Climate-driven convergent evolution in riparian ecosystems on sky islands
Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article
ADS
Google Scholar
Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).Article
PubMed
PubMed Central
Google Scholar
Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant Environ. Int. 1, 166–180 (2020).Article
Google Scholar
Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).Article
PubMed
PubMed Central
Google Scholar
Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).Article
ADS
CAS
PubMed
Google Scholar
Hendry, A. P. Eco-Evolutionary Dynamics (Princeton University Press, 2017).Book
Google Scholar
Anstett, D. N., Branch, H. A. & Angert, A. L. Regional differences in rapid evolution during severe drought. Evol. Lett. 5, 130–142 (2021).Article
PubMed
PubMed Central
Google Scholar
Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. PNAS 118, e2015772118 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Bokhorst, S., Bjerke, J. W., Street, L. E., Callaghan, T. V. & Phoenix, G. K. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Glob. Change Biol. 17, 2817–2830 (2011).Article
ADS
Google Scholar
Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186, S60–S73 (2015).Article
PubMed
PubMed Central
Google Scholar
Wooliver, R., Tittes, S. B. & Sheth, S. N. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74, 1699–1710 (2020).Article
PubMed
Google Scholar
McCormack, J. E., Huang, H. & Knowles, L. L. Sky Islands. in Encyclopedia of Islands (eds. Gillespie, R. G. & Clague, D. A.) 839–843 (2009).Knowles, J. F., Scott, R. L., Minor, R. L. & Barron-Gafford, G. A. Ecosystem carbon and water cycling from a sky island montane forest. Agric. For. Meteorol. 281, 107835 (2020).Article
ADS
Google Scholar
Heald, W. Sky Islands (Van Nostrand, 1967).
Google Scholar
DeBano, L. H. et al. Biodiversity and management of the Madrean Archipelago: The Sky Islands of southwestern United States and northwestern Mexico: 1994 September 19–23; Tucson, AZ. Gen Tech Rep RM-GTR-264. Fort Collins, CO: US Dep Agric For Serv, Rocky Mt For Range Exp Stn. 669 p. (1995).Pérez-Alquicira, J. et al. The role of historical factors and natural selection in the evolution of breeding systems of Oxalis alpina in the Sonoran desert ‘Sky Islands’. J. Evol. Biol. 23, 2163–2175 (2010).Article
PubMed
Google Scholar
Wiens, J. J. et al. Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol. Ecol. 28, 2610–2624 (2019).Article
PubMed
Google Scholar
Pielou, E. C. After the Ice Age. The return of Life to Glaciated North America (The University of Chicago Press, 1991).Book
Google Scholar
Hosner, P. A., Nyári, Á. S. & Moyle, R. G. Water barriers and intra-island isolation contribute to diversification in the insular Aethopyga sunbirds (Aves: Nectariniidae). J. Biogeogr. 40, 1094–1106 (2013).Article
Google Scholar
Favé, M.-J. et al. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. Bmc Evol. Biol. 15, 183 (2015).Article
PubMed
PubMed Central
Google Scholar
Yanahan, A. D. & Moore, W. Impacts of 21st-century climate change on montane habitat in the Madrean Sky Island Archipelago. Divers. Distrib. 25, 1625–1638 (2019).Article
Google Scholar
Oline, D. K., Mitton, J. B. & Grant, M. C. Population and subspecific genetic differentiation in the Foxtail Pine (Pinus balfouriana). Evolution 54, 1813–1819 (2000).CAS
PubMed
Google Scholar
Barrowclough, G. F., Groth, J. G., Mertz, L. A. & Gutiérrez, R. J. Genetic structure of Mexican spotted owl (Strix Occidentalis Lucida) populations in a fragmented landscape. Auk 123, 1090–1102 (2006).
Google Scholar
Atwood, T. C. et al. Modeling connectivity of black bears in a desert sky island archipelago. Biol. Conserv. 144, 2851–2862 (2011).Article
Google Scholar
Halbritter, D. A., Storer, C. G., Kawahara, A. Y. & Daniels, J. C. Phylogeography and population genetics of pine butterflies: Sky islands increase genetic divergence. Ecol. Evol. 9, 13389–13401 (2019).Article
PubMed
PubMed Central
Google Scholar
DeChaine, E. G. & Martin, A. P. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am. J. Bot. 92, 477–486 (2005).Article
CAS
PubMed
Google Scholar
Baker, A. J. Islands in the sky: The impact of Pleistocene climate cycles on biodiversity. J. Biol. 7, 32 (2008).Article
PubMed
PubMed Central
Google Scholar
Robin, V. V., Sinha, A. & Ramakrishnan, U. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLoS ONE 5, e13321 (2010).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Manthey, J. D. & Moyle, R. G. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: A landscape genomics approach. Mol. Ecol. 24, 3628–3638 (2015).Article
CAS
PubMed
Google Scholar
Vásquez, D. L. A., Balslev, H., Hansen, M. M., Sklenář, P. & Romoleroux, K. Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot. 126, 135–142 (2016).Article
Google Scholar
Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749 (2017).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).Article
Google Scholar
Williamson, J. L. et al. Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int. J. Parasitol. 49, 437–448 (2019).Article
PubMed
Google Scholar
Knowles, L. L. & Richards, C. L. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14, 4023–4032 (2005).Article
PubMed
Google Scholar
Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).Article
PubMed
Google Scholar
Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article
Google Scholar
Kooyers, N. J., Greenlee, A. B., Colicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).Article
PubMed
Google Scholar
Price, E. A. C. & Marshall, C. Clonal plants and environmental heterogeneity—An introduction to the proceedings. Plant Ecol. 141, 3–7 (1999).Article
Google Scholar
Matsuo, A. et al. Female and male fitness consequences of clonal growth in a dwarf bamboo population with a high degree of clonal intermingling. Ann. Bot. Lond. 114, 1035–1041 (2014).Article
CAS
Google Scholar
Barrett, S. C. H. Influences of clonality on plant sexual reproduction. PNAS 112, 8859–8866 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Bittebiere, A.-K., Benot, M.-L. & Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Persp. Plant Ecol. Evol. Syst. 43, 125510 (2020).Article
Google Scholar
King, D. & Roughgarden, J. Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21, 194–204 (1982).Article
MathSciNet
MATH
Google Scholar
LaDeau, S. L. & Clark, J. S. Rising CO2 levels and the fecundity of forest trees. Science 292, 95–98 (2001).Article
ADS
CAS
PubMed
Google Scholar
Qiu, T. et al. Is there tree senescence? The fecundity evidence. PNAS 118, e2106130118 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Oddou-Muratorio, S. et al. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann. Bot. Lond. 128, 193–204 (2021).Article
Google Scholar
Knops, J. M. H., Koenig, W. D. & Carmen, W. J. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. PNAS 104, 16982–16985 (2007).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Nakamura, I. et al. Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia 165, 809–818 (2011).Article
ADS
PubMed
Google Scholar
Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).Article
CAS
PubMed
Google Scholar
Chen, X. Spatiotemporal Processes of Plant Phenology, Simulation and Prediction (Springer, 2017).Book
Google Scholar
Bradshaw, H. D. & Stettler, R. F. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139, 963–973 (1995).Article
CAS
PubMed
Google Scholar
Rae, A. M. et al. QTL for yield in bioenergy Populus: Identifying G×E interactions from growth at three contrasting sites. Tree Genet. Genom. 4, 97–112 (2008).Article
Google Scholar
Rae, A. M., Street, N. R., Robinson, K. M., Harris, N. & Taylor, G. Five QTL hotspots for yield in short rotation coppice bioenergy poplar: The poplar biomass loci. Bmc Plant Biol. 9, 23 (2009).Article
PubMed
PubMed Central
Google Scholar
Allwright, M. R. et al. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels 9, 195 (2016).Article
PubMed
PubMed Central
Google Scholar
Badmi, R. et al. A new calmodulin-binding protein expresses in the context of secondary cell wall biosynthesis and impacts biomass properties in Populus. Front. Plant Sci. 9, 1669 (2018).Article
PubMed
PubMed Central
Google Scholar
Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article
Google Scholar
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).Hughes, L., Hughes, L. & Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).Article
CAS
PubMed
Google Scholar
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).Article
ADS
CAS
PubMed
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article
ADS
CAS
PubMed
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article
Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article
ADS
CAS
PubMed
Google Scholar
Fuller, A. et al. Physiological mechanisms in coping with climate change. Physiol. Biochem. Zool. 83, 713–720 (2010).Article
PubMed
Google Scholar
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).Article
ADS
Google Scholar
Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. NY. Acad. Sci. 1162, 311–333 (2009).Article
ADS
PubMed
Google Scholar
Bertel, C. et al. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127, 1355–1367 (2018).Article
Google Scholar
Knotek, A. et al. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11, 561526 (2020).Article
PubMed
PubMed Central
Google Scholar
Tusiime, F. M. et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio). PLoS ONE 15, e0228979 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Cooke, J. E. K. & Rood, S. B. Trees of the people: The growing science of poplars in Canada and worldwide. Botany 85, 1103–1110 (2007).
Google Scholar
Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. 57–86 (1996).Schweitzer, J. A., Martinsen, G. D. & Whitham, T. G. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence?. Am. J. Bot. 89, 981–990 (2002).Article
PubMed
Google Scholar
Moore, W. et al. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands. Proc. RMRS 2013, 144–168 (2013).PubMed
PubMed Central
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).Article
Google Scholar
Tuskan, G. A. et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 34, 85–93 (2004).Article
CAS
Google Scholar
Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).Article
ADS
CAS
PubMed
Google Scholar
Peakall, R. & Ssmouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Arxiv https://doi.org/10.48550/arxiv.1406.5823 (2014).Article
Google Scholar
Schielzeth, H. & Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 4, 14–24 (2013).Article
Google Scholar
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article
CAS
PubMed
Google Scholar
Fox, J. et al. Package ‘car’: Companion to Applied Regression. R package version 3.0–10 (2020). More