholar 
    12.Bernardi, O. et al. Assessment of the high-dose concept and level of control provided by MON 87701× MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Bernardi, O. et al. High levels of biological activity of Cry1Ac protein expressed on MON 87701× MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag. Sci. 70, 588–594 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dourado, P. M. et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS ONE 11, e0161388 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Bernardi, O. et al. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 58, 33–40 (2014).CAS 
    Article 

    Google Scholar 
    16.Edgerton, M. D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Carrière, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 100, 1519–1523 (2003).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y. & Zhao, J. Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321, 1676–1678 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Dively, G. P. et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 115, 3320–3325 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Lu, Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 1151–1154 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Zhao, J. H., Ho, P. & Azadi, H. Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ. Monit. Assess. 173, 985–994 (2011).PubMed 
    Article 

    Google Scholar 
    24.Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Van Rensburg, J. B. J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).Article 

    Google Scholar 
    26.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).PubMed 
    Article 

    Google Scholar 
    27.Dhurua, S. & Gujar, G. T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).ADS 
    Article 

    Google Scholar 
    30.Fatoretto, J. C., Michel, A. P., Silva Filho, M. C. & Silva, N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integr. Pest Manag. 8, 17 (2017).Article 

    Google Scholar 
    31.Silva, C. S. et al. Population expansion and genomic adaptation to agricultural environments of the soybean looper, Chrysodeixis includens. Evol. Appl. 13, 2071–2085 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Herzog, D. C. Sampling soybean looper on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 141–168 (Springer, 1980).Chapter 

    Google Scholar 
    33.Sosa-Gómez, D. R. et al. Manual de Identificação de Insetos e Outros Invertebrados da Cultura da Soja (Embrapa Soja-Documentos (INFOTECA-E), 2014).
    Google Scholar 
    34.Gilligan, T. M. & Passoa, S. C. LepIntercept–An identification resource for intercepted Lepidoptera larvae. (Identification Technology Program (ITP), 2014). http://idtools.org/id/leps/lepintercept/key.html.35.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.36.Kaster, M. & Farias, J. R. B. Regionalização dos Testes de Valor de Cultivo e Uso e da indicação de Cultivares de Soja-terceira Aproximação (Embrapa Soja-Documentos (INFOTECA-E), 2012).
    Google Scholar 
    37.Sosa-Gómez, D. R., Delpin, K. E., Moscardi, F. & Nozaki, M. D. H. The impact of fungicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop. Entomol. 32, 287–291 (2003).Article 

    Google Scholar 
    38.Specht, A., Paula-Moraes, S. V. & Sosa-Gómez, D. R. Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae). Rev. Bras. Entomol. 59, 343–345 (2015).Article 

    Google Scholar 
    39.Andrade, K. et al. Bioecological characteristics of Chrysodeixis includens (Lepidoptera: Noctuidae) fed on different hosts. Austral. Entomol. 55, 449–454 (2016).Article 

    Google Scholar 
    40.Moonga, M. N. & Davis, J. A. Partial life history of Chrysodeixis includens (Lepidoptera: Noctuidae) on summer hosts. J. Econ. Entomol. 109, 1713–1719 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Specht, A. et al. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 19, 8 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Zulin, D., Ávila, C. J. & Schlick-Souza, E. C. Population fluctuation and vertical distribution of the soybean looper (Chrysodeixis includes) in soybean culture. Am. J. Plant Sci. 9, 1544–1556 (2018).Article 

    Google Scholar 
    43.Stacke, R. F. et al. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere 259, 127499 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Stacke, R. F. et al. Inheritance of lambda-cyhalothrin resistance, fitness costs and cross-resistance to other pyrethroids in soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). Crop Prot. 131, 105096 (2020).CAS 
    Article 

    Google Scholar 
    45.Yano, S. A. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Silva, M. T. B. & Moscardi, F. Field efficacy of the nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of formulations, water pH, volume and time of application, and type of spray nozzle. Neotrop. Entomol. 31, 75–83 (2002).Article 

    Google Scholar 
    47.Herzog, D. C. & Todd, J. W. Sampling velvetbean caterpillar on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 107–140 (Springer, 1980).Chapter 

    Google Scholar 
    48.Panizzi, A. R., Oliveira, L. J. & Silva, J. J. Survivorship, larval development and pupal weight of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) feeding on potential leguminous host plants. Neotrop. Entomol. 33, 563–567 (2004).Article 

    Google Scholar 
    49.Leite, N. A., Alves-Pereira, A., Corrêa, A. S., Zucchi, M. I. & Omoto, C. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil. PLoS ONE 9, e113286 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Leite, N. A. et al. Pan-American similarities in genetic structures of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) with implications for hybridization. Environ. Entomol. 46, 1024–1034 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Sosa-Gómez, D. R. et al. Timeline and geographical distribution of Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae: Heliothinae) in Brazil. Rev. Bras. Entomol. 60, 101–104 (2016).Article 

    Google Scholar 
    52.Dourado, P. M. et al. Host plant use of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Brazilian agricultural landscape. Pest Manag. Sci. 77, 780–794 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Czepak, C., Albernaz, K. C., Vivan, L. M., Guimarães, H. O. & Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesqui. Agropecu. Trop. 43, 110–113 (2013).Article 

    Google Scholar 
    54.Gomes, E. S., Santos, V. & Ávila, C. J. Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomol. Sci. 20, 419–426 (2017).Article 

    Google Scholar 
    55.Luttrell, R. G. & Mink, J. S. Damage to cotton fruiting structures by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Cotton Sci. 3, 35–44 (1999).
    Google Scholar 
    56.Martinelli, S., Barata, R. M., Zucchi, M. I., DeCastroSilva-Filho, M. & Omoto, C. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. J. Econ. Entomol. 99, 519–526 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Barros, E. M., Torres, J. B., Ruberson, J. R. & Oliveira, M. D. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Ent. Exp. Appl. 137, 237–245 (2010).Article 

    Google Scholar 
    58.Silva, D. M. D. et al. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 74, 18–31 (2017).Article 

    Google Scholar 
    59.Machado, E. P. et al. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    60.Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).Article 

    Google Scholar 
    61.Nagoshi, R. N. & Meagher, R. L. Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554 (2008).
    Google Scholar 
    62.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest Sci. 92, 429–441 (2019).Article 

    Google Scholar 
    64.Diez-Rodríguez, G. I. & Omoto, C. Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina. Neotrop. Entomol. 30, 311–316 (2001).Article 

    Google Scholar 
    65.Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S. & Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 8, e62268 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Nascimento, A. R. B. et al. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Manag. Sci. 72, 810–815 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    67.Okuma, D. M. et al. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to Spinosad in Brazil. Pest Manag. Sci. 74, 1441–1448 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Bolzan, A. et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag. Sci. 75, 2682–2689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Lira, E. C. et al. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Manag. Sci. 76, 2674–2680 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Paulillo, L. C. M. et al. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. J. Econ. Entomol. 93, 892–896 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Silva-Brandão, K. L. et al. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genom. 18, 1–15 (2017).Article 
    CAS 

    Google Scholar 
    72.Montezano, D. G., Specht, A., Sosa-Gomez, D. R., Roque-Specht, V. F. & Barros, N. M. Immature stages of Spodoptera eridania (Lepidoptera: Noctuidae): Developmental parameters and host plants. J. Insect Sci. 14, 238 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Santos, K. B., Meneguim, A. M. & Neves, P. M. O. J. Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotrop. Entomol. 34, 903–910 (2005).Article 

    Google Scholar 
    74.Justiniano, W., Fernandes, M. G. & Viana, C. L. T. P. Diversity, composition and population dynamics of arthropods in the genetically modified soybeans Roundup Ready® RR1 (GT 40-3-2) and Intacta RR2 PRO (MON87701 x MON89788). J. Agric. Sci. 6, 33 (2014).
    Google Scholar 
    75.Specht, A. et al. Owlet moths (Lepidoptera: Noctuoidea) associated with Bt and non-Bt soybean in the Brazilian savanna. Braz. J. Biol. 79, 248–256 (2019).PubMed 
    Article 

    Google Scholar 
    76.Specht, A. & Roque-Specht, V. F. Immature stages of Spodoptera cosmioides (Lepidoptera: Noctuidae): Developmental parameters and host plants. Zoologia 33, e20160053 (2016).Article 

    Google Scholar 
    77.Habib, M. E. M., Paleari, M. L. & Amaral, M. E. C. Effect of three larval diets on the development of the armyworm, Spodoptera latifascia Walker, 1856 (Lepidoptera: Noctuidae). Rev. Bras. Zool. 1, 177–182 (1983).Article 

    Google Scholar 
    78.Silva, D. M. et al. Biology of Spodoptera eridania and Spodoptera cosmioides (Lepidoptera: Noctuidae) on different host plants. Fla. Entomol. 100, 752–760 (2017).Article 

    Google Scholar 
    79.Tomquelski, G. V. & Maruyama, L. C. T. Lagarta-da-macã em soja. Rev. Cultiv. 117, 20–22 (2009).
    Google Scholar 
    80.Blanco, C. A. Heliothis virescens and Bt cotton in the United States. GM Crops Food 3, 201–212 (2012).PubMed 
    Article 

    Google Scholar 
    81.Barrionuevo, M. J., Murúa, M. G., Goane, L., Meagher, R. & Navarro, F. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Fla. Entomol. 95, 944–951 (2012).Article 

    Google Scholar 
    82.Specht, A. et al. Ocorrência de Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) em Fumo (Nicotiana tabacum L.) no Rio Grande do Sul. Neotrop. Entomol. 35, 705–706 (2006).PubMed 
    Article 

    Google Scholar 
    83.Trentin, L. B. et al. The complete genome of Rachiplusia nu nucleopolyhedrovirus (RanuNPV) and the identification of a baculoviral CPD-photolyase homolog. Virology 534, 64–71 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Perini, C. R. et al. Genetic structure of two Plusiinae species suggests recent expansion of Chrysodeixis includens in the American continent. Agric. For. Entomol. 23, 2502–3260 (2020).
    Google Scholar 
    85.Bacalhau, F. B. et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key Lepidopteran pests in Brazil. J. Econ. Entomol. 113, 2883–2889 (2020).PubMed 
    Article 

    Google Scholar 
    86.Machado, E. P. et al. Survival and development of Spodoptera eridania, Spodoptera cosmioides and Spodoptera albula (Lepidoptera: Noctuidae) on genetically-modified soybean expressing Cry1Ac and Cry1F proteins. Pest Manag. Sci. 76, 4029–4035 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Horikoshi, R. J. et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: Implications for resistance management. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

    1.Kumar, V. et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 252, 132–147 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ladha, J. K. et al. How extensive are yield declines in long-term rice-wheat experiments in Asia?. For. Crop. Res. 81, 159–180 (2003).Article 

    Google Scholar 
    3.Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S. & Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 4, 64–74 (2016).Article 

    Google Scholar 
    4.Sidhu, H. S. et al. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agric. Water Manag. 216, 273–283 (2019).Article 

    Google Scholar 
    5.Singh, M. et al. intercomparison of crop establishment methods for improving yield and profitability in the rice-wheat system of Eastern India. For. Crop. Res. 250, 107776 (2020).Article 

    Google Scholar 
    6.Jat, H. S. et al. Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renew. Energy 155, 1372–1382 (2020).Article 

    Google Scholar 
    7.Lohan, S. K. et al. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 81, 693–706 (2018).Article 

    Google Scholar 
    8.Buhler, D. D. Weed population responses to weed control practices. II. Residual effects on weed populations, control, and Glycine max yield. Weed Sci. 47, 423–426 (1999).CAS 
    Article 

    Google Scholar 
    9.Armengot, L. et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 222, 276–285 (2016).Article 

    Google Scholar 
    10.Chhokar, R. S., Singh, S., Sharma, R. K. & Singh, M. Influence of straw management on Phalaris minor Retz control. Indian J. Weed Sci. 41, 150–156 (2009).
    Google Scholar 
    11.Chhokar, R. S. & Malik, R. K. Isoproturon-resistant Littleseed Canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technol. 16, 116–123 (2002).CAS 
    Article 

    Google Scholar 
    12.Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    13.Hassan, G., Khan, I., Khan, H. & Munir, M. Effect of different herbicides on weed density and some agronomic traits of wheat. Pak. J. Weed Sci. Res. 11, 17–22 (2005).
    Google Scholar 
    14.Chhokar, R. S. Ã., Sharma, R. K., Jat, G. R., Pundir, A. K. & Gathala, M. K. Effect of tillage and herbicides on weeds and productivity of wheat under rice–wheat growing system. Crop Prot. 26, 1689–1696 (2007).CAS 
    Article 

    Google Scholar 
    15.Yadav, D. B., Yadav, A., Punia, S. S. & Chauhan, B. S. Management of herbicide-resistant Phalaris minor in wheat by sequential or tank-mix applications of pre- and post-emergence herbicides in north-western Indo-Gangetic Plains. Crop Prot. 89, 239–247 (2016).Article 

    Google Scholar 
    16.Harker, K. N. & O’Donovan, J. T. Recent weed control, weed management, and integrated weed management. Weed Technol. 27, 1–11 (2013).Article 

    Google Scholar 
    17.Scherner, A., Melander, B. & Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Tillage Res. 161, 135–142 (2016).Article 

    Google Scholar 
    18.Hillocks, R. J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 31, 85–93 (2012).Article 

    Google Scholar 
    19.Nikolić, L., Šeremešić, S., Ljevnaić-Mašić, B., Latković, D. & Konstantinović, B. Weeds and their ecological indicator values in a long-term experiment. Appl. Ecol. Environ. Res. 18, 4775–4790 (2020).Article 

    Google Scholar 
    20.Blubaugh, C. K. & Kaplan, I. Tillage compromises weed seed predator activity across developmental stages. Biol. Control 81, 76–82 (2015).Article 

    Google Scholar 
    21.Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. For. Crop. Res. 183, 56–68 (2015).Article 

    Google Scholar 
    22.Sepat, S. et al. Effects of weed control strategy on weed dynamics, soybean productivity and profitability under conservation agriculture in India. For. Crop. Res. 210, 61–70 (2017).Article 

    Google Scholar 
    23.Sharma, P., Singh, M. K., Verma, K. & Prasad, S. K. Changes in the weed seed bank in long-term establishment methods trials under rice-wheat cropping system. Agronomy 10, 1–14 (2020).
    Google Scholar 
    24.Plaza-Bonilla, D. et al. Carbon management in dryland agricultural systems. A review. Agron. Sustain. Dev. 35, 1319–1334 (2015).Article 

    Google Scholar 
    25.Nandan, R. et al. Viable weed seed density and diversity in soil and crop productivity under conservation agriculture practices in rice-based cropping systems. Crop Prot. 136, 105210 (2020).CAS 
    Article 

    Google Scholar 
    26.Choudhary, M., Vivek Sharma, P. C., Yadav, A. K. & Jat, H. S. Influence of management practices on weed dynamics, crop productivity and profitability in Wheat under Rice-Wheat cropping system in reclaimed sodic soils. J. Soil Salin. Water Qual. 9, 78–83 (2017).
    Google Scholar 
    27.Menalled, F. D., Smith, R. G., Dauer, J. T. & Fox, T. B. Impact of agricultural management on carabid communities and weed seed predation. Agric. Ecosyst. Environ. 118, 49–54 (2007).Article 

    Google Scholar 
    28.Shahzad, M., Farooq, M. & Hussain, M. Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil Tillage Res. 163, 71–79 (2016).Article 

    Google Scholar 
    29.Kumar, V. et al. Weed management strategies to reduce herbicide use in zero-till Rice–Wheat cropping systems of the Indo-Gangetic Plains. Weed Technol. 27, 241–254 (2013).Article 

    Google Scholar 
    30.Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14, 1–12 (2019).
    Google Scholar 
    31.Melander, B. et al. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol. 27, 231–240 (2013).Article 

    Google Scholar 
    32.Nandan, R. et al. Comparative assessment of the relative proportion of weed morphology, diversity, and growth under new generation tillage and crop establishment techniques in rice-based cropping systems. Crop Prot. 111, 23–32 (2018).Article 

    Google Scholar 
    33.Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).Article 

    Google Scholar 
    34.Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).Article 

    Google Scholar 
    35.Jat, H. S. et al. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Tillage Res. 199, 104595 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Liebman, M. & Davis, A. S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 20, 27–47 (2000).Article 

    Google Scholar 
    37.Lee, S. H., Yoo, S. H., Choi, J. Y. & Bae, S. Assessment of the impact of climate change on drought characteristics in the Hwanghae Plain, North Korea using time series SPI and SPEI: 1981–2100. Water (Switzerland) 9, 20 (2017).
    Google Scholar 
    38.Jat, H. S. et al. Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Sci. Rep. 9, 1–14 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Jat, H. S. et al. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of north-west India. CATENA 181, 104059 (2019).CAS 
    Article 

    Google Scholar 
    40.Hernández Plaza, E., Navarrete, L. & González-Andújar, J. L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 207, 101–108 (2015).Article 

    Google Scholar 
    41.Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).Article 

    Google Scholar 
    42.Franke, A. C. et al. Phalaris minor seedbank studies: Longevity, seedling emergence and seed production as affected by tillage regime. Weed Res. 47, 73–83 (2007).Article 

    Google Scholar 
    43.Usman, K. et al. Integrated weed management through tillage and herbicides for Wheat production in Rice-Wheat cropping system in northwestern Pakistan. J. Integr. Agric. 11, 946–953 (2012).CAS 
    Article 

    Google Scholar 
    44.Naresh, R. K. et al. Conservation agriculture improving soil quality for sustainable production systems under smallholder farming conditions in north west India: A review. Int. J. life Sci. Biotechnol. Pharm. Res. 2, 65 (2013).CAS 

    Google Scholar 
    45.Kumar, V. et al. Conservation agriculture (CA)-based practices reduced weed problem in wheat and caused shifts in weed seedbank community in rice-wheat cropping systems. In Weed Science for Sustainable Agriculture, Environment, and Biodiversity. (Eds. Rao A. N and Yaduraju N. T), Proceedings of 25th Asian Pacific Weed Science Society Conference 142 (2015).46.Malik, R. K., Kumar, V. & McDonald, A. Conservation agriculture-based resource-conserving practices and weed management in the rice-wheat cropping systems of the Indo-Gangetic Plains. Indian J. Weed Sci. 50, 218 (2018).Article 

    Google Scholar 
    47.Roth, C. M., Shroyer, J. P. & Paulsen, G. M. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 20, 855–860 (2000).Article 

    Google Scholar 
    48.Ayodele, O. P. & Aluko, O. A. Weed management strategies for conservation agriculture and environmental sustainability in Nigeria. IOSR J. Agric. Vet. Sci. Ver. I(10), 2319–2372 (2017).
    Google Scholar 
    49.Crutchfield, D. A., Wicks, G. A. & Burnside, O. C. Effect of winter wheat (Triticum aestivum) straw mulch level on weed control. Weed Sci. 34, 110–114 (1986).CAS 
    Article 

    Google Scholar 
    50.Khanh, T. D., Xuan, T. D. & Chung, I. M. Rice allelopathy and the possibility for weed management. Ann. Appl. Biol. 151, 325–339 (2007).CAS 
    Article 

    Google Scholar 
    51.Santín-Montanyá, M. I., Martín-Lammerding, D., Walter, I., Zambrana, E. & Tenorio, J. L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 48, 43–49 (2013).Article 

    Google Scholar 
    52.Heggenstaller, A. H., Liebman, M. & Anex, R. P. Growth analysis of biomass production in sole-crop and double-crop corn systems. Crop Sci. 49, 2215–2224 (2009).Article 

    Google Scholar 
    53.Liebman, M. & Mohler, C. L. Weeds and the soil environment. In Ecological Management of Agricultural Weeds, (M. Liebman et al. eds.) 210–268 (2001). https://doi.org/10.1071/ea04026.54.Shrestha, A., Jeffrey, P. M. & Lanini, W. T. Subsurface drip irrigation as a weed management tool for conventional and conservation tillage Tomato (Lycopersicon esculentum Mill.) production in semi-arid agroecosystems. J. Sustain. Agric. 31, 37–41 (2007).Article 

    Google Scholar 
    55.Coolong, T. Using irrigation to manage weeds: A focus on drip irrigation. In Weed and Pest Control—Conventional and New Challenges (ed. Goyal, M. R.) 162–182 (Apple Academic Press, 2013).
    Google Scholar 
    56.Chhokar, R. S., Malik, R. K. & Balyan, R. S. Effect of moisture stress and seeding depth on germination of littleseed Canarygrass (Phalaris minor Retz.). Indian J. Weed Sci. 31, 78–79 (1999).
    Google Scholar 
    57.Singh, R., Gajri, P. R., Gill, K. S. & Khera, R. Puddling intensity and nitrogen use efficiency of rice (Oryza sativa) on a sandy loam soil of Punjab. Indian J. Agric. Sci. 65, 749–751 (1995).
    Google Scholar 
    58.Bajwa, A., Anjum, S. A. & Tanveer, M. Impact of fertilizer use on weed management in conservation agriculture—a review. Paki. J. Agric. Res. 69, 20 (2014).
    Google Scholar 
    59.Derksen, D. A., Anderson, R. L., Blackshaw, R. E. & Maxwell, B. Weed dynamics and management in the Northern Great Plains. Agron. J. 94, 174–185 (2002).Article 

    Google Scholar 
    60.Gathala, M. K. et al. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year Rice-Wheat rotation. Soil Sci. Soc. Am 75, 1851–1863 (2011).CAS 
    Article 

    Google Scholar 
    61.Dong, H., Ma, Y., Wu, H., Jiang, W. & Ma, X. Germination of Solanum nigrum l (black nightshade) in response to different abiotic factors. Planta Daninha 2016, 1–12 (2020).
    Google Scholar 
    62.Farooq, M., Flower, K. C., Jabran, K., Wahid, A. & Siddique, K. H. M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 117, 172–183 (2011).Article 

    Google Scholar 
    63.Swanton, C. J., Clements, D. R. & Derksen, D. A. Weed succession under conservation tillage: A hierarchical framework for research and management. Weed Technol. 7, 286–297 (1993).Article 

    Google Scholar 
    64.Humphreys, E., Kukal, S. S., Christen, E. W. & Hira, G. S. Halting the groundwater decline in North-West India—which crop technologies will be Winners?. Adv. Agron. 109, 155–217 (2010).Article 

    Google Scholar 
    65.Gomez, K. A. & Gomez, A. Statistical Procedures for Agricultural Research. (1984).66.Microsoft Corporation. (2010). Microsoft Excel. https://office.microsoft.com/excel. More

  • in

    Plant pathogen infection risk tracks global crop yields under climate change

    1.Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).
    Google Scholar 
    2.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).CAS 

    Google Scholar 
    3.Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 

    Google Scholar 
    4.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).
    Google Scholar 
    5.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 637–669 (2006).
    Google Scholar 
    6.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).
    Google Scholar 
    7.Yan, Y., Wang, Y.-C., Feng, C.-C., Wan, P.-H. M. & Chang, K. T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).
    Google Scholar 
    8.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    9.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    Google Scholar 
    10.Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).
    Google Scholar 
    11.Bregaglio, S., Donatelli, M. & Confalonieri, R. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron. Sustain. Dev. 33, 767–776 (2013).
    Google Scholar 
    12.Bebber, D. P. Climate Change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B 374, 20180269 (2019).
    Google Scholar 
    13.Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).
    Google Scholar 
    14.Ostberg, S., Schewe, J., Childers, K. & Frieler, K. Changes in crop yields and their variability at different levels of global warming. Earth Syst. Dyn. 9, 479–496 (2018).
    Google Scholar 
    15.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).CAS 

    Google Scholar 
    16.Magarey, R. D., Sutton, T. B. & Thayer, C. L. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95, 92–100 (2005).CAS 

    Google Scholar 
    17.Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).
    Google Scholar 
    18.Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).
    Google Scholar 
    19.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. N. Phytol. 202, 901–910 (2014).
    Google Scholar 
    20.Sparks, A. H., Forbes, G. A., Hijmans, R. J. & Garrett, K. A. Climate change may have limited effect on global risk of potato late blight. Glob. Change Biol. 20, 3621–3631 (2014).
    Google Scholar 
    21.Chen, X. M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 27, 314–337 (2005).
    Google Scholar 
    22.Zhan, J. & McDonald, B. A. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol. Ecol. 20, 1689–1701 (2011).
    Google Scholar 
    23.Robin, C., Andanson, A., Saint-Jean, G., Fabreguettes, O. & Dutech, C. What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen. Mol. Ecol. 26, 1952–1963 (2017).
    Google Scholar 
    24.Rowlandson, T. et al. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 99, 310–319 (2014).
    Google Scholar 
    25.IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).26.Dunn, R. J. H., Willett, K. M., Ciavarella, A. & Stott, P. A. Comparison of land surface humidity between observations and CMIP5 models. Earth Syst. Dyn. 8, 719–747 (2017).
    Google Scholar 
    27.Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).
    Google Scholar 
    28.Liu, X. et al. Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. N. Phytol. 221, 1574–1584 (2019).
    Google Scholar 
    29.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).30.Sohl, T. L., Wimberly, M. C., Radeloff, V. C., Theobald, D. M. & Sleeter, B. M. Divergent projections of future land use in the United States arising from different models and scenarios. Ecol. Model. 337, 281–297 (2016).
    Google Scholar 
    31.Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).
    Google Scholar 
    32.Folberth, C. et al. Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE 14, e0221862 (2019).CAS 

    Google Scholar 
    33.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
    Google Scholar 
    34.Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, 1–24 (2010).
    Google Scholar 
    35.Liu, J., Williams, J. R., Zehnder, A. J. B. & Yang, H. GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 94, 478–493 (2007).
    Google Scholar 
    36.Liu, W. et al. Global investigation of impacts of PET methods on simulating crop–water relations for maize. Agric. Meteorol. 221, 164–175 (2016).
    Google Scholar 
    37.Williams, J. R. & Sharpley, A. N. EPIC—Erosion/Productivity Impact Calculator: 1. Model Documentation (USDA, 1989).38.Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).
    Google Scholar 
    39.Collins, W. J. et al. Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).
    Google Scholar 
    40.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
    Google Scholar 
    41.Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).
    Google Scholar 
    42.Bebber, D. P., Chaloner, T. M. & Gurr, S. J. Fungal and Oomycete Cardinal Temperatures (the Togashi Dataset) (Dryad, 2020); https://doi.org/10.5061/DRYAD.TQJQ2BVW643.Viswanath, K. et al. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Clim. Change 142, 155–167 (2017).
    Google Scholar 
    44.Boixel, A.-L., Delestre, G., Legeay, J., Chelle, M. & Suffert, F. Phenotyping thermal responses of yeasts and yeast-like microorganisms at the individual and population levels: proof-of-concept, development and application of an experimental framework to a plant pathogen. Microb. Ecol. 78, 42–56 (2019).
    Google Scholar 
    45.Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package v.3.1-5 (2020).46.Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).
    Google Scholar 
    47.Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 

    Google Scholar 
    48.Chen, Y. A new methodology of spatial cross-correlation analysis. PLoS ONE 10, e0126158 (2015).
    Google Scholar  More