Impact of elevation and slope aspect on floristic composition in wadi Elkor, Sarawat Mountain, Saudi Arabia
1.Cunningham, S. C. et al. Balancing the environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Syst. 17, 301–317. https://doi.org/10.1016/j.ppees.2015.06.001 (2015).Article
Google Scholar
2.Pearse, I. S. & Hipp, A. L. Phylogenetic and trait similarity to a native speciespredict herbivory on non-native oaks. Proc. Natl. Acad. Sci. U. S. A. 106, 18097–18102 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
3.Abdel Khalik, K., El-Sheikh, M. & El-Aidarous, A. Floristic diversity and vegetation analysisof wadi Al Noman, Holy Mecca, Saudi Arabia. Turk. J. Bot. 37, 894–907. https://doi.org/10.3906/bot-1209-56 (2013).Article
Google Scholar
4.Al-Sherif, E. A., Ayesh, A. M. & Rawi, S. M. Floristic composition, life form and chorology of plant life at Khulais region western Saudi Arabia. Pak. J. Bot. 45, 29–38 (2013).
Google Scholar
5.Al-Sherif, E. A. & Fadl, M. A. Floristic study of the Al-Shafa Highlands in Taif, western Saudi Arabia. Flora 225, 20–29. https://doi.org/10.1016/j.flora.2016.09.004 (2016).Article
Google Scholar
6.Al-Nafie, A. H. Phytogeography of Saudi Arabia. Saudi J. Biol. Sci. 15, 159–176 (2008).
Google Scholar
7.Mossa, J. S., Al-Yahya, M. A. & Al-Meshal, I. A. Medicinal Plants of Saudi Arabia (King Saud University Press, 1987).
Google Scholar
8.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514. https://doi.org/10.1016/S01695347(00)02004-8 (2000).Article
Google Scholar
9.Cano-Ortiz, A., Musarella, C. M., PiNar Fuentes, J. C., Gomes, C. J. P. & Cano, E. Distribution patterns of endemic flora to define hotspots on Hispaniola. Syst. Biodiv. 14, 261–275. https://doi.org/10.1080/14772000.2015.1135195 (2016).Article
Google Scholar
10.Hedberg, O. The flora of Ethiopia: a progress report. in Research in Ethiopia Flora (ed. Hedberg, I.). Symb. Bot. Ups. 26, 17–18 (1986).11.Cowling, R. M., Esler, K. J., Midgley, G. F. & Honing, M. A. Plant functional diversity, species diversity and climate in arid and semi-arid southern Africa. J. Arid Environ. 27, 141–158. https://doi.org/10.1006/jare.1994.1054 (1994).ADS
Article
Google Scholar
12.Montana, C. & Valientebanuet, A. Floristic and life-form diversity along an altitudinal gradient in an intertropical semiarid Mexican region. Southwest. Nat. 43, 25–39 (1998).
Google Scholar
13.Pavón, N. P., Hernández-Trejo, H. & Rico-Gray, V. Distribution of plant lifeforms along an altitudinal gradient in the semi-arid valley of Zapotitlón, Mexico. J. Veg. Sci. 11, 39–42. https://doi.org/10.2307/3236773 (2000).Article
Google Scholar
14.Raunkiaer, C. Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beih. Bot. Centralbl. 27, 171–206 (1910).
Google Scholar
15.Sarmiento, G. & Monasterio, M. Life form and phenology. In Tropical Savannas (ed. Bourlièrre, F.) 79–108 (Elsevier, 1983).
Google Scholar
16.Meher-Homji, V. M. Environmental implications of life-form spectra from India. J. Econ. Tax. Bot. 2, 23–30 (1981).
Google Scholar
17.Campbell, B. M. & Werger, M. J. A. Plant form in mountains of the Cape, South Africa. J. Ecol. 76, 637–653 (1988).Article
Google Scholar
18.Komárková, V. & McKendrick, J.D. Patterns in vascular plant growth forms in arctic communities and environment at Atkasook, Alaska. in Plant Form and Vegetation Structure (eds. Werger, M. J. A., van der Aart, P. J. M., During, H. J. & Verhoeven, J. T. A.) 45–70 (SPB Academic Publishing BV, 1988).
Google Scholar
19.Cody, M. L. Growth-form diversity and community structure in desert plants. J. Arid Environ. 17, 199–209 (1989).ADS
Article
Google Scholar
20.Danin, A. & Orshan, G. The distribution of Raunkiaer life forms in Israel in relation to the environment. J. Veg. Sci. 1, 41–48 (1990).Article
Google Scholar
21.Osman, A. K., Al-Ghamdi, F. & Bawadekji, A. Floristic diversity and vegetation analysis of Wadi Arar: a typical desert Wadi of the Northern Border region of Saudi Arabia. Saud. J. Biol. Sci. 21, 554–565. https://doi.org/10.1016/j.sjbs.2014.02.001 (2014).Article
Google Scholar
22.Grime, J. P. Plant Strategies and Vegetation Processes (John Wiley, 1979).
Google Scholar
23.Palmer, M. W. The coexistence of species in fractal landscapes. Am. Nat. 139, 375–397 (1992).Article
Google Scholar
24.Huston, M. & DeAngelis, D. L. Competition and coexistence: the effects of resource transport and supply rates. Am. Nat. 144, 954–977. https://doi.org/10.1086/285720 (1994).Article
Google Scholar
25.Szaro, R. C. Riparian forest and scrubland communities of Arizona and New Mexico. Desert Plants 9, 69–138 (1989).
Google Scholar
26.DeBano, L. F. & Schimdt, L. J. Potential for enhancing riparian habitat in the Southwestern United States with watershed practices. For. Ecol. Manag. 33(34), 385–403. https://doi.org/10.1016/0378-1127(90)90205-P (1990).Article
Google Scholar
27.Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84, 137–152. https://doi.org/10.2307/2261350 (1996).Article
Google Scholar
28.Zimmerman, J. C., DeWald, L. E. & Rowlands, P. G. Vegetation diversity in an interconnected ephemeral riparian system of north-central Arizona, USA. Biol. Conserv. 90, 217–228. https://doi.org/10.1016/S0006-3207(99)00035-X (1999).Article
Google Scholar
29.Brown, J. Mammals on mountainsides: elevational patterns of diversity. Glob. Ecol. Biogeogr. 10, 101–109. https://doi.org/10.1046/j.1466-822x.2001.00228.x (2001).Article
Google Scholar
30.Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466822x.2001.00229.x (2001).Article
Google Scholar
31.Ahmed, M. J., Murtaza, G., Shaheen, H. & Habib, T. Distribution pattern and associated flora of Jurinea dolomiaea in the western Himalayan highlands of Kashmir: an indicator endemic plant of alpine phytodiversity. Ecol. Ind. 116, 106461. https://doi.org/10.1016/j.ecolind.2020.106461 (2020).Article
Google Scholar
32.Bhat, J. A. et al. Influence of altitude on the distribution pattern of flora in a protected area of Western Himalaya. Acta Ecol. Sin. 40, 30–43. https://doi.org/10.1016/j.chnaes.2018.10.006 (2020).Article
Google Scholar
33.Kutiel, P. & Lavee, H. Effect of slope aspect on soil and vegetation properties along an aridity transect. Isr. J. Plant Sci. 47, 169–178. https://doi.org/10.1080/07929978.1999.10676770 (1999).Article
Google Scholar
34.Cantlon, J. Vegetation and microclimates of north and south slopes of Cushetunk mountain. New Jersey. Ecol. Monogr. 23, 241–270 (1953).Article
Google Scholar
35.Vetaas, O. R. Gradients in field-layer vegetation on an arid misty mountain plateau in the Sudan. J. Veg. Sci. 3, 527–534 (1992).Article
Google Scholar
36.Kirkpatrick, J., Fensham, R., Nunez, M. & Bowman, D. Vegetation-radiation relation in the wet-dry tropics: granite hills in northern Australia. Vegetatio 76, 103–112 (1998).
Google Scholar
37.Ady, J. The Taif escarpment, Saudi Arabia: a study for nature conservation and recreational development. Mt. Res. Dev. 15, 101–120 (1995).Article
Google Scholar
38.Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P. D. & Rahman, M. A. Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. https://doi.org/10.1002/joc.3446 (2012).Article
Google Scholar
39.Migahid, A. M. Flora of Saudi Arabia 4th edn. (King Saud University Press, 1996).
Google Scholar
40.Collenette, S. Wild Flowers of Saudi Arabia (National Commission for Wildlife Conservation and Development, 1999).
Google Scholar
41.Chaudhary, S. Flora of the Kingdom of Saudi Arabia (Ministry of Agriculture and Water, 2001).
Google Scholar
42.Raunkiaer, C. Life Forms of Plants and Statistical Plant Geography (Collected Paper Translated into English) (University Press, 1934).
Google Scholar
43.Wickens, G. E. The Flora of Jebel Morra (Sudan Republic) and Its Geographical Affinities. Kew Bulletin Additional Series V (HMSO, London, 1976).
Google Scholar
44.Zohary, M. Geobotanical Foundations of the Middle East Vol. 2 (GustavFischer Verlag, 1973).
Google Scholar
45.Broadbent, F. E. Organic matter. In Methods of Soil Analysis Part 1 (ed. Black, C. A.) 1397–1400 (American Society of Agronomy, Inc, 1965).
Google Scholar
46.Bremmer, J. M. Total nitrogen. In Methods of Soil Analysis Part 1 (ed. Black, C. A.) 1149–1176 (American Society of Agronomy, Inc, 1965).
Google Scholar
47.Ward, J. H. Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. J. 58, 236–244 (1963).MathSciNet
Article
Google Scholar
48.Castro, S. A. & Jaksic, F. M. Patterns of turnover and floristic similarity show a non random distribution of naturalized flora in Chile. South America. Rev. Hist. Nat. 81, 111–121 (2008).
Google Scholar
49.Magurran, A. E. Ecological Diversity and Its Measurements (Princeton University Press, 1988).Book
Google Scholar
50.Pielou, E. C. Ecological Diversity 1st edn. (Wiely Interscience, 1975).
Google Scholar
51.Hosni, H. A. & Hegazy, A. K. Contribution to the flora of Asir, Saudi Arabia. Candollea 51, 169–202 (1996).
Google Scholar
52.Al-Turki, T. A. & Al-Olayan, H. A. Contribution to the flora of Saudi Arabia: hail region. Saud. J. Biol. Sci. 10, 190–222 (2003).
Google Scholar
53.Abd El-Ghani, M. M. & Abdel-Khalik, K. N. Floristic diversity and phytogeography of the gebel Elba national park South-East Egypt. Turk. J. Bot. 30, 121–136 (2006).
Google Scholar
54.Panthi, M. P., Chaudhary, R. P. & Vetaas, O. R. Plant species richness and composition in a trans Himalayan inner valley of mananging district, Central Nepal. Himal. J. Sci. 4, 57–64. https://doi.org/10.3126/hjs.v4i6.983 (2007).Article
Google Scholar
55.Burke, A. Properties of soil pockets on arid Nama karoo inselbergsethe effect of geology and derived landforms. J. Arid Environ. 50, 219–234. https://doi.org/10.1006/jare.2001.0907 (2002).ADS
Article
Google Scholar
56.Måren, I. E., Karki, S., Prajapati, C., Yadav, R. K. & Shrestha, B. B. Facing north or south: does slope aspect impact forest standcharacteristics and soil properties in a semiarid trans-Himalayanvalley?. J. Arid Environ. 121, 112–123. https://doi.org/10.1016/j.jaridenv.2015.06.004 (2015).ADS
Article
Google Scholar
57.Boyko, H. On the role of plants as quantitative climate indicators and the geoecological law of distributions. J. Ecol. 25, 138–157 (1947).Article
Google Scholar
58.Andersen, G. L. & Krzywinski, K. Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. BMC Ecol. 7, 4. https://doi.org/10.1186/1472-6785-7-4 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
59.Tiwari, N., Srivastava, N. & Sharma, V. Comparative analysis of total phenolic content and antioxidant activity of in vivo and in vitro grown plant parts of Carica papaya L. Ind. J. Plant Physiol. 19, 356–362 (2014).Article
Google Scholar
60.Daur, I. Plant flora in the rangeland of Western Saudi Arabia. Pak. J. Bot. 44, 23–26 (2012).
Google Scholar
61.El-Demerdash, M. A., Hegazy, A. K. & Zilay, A. M. Distribution of plant communities in Tihamah coastal plains of Jazan region, Saudi Arabia. Vegetatio 112, 141–151 (1994).Article
Google Scholar
62.El-Ghanim, W. M., Hassan, L. M., Galal, T. M. & Badr, A. Floristic composition and vegetation analysis in Hail region north of Central Saudi Arabia. Saudi J. Biol. Sci. 17, 119–128. https://doi.org/10.1016/j.sjbs.2010.02.004 (2010).CAS
Article
PubMed
PubMed Central
Google Scholar
63.Abd El-Ghani, M. M. Environmental correlates of species distribution in arid desert ecosystems of eastern Egypt. J. Arid Environ. 38, 297–313 (1998).ADS
Article
Google Scholar
64.Sharma, M. & Rajpal, K. Life-forms and biological spectrum of the flora of the Punjab state, India. Bull. Bot. Surv. India 33, 276–280. https://doi.org/10.1078/1439-1791-00163 (1991).Article
Google Scholar
65.Hegazy, A. K., El-Demerdash, M. A. & Hosni, H. A. Vegetation, species diversity and floristic relations along an altitudinal gradient in South-West Saudi Arabia. J. Arid Environ. 38, 3–13. https://doi.org/10.1006/jare.1997.0311 (1998).ADS
Article
Google Scholar
66.Kassas, M. & Girgis, W. A. Habitats and plant communities in the Egyptian deserts. V. The limestone plateau. J. Ecol. 52, 107–119 (1964).Article
Google Scholar
67.Orshan, G. The desert of the middle east. In Ecosystems of the World, 12B, Hot Desert and Arid Shrublands (eds Evenari, M. et al.) 1–28 (Elsevier, 1986).
Google Scholar
68.Shaltout, K. H., Sheded, M. G. & Salem, A. M. Vegetation spatial heterogeneity in a hyper arid biosphere reserve area in North Africa. Act. Bot. Croat. 69, 31–46 (2010).
Google Scholar
69.Stewart, L. et al. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Ecol. Biogeogr. 25, 430–442. https://doi.org/10.1111/geb.12424 (2016).Article
Google Scholar
70.Cain, S. A. & Castro, M. O. Manual of Vegetation Analysis (Harper Brothers, 1959).
Google Scholar
71.Dickoré, W. B. & Nüsser, M. Flora of Nanga Parbat (NW Himalaya, Pakistan): an annotated inventory of vascular plants with remarks on vegetation dynamics. Englera 19, 1–253. https://doi.org/10.2307/3776769 (2000).Article
Google Scholar
72.Hoffmann, A. J. & Hoffmann, A. E. Altitudinal ranges of phanerophytes and chamaephytes in central Chile. Vegetatio 48, 151–163. https://doi.org/10.1007/BF00726885 (1982).Article
Google Scholar
73.White, F. & Leonard, J. Phytogeographical links between Africa and Southwest Asia. Flora Veg. Mundi. 9, 229–246. https://doi.org/10.1007/BF01117080 (1991).Article
Google Scholar
74.König, P. Phytogeography of South-Western Saudi Arabia (Asir, Tihama). Erde 119, 75–89 (1988).
Google Scholar
75.White, F. The vegetation of Africa: A descriptive memoir to accompany the UNSECO, AETFAT, UNSO vegetation map of Africa (United Nations Educational, Scientific and Cultural Organization, Paris, 1983).
Google Scholar More