More stories

  • in

    Socio-ecological factors shape the distribution of a cultural keystone species in Malaysian Borneo

    Kays, R. et al. Does hunting or hiking affect wildlife communities in protected areas? J. Appl. Ecol. 54, 242–252 (2016).Article 

    Google Scholar 
    Heberlein, T. A. & Ericsson, G. Ties to the countryside: accounting for urbanites attitudes toward hunting, wolves, and wildlife. Hum. Dimens. Wildl. 10, 213–227 (2006).Article 

    Google Scholar 
    Wong, J. Z., Etoh, S. & Sujang, A. B. Towards sustainable community-based fishery resources management: the tagal system of Sabah. Malaysia. SEAFDEC 7, 18–23 (2009).
    Google Scholar 
    Riley, E. P. The importance of human-macaque folklore for conservation in Lore Lindu National Park, Sulawesi, Indonesia. Oryx 44, 235–240 (2010).Article 

    Google Scholar 
    Gaynor, K. M. et al. War and wildlife: linking armed conflict to conservation. Front. Ecol. Environ. 14, 533–542 (2016).Article 

    Google Scholar 
    Kurz, D. et al. Transformation and endurance of Indigenous hunting: Kadazandusun-Murut bearded pig hunting practices amidst oil palm expansion and urbanization in Sabah, Malaysia. People. Nat. 3, 1078–1092 (2021).Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Hines, J. E., Karanth, K. U. & Christensen, N. L. Patterns and determinants of mammal species occurrence in India. J. Appl. Ecol. 46, 1189–1200 (2009).Article 

    Google Scholar 
    Bettigole, C. A., Donovan, T. M., Manning, R., Austin, J. & Long, R. Acceptability of residential development in a regional landscape: potential effects on wildlife occupancy patterns. Biol. Conserv. 169, 401–409 (2014).Article 

    Google Scholar 
    Stahlecker, D. W., Wallace, Z. P., Mikesic, D. G. & Smith, C. S. Does Hopi religious harvest of eaglets affect golden eagle territory occupancy and reproduction on the Navajo Nation? J. Raptor Res. 51, 305–318 (2017).Article 

    Google Scholar 
    Deith, M. C. M. & Brodie, J. F. Predicting defaunation: accurately mapping bushmeat hunting pressure over large areas. Proc. Royal Soc. B. https://doi.org/10.1098/rspb.2019.2677 (2020).Article 

    Google Scholar 
    Lischka, S. A. et al. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 225, 80–87 (2018).Article 

    Google Scholar 
    Guerrero, A. M. et al. Achieving the promise of integration in social-ecological research: a review and prospectus. Ecol. Soc. https://doi.org/10.5751/ES-10232-230338 (2018).Article 

    Google Scholar 
    Behr, D. M., Ozgul, A. & Cozzi, G. Combining human acceptance and habitat suitability in a unified socio-ecological suitability model: a case study of the wolf in Switzerland. J. Appl. Ecol. 54, 1919–1929 (2017).Article 

    Google Scholar 
    Bennett, E. L., Nyaoi, A. J. & Sompud, J. In Hunting for Sustainability in Tropical Forests (eds. Robinson, J. G. & Bennett, E. L.) 305–324 (Columbia University Press, 2000).Chin, C. Pig in the pot: comments on Sus barbatus in the hunting lifestyle of the Penan in Sarawak (Borneo). Asian Wild Pig News. 1, 10–12 (2001).
    Google Scholar 
    Yi, M. C. K. & Mohd-Azlan, J. Wildlife hunting and utilization in Ulu Baleh, Sarawak, Malaysian Borneo. Ethnobiol. Lett. 11, 76–84 (2020).Article 

    Google Scholar 
    Janowski, M. Pigs and people in the Kelabit Highlands, Sarawak. Indones. Malay World. 42, 88–112 (2014).Article 

    Google Scholar 
    Department of Statistics Malaysia. Taburan penduduk dan ciri-ciri asas demografi. https://www.mycensus.gov/my/index.php/ms/produk-banci/penerbitan/banci-2010/664-taburan-penduduk-dan-ciri-ciri-asas-demografi-2010 (2011).Harrisson, T., Hooijer, D. A. & Medway, L. An extinct giant pangolin and associated mammals from Niah Cave, Sarawak. Nature 189, 166 (1961).Article 

    Google Scholar 
    Yusof, N. M. Study of social interaction among students of Vision Schools in Malaysia. Asian Ethn. 13, 47–73 (2012).Article 

    Google Scholar 
    Luskin, M. S., Ke, A., Linkie, M. & Meijaard, E. Sus barbatus. The IUCN Red List of Threatened Species: e.T41772A10559190. https://www.iucnredlist.org/species/41772/123793370 (2017).Medway, L. Post-Pleistocene changes in the mammalian fauna of Borneo: archaeological evidence from the Niah caves. Studies Speleology. 1, 33–37 (1964).
    Google Scholar 
    Love, K. et al. Bearded pig (Sus barbatus) utilisation of a fragmented forest-oil palm landscape in Sabah, Malaysian Borneo. Wildl. Res. 44, 603–612 (2018).Article 

    Google Scholar 
    Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).Article 

    Google Scholar 
    Luskin, M. S. & Ke, A. In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds. Melletti, M. & Meijaard, E.) 175–183 (Cambridge University Press, 2018).Granados, A., Bernard, H. & Brodie, J. F. The influence of logging on vertebrate responses to mast fruiting. J. Anim. Ecol. 88, 892–902 (2019).Article 

    Google Scholar 
    Kurz, D. J., Malim, P. & Goossens, B. In Wildlife Atlas of Sabah (ed. Davies, G.) 123–132. (WWF – Malaysia, 2022).Ke, A. & Luskin, M. S. Integrating disparate occurrence reports to map data-poor species ranges and occupancy: a case study of the Vulnerable bearded pig Sus barbatus. Oryx 53, 377–387 (2019).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. https://doi.org/10.1038/srep32017 (2016).Article 

    Google Scholar 
    Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. https://doi.org/10.1038/s41467-017-01920-7 (2017).Article 

    Google Scholar 
    Davison, C. W., Chapman, P. M., Wearn, O. R., Bernard, H. & Ewers, R. M. Shifts in the demographics and behavior of bearded pigs (Sus barbatus) across a land-use gradient. Biotropica 51, 938–948 (2019).Article 

    Google Scholar 
    Alberti, M. et al. Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. BioScience 53, 1169–1179 (2003).Article 

    Google Scholar 
    Kumar, N. et al. Habitat selection by an avian top predator in the tropical megacity of Delhi: human activities and socio-religious practices as prey-facilitating tools. Urban Ecosyst. 21, 339–349 (2018).
    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).Article 
    CAS 

    Google Scholar 
    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 

    Google Scholar 
    Van Houtan, K. S. Conservation as virtue: a scientific and social process for conservation ethics. Conserv. Biol. 20, 1367–1372 (2006).Article 

    Google Scholar 
    Hunt, K. M. & Ditton, R. B. Freshwater fishing participation patterns of racial and ethnic groups in Texas. N. Am. J. Fish. Manag. 22, 52–65 (2002).Article 

    Google Scholar 
    Brashares, J. S. et al. Wildlife decline and social conflict. Science 345, 376–378 (2014).Article 
    CAS 

    Google Scholar 
    Bolton, J. M., M. R. C. S., L. R. C. P., D. T. M. & H., D. Obst. R. C. O. G. Food taboos among the Orang Asli in West Malaysia: a potential nutritional hazard. Am. J. Clin. Nutr. 25, 789–799 (1972).Wadley, R. L., Colfer, C. J. P. & Hood, I. G. Hunting primates and managing forests: the case of Iban forest farmers in Indonesian Borneo. Hum. Ecol. 25, 243–271 (1997).Article 

    Google Scholar 
    Golden, C. D. & Comaroff, J. Effects of social change on wildlife consumption taboos in northeastern Madagascar. Ecol. Soc. https://doi.org/10.5751/ES-07589-200241 (2015).Article 

    Google Scholar 
    Pieroni, A. & Sõukand, R. Ethnic and religious affiliations affect traditional wild plant foraging in Central Azerbaijan. Genet. Resour. Crop Evol. 66, 1495–1513 (2019).Article 
    CAS 

    Google Scholar 
    Caldecott, J. O., Blouch, R. A. & Macdonald, A. A. In Pigs, Peccaries and Hippos: Status Survey and Conservation Action Plan. (ed. Oliver, W. L.) 136–145 (IUCN, 1993).Caldecott, J. & Caldecott, S. A horde of pork. New Sci. 110, 32–35 (1985).
    Google Scholar 
    Liu, J. et al. Prevalence of African Swine Fever in China, 2018-2019. J. Med. Virol. 92, 1023–1034 (2020).Article 
    CAS 

    Google Scholar 
    Food and Agriculture Organization of the United Nations. Agriculture and Consumer Protection Department. ASF situation in Asia & Pacific update. http://www.fao.org/ag/againfo/programmes/en/empres/ASF/situation_update.html (2021).Luskin, M. S. & Potts, M. D. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl. Ecol. 12, 540–551 (2011).Article 

    Google Scholar 
    Wong, S. T., Servheen, C., Ambu, L. & Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 21, 627–639 (2005).Article 

    Google Scholar 
    Corner, E. J. H. The complex of Ficus deltoidea; a recent invasion of the Sunda shelf. Philos. Trans. R. Soc. B: Biol. Sci. 256, 281–317 (1969).
    Google Scholar 
    Pothasin, P., Compton, S. G. & Wangpakapattanawong, P. Riparian Ficus tree communities: the distribution and abundance of riparian fig trees in Northern Thailand. PLoS ONE. https://doi.org/10.1371/journal.pone.0108945 (2014).Article 

    Google Scholar 
    Declaration on the Heart of Borneo Initiative. Brunei Darussalam, Indonesia, and Malaysia. https://wwf.panda.org/discover/knowledge_hub/where_we_work/borneo_forests/about_borneo_forests/declaration/ (2007).Keong, C. Y. & Onuma, A. Transboundary ecological conservation, environmental value, and environmental sustainability: lessons from the Heart of Borneo. Sustainability https://doi.org/10.3390/su13179727 (2021).Article 

    Google Scholar 
    Neumann, W. et al. Hunting as land use: understanding the spatial associations among hunting, agriculture, and forestry. Ecol. Soc. https://doi.org/10.5751/ES-12882-270102 (2022).Article 

    Google Scholar 
    Shaffer, C. A. et al. Integrating ethnography and hunting sustainability modeling for primate conservation in an Indigenous reserve in Guyana. Int. J. Primatol. 39, 945–968 (2018).Article 

    Google Scholar 
    Popp, J. N., Priadka, P. & Kozmik, C. The rise of moose co-management and integration of Indigenous knowledge. Hum. Dimens. of Wildl. 24, 159–167 (2019).Article 

    Google Scholar 
    Breton-Honeyman, K. Beluga whale stewardship and collaborative research practices among Indigenous peoples in the Arctic. Polar Res. https://doi.org/10.33265/polar.v40.5522 (2021).Article 

    Google Scholar 
    Wildlife Conservation Enactment 1997. No. 6 of 1997. State of Sabah. https://www.sabahlaw.com/WILDLIFE_ENACTMENT.pdf.Wild Life Protection Ordinance, 1998. Chapter 26. Laws of Sarawak. https://www.sarawakforestry.com/pdf/laws/wildlife_protection_ordinance98_chap26.pdf.Wilting, A., Fischer, F., Bakar, S. A. & Linsenmair, K. E. Clouded leopards, the secretive top carnivore of South-East Asian rainforests: their distribution, status and conservation needs in Sabah, Malaysia. BMC Ecol. https://doi.org/10.1186/1472-6785-6-16 (2006).Article 

    Google Scholar 
    Bernard, H. et al. Camera-trapping survey of mammals in and around Imbak Canyon Conservation Area in Sabah, Malaysian Borneo. Raffles Bull. Zool. 61, 861–870 (2013).
    Google Scholar 
    Mohd-Azlan, J., Yi, M. C. K., Lip, B. & Hon, J. Camera trapping of wildlife in the newly established Baleh National Park, Sarawak. J. Sustain. Sci. Manag. 14, 38–51 (2019).
    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).Article 

    Google Scholar 
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).Article 
    CAS 

    Google Scholar 
    Gaveau, D. L. A., Salim, M. & Arjasakusuma, S. Deforestation and industrial plantations development in Borneo. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/CIFOR/DATA.00049.UNEP-WCMC & IUCN. Protected planet: the world database on protected areas (WDPA). https://developers.google.com/earth-engine/datasets/catalog/WCMC_WDPA_current_polygons.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).Article 

    Google Scholar 
    Dimiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD44B.006 (2015).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. 574 (Springer, 2009).R Development Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2019).Fiske, I. & Chandler, R. unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23, (2011) http://www.jstatsoft.org/v43/i10/.Article 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).Article 

    Google Scholar 
    Petracca, L. S. et al. Robust inference on large-scale species habitat use with interview data: the status of jaguars outside protected areas in Central America. J. Appl. Ecol. 55, 723–734 (2018).Article 

    Google Scholar 
    Gould, M. J., Gould, W. R., Cain, J. W. III. & Roemer, G. W. Validating the performance of occupancy models for estimating habitat use and predicting the distribution of highly-mobile species: a case study using the American black bear. Biol. Conserv. 234, 28–36 (2019).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: an R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Bartoń, K. 2020. MuMIn: multi-model inference. R package version 1.43.17. https://cran.r-project.org/web/packages/MuMIn/index.html.Cobox, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. https://doi.org/10.7717/peerj.6281 (2019).Article 

    Google Scholar 
    Wickham, H. & Chang, W. Package ‘ggplot2’. https://cran.microsoft.com/snapshot/2015-01-06/web/packages/ggplot2/ggplot2.pdf (2014).Mazerolle, M. J. Model selection and multimodel inference using the AICcmodavg package. https://mirror.marwan.ma/cran/web/packages/AICcmodavg/vignettes/AICcmodavg.pdf (2020). More

  • in

    Identifying ways of producing pigs more sustainably: tradeoffs and co-benefits in land and antimicrobial use

    Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gerber, P. J. et al. Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Food Agric. Organ. U. N. (FAO) Rome https://doi.org/10.1016/j.anifeedsci.2011.04.074 (2013).Article 

    Google Scholar 
    Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2, 724–732 (2021).Article 
    CAS 

    Google Scholar 
    Landers, T. F., Cohen, B., Wittum, T. E. & Larson, E. L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127, 4–22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science (80-) 357, 1350–1352 (2017).Article 
    ADS 

    Google Scholar 
    Henchion, M., Moloney, A. P., Hyland, J., Zimmermann, J. & McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15, 100287 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mehrabi, Z., Gill, M., van Wijk, M., Herrero, M. & Ramankutty, N. Livestock policy for sustainable development. Nat. Food 1(3), 160–165 (2020).Article 

    Google Scholar 
    Godfray, C. J. H. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 
    PubMed 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science (80-) 360, 987–992 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Resare Sahlin, K., Röös, E. & Gordon, L. J. ‘Less but better’ meat is a sustainability message in need of clarity. Nat. Food 1(9), 520–522 (2020).Article 

    Google Scholar 
    van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 

    Google Scholar 
    Roos, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. Policy Dimens. 47, 1–12 (2017).Article 

    Google Scholar 
    Lipsitch, M., Singer, R. S. & Levin, B. R. Antibiotics in agriculture: When is it time to close the barn door?. Proc. Natl. Acad. Sci. USA 99, 5752–5754 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. Concentrating versus spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).Article 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ye, X. et al. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).Article 
    PubMed 

    Google Scholar 
    Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022).Article 
    CAS 

    Google Scholar 
    Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 99, 6434–6439 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albernaz-Gonçalves, R., Antillón, G. O. & Hötzel, M. J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 12, 1–21 (2022).Article 

    Google Scholar 
    Elliott, K. A., Kenny, C. & Madan, J. A global treaty to reduce antimicrobial use in livestock. Cent. Glob. Dev. 102, 27 (2017).
    Google Scholar 
    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. 112, 5649–5654 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalmar, L. et al. HAM-ART: An optimised culture-free Hi–C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet. 18, e1009776 (2021).Article 

    Google Scholar 
    Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435–3440 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 1–14 (2020).Article 

    Google Scholar 
    Rushton, J. et al. Antimicrobial resistance the use of antimicrobials in the livestock sector. https://doi.org/10.1787/5jxvl3dwk3f0-en (2014)Gonzalez-Mejia, A., Styles, D., Wilson, P. & Gibbons, J. Metrics and methods for characterizing dairy farm intensification using farm survey data. Plus One https://doi.org/10.1371/journal.pone.0195286 (2018).Article 

    Google Scholar 
    Struik, P. C. & Kuyper, T. W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 37, 1–15 (2017).Article 

    Google Scholar 
    Vissers, L. S. M., Saatkamp, H. W. & Oude Lansink, A. G. J. M. Analysis of synergies and trade-offs between animal welfare, ammonia emission, particulate matter emission and antibiotic use in Dutch broiler production systems. Agric. Syst. 189, 103070 (2021).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science (81-) 341, 33–34 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Bright-Ponte, S. J. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health 67, 1–5 (2020).Article 
    PubMed 

    Google Scholar 
    Price, L. B., Koch, B. J. & Hungate, B. A. Ominous projections for global antibiotic use in food-animal production. Proc. Natl. Acad. Sci. USA 112, 5554–5555 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    EMA. Categorisation of antibiotics in the European Union. Eur. Med. Agency 31, 73 (2019).
    Google Scholar 
    Vellinga, T. V et al. in Title Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. http://www.livestockresearch.wur.nl (2013).Benjamins, D. in Oxford Sandy & Black pigs as a method of weed control. When do they stop being an asset and start becoming a problem? (2002).Henney, J. in An evaluation of the use of pigs as a method of bracken control Dissertation. (2012).Espinosa, R., Tago, D. & Treich, N. Infectious diseases and meat production. Environ. Resour. Econ. 76, 1019–1044 (2020).Article 

    Google Scholar 
    Gilbert, W., Thomas, L. F., Coyne, L. & Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 15, 100123 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    DEFRA. Monthly UK statistics on cattle, sheep and pig slaughter and meat production—Statistics notice (data to March 2022)—GOV.UK. 2022 https://www.gov.uk/government/statistics/cattle-sheep-and-pig-slaughter/monthly-uk-statistics-on-cattle-sheep-and-pig-slaughter-and-meat-production-statistics-notice-data-to-february-2022.Driver, A. Highlighting the differences—How UK welfare standards compare with our competitors. PIGWORLD (2017).DEFRA. in Code of practice for the welfare of PIGS © National Pig Association. www.gov.uk/defra (2020).Red Tractor. Pigs Standards. 17–19 (2017).QMS. 2020 Pig Standards. www.gov.uk/animal-welfare-in-severe-weather%0A. https://assurance.redtractor.org.uk/contentfiles/Farmers-6801.pdf?_=636504999253492650 (2019).RSPCA. RSPCA Welfare Standards for Pigs. (2016).Soil Association. Soil Association organic standards farming and growing. Farming and Growing Organic Standards www.soilassociation.org/organicstandards (2016).Organic Food Federation. Organic food federation production standards. (2016).Moakes, S., Lampkin, N. & Gerrard, C. L. Organic farm incomes in England and Wales 2010/11 (OF 0373). (2012).Hossard, L. et al. A meta-analysis of maize and wheat yields in low-input vs. conventional and organic systems. Agron. J. 108, 1155–1167 (2016).Article 
    CAS 

    Google Scholar 
    De Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    FAOSTAT. http://www.fao.org/faostat/en/#home (2022).EMA. Principles on assignment of defined daily dose for animals (DDDvet) and defined course dose for animals (DCDvet). 44, 68 (2015).Ogle, D., Doll, J., Wheeler, P. & Dinno, A. Package ‘FSA’. (2022).Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. (2021).Mangiafico, S. Package ‘ rcompanion ’. (2022).Arnold, J. B. Package ‘ ggthemes ’. (2021).Pedersen, T. L. Patchwork: The Composer of Plots. Cran (2020).Wickham, H. et al. Package ‘ggplot2’. (2021). More

  • in

    Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles

    Ultra-small prokaryotes were prevalent across diverse aquifer lithologies and anoxic to oxic groundwatersWe used 16S rRNA gene amplicons to assess microbial community composition in 81 groundwater samples. Samples were collected from 59 wells over 10 aquifers in four geographic regions, separated by over a thousand kilometers, and encompassed wide-ranging aquifer chemistries and lithologies (Fig. 1a), comprising primarily shallow sandy-gravel aquifers, but also sand/silt, gravel/peat, volcanic (basalt, ignimbrite) and shell-bed aquifers (Table S1). A large portion of microbial community diversity comprised ultra-small groups of prokaryotes (Fig. 1b). Out of 52,553 OTUs, 21.8% (or 18.4% of 46,713 ASVs) were assigned to seven ultra-small microbial phyla (when considering CPR as the single Patescibacteria phylum). These comprised the bacterial phyla Patescibacteria and Dependentiae, and archaeal DPANN radiation. Altiarchaeota was included in DPANN as previously suggested [63, 64], although its taxonomic placement is uncertain due to genomic under-sampling [65, 66].Fig. 1: Distribution and abundance of ultra-small prokaryotes across groundwater sites.a Distribution of groundwater samples along DOC (0–26 g/m3), DO (0.37–7.5 g/m3) and nitrate-N (0.45–12.6 g/m3) concentrations scaled between 0 and 100. b Top plot: Richness of ultra-small prokaryote variants (rarefied ASVs) at each site. Middle plot: Proportion of ultra-small prokaryotes compared with the total microbial communities (black bars = OTUs, grey crosses = ASVs). Samples are ordered from least to most abundant. Lower plot: Phylum-level breakdown of amplicon based-relative abundance of Patescibacteria, Dependentiae and DPANN archaea (bottom). Symbol bars indicate aquifer lithology (top symbol bar), and oxygen content (lower symbol bar) with dark to light blue shading representing anoxic, suboxic, dysoxic to oxic groundwater. c Class-level rank abundance curve showing the average relative abundance of each genome across sites. The center line of each boxplot represents the median; the top and bottom lines are the first and third quartiles, respectively; and the whiskers show 1.5 times the interquartile range.Full size imageUltra-small prokaryotes were detected in all samples, regardless of lithology, chemistry or geography. They have also been reported from several aquifers and lithologies in the USA (sandy gravel, agriculturally-impacted river sediment, mixed marine sedimentary/metasedimentary rocks, plutonic rock, and sandstone [10, 18, 19, 22], and from a carbonate rock aquifer system in Germany [67, 68]. Collectively these findings demonstrate that ultra-small microorganisms are geographically widespread across diverse aquifer lithologies. Moreover, while ultra-small microorganisms have mostly been detected in anoxic environments [69,70,71,72] or cultivated under anoxic conditions [15, 25], we found representatives in all oxic groundwaters ( >3 mg/L DO) [73] (54/81 samples, Table S1). A few members of DPANN and Patescibacteria lineages have previously been detected in oxic environments [28, 67, 68, 74, 75], suggesting a degree of oxygen tolerance (genetic evidence presented below) or that these organisms are concentrated in anoxic niches within the aquifer substrate.The relative abundance of ultra-small microorganisms was highly variable across the studied aquifers, ranging from 0.04% to 22% of all bacterial and archaeal 16S rRNA gene sequences (7.2% average ±5.5% standard deviation; Fig. 1b). Samples with low relative abundances of ultra-small microorganisms (lower than the average) had overall lower alpha diversity (Shannon diversity indices and OTU or ASV richness) and were mostly from volcanic aquifer sites (Fig. 1b; Table S2). At the phylum level, Patescibacteria and Nanoarchaeota tended to dominate groundwater ultra-small communities (Fig. 1b). However, we found that ultra-small species level diversity overall was considerable with up to 1429 unique OTUs in a single groundwater sample (or up to 653 variants via the more conservative ASV method) (Table S2). Rarefaction curves show most variant diversity was captured across all samples, with curve slopes equaling zero (or approaching zero post rarefaction) (Fig. S1; Table S2). Finally, our results confirm the site specificity of ultra-small prokaryotes [10], with only 16 OTUs common across ≥50% of all 81 groundwater samples, or five ASVs across ≥20% of samples (three Parcubacteria, a Ca. Uhrbacteria, and a Woesearchaeales) (Table S2).High shared phylogenetic and genomic similarity to ultra-small prokaryotes from groundwaters elsewhereTo further assess the phylogeny and assess the genomic attributes and metabolic capacities of groundwater microbial communities, we reconstructed MAGs from 16 groundwater samples (eight wells over four sites and two aquifers). The dataset comprised 7,695 MAGs, including 539 unique MAGs ( >50% complete, 90% complete) (Table S3; Fig. S2). Based on phylogenetic analysis using GTDB [7, 76], MAGs represent 51 phyla, including five ultra-small microbial phyla (Table S3; Fig. S3). The ultra-small MAGs were found at all four sites and accounted for >1/3 of all unique MAGs (216 MAGs 50–100% complete, with 76 MAGs >90% complete). MAGs included 171 assigned to Patescibacteria, six to Dependentiae, and 39 to DPANN archaea (28 Nanoarchaeota, 10 Micrarchaeota, and one Altiarchaeota; Fig. 2a, b). The high representation of ultra-small prokaryotes in the MAG dataset further highlights the prevalence, diversity and abundance of these organisms in groundwater. Consistent with previous studies [6, 9, 77], genomes of ultra-small prokaryotes were small (1 ± 0.4 Mbp on average) with a tendency towards low GC contents (Figs. 3a, S2), and possessed limited metabolic capacities, which significantly differ between ultra-small bacterial and archaeal domains (results in Supplementary Materials; Figs. 3b, S2, S4).Fig. 2: Diversity of groundwater ultra-small microbial communities.Maximum likelihood phylogenetic trees of 177 unique ultra-small bacterial MAGs (a) and 39 unique ultra-small archaeal MAGs (b) recovered in this study. Outer rings indicate the site characteristics where MAGs were enriched. Enrichment factors were calculated as (average relative abundance in oxic and planktonic ultra-small microbial communities, respectively)/(average relative abundance in anoxic-to-dysoxic or sediment-enriched microbial communities, respectively). Trees are based on either 120 concatenated bacterial marker genes or 122 concatenated archaeal marker genes from GTDB-Tk, and were rooted to other groundwater bacterial and archaeal MAGs, respectively (Table S3). Scale bars indicate the number of substitutions per site. Branch background shading denotes Patescibacteria classes (clockwise): Gracilibacteria, Saccharimonadia, UBA1384, Dojkabacteria, Microgenomatia, Doudnabacteria, ABY1, Paceibacteria_A and Paceibacteria. c Proportion of ultra-small microbial OTUs (top) and MAGs (bottom) enriched in low and high oxygen groundwater, and in planktonic and sediment-enriched samples (Table S1). Enrichment factors were calculated as described above.Full size imageFig. 3: Estimated genome size, metabolic content and novelty of groundwater ultra-small prokaryotes.a Estimated genome size of groundwater MAGs calculated as (bin size – (bin size * contamination)) / (completeness), as described by Castelle et al. [9]. Genomes of ultra-small prokaryotes are colored by phylum-level. Other microbial genomes are shown in grey. b Principal Component Analysis (PCA) based on the composition of COG metabolic categories in recovered ultra-small MAGs. c (Right) Range of all pairwise AAI values (grey) and maximum AAI values (blue) between ultra-small prokaryote MAGs recovered in this study and GTDB representative genomes for a given phylum. Red dashed lines represent the AAI range defining the same family of organisms (45–65%) [74]. The number of genomes included in this analysis is indicated for each phylum in brackets. (Left) Proportion of ultra-small prokaryotic MAGs reconstructed in this study classified at each taxonomic level using GTDB-Tk.Full size imageCompared to reference genomes (GTDB species representatives), all recovered ultra-small MAGs are predicted to be novel species [78], and almost half were novel groundwater genera (Fig. 3c, results in Supplementary Materials). Most shared the highest affinity matches with other ultra-small genomes derived from aquifers elsewhere (e.g., in the USA), indicating niche adaptation within these lineages (although ultra-small MAGs from these groundwater ecosystems are over-represented in the GTDB database). Niche-specific phylogenetic conservation among geographically distant microorganisms in groundwater has likewise been reported among geographically distant anammox bacteria in groundwater [30].Ultra-small microbial communities were structured by geography, lithology, and dissolved oxygen concentrationsWhile ultra-small prokaryotes were ubiquitous in groundwater, and overall highly similar to those found in groundwater at different global locations, community compositions varied across sites. To investigate environmental factors (Table S1) influencing ultra-small community composition, we performed distance-based redundancy analysis (Fig. 4a). DO, pH, nitrate-N, sulfate, and DOC were significantly associated with differences in the distribution of 16S rRNA gene amplicon sequences annotated as Patescibacteria, Dependentiae and DPANN (permutation test, p  More

  • in

    Efficacy of cholecalciferol rodenticide to control wood rat, Rattus tiomanicus and its secondary poisoning impact towards barn owl, Tyto javanica javanica

    Bentley, E. W. A review of anticoagulant rodenticides in current use. Bull. Wid Htlh Org. 47, 275–280 (1972).CAS 

    Google Scholar 
    Ravindran, S., Mohd Noor, H. & Salim, H. Anticoagulant rodenticide use in oil palm plantations in Southeast Asia and hazard assessment to non-target animals. Ecotoxicology https://doi.org/10.1007/s10646-022-02559-x (2022).Article 
    PubMed 

    Google Scholar 
    Wood, B. J. & Chung, G. F. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 22, 445–454 (2003).Article 

    Google Scholar 
    Wood, B. J. & Chung, G. F. Warfarin resistance of Rattus tiomanicus in oil palms in Malaysia and the associated increase of Rattus diardii. In Proceedings of the Fourteenth Vertebrate Pest Conference 1990. vol. 81, 129–134 (1990).Buckle, A. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334−341 (2012).Article 
    PubMed 

    Google Scholar 
    Greaves, J. H. & Cullen-Ayres, P. B. Genetics of difenacoum resistance in the rat. In Current Advances in Vitamin K Research. 17th Steenbock Symposium (ed. Suttie, J. W.) 387–397 (Elsevier, 1988).
    Google Scholar 
    Marsh, R. E. Bromadiolone, a new anticoagulant rodenticide. EPPO. 7(2), 495–502 (1977).Article 
    CAS 

    Google Scholar 
    Ishizuka, M. et al. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. J. Toxicol. Sci. 33, 283–291 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kohn, M. H., Pelz, H.-J. & Wayne, R. K. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genet. Soc. Am. 164, 1055–1070 (2003).CAS 

    Google Scholar 
    Vein, J., Grandemange, A., Cosson, J. F., Benoit, E. & Berny, P. J. Are water vole resistant to anticoagulant rodenticides following field treatments?. Ecotoxicology 20, 1432–1441 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Salim, H. et al. Secondary poisoning of captive barn owls, Tyto alba javanica through feeding with rats poisoned with chlorophacinone and bromadiolone. J. Oil Palm Res. 26(1), 62–72 (2014).CAS 

    Google Scholar 
    Thomas, P. J. et al. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterization of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37(5), 914–920 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, E. F. Cholecalciferol: A unique toxicant for rodent control. In Proceedings, Eleventh Vertebrate Pest Conference (ed. Clark, D. O.) 95–98 (University of California, 1984).
    Google Scholar 
    Tobin, M. E., Matschke, C. H., Sugihara, R. T., McCann, C. R., Koehler, A. E. & Andrews, K. T. Laboratory efficacy of cholecalciferol against field rodents. DWRC Research Report No. 11–55–002. (U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 1993).Bull, J. O. Urban pest management, the past, the present, the future. Pest Manag. 2(3), 8–12 (1983).
    Google Scholar 
    Eason, C. T., Frampton, C. M., Henderson, R., Thomas, M. D. & Morgan, D. R. Sodium monofluoroacetate and alternative toxins for possum control. N. Z. J. Zool. 20, 329–334 (1993).Article 

    Google Scholar 
    Eason, C. T. et al. Toxicity of cholecalciferol to rats in a multi-species bait. N. Z. J. Ecol. 34(2), 233–236 (2010).
    Google Scholar 
    Pospischil, R. & Schnorbach, H. J. Racumin plus, a new promising rodenticide against rats and mice. In Proceedings of the 16th Vertebrate Pest Conference University of Nebraska, Lincoln, 180–187 (1994.Baldwin, R. A., Meinerz, R. & Witmer, G. W. Cholecalciferol plus diphacinone baits for vole control: A novel approach to a historic problem. J. Pestic. Sci. 89, 129–135 (2016).Article 

    Google Scholar 
    Eason, C. T., Wickstrom, M., Henderson, R., Milne, L. & Arthur, D. Non-target and secondary poisoning risks associated with cholecalciferol. N. Z. Plant Prot. 53, 299–304 (2000).CAS 

    Google Scholar 
    Baldwin, R. A., Meinerz, R. & Witmer, G. W. Are cholecalciferol plus anticoagulant rodenticides a viable option for field rodents? In Proceeding of 27th Vertebrate Pest Conference, 407–410 (University of California Davis, 2016).British Pest Control Association. BASF introduces new Cholecalciferol-based rodenticide bait in Europe. https://bpca.org.uk/News-and-Blog/basf-introduces-new-cholecalciferol-based-rodenticide (2020).Horst, R. L., Napoli, J. L. & Littledike, E. T. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J. 204, 185–189 (1982).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beasley, V. R., Dorman, D. C., Fikes, J. D., Diana, S. G. & Woshner, V. Cholecalciferol-based rodenticides and other vitamin d-containing products. In A Systems Affected Approach to Veterinary Toxicology 445–450 (University of Illinois Press, 1997).
    Google Scholar 
    Jolly, S. E., Eason, C. T. & Frampton, C. Serum calcium levels in response to cholecalciferol and calcium carbonate in the Australian brush-tailed possum. Pestic. Biochem. Physiol. 47, 159–164 (1993).Article 
    CAS 

    Google Scholar 
    Marsh, R. & Tunberg, A. Characteristics of cholecalciferol. Rodent control: Other options. Pest Control Technol. 14, 43–45 (1986).
    Google Scholar 
    Morgan, D. R. & Rhodes, A. T. Feracol® paste bait for possum control—a cage trial. N. Z. Plant Prot. 53, 305–309 (2000).CAS 

    Google Scholar 
    Zainal Abidin, C. M. R. et al. Comparison of effectiveness of introduced barn owls, Tyto javanica javanica, and rodenticide treatments on rat control in oil palm plantations. J. Pest. Sci. 95, 1009–1022. https://doi.org/10.1007/s10340-021-01423-x (2022).Article 
    CAS 

    Google Scholar 
    Erickson, W. & Urban, D. Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach (United States Environmental Protection Agency, Office of Pesticides Programs Environmental Fate and Effects Division, 2004).Khoo, K. C., Peter, A. C. O. & Ho, C. T. Crop Pests and Their Management in Malaysia (Tropical Press Sdn. Bhd, 1991).
    Google Scholar 
    Fisher, P., Eason, C., O’Connor, C., Lee, C. H. & Endepols, S. Coumatetralyl residues in rats and hazards to barn owls. In Rats, Mice and People: Rodent Biology and Management (eds Singleton, G. R. et al.) 457–461 (Australia Centre for International Agricultural Research, 2003).
    Google Scholar 
    Lee, C. H. Secondary Toxicity of Some Rodenticides to Barn Owls. In 4th International Conference of Plant Protection in the Tropics, 28–31 March, Kuala Lumpur, Malaysia 161–163 (1994).Mendenhall, V. M. & Pank, L. F. Secondary poisoning of owls by anticoagulant rodenticides. Wildl. Soc. Bull. 8, 311–315 (1980).
    Google Scholar 
    Saravanan, K. & Kanakasabai, R. Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J. Exp. Biol. 42, 1013–1016 (2004).CAS 
    PubMed 

    Google Scholar 
    Eason, C. T., Wright, G. R., Meikle, L. & Elder, P. The persistence and secondary poisoning risks of sodium monofluoroacetate (1080), brodifacoum, and cholecalciferol in possum. In Proc. 17th Vertebr. Pest Conf. 54–58 (1996).Malaysia Standard: MS1256. Household Insecticide Products-Rat Bait-Chemical, Physical and Biological Efficacy Requirements. (Department of Standard Malaysia, 2007).Swenson, J. & Bradley, G. A. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J. Avian Med. Surg. 27(2), 136–147 (2013).Article 
    PubMed 

    Google Scholar 
    PMEP (Pesticide Management Education Program). Chlorophacinone (Rozol) chemical profile 1/85. Pesticide Management Education Program, Cornell University. http://pmep.cce.cornell.edu/profiles/rodent/chlorophacinone/rodprofchlorophacinone.html (2001).Kaukeinen, D. E., Spragins, C. W. & Hobson, J. F. Risk-benefit considerations in evaluating commensal anticoagulant rodenticide impacts to wildlife. In Proceedings of the Nineteenth Vertebrate Pest Conference, USA (eds Salmon, T. P. & Crabb, A. C.) 245–256 (University of California, 2000).
    Google Scholar 
    Lund, M. The toxicity of chlorophacinone and warfarin to house mice (Mus musculus). J. Hyg. Camb. 69, 69 (1971).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hix, H. The Effectiveness of a Low Dose Cholecalciferol Bait at Killing Rats and Mice (2009).Wood, B. J. & Liau, S. S. Preliminary studies on the toxicity of anti-coagulants to rats of oil palms, with special reference to the prospect of resistance. In International Development in Oil Palm. The Proceedings of the Malaysian International Agricultural of Oil Palm Conference (eds. Earp, DA & Newall, Z). Kuala Lumpur, 14–17 June 1995. The Incorporated Society of Planters, 641–659 (1977).Lee, C. H. & Mustafa, M. D. D. Laboratory evaluation of 0.025% warfarin against Rattus tiomanicus. MARDI Res. 11(2), 132–135 (1983).
    Google Scholar 
    Hagan, E. C. & Radomski, J. L. The toxicity of 3-(acetonylbenzyl)-4-hydroxycoumarin (warfarin) to laboratory animals. J. Am. Pharm. Assoc. 42(379), 382 (1953).
    Google Scholar 
    Hafidzi, M. N; Zulkifli, A. & Kamaruddin, A. A. Barn owl as a biological control agent of rats in paddy fields. In Symposium on Biological Control in the Tropics, 85–88 (Mardi Training Centre, 1999).Lenton, G. M. The feeding and breeding ecology of Barn Owls Tyto alba in Peninsular Malaysia. Int. J. Avian Sci. 126(4), 551–575 (1984).
    Google Scholar 
    Eason, C. T. & Ogilvie, S. A re-evaluation of potential rodenticides for aerial control of rodents. Department of Conservation Research and Development Series 312, Wellington, New Zealand (2009).Gunther, R., Felice, L. J. & Nelson, R. K. Cholecalciferol rodenticide toxicity. J. Am. Vet. Med. Assoc. 193, 211–214 (1988).CAS 
    PubMed 

    Google Scholar 
    Gray, A., Eadsforth, C. V., Dutton, A. J. & Vaughan, J. A. Toxicity of three second generation rodenticides to barn owls. Pestic. Sci. 42, 179–184 (1994).Article 
    CAS 

    Google Scholar 
    Lutz, W. Study on the possible secondary-poisoning hazard to buzzards (Buteo buteo) by the rodenticide bromadiolone. Unpubl. Report for BBA, Forschungsstelle für Jagdkunde und Wildschadenverhütung. Bonn (DE) (in German) (1986).Grolleau, G., Lorgue, G. & Nahas, K. Toxicitd secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des pr6dateurs de rongeurs champétres: Buse variable (Buteo buteo) et hermine (Mustela erminea). OEPP/EPPO. 19, 633–648 (1989).Article 

    Google Scholar 
    Riedel, M., Riedel, B. & Schlegelmilch, H. Risk of secondary intoxication for birds of prey and owls following use of chlorophacinone baits against common voles. Unpubl. Report (in German) (1991.).Radvanyi, A., Weaver, P., Massari, C., Bird, D. & Broughton, E. Effects of chlorophacinone on captive kestrels. Environ. Contam. Toxicol. 41, 441–448 (1988).Article 
    CAS 

    Google Scholar 
    Rattner, B. A. et al. Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors. Ecotoxicology 24, 720–734. https://doi.org/10.1007/s10646-015-1418-8 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. & Johnston, J. J. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33(1), 8 (2014).Article 

    Google Scholar 
    Sánchez-Barbudo, I. S., Camarero, P. R. & Mateo, R. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420, 280–288 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Evans, J. & Ward, A. L. Secondary poisoning associated with anticoagulant-killed nutria. JAVMA 151, 856–861 (1967).CAS 
    PubMed 

    Google Scholar 
    Prier, M. S. & Derse, P. H. Evaluation of the hazard of secondary poisoning by warfarin poisoned rodents. JAVMA 140, 351–354 (1962).CAS 
    PubMed 

    Google Scholar 
    Townsend, M. G., Bunyan, P. J., Odam, E. M., Stanley, P. I. & Wardall, H. P. Assessment of secondary poisoning hazard of warfarin to least weasels. J. Wildl. Manag. 48, 628–632 (1984).Article 
    CAS 

    Google Scholar  More

  • in

    Understanding microbial activity with isotope labelling of DNA

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    The case for the reintroduction of cheetahs to India

    Gopalaswamy, A. M. et al. Nat. Ecol. Evol. 6, 1794–1795 (2022).Article 
    PubMed 

    Google Scholar 
    Sandom, C., Donlan, C. J., Svenning, J. C. & Hansen, D. in Key Topics In Conservation Biology 2 (eds MacDonald, D. W. & Willis, K. J.) 430–451 (2013).Ripple, W. J. et al. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Jhala, Y. V., Ranjitsinh, M. K., Bipin, C. M. & Yadav, S. P. Action Plan For Introduction Of Cheetah In India (2021).Divyabhanusinh & Kazami J. Bombay Nat. Hist. Soc. 116, 22–43 (2019).
    Google Scholar 
    IUCN/SSG. Guidelines For Reintroductions And Other Conservation Translocations IUCN. Ecological Applications 20 (IUCN Species Survival Commission, 2013).Prost, S. et al. Mol. Ecol. 31, 4208–4223 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buk, K. G., van der Merwe, V. C., Marnewick, K. & Funston, P. J. Conservation Of Severely Fragmented Populations: Lessons From The Transformation Of Uncoordinated Reintroductions Of Cheetahs (Acinonyx jubatus) Into A Managed Metapopulation With Self-Sustained Growth. Biodiversity And Conservation 27 (Springer Netherlands, 2018).Scientific Authority of South Africa. Gov. Gaz. Repub. South Africa 677, 1–4 (2021).Walker, E. H., Verschueren, S., Schmidt-Küntzel, A. & Marker, L. Oryx 56, 495–504 (2022).Article 

    Google Scholar 
    Tordiffe, A. S. W. et al. Disease Risk Analysis For Introduction Of Cheetahs (Acinonyx jubatus) To India (2022).Brugière, D., Chardonnet, B. & Scholte, P. Trop. Conserv. Sci. 8, 513–527 (2015).Article 

    Google Scholar 
    Jhala, Y. V. et al. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00312 (2019).Jhala, Y. et al. People Nat. 3, 281–293 (2021).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J. & Kerley, G. I. H. Biol. Conserv. 139, 219–229 (2007).Article 

    Google Scholar 
    Ogutu, J. O., Owen-Smith, N., Piepho, H. P. & Said, M. Y. J. Zool. 285, 99–109 (2011).Article 

    Google Scholar 
    Houser, A. M., Somers, M. J. & Boast, L. K. J. Zool. 278, 108–115 (2009).Article 

    Google Scholar  More

  • in

    Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks

    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature https://doi.org/10.1038/nature04056 (2005).Article 
    PubMed 

    Google Scholar 
    Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    Bunbury, F. et al. Exploring the onset of B12-based mutualisms using a recently evolved Chlamydomonas auxotroph and B12-producing bacteria. Environ. Microbiol. 24, 3134–3147 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science https://doi.org/10.1126/science.281.5374.207 (1998).Article 
    PubMed 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0905512106 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x (2004).Article 
    PubMed 

    Google Scholar 
    Bagwell, C. E. et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00516 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoeger, A. L., Jehmlich, N., Kipping, L., Griehl, C. & Noll, M. Associated bacterial microbiome responds opportunistic once algal host Scenedesmus vacuolatus is attacked by endoparasite Amoeboaphelidium protococcarum. Sci. Rep. https://doi.org/10.1038/s41598-022-17114-1 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mars Brisbin, M., Mitarai, S., Saito, M. A. & Alexander, H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME J. https://doi.org/10.1038/s41396-022-01263-2 (2022).Article 
    PubMed 

    Google Scholar 
    Milici, M. et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 7, 1–20 (2016).Article 

    Google Scholar 
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).Article 
    PubMed 

    Google Scholar 
    Tucker, A. E. & Brown, S. P. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chun, S. J. et al. Network analysis reveals succession of microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. https://doi.org/10.1016/j.watres.2019.115326 (2020).Article 
    PubMed 

    Google Scholar 
    Huang, S. Back to the biology in systems biology: What can we learn from biomolecular networks?. Briefings Funct. Genom. Proteom. https://doi.org/10.1093/bfgp/2.4.279 (2004).Article 

    Google Scholar 
    Ma’ayan, A. Introduction to network analysis in systems biology. Sci. Signal. https://doi.org/10.1126/scisignal.2001965 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 1–10 (2014).Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3417 (2015).Article 
    PubMed 

    Google Scholar 
    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).Article 
    PubMed 

    Google Scholar 
    Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V. & Conesa, A. A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J. 15, 228–244 (2021).Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science https://doi.org/10.1126/science.1262073 (2015).Article 
    PubMed 

    Google Scholar 
    Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).Article 
    CAS 

    Google Scholar 
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00219 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature https://doi.org/10.1038/nature24621 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods https://doi.org/10.1038/s41592-018-0141-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. https://doi.org/10.1038/ismej.2012.8 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome https://doi.org/10.1186/s40168-018-0470-z (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major oceanic 16S/18S databases in qiime2 format. https://github.com/ndu-invitae/Oceanic_database/tree/master/PhytoRef.Hemprich-Bennett, D. R., Oliveira, H. F. M., Le Comber, S. C., Rossiter, S. J. & Clare, E. L. Assessing the impact of taxon resolution on network structure. Ecology https://doi.org/10.1002/ecy.3256 (2021).Article 
    PubMed 

    Google Scholar 
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics https://doi.org/10.1093/bioinformatics/bty734 (2019).Article 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002687 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csardi, G., & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems. igraph Softw. Packag. (2006).Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Assenov, Y., Ramírez, F., Schelhorn, S. E. S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics https://doi.org/10.1093/bioinformatics/btm554 (2008).Article 
    PubMed 

    Google Scholar 
    Barabási, A. L. Scale-free networks: A decade and beyond. Science https://doi.org/10.1126/science.1173299 (2009).Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Morris, J. H. et al. ClusterMaker: A multi-algorithm clustering plugin for cytoscape. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-436 (2011).Article 

    Google Scholar 
    Van Dongen, S. & Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. https://doi.org/10.1007/978-1-61779-361-5_15 (2012).Article 
    PubMed 

    Google Scholar 
    Raivo, K. Pheatmap: Pretty heatmaps. R Pacakage Version (2012).Albert, R., Jeong, H. & Barabási, A. L. Diameter of the world-wide web. Nature https://doi.org/10.1038/43601 (1999).Article 

    Google Scholar 
    Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.91.138701 (2003).Article 
    PubMed 

    Google Scholar 
    Ma, B. et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 (2017).Article 
    CAS 

    Google Scholar 
    Goecke, F., Thiel, V., Wiese, J., Labes, A. & Imhoff, J. F. Algae as an important environment for bacteria—Phylogenetic relationships among new bacterial species isolated from algae. Phycologia https://doi.org/10.2216/12-24.1 (2013).Article 

    Google Scholar 
    Krohn-Molt, I. et al. Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01641-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woebken, D. et al. Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J. https://doi.org/10.1038/ismej.2007.63 (2007).Article 
    PubMed 

    Google Scholar 
    Faria, M. et al. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics https://doi.org/10.1016/j.ygeno.2017.10.007 (2018).Article 
    PubMed 

    Google Scholar 
    Barbeyron, T., L’Haridon, S., Corre, E., Kloareg, B. & Potin, P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. Nov.. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/00207713-51-3-985 (2001).Article 
    PubMed 

    Google Scholar 
    Nedashkovskaya, O. I. et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijs.0.02626-0 (2003).Article 
    PubMed 

    Google Scholar 
    Kim, B. H., Ramanan, R., Cho, D. H., Oh, H. M. & Kim, H. S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.07.015 (2014).Article 

    Google Scholar 
    Rivas, M. O., Vargas, P. & Riquelme, C. E. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. https://doi.org/10.1007/s00248-010-9686-6 (2010).Article 
    PubMed 

    Google Scholar 
    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).Article 

    Google Scholar 
    Fulbright, S. P. et al. Bacterial community changes in an industrial algae production system. Algal Res. https://doi.org/10.1016/j.algal.2017.09.010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, M., Glöckner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. https://doi.org/10.3354/ame018275 (1999).Article 

    Google Scholar 
    Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae https://doi.org/10.1016/j.hal.2004.12.012 (2005).Article 

    Google Scholar 
    Janse, I., Zwart, G., Van der Maarel, M. J. E. C. & Gottschal, J. C. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures. Aquat. Microb. Ecol. https://doi.org/10.3354/ame022119 (2000).Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).Article 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sapp, M., Wichels, A. & Gerdts, G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02274-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milici, M. et al. Bacterioplankton biogeography of the Atlantic ocean: A case study of the distance-decay relationship. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. https://doi.org/10.1038/s41467-021-25646-9 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of verrucomicrobia. PLoS ONE https://doi.org/10.1371/journal.pone.0035314 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dell’Anno, F. et al. Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.584850 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. https://doi.org/10.1038/ismej.2009.150 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-120710-100912 (2014).Article 
    PubMed 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1413137112 (2015).Article 
    PubMed 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    Coelho, F. J. R. C. et al. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Queiroz, L. L. et al. Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 8, 9. https://doi.org/10.1007/s10482-020-01384-8 (2020).Article 
    CAS 

    Google Scholar 
    de Voogd, N. J., Cleary, D. F. R., Polónia, A. R. M. & Gomes, N. C. M. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv019 (2015).Article 
    PubMed 

    Google Scholar 
    Vigneron, A. et al. Multiple strategies for light-harvesting, photoprotection, and carbon flow in high latitude microbial mats. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02881 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pushpakumara, B. L. D. U., Tandon, K., Willis, A. & Verbruggen, H. The bacterial microbiome of the coral skeleton algal symbiont Ostreobium shows preferential associations and signatures of phylosymbiosis. bioRxiv https://doi.org/10.1101/2022.12.13.520198 (2022).Article 

    Google Scholar 
    Lage, O. M. & Bondoso, J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.2011.01168.x (2011).Article 
    PubMed 

    Google Scholar 
    Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. https://doi.org/10.3354/ame048217 (2007).Article 

    Google Scholar 
    Bengtsson, M. M. & Øvreås, L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-261 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludington, W. B. et al. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater. PLoS ONE https://doi.org/10.1371/journal.pone.0174930 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1–13 (2021).Article 

    Google Scholar 
    Walker, A. M., Leigh, M. B. & Mincks, S. L. Patterns in benthic microbial community structure across environmental gradients in the beaufort sea shelf and slope. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.581124 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morris, R. M., Longnecker, K. & Giovannoni, S. J. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2006.01029.x (2006).Article 
    PubMed 

    Google Scholar 
    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. https://doi.org/10.1038/s41564-020-0720-2 (2020).Article 
    PubMed 

    Google Scholar 
    Bohórquez, J. et al. Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00245 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12242 (2014).Article 
    PubMed 

    Google Scholar 
    Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. https://doi.org/10.1038/ismej.2016.20 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Info-gap theory to determine cost-effective eradication of invasive species

    Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363–371 (2001).Article 

    Google Scholar 
    Atkinson, I. A. E. Introduced mammals and models for restoration. Biol. Conserv. 99, 81–96 (2001).Article 

    Google Scholar 
    Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. In Invasive Species Management: A Handbook of Principles and Techniques (eds Clout, M. N. & Williams, P. A.) (Oxford University Press, 2009).
    Google Scholar 
    Baker, C. M., Hodgson, J. C., Tartaglia, E. & Clarke, R. H. Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project. Biol. Invasions 19, 2959–2970 (2017).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Sanchirico, J. N., Albers, H. J., Fischer, C. & Coleman, C. Spatial Management of invasive species: Pathways and policy options. Environ. Resour. Econ. 45, 517–535 (2010).Article 

    Google Scholar 
    Caplat, P., Hui, C., Maxwell, B. D. & Peltzer, D. A. Cross-scale management strategies for optimal control of trees invading from source plantations. Biol. Invasions 16, 677–690 (2014).Article 

    Google Scholar 
    Long, Y., Van der Merwe, J., Thomas, M. L., McKirdy, S. & Kompas, T. Biosecurity for valuable environmental island assets: Spatial post-border surveillance for early detection. Ecol. Econ. forthcoming (2022).Kroetz, K. & Sanchirico, J. N. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).Article 

    Google Scholar 
    Liu, Y., Wang, P., Thomas, M. L., Zheng, D. & McKirdy, S. J. Cost-effective surveillance of invasive species using info-gap theory. Sci. Rep. 11, 22828 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Homans, F. & Horie, T. Optimal detection strategies for an established invasive pest. Ecol. Econ. 70, 1129–1138 (2011).Article 

    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article 

    Google Scholar 
    Moffitt, L. J., Stranlund, J. K. & Osteen, C. D. Robust detection protocols for uncertain introductions of invasive species. J. Environ. Manage. 89, 293–299 (2008).Article 
    PubMed 

    Google Scholar 
    Yokomizo, H., Possingham, H. P., Hulme, P. E., Grice, A. C. & Buckley, Y. M. Cost-benefit analysis for intentional plant introductions under uncertainty. Biol. Invasions 14, 839–849 (2011).Article 

    Google Scholar 
    Ben-Haim, Y. Info-gap Decision Theory: Decisions Under Severe Uncertainty 2nd edn. (Academic Press, 2006).
    Google Scholar 
    Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921).
    Google Scholar 
    Regan, H. M. et al. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 15, 1471–1477 (2005).Article 

    Google Scholar 
    Ben-Haim, Y. Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004).Article 

    Google Scholar 
    Ben-Haim, Y. & Demertzis, M. Decision making in times of Knightian uncertainty: An info-gap perspective. Economics 10, 1 (2016).Article 

    Google Scholar 
    Lever, C. Naturalized Reptiles and Amphibians of the World (Oxford University Press, 2003).
    Google Scholar 
    Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 
    PubMed 

    Google Scholar 
    Torres-Carvajal, O. On the origin of South American populations of the common house gecko (Gekkonidae: Hemidactylus frenatus). NeoBiota 27, 69–79 (2015).Article 

    Google Scholar 
    Hoskin, C. J. The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol. 36, 240–251 (2011).Article 

    Google Scholar 
    Barnett, L. K. Understanding Range Expansion of Asian House Geckos (Hemidactylus frenatus) in Natural Environments (James Cook University, 2017).
    Google Scholar 
    Norval, G. & Mao, J.-J. An instance of a house gecko (Hemidactylus frenatus Schlegel, 1836) utilizing an electrical timer for thermoregulation. IRCF Reptil. Amphib. 22, 76–78 (2015).Article 

    Google Scholar 
    Greenslade, P., Burbidge, A. A. & Lynch, A. J. J. Keeping Australias islands free of introduced rodents Barrow Island. Pac. Conserv. Biol. 19, 284–294 (2013).Article 

    Google Scholar 
    Perella, C. D. & Behm, J. E. Understanding the spread and impact of exotic geckos in the greater Caribbean region. Biodivers. Conserv. 29, 1109–1134 (2020).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 364–369 (University of California Press, 2011).
    Google Scholar 
    García-Díaz, P., Ross, J. V., Vall-llosera, M. & Cassey, P. Low detectability of alien reptiles can lead to biosecurity management failure: A case study from Christmas Island (Australia). NeoBiota. 45, 75–92 (2019).Article 

    Google Scholar 
    Koopman, B. O. Search and Screening. Operations Evaluation Group (OEG) Report. (1946).Grasinger, M., O’Malley, D., Vesselinov, V. & Karra, S. Decision analysis for robust CO2 injection: Application of Bayesian-Information-Gap Decision Theory. Int. J. Greenh. Gas Control 49, 73–80 (2016).Article 
    CAS 

    Google Scholar 
    MathWorks. MATLAB R2018b. (MathWorks, 2018).Commonwealth Government of Australia. Approval—Gorgon Gas Development (EPBC Reference: 2008/4178). (2009).Kalaris, T. et al. The role of surveillance methods and technologies in plant biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 309–337 (Springer, 2014).Chapter 

    Google Scholar 
    Sharma, S., Mckirdy, S. & Macbeth, F. The biosecurity continuum and trade: Tools for post-border biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 189–206 (Springer, 2014).Chapter 

    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).Article 

    Google Scholar 
    Gregg, H. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).Article 

    Google Scholar 
    Parkes, J. Feasibility plan to eradicate Common mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Landcare Research Contract Report LC0506/184. (2006).Barun, A. & Simberloff, D. Carnivores. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 95–100 (University of California Press, 2011).
    Google Scholar 
    Pluess, T. et al. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14, 1365–1378 (2012).Article 

    Google Scholar 
    Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15, 803–812 (2012).Article 
    PubMed 

    Google Scholar 
    Rout, T. M., Thompson, C. J. & McCarthy, M. A. Robust decisions for declaring eradication of invasive species. J. Appl. Ecol. 46, 782–786 (2009).Article 

    Google Scholar 
    Hauser, C. E. & McCarthy, M. A. Streamlining “search and destroy”: Cost-effective surveillance for invasive species management. Ecol. Lett. 12, 683–692 (2009).Article 
    PubMed 

    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: Integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).Article 
    PubMed 

    Google Scholar 
    Moore, J. L. et al. Protecting islands from pest invasion: Optimal allocation of biosecurity resources between quarantine and surveillance. Biol. Conserv. 143, 1068–1078 (2010).Article 

    Google Scholar 
    Rout, T. M., Moore, J. L., Possingham, H. P. & McCarthy, M. A. Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol. Econ. 71, 54–62 (2011).Article 

    Google Scholar  More