More stories

  • in

    Spatial distribution of anti-Toxoplasma gondii antibody-positive wild boars in Gifu Prefecture, Japan

    1.Robert-Gangneux, F. & Darde, M. L. Epidemiology of and diagnostic strategies for Toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 

    Google Scholar 
    2.VanWormer, E., Fritz, H., Shapiro, K., Mazet, J. A. K. & Conrad, P. A. Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comp. Immunol. Microbiol. Infect. Dis. 36, 217–231 (2013).Article 

    Google Scholar 
    3.Cook, A. J. C. Sources of toxoplasma infection in pregnant women: European multicentre case-control study Commentary: Congenital toxoplasmosis—further thought for food. BMJ 321, 142–147 (2000).CAS 
    Article 

    Google Scholar 
    4.Spalding, S. M., Amendoeira, M. R. R., Klein, C. H. & Ribeiro, L. C. Serological screening and toxoplasmosis exposure factors among pregnant women in South of Brazil. Rev. Soc. Bras. Med. Trop. 38, 173–177 (2005).Article 

    Google Scholar 
    5.Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 

    Google Scholar 
    6.Egorov, A. I. et al. Environmental risk factors for Toxoplasma gondii infections and the impact of latent infections on allostatic load in residents of Central North Carolina. BMC Infect. Dis. 18, 421. https://doi.org/10.1186/s12879-018-3343-y (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 15, e00049; https://doi.org/10.1016/j.fawpar. (2019).8.Hill, D. et al. Identification of a sporozoite-specific antigen from Toxoplasma gondii. J. Parasitol. 97, 328–337 (2011).CAS 
    Article 

    Google Scholar 
    9.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges: A review of wild boar Sus scrofa diet. Mamm. Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    10.Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan (In Japanese). Mamm. Sci. 53, 279–287 (2013).
    Google Scholar 
    11.Chambers, L. K., Singleton, G. R. & Krebs, C. J. Movements and social organization of wild house mice (Mus domesticus) in the wheatlands of northwestern Victoria, Australia. J. Mammal. 81, 59–69 (2000).12.Oka, T. Home range and mating system of two sympatric field mouse species, Apodemus speciosus and Apodemus argenteus. Ecol. Res. 7, 163–169 (1992).Article 

    Google Scholar 
    13.Yatake, H., Nashimoto, M., Shimano, K., Matuki, R. & Shiraki, S. Present status and subjects of estimation methods of Japanese hare (Lepus brachyurus) density (in Japanese). Mamm. Sci. 42, 23–34 (2002).
    Google Scholar 
    14.Setoguchi, M. Utilization of holes and home ranges in the Japanese long-tailed mice (Apodemus argenteus) (in Japanese). Jap. J. Ecol. 31, 385–394 (1981).
    Google Scholar 
    15.Rostami, A. et al. The global seroprevalence of Toxoplasma gondii among wild boars: A systematic review and meta-analysis. Vet. Parasitol. 244, 12–20 (2017).Article 

    Google Scholar 
    16.Lopez, A. L., Pineda, E., Garakian, A. & Cherry, J. D. Effect of heat inactivation of serum on Bordetella pertussis antibody determination by enzyme-linked immunosorbent assay. Diagn. Microbiol. Infect. Dis. 30, 21–24 (1998).CAS 
    Article 

    Google Scholar 
    17.Taniguchi, Y. et al. A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol. Int. 72, 101935; https://doi.org/10.1016/j.parint.2019.101935 (2019).18.Tadano, R., Nagai, A. & Moribe, J. Local-scale genetic structure in the Japanese wild boar (Sus scrofa leucomystax): insights from autosomal microsatellites. Conserv. Genet. 17, 1125–1135 (2016).Article 

    Google Scholar 
    19.Ikeda, T., Asano, M., Kuninaga, N. & Suzuki, M. Monitoring relative abundance index and age ratios of wild boar (Sus scrofa) in small scale population in Gifu Prefecture, Japan during classical swine fever outbreak. J. Vet. Med. Sci. 82, 861–865 (2020).Article 

    Google Scholar 
    20.Matsuo, K., Uetsu, H., Takashima, Y. & Abe, N. High Occurrence of Sarcocystis infection in sika deer Cervus nippon centralis and Japanese wild boar Sus scrofa leucomystax and molecular characterization of Sarcocystis and Hepatozoon isolates from their muscles (in Japanese). Jpn. J. Zoo. Wildl. Med. 21, 35–40 (2016).Article 

    Google Scholar 
    21.Ogedengbe, M. E. et al. Molecular phylogenetic analyses of tissue coccidia (sarcocystidae; apicomplexa) based on nuclear 18s rDNA and mitochondrial COI sequences confirms the paraphyly of the genus Hammondia. Parasitol. Open 2, e2; https://doi.org/10.1017/pao.2015.7 (2016).22.Moon, M. H. Serological cross-reactivity between Sarcocystis and Toxoplasma in pigs. Kor. J. Parasitol. 25, 188–194 (1987).Article 

    Google Scholar 
    23.Dubey, J. P. et al. All about Toxoplasma gondii infections in pigs: 2009–2020. Vet. Parasitol. 288, 109185 (2020).24.Puchalska, M. et al. Prevalence of Toxoplasma gondii antibodies in wild boar (Sus scrofa) from Strzałowo Forest Division, Warmia and Mazury Region, Poland. Ann. Agric. Environ. Med. 28, 237–242 (2021).25.Dubey, J. P. et al. Genotyping of viable Toxoplasma gondii from the first national survey of feral swine revealed evidence for sylvatic transmission cycle, and presence of highly virulent parasite genotypes. Parasitology 147, 295–302 (2020).CAS 
    Article 

    Google Scholar 
    26.Kia, E. B., Mirhendi, H., Rezaeian, M., Zahabiun, F. & Sharbatkhori, M. First molecular identification of Sarcocystis miescheriana (Protozoa, Apicomplexa) from wild boar (Sus scrofa) in Iran. Exp. Parasitol. 127, 724–726 (2011).CAS 
    Article 

    Google Scholar 
    27.Coelho, C. et al. Unraveling Sarcocystis miescheriana and Sarcocystis suihominis infections in wild boar. Vet. Parasitol. 212, 100–104 (2015).Article 

    Google Scholar 
    28.Gazzonis, A. L. et al. Prevalence and molecular characterization of Sarcocystis miescheriana and Sarcocystis suihominis in wild boars (Sus scrofa) in Italy. Parasitol. Res. 118, 1271–1287 (2019).Article 

    Google Scholar 
    29.Huang, Z. et al. Morphological and molecular characterizations of Sarcocystis miescheriana and Sarcocystis suihominis in domestic pigs (Sus scrofa) in China. Parasitol. Res. 118, 3491–3496 (2019).Article 

    Google Scholar 
    30.Matsuo, K. et al. Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitol. Int. 63, 638–639 (2014).Article 

    Google Scholar 
    31.Singer, F., Otto, D., Tipton, A. & Hable, C. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).Article 

    Google Scholar 
    32.Hollings, T., Jones, M., Mooney, N. & McCallum, H. Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. Int. J. Parasitol. Parasites Wildl. 2, 110–118 (2013).Article 

    Google Scholar 
    33.Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200. https://doi.org/10.1038/s41598-019-52472-3 (2019).34.QGIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2021).35.Verma, S. K., Lindsay, D. S., Grigg, M. E. & Dubey, J. P. Isolation, culture and cryopreservation of Sarcocystis species. Curr. Protoc. Microbiol. https://doi.org/10.1002/cpmc.32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).37.Robin, X. et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).Article 

    Google Scholar  More

  • in

    Moisture modulates soil reservoirs of active DNA and RNA viruses

    A diverse and active DNA virosphereWe first leveraged two existing metagenomes that were constructed from the Konza native prairie soil14,15 to screen for viral sequences at the site. Each of the metagenomes was obtained from a composite of all the replicate soils collected at ambient field moisture conditions. One of the metagenomes was de novo assembled from deep sequence data (1.1 Tb)14 and the second was a hybrid assembly of short and long reads (267.0 Gb)16. The combination of the two metagenomes was used to maximize the coverage of viral sequences from the Konza prairie site. To balance between the detection limits of the viral detection tools and the wide range of viral genome size, the viral contigs > 2.5 kb in length were combined with those obtained from screening of the two largest public viral databases (i.e., IMG/VR17 and NCBI Virus16) to further increase the coverage of DNA viral sequences. We acknowledge that the length cutoff of 2.5 kb would preclude detection of some ssDNA viruses with small segmented genome sizes (e.g., Nanoviridae18). As a result, a DNA viral database for the site was curated that included 726,108 de-replicated viral contigs. The DNA viral database then served as a scaffold for mapping of metatranscriptome and metaproteome datasets to determine the activities of soil DNA viruses and their responses to differences in soil moisture. This approach was also recently applied to detect the transcriptional activity of marine prokaryotic and eukaryotic viruses19,20,21,22 and giant viruses in soil5.The metatranscriptome reads from both wet and dry treatments were mapped to a total of 416 unique DNA viral contigs using stringent criteria (% sequence identity > 95% and % sequence coverage > 80%). The 416 DNA viral contigs with an average sequence length of 19 kb were highly diverse and grouped into 139 clusters, with 111 of the clusters being singletons (Supplementary Data 1).We aimed to assign putative host taxa to the viral clusters by combining several approaches: CRISPR spacer matching, and screening for host and viral sequence similarities to respective databases (details in ‘Methods’). As a result, we assigned putative viral host taxa to 160 out of the 416 transcribed DNA viral contigs. Some of these were assigned to more than one host (Supplementary Data 1), resulting in a total of 181 virus–host pairings (Fig. 1a). Of these, 79 host–virus pairs were detected only in the dry soil treatment, 51 were only in the wet soil treatment, and an additional 51 were found in both dry and wet treatments (Fig. 1a). Consistent with previous reports4, the majority of the transcribed DNA viral contigs were annotated as bacteriophage sequences. Different sets of transcribed DNA viral contigs were unique to wet or dry soils and assigned to specific hosts at the phylum level, whereas others were shared (Fig. 1a). However, the dominant soil taxa, i.e., Proteobacteria and Actinobacteria that were previously identified by 16S rRNA gene sequencing in this soil environment, were predicted as hosts under both wet and dry conditions (Supplementary Fig. 1a). Eukaryotic DNA viruses, such as Bracovirus and Ichnovirus belonging to a family of insect viruses within the Polydnaviridae family, were also transcribed in the soils (Fig. 1a and Supplementary Data 1). Most of these insect viruses were only detected in dry soil conditions. These differences in virus–host pairings suggest that some of the respective hosts were impacted differently by the dry and wet incubation conditions.Fig. 1: Transcribed DNA viral communities and their responses to wet and dry soil conditions.a An alluvium plot that illustrates pairings of the transcribed DNA viral contigs to putative host phyla. The transcribed DNA viral community was comprised of viral contigs from the curated DNA viral databases that were mapped by quality-filtered metatranscriptomic reads. The alluvia are colored by host taxa (first x axis of each sub-panel) assigned to respective transcribed DNA viral contigs (second x axis of each sub-panel). b A Venn diagram showing the number of unique transcribed DNA viral contigs detected in both wet and dry soils and ones exclusively detected in one of the soils. c Number of unique DNA viral contigs detected. A t-Test shows significantly more DNA contigs were transcribed in dry soil (p = 0.044). d Number of transcripts that mapped to the DNA viral contigs. For panels (c) and (d), the two independent field sites of Konza Experimental Field Station are indicated as site A (circles) and site C (triangles), with the wet soil in blue and dry soil in red.Full size imageThere were 21 DNA viral contigs that were assigned to hosts across multiple bacterial phyla suggesting the presence of viral generalists1,23 (Supplementary Data 1). We recognize that host assignment based on CRISPR spacer matching, however, is limited to detection of recent or historical virus–host interactions that were captured at the time of sampling24. As bioinformatics assignment of virus–host linkages only suggests possible pairings based on sequence features, there are also chances of introducing false positives. However, we applied the most stringent criteria possible to provide confident host assignments.Increased activity of a subset of DNA viruses in wet soilSoil moisture has a strong influence on the community structures of transcribed DNA viruses. The majority of the transcriptionally active DNA viral contigs were unique to wet or dry conditions, with only 111 viral contigs (~ 26.7%) detected in both wet and dry soils, suggesting that the different soil moisture conditions may shape the activity of the DNA viral community differently (Fig. 1b). Interestingly, although a significantly higher number of transcribed DNA viral contigs were detected in dry soils (Fig. 1b, c), the levels of transcriptional activity were significantly higher (based on the normalized abundance of RNA reads that mapped to the viral contigs) for DNA viruses in wet soils irrespective of sampling site location (Fig. 1d). DNA viral contigs with mapped transcripts could represent either prophages that are passively replicated along with their host genomes, or (lytic) viruses that are actively regulating early/middle/late expression of viral gene clusters25. In soil, a lysogenic lifestyle is considered to be an adaptive strategy for viruses to cope with long periods of low host activity26,27. Therefore, the 1.5-fold increase in the number of transcribed DNA viral contigs representing transcriptionally active DNA viruses, but with lower levels of overall transcription, in dry soil suggests that the increase was due to a higher prevalence of lysogeny in dry conditions. This hypothesis is strengthened by our finding of a 20-fold increase in transcripts for lysogenic markers (i.e., integrase and excisionase) in one of our replicates (A-2) in dry compared to wet conditions (Supplementary Data 2). High number of lysogenic phages were also previously reported in dry Antarctic soils using a cultivation-independent induction assay28. By contrast, under wet soil conditions we found a 2-fold increase in transcription of fewer viral contigs representing a subset of DNA viruses, suggesting that those viruses were more transcriptionally active in response to higher soil moisture. In addition, there was a higher correlation between prokaryotic abundances, as estimated by 16S rRNA gene sequencing, with DNA viral transcript counts in wet soils (R2 = 0.593, Supplementary Fig. 1d) in comparison to dry soils (R2 = 0.069, Supplementary Fig. 1d), supporting this hypothesis.We then identified which soil DNA viruses were most transcriptionally active and how they responded to the differences in soil moisture. As the majority of the transcribed DNA viral contigs (97%) were environmental viruses with unclassified taxonomy assignment, we were not able to calculate the taxonomic abundance of each and instead compared the differential abundances of the transcribed viral contigs. There were four DNA viral contigs with significantly different levels of transcription under wet and dry conditions (VC_1, VC_19, VC_282, VC_412; Fig. 2a). Contigs VC_1 and VC_19 correspond to unclassified viral contigs deposited in IMG/VR (identifiers of ‘REF:2547132004_2547132004’ and ‘3300010038_Ga0126315_10000854’) that were previously detected in metagenomes from the Rifle site29 and from serpentine soil in the UC McLaughlin Reserve30, respectively. Contigs VC_282 and VC_412 were extracted from our Kansas metagenomes. Contigs VC_1 and VC_19 had significantly higher levels of transcriptional activity in wet soils compared to dry soils (p  More

  • in

    Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon

    Agrawal AF, Stinchcombe JR (2009) How much do genetic covariances alter the rate of adaptation? Proc Biol Sci 276:1183–1191PubMed 
    PubMed Central 

    Google Scholar 
    Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol S 44:367–388Article 

    Google Scholar 
    Andersen O (2012) Hemoglobin polymorphisms in Atlantic cod—a review of 50 years of study. Mar Genom 8:59–65Article 

    Google Scholar 
    Anttila K, Dhillon RS, Boulding EG, Farrell AP, Glebe BD, Elliott JA et al. (2013) Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J Exp Biol 216:1183–1190CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300
    Google Scholar 
    Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478Article 

    Google Scholar 
    Bontrager M, Angert AL (2019) Gene flow improves fitness at a range edge under climate change. Evol Lett 3:55–68PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bowen SJ, Washburn KW (1984) Genetics of heat tolerance in Japanese quail. Poult Sci 63:430–435CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155Article 

    Google Scholar 
    Breau C, Cunjak RA, Bremset G (2007) Age-specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. J Fish Biol 71:1179–1191Article 

    Google Scholar 
    Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments ASReml-R reference manual. Queensland Department of Primary Industries and Fisheries, NSW Department of Primary Industries, Brisbane, Australia
    Google Scholar 
    Catullo RA, Llewelyn J, Phillips BL, Moritz CC (2019) The potential for rapid evolution under anthropogenic climate change. Curr Biol 29:R996–R1007CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B 272:1415–1425PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheung WWL, Sarmiento JL, Dunne J, Frölicher TL, Lam VWY, Deng Palomares ML et al. (2012) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat Clim Change 3:254–258Article 

    Google Scholar 
    Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Debes PV, Fraser DJ, McBride MC, Hutchings JA (2013) Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon. Heredity 111:238–247CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debes PV, Piavchenko N, Erkinaro J, Primmer CR (2020) Genetic growth potential, rather than phenotypic size, predicts migration phenotype in Atlantic salmon. Proc R Soc B 287:20200867PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, Parre N et al. (2021) Polygenic and major-locus contributions to sexual maturation timing in Atlantic salmon. Mol Ecol https://doi.org/10.1111/mec.16062Dwyer WP, Piper RG (1987) Atlantic salmon growth efficiency as affected by temperature. Prog Fish Cult 49:57–59Article 

    Google Scholar 
    Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77:1793–1817CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Falconer DS (1952) The problem of environment and selection. Am Nat 86:293–298Article 

    Google Scholar 
    Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gallaugher P, Farrell AP (1998) Hematocrit and blood oxygen-carrying capacity. In: Perry SF, Tufts BL (eds) Fish respiration. Academic Press, San Diego, California, p 185–227
    Google Scholar 
    Gamperl AK, Ajiboye OO, Zanuzzo FS, Sandrelli RM, Peroni EDFC, Beemelmanns A (2020) The impacts of increasing temperature and moderate hypoxia on the production characteristics, cardiac morphology and haematology of Atlantic Salmon (Salmo salar). Aquaculture 519:734874Article 

    Google Scholar 
    Glover KA, Otterå H, Olsen RE, Slinde E, Taranger GL, Skaala Ø (2009) A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 286:203–210Article 

    Google Scholar 
    Glover KA, Solberg MF, Besnier F, Skaala O (2018) Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild. Sci Rep 8:13966PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW et al. (2017) Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish Fish 18:890–927Article 

    Google Scholar 
    Good C, Davidson J (2016) A review of factors influencing maturation of Atlantic salmon, Salmo salar, with focus on water recirculation aquaculture system environments. J World Aquacult Soc 47:605–632Article 

    Google Scholar 
    Hartman KJ, Porto MA (2014) Thermal performance of three rainbow trout strains at above-optimal temperatures. Trans Am Fish Soc 143:1445–1454Article 

    Google Scholar 
    Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310
    Google Scholar 
    Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci 1973:10–41Article 

    Google Scholar 
    Hill WG (2010) Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci 365:73–85PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 367:1665–1679PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hutchings JA, Myers RA (1994) The evolution of alternative mating strategies in variable environments. Evol Ecol 8:256–268Article 

    Google Scholar 
    IPCC (2014) Future climate changes, risk and impacts. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, pp 56–74Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jonsson B, Forseth T, Jensen AJ, Naesje TF (2001) Thermal performance of juvenile Atlantic Salmon, Salmo salar L. Funct Ecol 15:701–711Article 

    Google Scholar 
    Jonsson B, Jonsson N, Finstad AG (2013) Effects of temperature and food quality on age and size at maturity in ectotherms: an experimental test with Atlantic salmon. J Anim Ecol 82:201–210PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ et al. (2018) Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J Exp Biol 221:jeb169615PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kellermann V, van Heerwaarden B, Sgro CM (2017) How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc R Soc B 284:20170447PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kelly M (2019) Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 374:20180176PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kingsolver JG, Buckley LB (2017) Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos Trans R Soc Lond B Biol Sci 372:20160147PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kingsolver JG, Heckman N, Zhang J, Carter PA, Knies JL, Stinchcombe JR et al. (2015) Genetic variation, simplicity, and evolutionary constraints for function-valued traits. Am Nat 185:E166–181PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kingsolver JG, Izem R, Ragland GJ (2004) Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves. Integr Comp Biol 44:450–460PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, O’Connell MF et al. (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshwat Fish 12:1–59Article 

    Google Scholar 
    Komender P, Hoeschele I (1989) Use of mixed-model methodology to improve estimation of crossbreeding parameters. Livest Prod Sci 21:101–113Article 

    Google Scholar 
    Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189Article 

    Google Scholar 
    Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574Article 

    Google Scholar 
    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Massachusetts
    Google Scholar 
    Mather K, Jinks JL (1982) Biometrical genetics: the study of continuous variation, 3rd edn. Chapman and Hall, LondonBook 

    Google Scholar 
    McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR et al. (2021) Intraspecific variation in tolerance of warming in fishes. J Fish Biol 98:1536–1555PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messmer V, Pratchett MS, Hoey AS, Tobin AJ, Coker DJ, Cooke SJ et al. (2017) Global warming may disproportionately affect larger adults in a predatory coral reef fish. Glob Change Biol 23:2230–2240Article 

    Google Scholar 
    Morgan R, Finnoen MH, Jensen H, Pelabon C, Jutfelt F (2020) Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci USA 117:33365–33372CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morita K, Tamate T, Kuroki M, Nagasawa T (2014) Temperature-dependent variation in alternative migratory tactics and its implications for fitness and population dynamics in a salmonid fish. J Anim Ecol 83:1268–1278PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moritz C, Langham G, Kearney M, Krockenberger A, VanDerWal J, Williams S (2012) Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philos Trans R Soc Lond B Biol Sci 367:1680–1687PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morrissey MB, Kruuk LE, Wilson AJ (2010) The danger of applying the breeder’s equation in observational studies of natural populations. J Evol Biol 23:2277–2288CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Morrissey MB, Liefting M (2016) Variation in reaction norms: statistical considerations and biological interpretation. Evolution 70:1944–1959PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Muff S, Niskanen AK, Saatoglu D, Keller LF, Jensen H (2019) Animal models with group-specific additive genetic variances: extending genetic group models. Genet Sel Evol 51:7PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munday PL, Donelson JM, Domingos JA (2017) Potential for adaptation to climate change in a coral reef fish. Glob Change Biol 23:307–317Article 

    Google Scholar 
    Muñoz NJ, Anttila K, Chen Z, Heath JW, Farrell AP, Neff BD (2014a) Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon. Proc R Soc B 281:20141082PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz NJ, Farrell AP, Heath JW, Neff BD (2014b) Adaptive potential of a Pacific salmon challenged by climate change. Nat Clim Change 5:163–166Article 

    Google Scholar 
    Muñoz NJ, Farrell AP, Heath JW, Neff BD (2018) Hematocrit is associated with thermal tolerance and modulated by developmental temperature in juvenile Chinook salmon. Physiol Biochem Zool 91:757–762PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ørsted M, Hoffmann AA, Rohde PD, Sørensen P, Kristensen TN (2019) Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122:315–325PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pörtner HO, Bock C, Mark FC (2017) Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 220:2685–2696PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15:469–485Article 

    Google Scholar 
    Robinson ML, Gomez-Raya L, Rauw WM, Peacock MM (2008) Fulton’s body condition factor K correlates with survival time in a thermal challenge experiment in juvenile Lahontan cutthroat trout (Oncorhynchus clarki henshawi). J Therm Biol 33:363–368Article 

    Google Scholar 
    Rowe DK, Thorpe JE, Shanks AM (1991) Role of fat stores in the maturation of male Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci 48:405–413Article 

    Google Scholar 
    Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406Article 

    Google Scholar 
    Siepielski AM, Morrissey MB, Carlson SM, Francis CD, Kingsolver JG, Whitney KD et al. (2019) No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc R Soc B 286:20191332PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S et al. (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Solberg MF, Dyrhovden L, Matre IH, Glover KA (2016) Thermal plasticity in farmed, wild and hybrid Atlantic salmon during early development: has domestication caused divergence in low temperature tolerance? BMC Evol Biol 16:38PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Solberg MF, Fjelldal PG, Nilsen F, Glover KA (2014) Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon. PLoS ONE 9:e113697PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stillman JH (2019) Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34:86–100CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sutton SG, Bult TP, Haedrich RL (2000) Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans Am Fish Soc 129:527–538Article 

    Google Scholar 
    Taggart JB (2006) FAP: an exclusion-based parental assignment program with enhanced predictive functions. Mol Ecol Notes 7:412–415Article 
    CAS 

    Google Scholar 
    Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A et al. (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16:799–806PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquacult Res 25:77–87Article 

    Google Scholar 
    Tromp JJ, Jones PL, Brown MS, Donald JA, Biro PA, Afonso LOB (2018) Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon. Aquaculture 495:196–204Article 

    Google Scholar 
    Underwood ZE, Myrick CA, Rogers KB (2012) Effect of acclimation temperature on the upper thermal tolerance of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus: thermal limits of a North American salmonid. J Fish Biol 80:2420–2433CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Leeuwen TE, McLennan D, McKelvey S, Stewart DC, Adams CE, Metcalfe NB (2016) The association between parental life history and offspring phenotype in Atlantic salmon. J Exp Biol 219:374–382PubMed 
    PubMed Central 

    Google Scholar 
    Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol S 40:41–59Article 

    Google Scholar 
    Whitlock MC, Phillips PC, Wade MJ (1993) Gene interaction affects the additive genetic variance in subdivided populations with migration and extinction. Evolution 47:1758–1769PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wright S (1932) Proceedings of the Sixth International Congress on Genetics, Vol. 1. Donald FJ (ed.). The Genetics Society of America, pp 356-366Zhang T, Kong J, Liu B, Wang Q, Cao B, Luan S et al. (2014) Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceano Sin 33:106–110CAS 
    Article 

    Google Scholar  More

  • in

    UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System

    1.Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 1997;388:533–8.CAS 
    Article 

    Google Scholar 
    2.Jickells TD, Buitenhuis E, Altieri K, Baker AR, Capone D, Duce RA, et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob Biogeochem Cycles. 2017;31:289–305.CAS 

    Google Scholar 
    3.Knapp A. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Rees AP, Gilbert JA, Kelly-Gerreyn BA. Nitrogen fixation in the western English Channel (NE Atlantic Ocean). Mar Ecol Prog Ser. 2009;374:7–12.CAS 
    Article 

    Google Scholar 
    5.Shiozaki T, Nagata T, Ijichi M, Furuya K. Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific. Biogeosciences. 2015;12:4751–64.Article 

    Google Scholar 
    6.Tang W, Cerdán-García E, Berthelot H, Polyviou D, Wang S, Baylay A, et al. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 2020;14:2514–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tang W, Wang S, Fonseca-Batista D, Dehairs F, Gifford S, Gonzalez AG, et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat Commun. 2019;10:1–10.Article 
    CAS 

    Google Scholar 
    8.Hamersley M, Turk K, Leinweber A, Gruber N, Zehr J, Gunderson T, Capone D. Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight. Aquat Microb Ecol. 2011;63:193–205.Article 

    Google Scholar 
    9.Mulholland MR, Bernhardt PW, Blanco-Garcia JL, Mannino A, Hyde K, Mondragon E, et al. Rates of dinitrogen fixation and the abundance of diazotrophs in North American coastal waters between Cape Hatteras and Georges Bank. Limnol Oceanogr. 2012;57:1067–83.CAS 
    Article 

    Google Scholar 
    10.Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, western North Atlantic coastal waters expands the realm of marine diazotrophy. Glob Biogeochem Cycles. 2019;33:826–40.CAS 
    Article 

    Google Scholar 
    11.Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JL, Markager S, et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J. 2015;9:273–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wen Z, Lin W, Shen R, Hong H, Kao SJ, Shi D. Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait. Sci Rep. 2017;7:1–10.Article 
    CAS 

    Google Scholar 
    13.Voss M, Bombar D, Loick N, Dippner JW. Riverine influence on nitrogen fixation in the upwelling region off Vietnam, South China Sea. Geophys Res Lett. 2006;33:L07604.Article 
    CAS 

    Google Scholar 
    14.Shiozaki T, Furuya K, Kodama T, Kitajima S, Takeda S, Takemura T, et al. New estimation of N2 fixation in the western and central Pacific Ocean and its marginal seas. Glob Biogeochem Cycles. 2010;24:GB1015–n/a.15.Blais M, Tremblay JÉ, Jungblut AD, Gagnon J, Martin J, Thaler M, et al. Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic. Glob Biogeochem Cycles. 2012;26:GB3022.Article 
    CAS 

    Google Scholar 
    16.Shiozaki T, Fujiwara A, Inomura K, Hirose Y, Hashihama F, Harada N. Biological nitrogen fixation detected under Antarctic sea ice. Nat Geosci. 2020;13:729–32.CAS 
    Article 

    Google Scholar 
    17.Harding K, Turk-Kubo KA, Sipler RE, Mills MM, Bronk DA, Zehr JP. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc Natl Acad Sci USA. 2018;115:13371–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 2012;337:1546–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Zehr JP, Shilova IN, Farnelid HM, del Carmen Muñoz-MarínCarmen M, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:16214.PubMed 
    Article 
    CAS 

    Google Scholar 
    20.Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science. 2008;322:1110–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Church MJ, Mahaffey C, Letelier RM, Lukas R, Zehr JP, Karl DM. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Glob Biogeochem Cycles. 2009;23:GB2020.23.Langlois RJ, Hummer D, LaRoche J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ Microbiol. 2008;74:1922–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Krupke A, Lavik G, Halm H, Fuchs BM, Amann RI, Kuypers MM. Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean. Environ Microbiol. 2014;16:3153–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Shiozaki T, Bombar D, Riemann L, Hashihama F, Takeda S, Yamaguchi T, et al. Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea. Glob Biogeochem Cycles 2017;31:996–1009.CAS 
    Article 

    Google Scholar 
    27.Krupke A, Musat N, Laroche J, Mohr W, Fuchs BM, Amann RI, et al. In situ identification and N2 and C fixation rates of uncultivated cyanobacteria populations. Syst Appl Microbiol. 2013;36:259–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean. Environ. Microbiol. 2015;17:3754–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Conroy BJ, Steinberg DK, Song B, Kalmbach A, Carpenter EJ, Foster RA. Mesozooplankton graze on cyanobacteria in the amazon river plume and western tropical North Atlantic. Front Microbiol. 2017;8:1436.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Turk-Kubo KA, Connell P, Caron D, Hogan ME, Farnelid HM, Zehr JP. In situ diazotroph population dynamics under different resource ratios in the North Pacific Subtropical Gyre. Front Microbiol. 2018;9:1616.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Shiozaki T, Fujiwara A, Ijichi M, Harada N, Nishino S, Nishi S, et al. Diazotroph community structure and the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic Ocean). Limnol Oceanogr. 2018;63:2191–205.CAS 
    Article 

    Google Scholar 
    35.Sohm JA, Hilton JA, Noble AE, Zehr JP, Saito MA, Webb EA. Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling system. Geophys Res Lett. 2011;38:L16608–n/a.Article 
    CAS 

    Google Scholar 
    36.Moreira-Coello V, Mouriño-Carballido B, Marañón E, Fernández-Carrera A, Bode A, Varela MM. Biological N2 fixation in the upwelling region off NW Iberia: magnitude, relevance, and players. Front Mar Sci. 2017;4:303.Article 

    Google Scholar 
    37.Cabello AM, Turk-Kubo KA, Hayashi K, Jacobs L, Kudela RM, Zehr JP. Unexpected presence of the nitrogen-fixing symbiotic cyanobacterium UCYN-A in Monterey Bay, California. J Phycol. 2020;56:1521–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Deutsch C, Frenzel H, McWilliams JC, Renault L, Kessouri F, Howard E, et al. Biogeochemical variability in the California Current System. Prog Oceanogr. 2021;196:102565.Article 

    Google Scholar 
    39.Grasshoff K, Kremling K, Ehrhardt M, editors. Methods of seawater analysis. 3rd ed. Weinheim: Wiley-VCH; 1999.40.Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    41.Moisander PH, Beinart RA, Voss M, Zehr JP. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2008;2:954–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Zehr JP, Jenkins BD, Short SM, Steward GF. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol. 2003;5:539–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol. 2013;4:1111–9.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    47.Turk-Kubo KA, Farnelid HM, Shilova IN, Henke B, Zehr JP. Distinct ecological niches of marine symbiotic N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa sublineages. J Phycol. 2017;53:451–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and abundances of sublineages of the N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon. Front Microbiol. 2018;9:554.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gradoville MR, Farnelid H, White AE, Turk‐Kubo KA, Stewart B, Ribalet F, et al. Latitudinal constraints on the abundance and activity of the cyanobacterium UCYN‐A and other marine diazotrophs in the North Pacific. Limnol Oceanogr. 2020;65:1858–75.CAS 
    Article 

    Google Scholar 
    50.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Church M, Jenkins B, Karl D, Zehr J. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol. 2005;38:3–14.Article 

    Google Scholar 
    52.Thompson A, Carter BJ, Turk-Kubo K, Malfatti F, Azam F, Zehr JP. Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its prymnesiophyte host. Environ Microbiol. 2014;16:3238–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Foster RA, Subramaniam A, Mahaffey C, Carpenter EJ, Capone DG, Zehr JP. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol Oceanogr. 2007;52:517–32.CAS 
    Article 

    Google Scholar 
    54.Goebel NL, Turk KA, Achilles KM, Paerl R, Hewson I, Morrison AE, et al. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ Microbiol. 2010;12:3272–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Farnelid H, Turk-Kubo K, Munoz-Marin MD, Zehr JP. New insights into the ecology of the globally significant uncultured nitrogen-fixing symbiont UCYN-A. Aquat Microb Ecol. 2016;77:125–38.Article 

    Google Scholar 
    56.Mohr W, Grosskopf T, Wallace DWR, LaRoche J. Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE. 2010;5:e12583.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gradoville MR, Bombar D, Crump BC, Letelier RM, Zehr JP, White AE. Diversity and activity of nitrogen-fixing communities across ocean basins. Limnol Oceanogr. 2017;62:1895–909.Article 

    Google Scholar 
    59.White AE, Granger J, Selden C, Gradoville MR, Potts L, Bourbonnais A, et al. A critical review of the 15N2 tracer method to measure diazotrophic production in pelagic ecosystems. Limnol Oceanogr Methods. 2020;18:129–47.Article 

    Google Scholar 
    60.Cornejo-Castillo FM, Cabello AM, Salazar G, Sánchez-Baracaldo P, Lima-Mendez G, Hingamp P, et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat Commun. 2016;7:11071.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Cabello AM, Cornejo-Castillo FM, Raho N, Blasco D, Vidal M, Audic S, et al. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis. ISME J. 2016;10:693–706.PubMed 
    Article 

    Google Scholar 
    62.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM. Look@ NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Krupke A, Mohr W, LaRoche J, Fuchs BM, Amann RI, Kuypers MM. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis. ISME J. 2015;9:1635–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Meyer NR, Fortney J, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2020;23:81–98.PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Durazo R. Seasonality of the transitional region of the California Current System off Baja California. J Geophys Res Oceans. 2015;120:1173–96.Article 

    Google Scholar 
    66.Bakun A. Coastal upwelling indices, west coast of North America, 1946–71.67.Redfield AC. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. Vol. 1. Liverpool: University Press of Liverpool; 1934. p. 176–92.68.Bograd SJ, Schroeder ID, Jacox MG. A water mass history of the Southern California current system. Geophys. Res. Lett. 2019;46:6690–8.Article 

    Google Scholar 
    69.Langlois R, Großkopf T, Mills M, Takeda S, LaRoche J. Widespread distribution and expression of gamma A (UMB), an uncultured, diazotrophic, γ-proteobacterial nifH phylotype. PLoS ONE. 2015;10:e0128912.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Dekaezemacker J, Bonnet S, Grosso O, Moutin T, Bressac M, Capone DG. Evidence of active dinitrogen fixation in surface waters of the eastern tropical South Pacific during El Niño and La Niña events and evaluation of its potential nutrient controls. Glob Biogeochem Cycles 2013;27:768–79.CAS 
    Article 

    Google Scholar 
    71.Chen M, Lu Y, Jiao N, Tian J, Kao SJ, Zhang Y. Biogeographic drivers of diazotrophs in the western Pacific Ocean. Limnol Oceanogr. 2019;64:1403–21.CAS 
    Article 

    Google Scholar 
    72.Turk KA, Rees AP, Zehr JP, Pereira N, Swift P, Shelley R, et al. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic. ISME J. 2011;5:1201–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.White AE, Foster RA, Benitez-Nelson CR, Masqué P, Verdeny E, Popp BN, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Prog Oceanogr. 2013;109:1–17.Article 

    Google Scholar 
    74.Selden CR, Mulholland MR, Bernhardt PW, Widner B, Macías‐Tapia A, Ji Q, et al. Dinitrogen fixation across physico-chemical gradients of the eastern tropical North Pacific oxygen deficient zone. Glob Biogeochem Cycles. 2019;33:1187–202.CAS 
    Article 

    Google Scholar 
    75.Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol. 2011;9:499–508.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Carlucci A, Bowes PM. Production of vitamin B12, thiamine, and biotin by phytoplankton. J Phycol. 1970;6:351–7.CAS 

    Google Scholar 
    77.Gledhill M, Buck KN. The organic complexation of iron in the marine environment: a review. Front Microbiol. 2012;3:69.PubMed 
    PubMed Central 

    Google Scholar 
    78.Biddanda B, Benner R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr. 1997;42:506–18.CAS 
    Article 

    Google Scholar 
    79.Hernández de la Torre B, Gaxiola Castro G, Álvarez Borrego S, Gallegos García A, Aguirre Gómez R. New organic carbon in front of the Baja California Peninsula: time series and climatology. Hidrobiológica. 2015;25:74–85.
    Google Scholar 
    80.Xiu P, Chai F, Curchitser EN, Castruccio FS. Future changes in coastal upwelling ecosystems with global warming: the case of the California Current System. Sci. Rep. 2018;8:2866.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Kimor B, Reid F, Jordan J. An unusual occurrence of Hemiaulus membranaceus Cleve (Bacillariophyceae) with Richelia intracelluaris Schmidt (Cyanophyceae) off the coast of Southern California. Phycologia. 1978;17:162–6.Article 

    Google Scholar 
    82.White AE, Prahl FG, Letelier RM, Popp BN. Summer surface waters in the Gulf of California: Prime habitat for biological N2 fixation. Glob Biogeochem Cycles. 2007;21:GB2017–n/a.83.Pyle AE, Johnson AM, Villareal TA. Isolation, growth, and nitrogen fixation rates of the Hemiaulus-Richelia (diatom-cyanobacterium) symbiosis in culture. PeerJ. 2020;8:e10115.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Foster RA, Kuypers MM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 2011;5:1484–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Caputo A, Nylander JAA, Foster RA. The genetic diversity and evolution of diatom-diazotroph associations highlights traits favoring symbiont integration. FEMS Microbiol Lett. 2019;366:fny297.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    86.Thompson AR. State of the California Current 2017–18: still not quite normal in the north and getting interesting in the south. California cooperative oceanic fisheries investigations, Data report. 2018.87.Larkin AA, Moreno AR, Fagan AJ, Fowlds A, Ruiz A, Martiny AC. Persistent El Nino driven shifts in marine cyanobacteria populations. PLoS ONE. 2020;15:e0238405.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Hagino K, Takano Y, Horiguchi T. Pseudo-cryptic speciation in Braarudosphaera bigelowii (Gran and Braarud) Deflandre. Mar Micropaleontol. 2009;72:210–21.Article 

    Google Scholar 
    89.Selden CR, Chappell PD, Clayton S, Macías‐Tapia A, Bernhardt PW, Mulholland MR. A coastal N2 fixation hotspot at the Cape Hatteras front: elucidating spatial heterogeneity in diazotroph activity via supervised machine learning. Limnol Oceanogr. 2021;66:1832–49.Article 

    Google Scholar 
    90.Wang S, Tang W, Delage E, Gifford S, Whitby H, González AG, et al. Investigating the microbial ecology of coastal hotspots of marine nitrogen fixation in the western North Atlantic. Sci Rep. 2021;11:5508.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    High aboveground carbon stock of African tropical montane forests

    Department of Environment and Geography, University of York, York, UKAida Cuni-Sanchez, Philip J. Platts, Rob Marchant & Andrew MarshallDepartment of International Environmental and Development Studies (NORAGRIC), Norwegian University of Life Sciences, Ås, NorwayAida Cuni-SanchezDepartment of Natural Sciences, Manchester Metropolitan University, Manchester, UKMartin J. P. SullivanSchool of Geography, University of Leeds, Leeds, UKMartin J. P. Sullivan, Simon L. Lewis, Serge K. Begne, Amy C. Bennett, Martin Gilpin, Jon Lovett & Oliver L. PhillipsLeverhulme Centre for Anthropocene Biodiversity, University of York, York, UKPhilip J. PlattsClimate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, SwitzerlandPhilip J. PlattsDepartment of Geography, University College London, London, UKSimon L. LewisBiology Department, Université Officielle de Bukavu, Bukavu, Democratic Republic of the CongoGérard Imani & Christian AmaniService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumWannes Hubau, Hans Beeckman & John T. MukendiDepartment of Environment, Laboratory of Wood Technology (Woodlab), Ghent University, Ghent, BelgiumWannes HubauUniversity of Jos, Jos, NigeriaIveren AbiemNigerian Montane Forest Project, Yelwa Village, NigeriaIveren Abiem & Hazel ChapmanDepartment of Geosciences and Geography, University of Helsinki, Helsinki, FinlandHari Adhikari, Janne Heiskanen & Petri PellikkaDepartment of Zoology, Faculty of Science, Charles University, Prague, Czech RepublicTomas AlbrechtInstitute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech RepublicTomas AlbrechtInstitute of Botany of the Czech Academy of Science, Třeboň, Czech RepublicJan Altman & Jiri DolezalCollege of Natural and Computational Science, Addis Ababa University, Addis Ababa, EthiopiaAbreham B. Aneseyee & Teshome SoromessaDepartment of Natural Resource Management, College of Agriculture and Natural Resource, Wolkite University, Wolkite, EthiopiaAbreham B. AneseyeeEuropean Commission, Joint Research Centre, Ispra, ItalyValerio AvitabileUK Centre for Ecology and Hydrology, Edinburgh, UKLindsay BaninUniversité du Cinquantenaire Lwiro, Département de sciences de l’environnement, Kabare, Democratic Republic of the CongoRodrigue BatumikeIsotope Bioscience Laboratory (ISOFYS), Ghent University, Ghent, BelgiumMarijn Bauters, Pascal Boeckx & Joseph OkelloPlant Systematic and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, Yaoundé, CameroonSerge K. Begne, Vincent Droissart, Marie-Noel Kamdem, Murielle Simo-Droissart & Bonaventure SonkéInstitute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, UgandaRobert BitarihoBiodiversity and Landscape Unit, Gembloux Agro-Bio Tech, Université de Liege, Liège, BelgiumJan BogaertInstitute for Geography, Friedrich Alexander University, Erlangen–Nuremberg, GermanyAchim Bräuning & Ulrike HiltnerDépartement de Eaux et Forêts, Institut Supérieur d’Agroforesterie et de Gestion de l’Environnement de Kahuzi-Biega (ISAGE-KB), Kalehe, Democratic Republic of the CongoFranklin BulonvuUN Environment World Conservation Monitoring Center (UNEP-WCMC), Cambridge, UKNeil D. BurgessComputational and Applied Vegetation Ecology (CAVElab), Faculty of Bioscience Engineering, Ghent University, Ghent, BelgiumKim Calders & Hans VerbeeckDepartment of Anthropology, George Washington University, Washington DC, USAColin ChapmanSchool of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South AfricaColin ChapmanShaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, ChinaColin ChapmanInternational Centre of Biodiversity and Primate Conservation, Dali University, Dali, ChinaColin ChapmanUniversity of Canterbury, Canterbury, New ZealandHazel ChapmanInventory and Monitoring Program, National Park Service, Fredericksburg, VA, USAJames ComiskeyUniversity of Ghent, Ghent, BelgiumThales de HaullevilleWorld Agroforestry (ICRAF), Nairobi, KenyaMathieu DecuyperLaboratory of Geo-Information Science and Remote Sensing, Wageningen University, Wageningen, The NetherlandsMathieu Decuyper & Martin HeroldGeography, Environment and Geomatics, University of Guelph, Guelph, Ontario, CanadaBen DeVriesFaculty of Science, University of South Bohemia, České Budějovice, Czech RepublicJiri DolezalAMAP Lab, Université de Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, FranceVincent DroissartFaculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille Ewango & Janvier LisingoCollege of Development Studies, Addis Ababa University, Addis Ababa, EthiopiaSenbeta FeyeraDendrochronology Laboratory, World Agroforestry Centre (ICRAF), Nairobi, KenyaAster GebrekirstosMissouri Botanical Garden, St Louis, MO, USARoy GereauDepartment of Biology, University of Burundi, Bujumbura, BurundiDismas HakizimanaSmithsonian Institution Forest Global Earth Observatory (ForestGEO), Smithsonian Tropical Research Institute, Washington DC, USAJefferson Hall & David KenfackKunming Institute of Botany, Kunming, ChinaAlan HamiltonUniversité Libre de Bruxelles, Brussels, BelgiumOlivier HardyDivision of Vertebrate Zoology, Yale Peabody Museum of Natural History, New Haven, CT, USATerese HartInstitute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, FinlandJanne HeiskanenDepartment of Plant Systematics, University of Bayreuth, Bayreuth, GermanyAndreas HempHelmholtz Center Potsdam GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Potsdam, GermanyMartin HeroldHelmholtz-Centre for Environmental Research (UFZ), Leipzig, GermanyUlrike HiltnerDepartment of Ecology, Faculty of Science, Charles University, Prague, Czech RepublicDavid Horak & Ondrej SedlacekInternational Gorilla Conservation Programme, Musanze, RwandaCharles Kayijamahe & Eustrate UzabahoDepartment of Natural Resources, Karatina University, Karatina, KenyaMwangi J. KinyanjuiDepartment of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USAJulia KleinEco2librium LLC, Boise, ID, USAMark LungDepartment of Ecology, Université de Kisangani, Kisangani, Democratic Republic of the CongoJean-Remy MakanaEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UKYadvinder MalhiTropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaAndrew Marshall & Alain S. K. NguteFlamingo Land Ltd, Malton, UKAndrew MarshallCollege of African Wildlife Management, Mweka, TanzaniaEmanuel H. MartinSchool of GeoSciences, University of Edinburgh, Edinburgh, UKEdward T. A. Mitchard & Charlotte WheelerDepartment of Geography and Environmental Sciences, University of Dundee, Dundee, UKAlexandra MorelIndependent Botanist, Harare, ZimbabweTom MullerDepartment of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South AfricaFelix NchuBiology Department, University of Rwanda, Kigali, RwandaBrigitte Nyirambangutse & Etienne ZiberaDepartment of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SwedenBrigitte Nyirambangutse & Göran WallinMountains of the Moon University, Fort Portal, UgandaJoseph OkelloNational Agricultural Research Organisation, Mbarara Zonal Agricultural Research and Development Institute, Mbarara, UgandaJoseph OkelloSchool of Biological Sciences, University of Southampton, Southampton, UKKelvin S.-H. PehConservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UKKelvin S.-H. PehState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, ChinaPetri PellikkaKey Biodiversity Areas Secretariat, BirdLife International, Cambridge, UKAndrew PlumptreSchool of Life Sciences, University of Lincoln, Lincoln, UKLan QieDepartment of Biology, University of Florence, Sesto Fiorentino, ItalyFrancesco RoveroTropical Biodiversity Section, Museo delle Scienze, Trento, ItalyFrancesco RoveroTropical Plant Exploration Group (TroPEG), Mundemba, CameroonMoses N. SaingeCenter for Development Research (ZEF), University of Bonn, Bonn, GermanyChristine B. SchmittConservation and Landscape Ecology, University of Freiburg, Freiburg, GermanyChristine B. SchmittApplied Biology and Ecology Research Unit, University of Dschang, Dschang, CameroonAlain S. K. NguteForest Ecology and Forest Management Group, Wageningen University, Wageningen, The NetherlandsDouglas SheilWater and Land Resources Center, Addis Ababa University, Addis Ababa, EthiopiaDemisse ShelemeAfrican Wildlife Foundation (AWF), Biodiversity Conservation and Landscape Management Program, Simien Mountains National Park, Debark, EthiopiaTibebu Y. SimegnFaculty of Forestry, University of British Columbia, Vancouver, British Columbia, CanadaTerry SunderlandCenter for International Forestry Research (CIFOR), Bogor, IndonesiaTerry SunderlandDepartment of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech RepublicMiroslav SvobodaDepartment of Plant Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, CameroonHermann TaedoumgBioversity International, Yaoundé, CameroonHermann TaedoumgUK Research and Innovation, London, UKJames TaplinDepartment of Geography, National University of Singapore, Singapore, SingaporeDavid TaylorInstitute of Forestry and Conservation, University of Toronto, Toronto, Ontario, CanadaSean C. ThomasBiodiversity Foundation for Africa, East Dean, UKJonathan TimberlakeForestry Development Authority of the Government of Liberia (FDA), Monrovia, LiberiaDarlington TuagbenSchool of Forestry and Environmental Studies, Yale University, New Haven, CT, USAPeter UmunayDepartment of Biological Sciences, Florida International University, Miami, FL, USAJason VleminckxSchool of Natural Sciences, University of Bangor, Bangor, UKSimon WillcockRothamsted Research, Harpenden, UKSimon WillcockUniversity of Liberia, Monrovia, LiberiaJohn T. WoodsA.C.-S. conceived the study and assembled the AfriMont dataset. A.C.-S. and M.J.P.S. analysed the plot data (with contributions from S.L.L.) and wrote the manuscript. P.J.P. analysed forest extents and contributed to writing. S.L.L. conceived and managed the AfriTRON forest plot recensus programme. E.T.A.M. and V.A. helped compare plot data with remote sensing carbon maps. All co-authors read and approved the manuscript. More

  • in

    Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment

    The results are organized into subsections on in situ temperature profiles, geochemical gradients, and microbial community data. Geochemical data include concentration and isotopic data of dissolved electron acceptors (sulfate, dissolved inorganic carbon (DIC), δ13C-DIC), electron donors (methane, sulfide, SCOAs), and respiration end products (DIC, methane, sulfide), as well as solid-phase organic carbon pools (total organic carbon (TOC), δ13C-TOC, total nitrogen (TN), TOC:TN (C:N)). Microbial community data include bacterial and archaeal 16S rRNA gene copy numbers and bacterial and archaeal community trends. All geochemical and microbiological data are shown in Supplementary Data 1–4.Temperature profilesThe in situ temperatures and temperature gradients differ greatly among sites and hydrothermal areas (Table 1; Fig. 1a, b, 1st column). Certain locations within the SA (Cold Site) and NSA (MUC02, GC13, MUC12) are uniformly cold (~3–5 °C) and thus serve as low-temperature control sites. The fact that Cold Site has no measurable depth-dependent temperature increase suggests that this site, despite being located within the SA, only has minimal hydrothermal fluid seepage. At two sites from the NSA (GC09, GC10), temperatures increase strongly, reaching ~60 °C at 400 cm below the seafloor, with temperature gradients becoming linear below 50 cm. Everest Mound, Orange Mat, and Cathedral Hill in the SA have the steepest temperature gradients ( >165 °C m−1), reaching >80 °C within 25 cm, whereas Yellow Mat from the SA only reaches ~27 °C at 45 cm. Temperature gradients are near-linear at Everest Mound, Cathedral Hill, and Yellow Mat, and in the top ~15 cm of Orange Mat. Below ~15 cm, the temperatures at Orange Mat are nearly constant.Table 1 Overview of all sampling sites.Full size tableFig. 1: Microbial abundance and community structure in relation to temperature and geochemical gradients.Depth profiles of temperature (1st column), porewater dissolved sulfate, methane, and dissolved inorganic carbon (DIC) concentrations (2nd column), bacterial and archaeal 16S rRNA gene abundances (3rd column), bacterial (4th column) and archaeal community structure (5th column) across the 10 study sites. a Sites from the NSA. b Sites from the SA. Bacteria and Archaea community structure is shown at the phylum level, except in Proteobacteria, which are displayed at the class level (see asterisk). To improve visibility, we adjusted the depth axis range for bacterial and archaeal communities at Everest Mound, only showing the top 10 cm, where microbial 16S rRNA genes were above detection. Sulfate and methane data from the NSA, except those from MUC12, were previously published27.Full size imageConcentrations of methane, sulfate, sulfide, and DICPorewater concentration profiles of methane, sulfate and DIC are consistent with higher microbial activity and higher substrate supplies in hydrothermal seep sediments compared to cold control sites or hydrothermal non-seep sediments.Independent of temperature, sediments without fluid seepage, i.e. the hydrothermal NSA sites (GC09, GC10) and low-temperature control sites (MUC02, MUC12, GC13, Cold Site), have similar concentration profiles of sulfate, methane, and DIC (Fig. 1a, b, 2nd column). Methane remains at background concentrations (≤0.02 mM), suggesting minimal methane production. DIC concentrations increase with depth by ~1–2 mM relative to seawater values (~2 mM). Sulfate decreases but remains near seawater values (~28 mM) throughout MUC02, MUC12, and the hydrothermal GC10, but drops more clearly toward the bottom of the hydrothermal GC09 (to 26.4 mM) and the cold GC13 (to 23.8 mM). The only minor deviation is Cold Site from the SA. At this site, sulfate and DIC concentrations change more with depth (sulfate drops to 23.6 mM; DIC increases to 6.2 mM), suggesting higher microbial activity relative to all hydrothermal and control sites within the NSA. Consistent with this interpretation sulfide (HS−) concentrations increase strongly with depth at Cold Site (from 2500 to 6200 µM) but not at the NSA sites, where sulfide concentrations remain much lower (0–52 µM (Supplementary Fig. 1). Furthermore, δ13C-DIC decreases with sediment depth at Cold Site (from −3.3‰ to −10.3‰), suggesting strong input of DIC from organic carbon mineralization (Supplementary Fig. 2). By contrast, δ13C-DIC remains close to seawater values (~0‰) throughout sediments of all NSA sites (−1.7‰ to −0.2‰).Compared to all NSA sites and Cold Site, sulfate, methane, and DIC concentrations are more variable at the seep sites Yellow Mat, Cathedral Hill, Orange Mat, and Everest Mound (Fig. 1b, 2nd column). Methane concentrations at Yellow Mat, Cathedral Hill, and Orange Mat are much higher than at the non-seep sites, reaching 3.3, 5.2, and 2.8 mM, respectively (no data from Everest Mound). These high methane concentrations, which can be mainly attributed to the input of thermogenic methane from below24, almost certainly underestimate in situ concentrations due to outgassing during core retrieval. Sulfate concentrations decrease more strongly with depth than at the NSA sites or Control Site, consistent with previously observed high sulfate-reducing activity6,7 and advection of sulfate-depleted fluid from below29. Nonetheless, sulfate concentrations remain in the millimolar range throughout cores from Yellow and Orange Mat. By contrast, sulfate is below detection (≤0.1 mM) at ≥4.5 cm sediment depth at Everest Mound, and in an intermittent depth interval at Cathedral Hill (~7.5–19.5 cm), below which it increases back to ~6 mM. High, i.e. millimolar, concentrations of sulfide at Orange Mat and Cathedral Hill are consistent with high rates of in situ microbial sulfate reduction and advective input of sulfide from the thermochemical reduction of sulfate in hotter, abiotic layers below (Supplementary Fig. 1). DIC concentrations reach values of >10 mM at Orange Mat, Cathedral Hill, and Yellow Mat (no data from Everest Mound). DIC concentrations fluctuate around 20 mM DIC throughout the core from Cathedral Hill, suggesting high DIC input from deeper layers. C-isotopic values of this DIC are close to those of seawater (~−3‰), suggesting an inorganic source. By contrast, surface sedimentary DIC concentrations at Yellow Mat and Orange Mat are close to seawater values but increase with depth to ~20 and ~14 mM, respectively. Lower δ13C-DIC values in surface sediments, which decrease further to values of ~−20‰ to −24‰ at Yellow Mat and −14‰ to −18‰ at Orange Mat within the top 10–20 cm, suggest that most of this DIC comes from the microbial or thermogenic breakdown of organic matter and/or the microbial anaerobic oxidation of methane.Trends in dissolved SCOAs across locationsPorewater concentration profiles of SCOAs are consistent with higher input of reactive organic carbon substrates to hydrothermal seep sediments compared to cold control sites or hydrothermal non-seep sediments.SCOA concentrations at the cold control sites and hot NSA sites are low, showing no clear depth-related trends, consistent with absence of SCOA input from below and/or biological controlled SCOA concentrations. SCOAs are dominated by acetate (cold MUC02, MUC12, and GC13: 1–3 µM; hydrothermal GCs: 3–6 µM; Cold Site: 1–7 µM), which was detected along with formate, propionate, and lactate (Fig. 2).Fig. 2: Depth profiles of short-chain organic acid (SCOA) concentrations across locations.Note the differences in concentration ranges on the x-axis and depth ranges on the y-axis (Cathedral Hill: 0–50 cm; GC13, GC09, and GC10: 0–500 cm; all others: 0–40 cm).Full size imageBy contrast, SCOA concentrations at all hydrothermal seep sites except Orange Mat, increase with depth and temperature, consistent with a thermogenic source below the cored interval. At Yellow Mat, acetate concentrations are already elevated at the seafloor (32 µM) and increase to >100 µM at 20 cm depth. Cathedral Hill has a similar acetate concentration profile, but reaches even higher concentrations (250 µM). At the hottest site, Everest Mound, acetate concentrations increase from ~150 µM at the seafloor to steady concentrations of ~600 µM below 3 cm. Formate concentrations are also (locally) elevated at Yellow Mat (5-8 µM), Cathedral Hill (to 14 µM), and Everest Mound (94-265 µM), and propionate concentrations reach high values at Cathedral Hill (to 21.8 µM) and Everest Mound (to 125 µM). The only exception among the seep sites is Orange Mat, where acetate is only slightly elevated (10–20 µM), and formate and propionate remain at background concentrations. These concentrations suggest that either thermogenic SCOA input from below is low at this site, or SCOA concentrations are biologically controlled throughout the core. Unlike the other three SCOAs, lactate concentrations remain low at all seep sites, apart from one outlier at Cathedral Hill (34.5 cm: 17.3 µM), suggesting that lactate is not a major product of thermogenic organic matter breakdown.Trends in solid-phase organic matter poolsAll sites have similar δ13C-TOC isotopic compositions, with values ranging from −19‰ to −23‰, consistent with a predominant phytoplankton origin of sedimentary organic carbon (Supplementary Fig. 3). Yet, depth profiles of TOC and TN follow different patterns across the locations (Fig. 3). All cold control sites have similar TOC (~2–4 wt%) and TN contents (~0.3–0.6 wt%), with slight decreases in values from the seafloor downward. Compared to cold controls, GC09 and GC10 have lower TOC and TN contents (TOC: ~0.5–3 wt%; TN: ~0.0–0.3 wt%), in particular in deeper horizons with elevated temperatures. Seep sites within the SA have the widest ranges. Seep sites have higher TOC in surface sediment compared to control sites, suggesting net organic carbon assimilation and synthesis by microbial growth. TOC values are 16 wt% at the seafloor of Orange Mat and 6–7 wt% at the seafloor of the other three locations, and then decrease strongly within the top 10 cm, reaching values similar to those of cold sites or hot NSA sites below 10 cm. TN values in surface sediments of seep sites are generally higher than at control sites (~0.7–0.9 wt%), providing additional evidence of net organic matter synthesis by microbial biomass production, but then decrease steeply to values that are similar to those at hot NSA sites.Fig. 3: Carbon and nitrogen contents of bulk organic matter.Depth profiles of total organic carbon (TOC), total nitrogen (TN), and TOC:TN (C:N) across all sites.Full size imageAs a result of the stable TOC and TN trends, C:N does not change much with depth at the cold locations. Yet, while C:N ranges around 4.4–5.6 at Cold Site, values are considerably higher, around 8.1–10.1, at cold locations within the NSA. By comparison, the hot NSA sites and all seep sites except Orange Mat show increases in C:N with increasing temperature and depth. This increase in C:N is modest, from ~8 to 10 at Yellow Mat, and more pronounced at the hotter GC09 (to 15.9), GC10 (to 13.4), Cathedral Hill (to 14.6), and Everest Mound (to 15.7). Orange Mat has the highest C:N ratios (14.8–26.5), and unlike the other sites does not show an increase in C:N with depth.General trends in bacterial and archaeal 16S rRNA gene copy numbers16S rRNA gene copy numbers indicate distinct trends in bacterial and archaeal abundances that follow temperature increases with sediment depth (Fig. 1a and b, 3rd column).At the four cold locations, bacterial and archaeal gene copy numbers are relatively stable with depth (Bacteria: 108−109 g−1; Archaea: 107−108 g−1). By comparison, gene copy numbers of GC09 and GC10 are in a similar range near the seafloor but decrease strongly with depth. While Archaea are quantifiable throughout both cores to ≤103 gene copies g−1 sediment, bacterial gene copy numbers are not reliably distinguishable from extraction negative controls (~1 × 104 g−1) at temperatures >60 °C. Furthermore, unlike the cold sites, which consistently have higher bacterial gene copy numbers, there is a shift from bacterial to archaeal dominance in gene copy numbers (GC09: at ~50 cm; GC10: at ~150 cm) at both hot NSA sites.Compared to the hot GCs from the NSA, gene copies decrease over much shorter distances at sites with fluid seepage in the SA. This decrease in gene copy numbers appears related to the magnitude of the temperature increase with depth. At Yellow Mat, which only reaches moderately warm temperatures (27 °C), copy numbers of both domains decrease from ~108 g−1 at the seafloor to ~106 g−1 at the bottom of the core. While Orange Mat, Cathedral Hill, and Everest Mound have similar bacterial and archaeal gene copy numbers to Yellow Mat at the seafloor, these values drop off much more steeply with depth, matching the much steeper temperature increases. At Cathedral Hill and Everest Mound, Bacteria could not be reliably detected below 20 and 7.5 cm, respectively. As the only location, the detection limit of archaeal 16S gene sequences was reached at Everest Mound, at a depth of 9.5 cm.Relationships between microbial gene abundances and temperatureWe explored the relationship between 16S rRNA gene copy number and temperature further (Fig. 4a, b). While gene copy numbers of both domains generally decrease with increasing temperature, the shape of this temperature relationship differs between both domains. In bacteria the decrease in gene copy numbers in relation to temperature is nearly linear. By contrast, in Archaea gene copy numbers follow hump-shaped distributions, i.e. they remain stable or only decrease slightly up to a certain temperature threshold, beyond which their copy numbers decrease steeply. This apparent thermal threshold varies between sites, i.e. it is ~85 °C at Orange Mat, ~70 °C at Cathedral Hill, ~50 °C at the NSA sites, and ~20 °C at Everest Mound.Fig. 4: Gene copy trends in relation to temperature.a Bacterial and (b) archaeal 16S rRNA gene copy numbers vs. temperature. c Bacteria-to-Archaea 16S rRNA gene copy ratios vs. temperature (the exponential function and its coefficient of determination (R2), both calculated in Microsoft Excel, are shown in the graph). Symbol sizes indicate the sediment depth of each sample. Cold control sites from both locations are grouped together in the legend for easier viewing.Full size imageThe differences in relationships between bacterial and archaeal gene copy numbers and temperature are reflected in Bacteria-to-Archaea gene copy ratios (Fig. 4c). Bacterial always exceed archaeal gene copies at 45 °C. Between 10 and 45 °C, domain-level gene dominance varies with location. Despite the variability, Bacteria-to-Archaea gene copy ratios follow a highly significant, exponential relationship with temperature (R2 = 0.67, p  More

  • in

    Individual and population dietary specialization decline in fin whales during a period of ecosystem shift

    1.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    2.Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    3.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecology 14, 948–958 (2011).
    Google Scholar 
    4.Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).Article 

    Google Scholar 
    5.Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    6.Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B Biol. Sci. 274, 839–844 (2007).Article 

    Google Scholar 
    7.Tinker, M. et al. Structure and mechanism of diet specialization: Testing models of individual variation in resource use with sea otters. Ecology 15, 475–483 (2012).
    Google Scholar 
    8.Newsome, S. D. et al. The interaction of intraspecific competition and habitat on individual diet specialization: A near range-wide examination of sea otters. Oecologia 178, 45–59 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    9.Layman, C. A., Newsome, S. D. & Crawford, T. G. Individual-level niche specialization within populations: Emerging areas of study. Oecologia 178, 1–4 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    10.Moore, S. E., Haug, T., Víkingsson, G. A. & Stenson, G. B. Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Prog. Oceanogr. 176, 102–118 (2019).Article 

    Google Scholar 
    11.Møller, E. F. & Nielsen, T. G. Borealization of Arctic zooplankton – Smaller and less fat zooplankton species in Disko Bay, Western Greenland. Limnol. Oceanogr. 65, 1175–1188 (2020).ADS 
    Article 

    Google Scholar 
    12.COSEWIC. COSEWIC Assessment and Status Report on the Fin Whale Balaenoptera physalus, Atlantic Population and Pacific Population, in Canada. xv + 72 (COSEWIC, 2019).13.Kawamura, A. A review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).
    Google Scholar 
    14.Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).ADS 
    Article 

    Google Scholar 
    15.Silva, M. A., Prieto, R., Jonsen, I., Baumgartner, M. F. & Santos, R. S. North Atlantic blue and fin whales suspend their spring migration to forage in middle latitudes: building up energy reserves for the journey?. PLoS ONE 8, e76507. https://doi.org/10.1371/journal.pone.0076507 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Gavrilchuk, K. et al. Trophic niche partitioning among sympatric baleen whale species following the collapse of groundfish stocks in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 497, 285–301 (2014).ADS 
    Article 

    Google Scholar 
    17.Aguilar, A. & García-Vernet, R. Fin whale. in Encyclopedia of Marine Mammals (eds. Würsig, B., Thewissen, J. G. M., Kovacs, K. M.) 368–371 (Elsevier, 2018).18.Silva, M. A. et al. A stable isotopes reveal winter feeding in different habitats in blue, fin and sei whales migrating through the Azores. R. Soc. Open Sci. 6, 181800. https://doi.org/10.1098/rsos.181800 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Savenkoff, C. et al. Changes in the northern Gulf of St Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift?. Est. Coast. Shelf Sci. 73, 711–724 (2007).ADS 
    Article 

    Google Scholar 
    20.Galbraith, P. S. et al. Physical oceanographic conditions in the gulf of St. Lawrence during 2019. Can. Sci. Adv. Sec. Res. Doc. 2020/043, iv + 9 (2020).
    Google Scholar 
    21.Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 13–20 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Plourde, S. et al. Ecosystem perspective on changes and anomalies in the Gulf of St. Lawrence: A context in support of the management of the St. Lawrence beluga whale population. Can. Sci. Adv. Sec. Res. Doc. 2013/129, v + 29 (2014).
    Google Scholar 
    23.Hammill, M. O., Stenson, G. B., Doniol-Valcroze, T. & Mosnier, A. Conservation of northwest Atlantic harp seals: Past success, future uncertainty?. Biol. Conserv. 192, 181–191 (2015).Article 

    Google Scholar 
    24.Stenson, G. B., Haug, T. & Hammill, M. O. Harp seals: Monitors of change in differing ecosystems. Front. Mar. Sci. 7, 738. https://doi.org/10.3389/fmars.2020.569258 (2020).Article 

    Google Scholar 
    25.Comtois, S., Savenkoff, C., Bourassa, M. N., Brêthes, J. C. & Sears, R. Regional distribution and abundance of blue and humpback whales in the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 2877, viii+8 (2010).
    Google Scholar 
    26.Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 835, 823–835 (2014).Article 

    Google Scholar 
    27.Iverson, S. J., Field, C., Don Bowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).Article 

    Google Scholar 
    28.Arregui, M., Borrell, A., Víkingsson, G., Ólafsdóttir, D. & Aguilar, A. Stable isotope analysis of fecal material provides insight into the diet of fin whales. Mar. Mamm. Sci. 34, 1059–1069 (2018).CAS 
    Article 

    Google Scholar 
    29.Bourdages, H. et al. Preliminary results from the ecosystemic survey in August 2019 in the Estuary and northern Gulf of St. Lawrence. Can. Sci. Adv. Sec. Res. Doc. 2020/009, iv+93 (2020).
    Google Scholar 
    30.Lesage, V., Lair, S., Turgeon, S. & Béland, P. Diet of St. Lawrence Estuary Beluga (Delphinapterus leucas) in a changing ecosystem. Can. Field Nat. 134, 21–35 (2020).Article 

    Google Scholar 
    31.Aubin, D. S., Smith, T. G. & Geraci, J. R. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can. J. Zool. 68, 359–367 (1990).Article 

    Google Scholar 
    32.Busquets-Vass, G. et al. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS ONE 12, e0177880. https://doi.org/10.1371/journal.pone.0177880 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Vighi, M., Borrell, A. & Aguilar, A. Stable isotope analysis and fin whale subpopulation structure in the eastern North Atlantic. Mar. Mam. Sci. 32, 535–551 (2016).Article 

    Google Scholar 
    34.Ramp, C., Delarue, J., Bérubé, M., Hammond, P. S. & Sears, R. Fin whale survival and abundance in the Gulf of St. Lawrence, Canada. Endanger. Species Res. 23, 125–132 (2014).Article 

    Google Scholar 
    35.Lesage, V., Hammill, M. O. & Kovacs, K. M. Marine mammals and the community structure of the Estuary and Gulf of St. Lawrence, Canada: Evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 210, 203–221. https://doi.org/10.3354/meps210203 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Ryan, C. et al. Prey preferences of sympatric fin (Balaenoptera physalus) and humpback (Megaptera novaeangliae) whales revealed by stable isotope mixing models. Mar. Mamm. Sci. 30, 242–258 (2014).CAS 
    Article 

    Google Scholar 
    37.Flinn, R. D., Trites, A. W., Gregr, E. J. & Perry, R. I. Diets of fin, sei, and sperm whales in British Columbia: An analysis of commercial whaling records, 1963–1967. Mar. Mamm. Sci. 18, 663–679 (2002).Article 

    Google Scholar 
    38.Bentaleb, I. et al. Foraging ecology of Mediterranean fin whales in a changing environment elucidated by satellite tracking and baleen plate stable isotopes. Mar. Ecol. Prog. Ser. 438, 285–302 (2011).ADS 
    Article 

    Google Scholar 
    39.Bolnick, D. I. & Fitzpatrick, B. M. Sympatric speciation: Models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459–487 (2007).Article 

    Google Scholar 
    40.Goldbogen, J. A. et al. Underwater acrobatics by the world’s largest predator: 360 rolling manoeuvres by lunge-feeding blue whales. Biol. Lett. 9, 20120986. https://doi.org/10.1098/rsbl.2012.0986 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl. Acad. Sci. 116, 5582–5587 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Lesmerises, F., Johnson, C. J. & St-Laurent, M. H. Landscape knowledge is an important driver of the fission dynamics of an alpine ungulate. Anim. Behav. 140, 39–47 (2018).Article 

    Google Scholar 
    43.Serres, A. & Delfour, F. Social behaviors modulate bottlenose dolphins (Tursiops truncatus) breathing rate. Anim. Cogn. 6, 127–140 (2019).
    Google Scholar 
    44.Goldbogen, J. A. et al. Kinematics of foraging dives and lunge-feeding in fin whales. J. Exp. Biol. 209, 1231–1244 (2006).PubMed 
    Article 

    Google Scholar 
    45.Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Metabolic expenditures of lunge feeding rorquals across scale: Implications for the evolution of filter feeding and the limits to maximum body size. PLoS ONE 7, e44854. https://doi.org/10.1371/journal.pone.0044854 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    47.Schleimer, A. et al. Decline in abundance and apparent survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence. Ecol. Evol. 9, 4231–4244 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Lesage, V. et al. Stable isotopes and trace elements as indicators of diet and habitat use in cetaceans: predicting errors related to preservation, lipid extraction, and lipid normalization. Mar. Ecol. Prog. Ser. 419, 249–265 (2010).ADS 
    Article 

    Google Scholar 
    49.Plourde, S., Winkler, G., Joly, P., St-Pierre, J. F. & Starr, M. Long-term seasonal and interannual variations of krill spawning in the lower St. Lawrence estuary, Canada, 1979–2009. J. Plankton Res. 33, 703–714 (2011).Article 

    Google Scholar 
    50.Plourde, S. et al. Daytime depth and thermal habitat of two sympatric krill species in response to surface salinity variability in the Gulf of St Lawrence, eastern Canada. ICES J. Mar. Sci. 71, 272–281 (2014).Article 

    Google Scholar 
    51.Cabrol, J. et al. Seasonal and large-scale spatial variability of the energy reserves and the feeding selectivity of Meganyctiphanes norvegica and Thysanoessa inermis in a Subarctic environment. Prog. Oceanogr. 179, 102203 (2019).Article 

    Google Scholar 
    52.Cabrol, J. et al. Functional feeding response of Nordic and Arctic krill on natural phytoplankton and zooplankton. J. Plankton Res. 42, 239–252 (2020).Article 

    Google Scholar 
    53.Cabrol, J. et al. Trophic niche partitioning of dominant North-Atlantic krill species, Meganyctiphanes norvegica, Thysanoessa inermis, and T. raschii. Limnol. Oceanogr. 64, 165–181 (2019).ADS 
    Article 

    Google Scholar 
    54.Guilpin, M. et al. Repeated vessel interactions and climate-or fishery-driven changes in prey density limit energy acquisition by foraging blue whales. Front. Mar. Sci. 7, 626. https://doi.org/10.3389/fmars.2020.00626 (2020).Article 

    Google Scholar 
    55.Guilpin, M. Étude des interactions bioénergétiques entre le rorqual bleu Balaenoptera musculus et le krill dans l’estuaire et le golfe du Saint-Laurent. Doctoral Thesis. (Université du Québec à Rimouski, 2020).56.MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article 

    Google Scholar 
    57.Schleimer, A. et al. Spatio-temporal patterns in fin whale Balaenoptera physalus habitat use in the northern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 623, 221–234 (2019).ADS 
    Article 

    Google Scholar 
    58.Bernier-Graveline, A. et al. Lipid metabolites as indicators of body condition in highly contaminant-exposed belugas from the endangered St. Lawrence Estuary population (Canada). Environ. Res. 192, 110272. https://doi.org/10.1016/j.envres.2020.110272 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Kershaw, J. L. et al. Declining reproductive success in the Gulf of St Lawrence’s humpback whales (Megaptera novaeangliae) reflects ecosystem shifts on their feeding grounds. Glob. Change Biol. 10, 1–15. https://doi.org/10.1111/gcb.15466 (2020).Article 

    Google Scholar 
    60.Mosnier, A. & Gosselin, J.-F. Seasonal distribution and concentration of four baleen whale species in the St. Lawrence Estuary based on 22 years of DFO observation data. Can. Sci. Adv. Sec. Res. Doc. 2020/053, iv+119 (2020).
    Google Scholar 
    61.Gowans, S., Simard, P., Giard, J., Vashro, C. & Sears, R. Photographic identification of fin whales (Balaenoptera physalus) off the Atlantic coast of Nova Scotia, Canada. Mar. Mamm. Sci. 21, 323–326 (2005).Article 

    Google Scholar 
    62.Bérubé, M. & Palsbøll, P. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers. Mol. Ecol. 5, 283–287 (1996).PubMed 
    Article 

    Google Scholar 
    63.Williams, R. et al. Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES J. Mar. Sci. 70, 1273–1280 (2013).Article 

    Google Scholar 
    64.Lockyer, C. Body fat condition in Northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Can. J. Fish Aquat. Sci. 43, 142–147 (1986).Article 

    Google Scholar 
    65.Ryan, C. et al. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 26, 2745–2754 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Elliott, K. H., Roth, J. D. & Crook, K. Lipid extraction techniques for stable isotope analysis and ecological assays. Method Mol. Biol. 1609, 9–24 (2017).CAS 
    Article 

    Google Scholar 
    67.Newsome, S. D., Chivers, S. J. & Berman Kowalewski, M. The influence of lipid-extraction and long-term DMSO preservation on carbon (δ13C) and nitrogen (δ15N) isotope values in cetacean skin. Mar. Mamm. Sci. 34, 277–293 (2018).CAS 
    Article 

    Google Scholar 
    68.Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801 (2006).Article 

    Google Scholar 
    69.Iverson, S. J., Frost, K. J. & Lang, S. Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: Factors contributing to among and within species variability. Mar. Ecol. Prog. Ser. 241, 161–181 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Lesage, V. Trends in the trophic ecology of St. Lawrence beluga (Delphinapterus leucas) over the period 1988–2012, based on stable isotope analysis. Can. Sci. Adv. Sec. Res. Doc. 2013/126, iv+26 (2014).
    Google Scholar 
    71.Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).Article 

    Google Scholar 
    72.Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial 3rd edn. (Primer-E Ltd, 2015).
    Google Scholar 
    73.Bates, D. M., Mäechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).Article 

    Google Scholar 
    74.Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. in R Package Version 1–8 (2018).75.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2021).76.Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7287/peerj.preprints.26884v1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Parnell, A., Inger, R., Bearhop, S. & Jackson, A. Source partitioning using stable isotopes: coping with too much variation. PLoS Biol. 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Gendron, D., Aguíñiga, S. & Carriquiry, J. D. d15N and d13C in skin biopsy samples: A note on their applicability for examining the relative trophic level in three rorqual species. J. Cetacean Res. Manag. 3, 41–44 (2001).
    Google Scholar 
    80.Giménez, J., Ramírez, F., Almunia, J., Forero, M. G. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Biol. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    81.Caut, S., Angulo, E. & Courchamp, F. Discrimination factors (Δ15N and Δ13C) in an omnivorous consumer: Effect of diet isotopic ratio. Funct. Ecol. 22, 255–263 (2008).Article 

    Google Scholar 
    82.Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).PubMed 
    Article 

    Google Scholar 
    83.Newsome, S. D., Yeakel, J. D., Wheatley, P. V. & Tinker, M. T. Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J. Mammal. 93, 329–341 (2012).Article 

    Google Scholar 
    84.Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behavior drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).PubMed 
    Article 

    Google Scholar 
    85.Devries, M. S., Stock, B. C., Christy, J. H., Goldsmith, G. R. & Dawson, T. E. Specialized morphology corresponds to a generalist diet: Linking form and function in smashing mantis shrimp crustaceans. Oecologia 182, 429–442 (2016).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Handmade solar dryer: an environmentally and economically viable alternative for small and medium producers

    1.FAO—Food and Agriculture Organization of the United Nations. World Crops Production. http://www.wptc.to/releases-wptc.php (2016).2.WPTC—World Processing Tomato Council. World production estimate. http://www.wptc.to/releases-wptc.php. (2016).3.Silva, Y. P. A. et al. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr. 70, 150–160 (2019).Article 

    Google Scholar 
    4.Pereira, M. A. B. et al. Postharvest conservation of structural long shelf life tomato fruits and with the mutant rin produced, in edaphoclimatic conditions of the southern state of Tocantins. Ciênc. Agrotec. 39, 225–231 (2015).Article 

    Google Scholar 
    5.Brummell, D. A. & Harpster, M. H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. PCW. 47, 311–340 (2001).CAS 

    Google Scholar 
    6.Meli, V. S. et al. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc. Natl. Acad. Sci. USA 107, 2413–2418 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Samimi-Akhijahani, H. & Arabhosseini, A. Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renew. Energy 123, 428–438 (2018).Article 

    Google Scholar 
    8.Tripathy, P. P. Investigação da secagem solar da batata: efeito da geometria da amostra na cinética de secagem e na mitigação das emissões de CO2. J. Ciênc. e Tecnol. Alim. 52, 1383–1393 (2015).CAS 

    Google Scholar 
    9.Badaoui, O., Hanini, S., Djebli, A., Haddad, B. & Benhamou, A. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renew. Energy 133, 144–155 (2019).Article 

    Google Scholar 
    10.Mohsen, H. A., El-Rahmam, A. A. & Hassan, H. E. Drying of tomato fruits using solar energy. Int. J. Agric. Eng. 21, 204–215 (2019).
    Google Scholar 
    11.César, L. V. E., Lilia, C. M. A., Octavio, G. V., Isaac, P. F. & Rogelio, B. O. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew. Energy 147, 845–855 (2020).Article 

    Google Scholar 
    12.Kingsly, A. R. P., Singh, R., Goyal, R. K. & Singh, D. B. Thin-layer drying behavior of organically produced tomato. Am. J. Food Tech. 2, 71–78 (2007).Article 

    Google Scholar 
    13.Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).CAS 
    Article 

    Google Scholar 
    14.Silva, F. A. S. A. & Azevedo, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Rev. Bras. Prod. Agroindustriais 4, 71–78 (2002).Article 

    Google Scholar 
    15.Klunklin, W. & Savage, G. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6, e56 (2017).Article 

    Google Scholar 
    16.Azeez, L., Adebisi, S. A., Oyedeji, A. O., Adetoro, R. O. & Tijani, K. O. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. 10, 120–126 (2019).
    Google Scholar 
    17.Correia, A. F., Loro, K. A. C., Zanatta, S., Spoto, M. H. F. & Vieira, T. M. F. S. Effect of temperature, time, and material thickness on the dehydration process of tomato. Int. J. Food Sci. 1, e970724 (2015).
    Google Scholar 
    18.Eswara, A. R. & Ramakrishnarao, M. Solar energy in food processing—A critical appraisal. J. Food Sci. Technol. 50, 209–227 (2013).CAS 
    Article 

    Google Scholar 
    19.Castillo, C. P., Silva, F. B. & Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy 88, 86–99 (2016).Article 

    Google Scholar 
    20.Tampakis, G., Tsantopoulos, G. & Arabatzis, I. R. Citizens’ views on various forms of energy and their contribution to the environment. Renew. Sust. Energ. Rev. 20, 473–482 (2013).Article 

    Google Scholar 
    21.Tsantopoulos, G. & Arabatzis, T. G. Stilianos Public attitudes towards photovoltaic developments: Case study from Greece. Energy Policy 71, 94–106 (2014).Article 

    Google Scholar 
    22.Tiwari, R. B. Application of osmo-air dehydration for processing of tropical frepical fruits in rural areas. Indian Food Ind. 24, 62–69 (2005).
    Google Scholar 
    23.Goula, A. M. & Adamopoulos, K. G. Retention of ascorbic acid during drying of tomato halves and tomato pulp. Drying Technol. 24, 57–64 (2006).CAS 
    Article 

    Google Scholar 
    24.McAlpine, R. D., Cocivera, M. & Chen, H. Photooxidation and reduction of ascorbic acid atudied by E.S.R. Can. J. Chem. 51, 1682–1686 (1973).CAS 
    Article 

    Google Scholar 
    25.Santos, P. H. S. & Silva, M. A. Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technol. 26, 1421–1437 (2008).CAS 
    Article 

    Google Scholar 
    26.Santos-Sánchez, N. F., Valadez-Blanco, R., Gómez-Gómez, M. S., Pérez-Herrera, A. & Salas-Coronado, R. Effect of rotating tray drying on antioxidant components, color and rehydration ratio of tomato saladette slices. LWT Food Sci. Technol. 46, 298–304 (2012).Article 

    Google Scholar 
    27.Yadav, A. K. & Singh, S. V. Y. Osmotic dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 51, 1654–1673 (2014).Article 

    Google Scholar 
    28.Gunhan, T., Demir, V., Hancioglu, E. & Hepbasli, A. Mathematical modeling of drying of bay leaves. Energy Convers. Manag. 46, 1667–1679 (2005).Article 

    Google Scholar 
    29.Sacilik, K. & Unal, G. Dehydration characteristics of kastomonu garlic slices. Biosyst. Eng. 92, 207–215 (2005).Article 

    Google Scholar 
    30.Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos 1020 (Instituto Adolfo Lutz, 2008).
    Google Scholar  More