1.Hutchinson, G. E. Cold Spring Harbor Symposia on Quantitative Biology. Concluding Remarks 22 415–427 (1957).2.Smith, E. P. Niche breadth, resource availability, and inference. Ecology 63, 1675–1681. https://doi.org/10.2307/1940109 (1982).Article
Google Scholar
3.Leibold, M. A. The niche concept revisited: Mechanistic models and community context. Ecology 76, 1371–1382. https://doi.org/10.2307/1938141 (1995).Article
Google Scholar
4.Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206. https://doi.org/10.1146/annurev-ecolsys-110316-023003 (2017).Article
Google Scholar
5.Jaenike, J. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21, 243–273. https://doi.org/10.1146/annurev.es.21.110190.001331 (1990).Article
Google Scholar
6.Thompson, J. N. The Coevolutionary Process (University of Chicago Press, 1994).Book
Google Scholar
7.Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S. & Poulin, R. Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: The influence of phylogeny and local environmental conditions. Ecography 27, 787–797. https://doi.org/10.1111/j.0906-7590.2004.04015.x (2004).Article
Google Scholar
8.Poullain, V., Gandon, S., Brockhurst, M. A., Buckling, A. & Hochberg, M. E. The evolution of specificity in evolving and coevolving antagonistic interactions between bacteria and its phage. Evolution 62, 1–11. https://doi.org/10.1111/j.1558-5646.2007.00260.x (2008).Article
PubMed
Google Scholar
9.Whitlock, M. C. The Red Queen beats the Jack-Of-All-Trades: The limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65–S77. https://doi.org/10.1086/285902 (1996).Article
Google Scholar
10.Gandon, S. Local adaptation and the geometry of host–parasite coevolution. Ecol. Lett. 5, 246–256. https://doi.org/10.1046/j.1461-0248.2002.00305.x (2002).Article
Google Scholar
11.Alizon, S. & Michalakis, Y. Adaptive virulence evolution: The good old fitness-based approach. Trends Ecol. Evol. 30, 248–254. https://doi.org/10.1016/j.tree.2015.02.009 (2015).Article
PubMed
Google Scholar
12.Frank, S. A. & Schmid-Hempel, P. Mechanisms of pathogenesis and the evolution of parasite virulence. J. Evol. Biol. 21, 396–404. https://doi.org/10.1111/j.1420-9101.2007.01480.x (2008).CAS
Article
PubMed
Google Scholar
13.Beadell, J. S. et al. Global phylogeographic limits of Hawaii’s avian malaria. Proc. R. Soc. B: Biol. Sci. 273, 2935–2944. https://doi.org/10.1098/rspb.2006.3671 (2006).Article
Google Scholar
14.Krasnov, B. R. Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology (Cambridge University Press, 2008).Book
Google Scholar
15.Poulin, R. Evolutionary Ecology of Parasites (Princeton University Press, 2011).Book
Google Scholar
16.Välimäki, P. et al. Geographical variation in host use of a blood-feeding ectoparasitic fly: Implications for population invasiveness. Oecologia 166, 985–995. https://doi.org/10.1007/s00442-011-1951-y (2011).ADS
Article
PubMed
Google Scholar
17.Theodosopoulos, A. N., Hund, A. K. & Taylor, S. A. Parasites and host species barriers in animal hybrid zones. Trends Ecol. Evol. 34, 19–30. https://doi.org/10.1016/j.tree.2018.09.011 (2019).Article
PubMed
Google Scholar
18.Mackenzie, A. A trade-off for host plant utilization in the black bean aphid, Aphis fabae. Evolution 50, 155–162. https://doi.org/10.1111/j.1558-5646.1996.tb04482.x (1996).Article
PubMed
Google Scholar
19.Harrington, L. C., Edman, J. D. & Scott, T. W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood?. J. Med. Entomol. 38, 411–422. https://doi.org/10.1603/0022-2585-38.3.411 (2001).CAS
Article
PubMed
Google Scholar
20.Dick, C. W. & Patterson, B. D. Against all odds: Explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37, 871–876. https://doi.org/10.1016/j.ijpara.2007.02.004 (2007).Article
PubMed
Google Scholar
21.Torchin, M. E. & Mitchell, C. E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2, 183–190. https://doi.org/10.1890/1540-9295(2004)002[0183:PPAIBP]2.0.CO;2 (2004).Article
Google Scholar
22.Clark, N. J. & Clegg, S. M. The influence of vagrant hosts and weather patterns on the colonization and persistence of blood parasites in an island bird. J. Biogeogr. 42, 641–651. https://doi.org/10.1111/jbi.12454 (2015).Article
Google Scholar
23.Kawecki, T. J. Red Queen meets Santa Rosalia: Arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am. Nat. 152, 635–651. https://doi.org/10.1086/286195 (1998).CAS
Article
PubMed
Google Scholar
24.Egas, M., Dieckmann, U. & Sabelis, M. W. Evolution restricts the coexistence of specialists and generalists: The role of trade-off structure. Am. Nat. 163, 518–531. https://doi.org/10.1086/382599 (2004).Article
PubMed
Google Scholar
25.Poulin, R. & Keeney, D. B. Host specificity under molecular and experimental scrutiny. Trends Parasitol. 24, 24–28. https://doi.org/10.1016/j.pt.2007.10.002 (2008).CAS
Article
PubMed
Google Scholar
26.Lyimo, I. N. & Ferguson, H. M. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 25, 189–196. https://doi.org/10.1016/j.pt.2009.01.005 (2009).Article
PubMed
Google Scholar
27.Visher, E. & Boots, M. The problem of mediocre generalists: Population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proc. R. Soc. B: Biol. Sci. 287, 20201230. https://doi.org/10.1098/rspb.2020.1230 (2020).Article
Google Scholar
28.Sarfati, M. et al. Energy costs of blood digestion in a host-specific haematophagous parasite. J. Exp. Biol. 208, 2489. https://doi.org/10.1242/jeb.01676 (2005).Article
PubMed
Google Scholar
29.Fry, J. D. The evolution of host specialization: Are trade-offs overrated?. Am. Nat. 148, S84–S107. https://doi.org/10.1086/285904 (1996).Article
Google Scholar
30.Fessl, B. et al. Galápagos landbirds (passerines, cuckoos, and doves): Status, threats, and knowledge gaps. Galápagos Rep. 2016, 149 (2015).
Google Scholar
31.Fessl, B., Heimpel, G. E. & Causton, C. E. Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: colonization history, adaptations to novel ecosystems, and conservation challenges. In Disease Ecology: Galapagos Birds and their Parasites (ed Patricia G. Parker) 213–266 (Springer International Publishing, 2018).32.Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).Article
PubMed
Google Scholar
33.Reichard, M. et al. The bitterling–mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64, 3047–3056. https://doi.org/10.1111/j.1558-5646.2010.01032.x (2010).Article
PubMed
Google Scholar
34.Wiedenfeld, D. A., Jiménez, G. U., Fessl, B., Kleindorfer, S. & Carlos Valarezo, J. Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galápagos Islands. Pacific Conserv. Biol. 13, 14–19. https://doi.org/10.1071/PC070014 (2007).Article
Google Scholar
35.Fessl, B., Sinclair, B. J. & Kleindorfer, S. The life-cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin’s finches and its impacts on nestling survival. Parasitology 133, 739–747. https://doi.org/10.1017/S0031182006001089 (2006).CAS
Article
PubMed
Google Scholar
36.Kleindorfer, S. & Dudaniec, R. Y. Host-parasite ecology, behavior and genetics: A review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zool. 1, 1. https://doi.org/10.1186/s40850-016-0003-9 (2016).Article
Google Scholar
37.Galligan, T. H. & Kleindorfer, S. Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin’s small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biol. J. Lin. Soc. 98, 577–585. https://doi.org/10.1111/j.1095-8312.2009.01309.x (2009).Article
Google Scholar
38.Kleindorfer, S., Custance, G., Peters Katharina, J. & Sulloway Frank, J. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin’s finch song. Proc. R. Soc. B: Biol. Sci. 286, 20190461. https://doi.org/10.1098/rspb.2019.0461 (2019).Article
Google Scholar
39.Kleindorfer, S., Peters, K. J., Custance, G., Dudaniec, R. Y. & O’Connor, J. A. Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr. Zool. 60, 542–550. https://doi.org/10.1093/czoolo/60.4.542 (2014).Article
Google Scholar
40.O’Connor, J. A., Sulloway, F. J., Robertson, J. & Kleindorfer, S. Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodivers. Conserv. 19, 853–866. https://doi.org/10.1007/s10531-009-9740-1 (2010).Article
Google Scholar
41.Knutie, S. A. et al. Galápagos mockingbirds tolerate introduced parasites that affect Darwin’s finches. Ecology https://doi.org/10.1890/15-0119 (2016).Article
PubMed
Google Scholar
42.Peters, K. J., Evans, C., Aguirre, J. D. & Kleindorfer, S. Genetic admixture predicts parasite intensity: Evidence for increased hybrid performance in Darwin’s tree finches. R. Soc. Open Sci. 6, 181616. https://doi.org/10.1098/rsos.181616 (2019).ADS
Article
PubMed
PubMed Central
Google Scholar
43.Kleindorfer, S. The ecology of clutch size variation in Darwin’s Small Ground Finch Geospiza fuliginosa: Comparison between lowland and highland habitats. Ibis 149, 730–741. https://doi.org/10.1111/j.1474-919X.2007.00694.x (2007).Article
Google Scholar
44.Fessl, B. & Tebbich, S. Philornis downsi– a recently discovered parasite on the Galápagos archipelago: A threat for Darwin’s finches?. Ibis 144, 445–451. https://doi.org/10.1046/j.1474-919X.2002.00076.x (2002).Article
Google Scholar
45.Dudaniec, R. Y., Fessl, B. & Kleindorfer, S. Interannual and interspecific variation in intensity of the parasitic fly, Philornis downsi, Darwin’s finches. Biol. Cons. 139, 325–332. https://doi.org/10.1016/j.biocon.2007.07.006 (2007).Article
Google Scholar
46.Cimadom, A. et al. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin’s Finches. PLoS ONE 9, e107518. https://doi.org/10.1371/journal.pone.0107518 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
47.Cimadom, A. et al. Weed management increases the detrimental effect of an invasive parasite on arboreal Darwin’s finches. Biol. Cons. 233, 93–101. https://doi.org/10.1016/j.biocon.2019.02.025 (2019).Article
Google Scholar
48.Kleindorfer, S. & Dudaniec, R. Y. Love thy neighbour? Social nesting pattern, host mass and nest size affect ectoparasite intensity in Darwin’s tree finches. Behav. Ecol. Sociobiol. 63, 731–739. https://doi.org/10.1007/s00265-008-0706-1 (2009).Article
Google Scholar
49.Common, L. K., Dudaniec, R. Y., Colombelli-Négrel, D. & Kleindorfer, S. Taxonomic shifts in Philornis larval behaviour and rapid changes in Philornis downsi Dodge & Aitken (Diptera: Muscidae): An invasive avian parasite on the Galápagos Islands. in Life Cycle and Development of Diptera (ed Muhammad Sarwar) (IntechOpen, 2019).50.McNew, S. M. et al. Annual environmental variation influences host tolerance to parasites. Proc. R. Soc. B: Biol. Sci. 286, 20190049. https://doi.org/10.1098/rspb.2019.0049 (2019).CAS
Article
Google Scholar
51.McNew, S. M. & Clayton, D. H. Alien invasion: Biology of Philornis flies highlighting Philornis downsi, an introduced parasite of Galápagos birds. Annu. Rev. Entomol. 63, 369–387. https://doi.org/10.1146/annurev-ento-020117-043103 (2018).CAS
Article
PubMed
Google Scholar
52.Kleindorfer, S. & Dudaniec, R. Y. Hybridization fluctuates with rainfall in Darwin’s tree finches. Biol. J. Lin. Soc. 130, 79–88. https://doi.org/10.1093/biolinnean/blaa029 (2020).Article
Google Scholar
53.Peters, K. J., Myers, S. A., Dudaniec, R. Y., O’Connor, J. A. & Kleindorfer, S. Females drive asymmetrical introgression from rare to common species in Darwin’s tree finches. J. Evol. Biol. 30, 1940–1952. https://doi.org/10.1111/jeb.13167 (2017).CAS
Article
PubMed
Google Scholar
54.Kleindorfer, S. et al. Species collapse via hybridization in Darwin’s Tree Finches. Am. Nat. 183, 325–341. https://doi.org/10.1086/674899 (2014).Article
PubMed
Google Scholar
55.Loo, W. T., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS ONE 14, e0226432. https://doi.org/10.1371/journal.pone.0226432 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
56.Galapagos Conservancy. Galapagos Vital Signs: A satellite-based environmental monitoring system for the Galapagos Archipelago, https://galapagosvitalsigns.org (2021).57.Couri, M. Considerações sobre as relações ecológicas das larvas de Philornis Meinert, 1890 (Diptera, Muscidae) com aves. Revista Brasileira de Entomologia 29, 17–20. https://doi.org/10.1017/S0031182006001089 (1985).Article
Google Scholar
58.Skidmore, P. The Biology of the Muscidae of the World Vol. 29 (Springer, 1985).
Google Scholar
59.O’Connor, J. A., Robertson, J. & Kleindorfer, S. Video analysis of host–parasite interactions in nests of Darwin’s finches. Oryx 44, 588–594. https://doi.org/10.1017/S0030605310000086 (2010).Article
Google Scholar
60.O’Connor, J. A., Robertson, J. & Kleindorfer, S. Darwin’s finch begging intensity does not honestly signal need in parasitised nests. Ethology 120, 228–237. https://doi.org/10.1111/eth.12196 (2014).Article
Google Scholar
61.Kleindorfer, S. & Sulloway, F. J. Naris deformation in Darwin’s finches: Experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Glob. Ecol. Conserv. 7, 122–131. https://doi.org/10.1016/j.gecco.2016.05.006 (2016).Article
Google Scholar
62.Lahuatte, P. F., Lincango, M. P., Heimpel, G. E. & Causton, C. E. Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae), on chicken blood-based diets. J. Insect Sci. https://doi.org/10.1093/jisesa/iew064 (2016).Article
PubMed
PubMed Central
Google Scholar
63.Kleindorfer, S. Nesting success in Darwin’s small tree finch, Camarhynchus parvulus: Evidence of female preference for older males and more concealed nests. Anim. Behav. 74, 795–804. https://doi.org/10.1016/j.anbehav.2007.01.020 (2007).Article
Google Scholar
64.Nijhout, H. F. & Callier, V. Developmental mechanisms of body size and wing-body scaling in insects. Annu. Rev. Entomol. 60, 141–156. https://doi.org/10.1146/annurev-ento-010814-020841 (2015).CAS
Article
PubMed
Google Scholar
65.Singh, D. & Bala, M. The effect of starvation on the larval behavior of two forensically important species of blow flies (Diptera: Calliphoridae). For. Sci. Int. 193, 118–121. https://doi.org/10.1016/j.forsciint.2009.09.022 (2009).Article
Google Scholar
66.Coulson, S. J. & Bale, J. S. Characterisation and limitations of the rapid cold-hardening response in the housefly Musca domestica (Diptera: Muscidae). J. Insect Physiol. 36, 207–211. https://doi.org/10.1016/0022-1910(90)90124-X (1990).Article
Google Scholar
67.R Core Team. R: A language and environment for statistical computing. R version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).68.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
69.Venables, B. & Ripley, B. Modern Applied Statistics with S-PLUS (Springer Science & Business Media, 2002).70.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2011).
Google Scholar
71.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).Book
Google Scholar
72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book
Google Scholar
73.Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. https://doi.org/10.18637/jss.v008.i15 (2003).Article
Google Scholar
74.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (eds Kenneth P. Burnham & David R. Anderson) 75–117 (Springer New York, 1998).75.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x (2011).CAS
Article
PubMed
Google Scholar
76.Haaland, T. R., Wright, J. & Ratikainen, I. I. Generalists versus specialists in fluctuating environments: A bet-hedging perspective. Oikos 129, 879–890. https://doi.org/10.1111/oik.07109 (2020).Article
Google Scholar
77.Davies, N. Cuckoos, Cowbirds and Other Cheats (Bloomsbury Publishing, 2010).
Google Scholar
78.Dudaniec, R. Y., Gardner, M. G. & Kleindorfer, S. Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galápagos birds. Biol. Invas. 12, 581–592. https://doi.org/10.1007/s10530-009-9464-x (2010).Article
Google Scholar
79.Fredensborg, B. L. & Poulin, R. Larval helminths in intermediate hosts: Does competition early in life determine the fitness of adult parasites?. Int. J. Parasitol. 35, 1061–1070. https://doi.org/10.1016/j.ijpara.2005.05.005 (2005).CAS
Article
PubMed
Google Scholar
80.Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations and Communities (Blackwell Scientific Publications, 1986).
Google Scholar
81.Fraik, A. K. et al. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 74, 1392–1408. https://doi.org/10.1111/evo.14023 (2020).Article
PubMed
PubMed Central
Google Scholar
82.Dvorak, M. et al. Conservation status of landbirds on Floreana: The smallest inhabited Galápagos Island. J. Field Ornithol. 88, 132–145. https://doi.org/10.1111/jofo.12197 (2017).Article
Google Scholar
83.Hedrick, P. W., Kim, T. J. & Parker, K. M. Parasite resistance and genetic variation in the endangered Gila topminnow. Anim. Conserv. 4, 103–109. https://doi.org/10.1017/S1367943001001135 (2001).Article
Google Scholar
84.Lewontin, R. C. & Birch, L. C. Hybridization as a source of variation for adaptation to new environments. Evolution 20, 315–336. https://doi.org/10.2307/2406633 (1966).CAS
Article
PubMed
Google Scholar
85.Wolinska, J., Lively, C. M. & Spaak, P. Parasites in hybridizing communities: The Red Queen again?. Trends Parasitol. 24, 121–126. https://doi.org/10.1016/j.pt.2007.11.010 (2008).Article
PubMed
Google Scholar
86.Floate, K. D. & Whitham, T. G. The, “Hybrid Bridge” Hypothesis: Host shifting via plant hybrid swarms. Am. Nat. 141, 651–662. https://doi.org/10.1086/285497 (1993).CAS
Article
PubMed
Google Scholar
87.Le Brun, N., Renaud, F., Berrebi, P. & Lambert, A. Hybrid zones and host-parasite relationships: Effect on the evolution of parasitic specificity. Evolution 46, 56–61. https://doi.org/10.1111/j.1558-5646.1992.tb01984.x (1992).Article
PubMed
Google Scholar
88.Fritz, R. S., Moulia, C. & Newcombe, G. Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annu. Rev. Ecol. Syst. 30, 565–591. https://doi.org/10.1146/annurev.ecolsys.30.1.565 (1999).Article
Google Scholar
89.Moulia, C., Brun, N. L., Loubes, C., Marin, R. & Renaud, F. Hybrid vigour against parasites in interspecific crosses between two mice species. Heredity 74, 48–52. https://doi.org/10.1038/hdy.1995.6 (1995).Article
PubMed
Google Scholar
90.Gibson, A. K., Refrégier, G., Hood, M. E. & Giraud, T. Performance of a hybrid fungal pathogen on pure-species and hybrid host plants. Int. J. Plant Sci. 175, 724–730. https://doi.org/10.1086/676621 (2014).Article
Google Scholar
91.Arnold, M. L. & Martin, N. H. Hybrid fitness across time and habitats. Trends Ecol. Evol. 25, 530–536. https://doi.org/10.1016/j.tree.2010.06.005 (2010).Article
PubMed
Google Scholar
92.Ben-Yosef, M. et al. Host-specific associations affect the microbiome of Philornis downsi, an introduced parasite to the Galápagos Islands. Mol. Ecol. 26, 4644–4656. https://doi.org/10.1111/mec.14219 (2017).Article
PubMed
Google Scholar
93.Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 18781. https://doi.org/10.1038/s41598-019-54869-6 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
94.Knutie, S. A. Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere 9, e02286. https://doi.org/10.1002/ecs2.2286 (2018).Article
Google Scholar
95.Knutie, S. A., Chaves, J. A. & Gotanda, K. M. Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Mol. Ecol. 28, 2441–2450. https://doi.org/10.1111/mec.15088 (2019).Article
PubMed
Google Scholar More