More stories

  • in

    Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge

    Habitat typesThe sampled stations were classified into 5 habitat types (Fig. 1a,b) as described by Weber et al.35: young plume core (YPC), old plume core (OPC), west plume margin (WPM), east plume margin (EPM) and oceanic seawater (OSW). Each habitat was characterized by a unique combination of sea surface salinity, sea surface temperature, nitrate availability index, mixed layer depth and chlorophyll maximum depth35. Geographically, the different habitats were unevenly distributed along the transect (Fig. 1c), illustrating the dynamic and patchy nature of the ARP. At each station, the temperature and salinity profiles confirmed the stratification of the water column. Maximum Brunt–Väisälä buoyancy frequency was high (3–15 × 10–3 s−1) and close to the surface in the plume core (YPC and OPC), restricting turbulent mixing between the plume waters and the underlying ocean waters. The plume margin stations (WPM and EPM) showed deeper and more muted (1–2 × 10–3 s−1) maximum buoyancy frequency peaks while OSW stations exhibited turbulent mixing from the surface to ~ 100 m (Supplementary Fig. S1). Fluorescence profiles provided guidance to sample within the chlorophyll maximum (Supplementary Fig. S1). In the plume core, the chlorophyll peak was located above the halocline. At plume margin stations, multiple chlorophyll maxima were detected at the halocline or just below, while the oceanic seawater stations did not have haloclines, and chlorophyll peaks were far below the surface (deeper than 50 m). Surface samples from the core plume stations corresponded to high temperature-low salinity waters, with low density. These plume waters mixed with coastal waters at the surface of plume margin stations, but this was not the case at OSW stations (Supplementary Fig. S2).Figure 1Location of the study (A), distribution of sampling stations (B) and identification of the habitat types using a principal component analysis (C) and Ward’s hierarchical cluster analysis (D). The map in B shows the monthly composite surface chlorophyll concentration for May 2018 from satellite observations Reprocessed L4 (ESA-CCI: OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_093) downloaded from Copernicus Marine Service (https://resources.marine.copernicus.eu). The map was created using the NASA SeaDAS 7.5.3 software with land and exclusive economic zones boundaries (yellow lines) added with gmt v5.4.5 software. Note that all stations from EN614 were used to establish habitat types, but only the 10 stations highlighted in bold and shown on the map were used in this study. SSS, sea surface salinity; SST, sea surface temperature; NAI, nitrogen availability index; MLD, mixed layer depth; ChlMD, chlorophyll maximum depth.Full size imageSmall-sized pigmented eukaryote populations, size, abundance and biomass:Overall, the small pigmented eukaryote communities were composed of a variable combination of 3 to 4 populations per sample, with a total of 6 different populations (named P1, P2, P3, P4, P5 and P6) among all samples, identified by flow cytometry according to cell size range and pigment content (Fig. 2). Based on relative estimates from flow cytometry calibrations using beads of known sizes, most populations belonged to the picoplankton (≤ 2–3 µm). Cells in P1 were approx. 0.8 µm. P2 was a very diverse cluster resulting in a size range from ≤ 0.8 to 5 µm, with a majority of cells clustered around 2 µm, while P3 and P6 were characterized by cells of 0.8–2 µm and P4 by cells of 2–3.5 µm. Cells identified within P5 were larger, ranging from 3.5 to  > 5 µm, therefore encompassing small-sized members of the nanoplankton (3–20 µm). Studies that provide size calibrations for sorted picoeukaryote populations are rare37, making direct comparisons unreliable.Figure 2Example of a cytogram illustrating the gates used for small pigmented eukaryote population counts and sorting. Populations were first discriminated based on their position in the chlorophyll vs forward scatter cytogram (A, all events represented) and then redefined in the chlorophyll vs phycoerythrine (PE) autofluorescence cytogram (B, only events gated in A represented). In the later, we avoided Synechococcus overlapping with small pigmented eukaryote populations in A and cells exhibiting high PE fluorescence among the populations from cytogram B. Note that all 6 populations were never found present in the same sample. In particular, the sample represented here (S003 surface) did not contain P1 or P6, but the gates are represented nonetheless in panel A to provide an illustration for these populations. Note that the gating had to be adjusted between samples but the relative positions stayed similar to those illustrated here. The positions of standard size-calibrated non-fluorescent beads (dashed lines) along the x-axis were used to determine the size range of each gated population in cytogram A. Red ellipses mark the position of yellow-green reference beads of 1 and 2 µm (1-YG and 2-YG, respectively) used to maintain instrument alignment, although the bead clusters are not apparent in the sample since they were run separately (for details see “Methods”).Full size imageThe different small pigmented eukaryote populations had variable cell abundances relative to each other and varied with sampling location (Table 1). Surface communities were either dominated by population P3 (57–74% of small pigmented eukaryote abundance, hereafter counts) in the WPM (S003, S031 cast 03 (henceforth S031_03), and S031 cast 11 (henceforth S031_11)) as well as one station from EPM (S022) and one from OSW (S020), or by P2 (52–66% of counts) at the OPC (S024) and stations of the EPM (S025) and OSW (S027). All stations had lower abundances of P4 (5.7–32% of counts), and only four stations (S003, S020, S022, S031_11) also presented a small P5 population (3.1–6.3% of counts). The small pigmented eukaryote communities collected from chlorophyll maxima were all dominated by P2 (69–94% of counts) and accompanied by much less abundant P3 (5.6–23% of counts), except for station S022 whose chlorophyll maximum small pigmented eukaryote community was dominated by P3 (93% of counts). All chlorophyll maximum communities were characterized by a low contribution of P4 (0.6–6.2% of counts). The small pigmented eukaryote community collected from 40 m at S017 was characterized by the presence of population P6 (16% of counts), absent from the other stations. P1 was only present at the chlorophyll maximum of the OPC station (11% of counts). However, the amount of DNA extracted from P1 was too small to allow for sequencing of the 18S rDNA and it is therefore not part of the subsequent analyses.Table 1 Cell counts per population, as the proportion of the summed total cell density for all 6 gated populations. CM, chlorophyll maximum.Full size tableAt the surface, small pigmented eukaryotes contributed on average 1.3 ± 0.4% of the total small phytoplankton abundance (Supplementary Table S1), indicating that picocyanobacteria dominated all stations. Synechococcus dominated cell abundances at most stations (57–97%), except in the OSW (S020, S027) where Prochlorococcus dominated (92–97%). These results reflect the established paradigm that the eukaryotic component of small phytoplankton communities is less abundant than the prokaryotic component10,16,37. Nonetheless, in terms of biomass, small pigmented eukaryote dominated the small phytoplankton in all surface samples (11–44 × 103 µg C/m3; 47–71%), representing a biomass greater than or equal to the picocyanobacteria (Supplementary Table S2). The horizontal shift in surface nutrient concentrations among habitats was too modest to affect the relative contribution of small pigmented eukaryote to total small phytoplankton abundances, contrary to reports for much larger spatial scales involving greater differences in nutrient concentrations, ranging from coastal systems to the open ocean10,16. Small photosynthetic eukaryote abundance and biomass were not significantly correlated to nutrient concentrations, salinity or temperature (Spearman rho  0.05).At the chlorophyll maxima and in deeper waters, despite a consistent predominance of Prochlorococcus, small pigmented eukaryotes generally contributed more to the total small phytoplankton abundance than at the surface, similar to previous reports from the Indian Ocean7 and the south Pacific Ocean8,9. These samples showed decreased absolute abundances of ≤ 5 µm phytoplankton (Supplementary Table S1), with the plume core stations (S017, S024) exhibiting the lowest overall absolute abundances (8.2–32 × 103 cells/mL). This decrease in absolute numbers of the picocyanobacteria, concomitant with increased small pigmented eukaryote relative abundances (6–18%), indicated that eukaryotes fared better than the picocyanobacteria in the low light conditions of waters shaded by the plume. Dominance of the small phytoplankton biomass by small eukaryotes (5.9–50 µg C/m3; 53–95% of the total biomass), representing more than twice the picocyanobacterial biomass at the chlorophyll maxima and deeper water, is reminiscent of reports that small pigmented eukaryotes can contribute significantly to primary production in coastal regions12. Although this contrasts with findings from open oceans where Prochlorococcus dominates small phytoplankton biomass11,37, small pigmented eukaryotes were found to be similarly biomass-dominant and contributing up to a third of total primary production in surface seawater of the western subtropical North Atlantic under phosphorus depletion13.Taxonomic composition of small pigmented eukaryote populationsHigh-throughput sequencing of the small ribosomal subunit gene provided insights into the taxonomic composition of resident (live, inactive and recently dead) small pigmented eukaryote populations. A total of 234 operational taxonomic units (OTUs) were obtained, covering the full diversity of the populations in each sample (Supplementary Fig. S3) and after removal of metazoan OTUs and OTUs  1,000 OTUs38,39,40,41,42, the low OTU richness is a reminder that our cell sorting protocol allowed the focused targeting of small pigmented eukaryote populations. The low OTU counts (3–42) for each population (Table 2) further reflect the accuracy of the sorting method and the near taxonomic purity of some of the sorted populations.Table 2 Operational taxonomic units (OTUs) counts per population. CM, chlorophyll maximum.Full size tableMajor OTUs, constituting at least 20% of the total reads per population for at least one sample, represented 29 out of the 201 OTUs (Fig. 3; Supplementary Table S1). The most frequent OTU was a Chloropicophyceae (Chlorophyta), averaging 19.55% of total reads/sample. The second most frequent Chlorophyta OTU belonged to prasinophyte clade IX with an average of 4.36% of the total reads/sample. The Ochrophyta were represented by two Marine Ochrophyta clade 5 (MOCH-5) OTUs and five Bacillariophyceae OTUs ranging on average from 5.5 to 2.1%, and 5.3 to 1.6% of total reads per sample, respectively. Only one major OTU was associated with the prymnesiophytes, classified within the order Isochrysidales, representing 1.3% of the total reads/sample (Fig. 3). The rest of the major OTUs had lower average abundances throughout the samples ( 8 µm cells from our sorted populations. Furthermore, the consistently low abundance or absence of P5 throughout our samples suggests that this Isochrysidales OTU5 (Noelaerhabdaceae) did not dominate the small pigmented eukaryote communities of the ARP in the spring.Distinguishing the small pigmented eukaryote community composition between habitat typesA UniFrac unweighted paired group method with arithmetic mean analysis revealed stronger clustering among populations than among stations or depths, suggesting a consistency in the phylogenetic composition of the sorted populations (Supplementary Fig. S4). The only exceptions were S031_03 chlorophyll maximum and S031_11 surface samples for which the three populations clustered distinctly from the rest. A canonical correspondence analysis based on assemblages of major OTUs separated populations P2 and P4 of the OPC surface and subsurface and all four populations of S031_11 surface from the rest of the samples (Fig. 6a). The low abundance OTU composition of the surface and subsurface OPC populations and the deep YPC sample were distinct from the rest of the samples, the latter being strongly driven by salinity (Fig. 6b). The environmental variables used in the canonical correspondence analysis explain a sizable portion of the variability (33–50%), although it seems that an important driver of community composition was unaccounted for.Figure 6Canonical correspondence analysis with A major OTUs, and B low abundance OTUs.Full size imageThe YPC populations had low OTU richness (Table 2), and most of their major OTUs were shared with other stations, namely the Chloropicophyceae OTU192 and OTU165, detected in all 4 populations (16–86% of total reads/population). Notably, this sample was only distinguished from the rest by its low abundance OTU composition (Fig. 6b). Of the 15 low-abundance OTUs among the 4 populations detected, a few were shared with other samples, but only one or two at a time (Supplementary Table S3). The OPC surface was also characterized by a low OTU richness (Table 2), each population dominated by one or two major OTUs (Fig. 5). P2 was dominated by Bacillariophyta Nitzschia (OTU86), also found at other stations in lower abundance, and by a Syndiniales GrpI OTU108 unique to this station. P3 was composed of the ubiquitous Chloropicophyceae OTU192, classified as Chloropicon, and two MOCH-5 OTUs, which were also found in P4. The chlorophyll maximum sample was composed of a very similar small pigmented eukaryote community, albeit with a larger proportion of low abundance OTUs in P2. Interestingly, P3 at both surface and chlorophyll maximum was distinguished from other samples by the low abundance OTUs that accompanied the dominant Chloropicophyceae OTUs (Fig. 6b). The small pigmented eukaryote community of the sample below the chlorophyll maximum was characterized by an abundant P3 dominated by Chloropicon OTU192, accompanied by the Pelagophyceae Pelagomonas OTU232, which was also detected at S025 (EPM) and S027 (OSW). This sample collected below the halocline was distinct from the upper water column and more similar to the margin and oceanic samples. Such a pattern is consistent with the plume overriding the surrounding margin or oceanic waters and submerging the endemic communities that were there previously at the surface.In contrast to our first hypothesis regarding small pigmented eukaryote variability across the horizontal gradients of the ARP, the composition of small pigmented eukaryote communities was stable among the different habitat types. This is attributable to a combination of variability in OTU composition among samples from the same habitats and similarity of the small pigmented eukaryote assemblages between stations of different habitats. Indeed, the populations exhibited no significant differences between average UniFrac distances among habitats, stations of the same habitats and depths of the same stations (ANOVA, p  > 0.164 for P2, p  > 0.251 for P3 and p  > 0.735 for P4). The lack of statistical differences, particularly among the plume margins and oceanic waters, are indicative of the dynamic nature of large river plumes, such as reported for the Columbia River67. The meandering of the ARP creates a very dynamic system with a variable influence on local oligotrophic ocean waters68,69. It is possible that each station is too unique to establish a consensus small pigmented eukaryote community structure per habitat type, while abundant populations are shared between stations of different habitats limiting the detectable distinctions between the assemblages. For instance, the dominant Nitzschia OTU86 was shared between the OPC, one of the WPM stations and one of the EPM stations. Similarly, Chloropicon OTU192 dominated P3 at all stations, except in the surface waters of one WPM station (S031_11) and one OSW station (S027). Furthermore, our use of DNA as template for the taxonomic survey might have masked changes in the active communities among different habitats that would have been more apparent with RNA templates.The progressive mixing of oceanic waters into the plume is likely to exchange small pigmented eukaryote communities between the adjacent environments. This hydrodynamic phenomenon would allow the unrestrained dispersal of small pigmented eukaryotes between habitats, resulting in the observed similarities between the plume and surrounding ocean surface waters. In the dynamic environment of the ARP margins, the similarity between communities of different habitats is a function of time since the onset of the mixing event that exposed oceanic and plume small pigmented eukaryote communities to adjacent environments. Time-since-mixing might be the environmental parameter unaccounted for in our dataset that would explain the intra-habitat variability in major OTU composition, incidentally, obscuring the differences between habitats.Contrary to picocyanobacteria, which mostly use recycled, reduced forms of nitrogen (ammonium and urea), small pigmented eukaryotes rely more on nitrate70,71, making them more sensitive to the low nitrate concentrations in and around the ARP. While the uniformity of small pigmented eukaryote biomass between the oligotrophic ocean waters and the plume margins is likely the product of low nutrient concentrations in both environments, the variability of the OTU composition might be explained by a variable nitrate metabolism among small pigmented eukaryote taxa70. Alternatively, mixotrophy, the combination of photosynthesis and bacterivory common among small pigmented eukaryotes13,72,73,74, might confer a generalist advantage relative to picocyanobacteria by allowing maintenance of activity and abundance in rapidly varying habitats.Corroborating our second hypothesis that the small pigmented eukaryote diversity should vary with depth within the euphotic layer, the small pigmented eukaryote diversity and abundance varied vertically, with higher cell counts at the chlorophyll maximum. The taxonomic composition of chlorophyll maximum communities differed from those at the surface with populations characterized by high abundances of OTUs associated with Bacillariophecae, Pelagophyceae, radiolarians or Dinophyceae. The presence of Dinophyceae or Pelagophyceae OTUs at the chlorophyll maxima of plume stations (OPC, WPM and EPM), which were absent from surface waters, reflects the strong stratification at plume-influenced stations, reducing mixing between the surface and the bottom of the euphotic zone, the latter of which can be strongly influenced by oceanic waters. In particular at these stations (S024, S031 and S022), the chlorophyll maximum samples were collected below the halocline depth. Hence, these Dinophyceae and Pelagophyceae OTUs, uniquely shared with one of the oceanic stations, suggest that water masses under the plume-influenced surface might correspond to the oceanic water masses at the OSW stations.Station S031, a time-series station, showed a variation in major OTU assemblages between the cast conducted at 3 pm on May 26th (S031_03) and another cast carried out at 11am on May 27th (S031_11). Within this 19-h interval, in which environmental conditions remained consistent with the habitat type (Fig. 1), the OTU composition underwent a shift (Figs. 5, 6a). The relative cell abundances of each population remained similar, except for a P5 population appearing in samples from the second time point (Fig. 5). At the surface, the shift was characterized by the replacement of all OTUs from S031_03 with major OTUs assigned to Syndiniales in S031_11. The only common OTU, MAST-3A (OTU115), had low abundances (0.4–3.7%) in S031_03 and reached 14–24% in the S031_11 populations (Supplementary Table S3). Interestingly, the major Syndiniales OTUs in S031_11 were unique to this station, and different from the Syndiniales OTUs detected in the OPC and EPM stations (Fig. 5). This unexpected abundance in unpigmented Syndiniales OTUs in S031_11 might be due to the presence of dinospores in transitory free-living form, attached to or inside alveolate hosts or predators75,76. The large proportion of low abundance OTUs, which represented 70% of total reads in P3, were related to Syndiniales, ciliates and dinoflagellates (Supplementary Material SM2).Changes were also observed at the chlorophyll maximum where the unique radiolarian Collophidium OTU that dominated S031_03 disappeared in S031_11. This abundance of sequences related to the Radiolaria, large heterotrophic protozoa (≥ 100 µm), was unexpected among our targeted populations sorted by size and chlorophyll content. However, radiolarian sequences have been found among small size fractions before77,78, particularly at depth79,80 where they are suspected to descend and release small flagellate gametes called swarmers81. Hence, if attached to exopolymer-producing pigmented cells such as in the late stages of a phytoplankton bloom82, these swarmers could have been indiscriminately sorted into the three populations. In addition, three dinoflagellate OTUs appeared in P2 and P4 in cast S031_11, of which one was only found in the deep YPC, and one was shared with the chlorophyll maximum of S022 (EPM) and the surface of S027 (OSW).The radical shift in small pigmented eukaryote community composition between the two casts from station S031 reflects the dynamic nature of the ARP ecosystem and the multiple scales of heterogeneity within this system that is unlikely to be uncovered without the multiple approaches used in this study. It is unlikely that this interval of 19 h was sufficient for the resident small pigmented eukaryote community to change so radically as to completely replace the original taxa, as taxonomic turnover on daily time scales is usually very limited83,84. The salinity profiles indicated a stronger stratification at the time of cast 11, with a deeper mixing depth (22 m) compared to cast 03 (16 m), reflected in the chlorophyll profiles showing more homogenous concentrations in the top 22 m of cast 11 (Supplementary Fig. S1). In addition, the chlorophyll maximum peak sampled at 27 m was much smaller in cast 11 compared to cast 03, with a stronger secondary peak at 39 m. Satellite observations show the river plume defined as high surface chlorophyll, spreading north and eastward between the 25th and 29th of May (Supplementary Fig. S9—higher chlorophyll concentrations north of 17°N), suggesting a plume that was advecting past the ship during this time. This likely caused the deepening of the mixing depth, forcing the surface small pigmented eukaryote community northwards and the chlorophyll maximum community deeper below the mixing depth, effectively displacing the communities identified during cast 03.As a first study of the small pigmented eukaryotes and their response to the environmental habitats of the ARP, this work provides new insights into the detailed 18S rDNA-based taxonomy of an underexplored fraction of the phytoplankton. Our results illustrate that FACS is a reliable tool to enrich targeted taxonomic groups, such as Bacillariophyta, Chlorophyta and MOCH-5. The small pigmented eukaryote taxonomic composition was influenced by the ARP only at the plume core (OPC) where surface assemblages showed a strong dissimilarity with other stations, which were otherwise similar despite belonging to different habitat types. This result stands in apparent contrast to the drastic succession in community composition of the microphytoplankton driven by the nutrient gradients in the ARP1,3,4,6. The surprisingly limited influence of the ARP on surface small pigmented eukaryote communities warrants further inquiry. Sampling at different times of the year and using 18S rRNA as template for sequencing might reveal small pigmented eukaryotes to be more reactive to the habitat types earlier in the season, at the beginning of the massive discharge period from the Amazon River, or at the end of the summer when the ARP is entrained toward the east by the north equatorial countercurrent. More

  • in

    Principles, drivers and opportunities of a circular bioeconomy

    1.Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).Article 

    Google Scholar 
    2.Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Steffen, W. et al. Planetary boundaries: guiding changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Muscat, A., de Olde, E. M., de Boer, I. J. M. & Ripoll-Bosch, R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob. Food Sec. 25, 100330 (2020).Article 

    Google Scholar 
    6.Befort, N. Going beyond definitions to understand tensions within the bioeconomy: the contribution of sociotechnical regimes to contested fields. Technol. Forecast. Soc. Change 153, 119923 (2020).Article 

    Google Scholar 
    7.Jørgensen, S. E. & Nielsen, S. N. Application of ecological engineering principles in agriculture. Ecol. Eng. 7, 373–381 (1996).Article 

    Google Scholar 
    8.Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain (PBL Netherlands Environmental Assessment Agency, 2016).9.Van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Ripoll-Bosch, R. & de Boer, I. J. M. Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 12, 1755–1765 (2018).Article 
    CAS 

    Google Scholar 
    10.Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K. & Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 77, 98–113 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).12.van den Bos Verma, M., de Vreede, L., Achterbosch, T. & Rutten, M. M. Consumers discard a lot more food than widely believed: Estimates of global food waste using an energy gap approach and affluence elasticity of food waste. PLoS ONE 15, e0228369 (2020).CAS 
    Article 

    Google Scholar 
    13.Obesity and Overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 10 April 2020).14.Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. Brit. Med. J. 365, l1949 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Brit. Med. J. 365, l1451 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Daystar, J., Chapman, L., Moore, M., Pires, S. & Golden, J. Quantifying apparel consumer use behavior in six countries: addressing a data need in life cycle assessment modeling. J. Text. Apparel Technol. Manag. 11, 1–25 (2019).
    Google Scholar 
    17.Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).Article 

    Google Scholar 
    18.Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    19.Garnett, T. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ. Sci. Policy 12, 491–503 (2009).CAS 
    Article 

    Google Scholar 
    20.Goodland, R. Environmental sustainability in agriculture: diet matters. Ecol. Econ. 23, 189–200 (1997).Article 

    Google Scholar 
    21.Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).Article 

    Google Scholar 
    22.Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).ADS 
    Article 

    Google Scholar 
    23.Zhou, S. et al. Balanced harvest: concept, policies, evidence, and management implications. Rev. Fish Biol. Fish. 29, 711–733 (2019).Article 

    Google Scholar 
    24.Haberl, H. & Geissler, S. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol. Eng. 16, 111–121 (2000).Article 

    Google Scholar 
    25.Suominen, T., Kunttu, J., Jasinevičius, G., Tuomasjukka, D. & Lindner, M. Trade-offs in sustainability impacts of introducing cascade use of wood. Scand. J. For. Res. 32, 588–597 (2017).Article 

    Google Scholar 
    26.Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).Article 

    Google Scholar 
    27.Max-Neef, M. in Real-Life Economics (eds Ekins, P. & Max-Neef, M.) Ch. 7 (Routledge, 1992).28.Doyal, L. & Gough, I. A Theory of Human Need (Macmillan, 1991).29.Bos-Brouwers, H., Langelaan, B. & Sanders, J. Chances for biomass. Wageningen University UR https://edepot.wur.nl/248866 (2012).30.Sandin, G. & Peters, G. M. Environmental impact of textile reuse and recycling – a review. J. Clean. Prod. 184, 353–365 (2018).CAS 
    Article 

    Google Scholar 
    31.Korhonen, J., Honkasalo, A. & Seppälä, J. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46 (2018).Article 

    Google Scholar 
    32.Castro, M. B. G., Remmerswaal, J. A. M., Brezet, J. C. & Reuter, M. A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 52, 219–233 (2007).Article 

    Google Scholar 
    33.Bergen, S. D., Bolton, S. M. & Fridley, J. L. Design principles for ecological engineering. Ecol. Eng. 18, 201–210 (2001).Article 

    Google Scholar 
    34.Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Grandell, L. & Höök, M. Assessing rare metal availability challenges for solar energy technologies. Sustainability 7, 11818–11837 (2015).CAS 
    Article 

    Google Scholar 
    36.Kovacic, Z., Strand, R. & Völker, T. The Circular Economy in Europe (Routledge, 2019).37.Dammer, L. & Essel, R. Quo Vadis, Cascading Use of Biomass? (nova Institute for Ecology and Innovation, 2015).38.Cascading Use of Biomass: Opportunities and Obstacles in EU Policies 2013–2016 (Birdlife Europe & European Environmental Bureau, 2014).39.Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy: a multidisciplinary review. J. Clean. Prod. 177, 197–206 (2018).Article 

    Google Scholar 
    40.Termeer, C. J. A. M. & Metze, T. A. P. More than peanuts: transformation towards a circular economy through a small-wins governance framework. J. Clean. Prod. 240, 118272 (2019).Article 

    Google Scholar 
    41.Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.de Boer, I. J. M. & Van Ittersum, M. K. Circularity in Agricultural Production (Wageningen University & Research, 2018); https://edepot.wur.nl/47062543.Van Eijk, F. Barriers & Drivers Towards a Circular Economy (Acceleratio, 2015); https://www.circulairondernemen.nl/uploads/e00e8643951aef8adde612123e824493.pdf44.Teigiserova, D. A., Hamelin, L. & Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 149, 413–426 (2019).Article 

    Google Scholar 
    45.Gifford, R. & Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: a review. Int. J. Psychol. 49, 141–157 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).Article 

    Google Scholar 
    47.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Kollmuss, A. & Agyeman, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).Article 

    Google Scholar 
    49.Rothgerber, H. Real men don’t eat (vegetable) quiche: masculinity and the justification of meat consumption. Psychol. Men Masculin. 14, 363–375 (2013).Article 

    Google Scholar 
    50.Shove, E., Watson, M. & Spurling, N. Conceptualizing connections: energy demand, infrastructures and social practices. Eur. J. Soc. Theory 18, 274–287 (2015).Article 

    Google Scholar 
    51.Barnes, S. J. Out of sight, out of mind: plastic waste exports, psychological distance and consumer plastic purchasing. Glob. Environ. Change 58, 101943 (2019).Article 

    Google Scholar 
    52.Richter, B. Knowledge and perception of food waste among German consumers. J. Clean. Prod. 166, 641–648 (2017).Article 

    Google Scholar 
    53.Schanes, K., Dobernig, K. & Gözet, B. Food waste matters: a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).Article 

    Google Scholar 
    54.Aschemann-Witzel, J., de Hooge, I., Amani, P., Bech-Larsen, T. & Oostindjer, M. Consumer-related food waste: causes and potential for action. Sustainability 7, 6457–6477 (2015).Article 

    Google Scholar 
    55.Priefer, C., Jörissen, J. & Bräutigam, K. R. Food waste prevention in Europe: a cause-driven approach to identify the most relevant leverage points for action. Resour. Conserv. Recycl. 109, 155–165 (2016).Article 

    Google Scholar 
    56.Ölander, F. & Thøgersen, J. Informing versus nudging in environmental policy. J. Consum. Policy 37, 341–356 (2014).Article 

    Google Scholar 
    57.Söderholm, P. Taxing virgin natural resources: lessons from aggregates taxation in Europe. Resour. Conserv. Recycl. 55, 911–922 (2011).Article 

    Google Scholar 
    58.Growth Within: A Circular Economy Vision for a Competitive Europe (Ellen Macarthur Foundation, 2015); https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf59.Spierling, S., Venkatachalam, V., Behnsen, H., Herrmann, C. & Endres, H. Bioplastics and Circular Economy—Performance Indicators to Identify Optimal Pathways (Springer, 2019).60.Van Zanten, H., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 
    CAS 

    Google Scholar 
    61.Odegard, I., Croezen, H. & Bergsma, G. Cascading of Biomass: 13 Solutions for a Sustainable Bio-based Economy-Making Better Choices for Use of Biomass Residues, By-products and Wastes (CE Delft, 2012).62.Szarka, N., Wolfbauer, J. & Bezama, A. A systems dynamics approach for supporting regional decisions on the energetic use of regional biomass residues. Waste Manage. Res. 36, 332–341 (2018).Article 

    Google Scholar 
    63.Koppelmaki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).Article 

    Google Scholar 
    64.Mayer, A. L. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Mayer, A., Schaffartzik, A., Haas, W. & Rojas-Sepúlveda, A. Patterns of Global Biomass Trade: Implications for Food Sovereignty and Socio-Environmental Conflicts (EJOLT, 2015).66.Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 1, e48–e49 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).Article 

    Google Scholar  More

  • in

    Rodent host population dynamics drive zoonotic Lyme Borreliosis and Orthohantavirus infections in humans in Northern Europe

    1.Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS 
    Article 

    Google Scholar 
    2.Karesh, W. B. et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 380, 1936–1945 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346-1351.e2 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. 117, 9423 LP – 9430 (2020).Article 
    CAS 

    Google Scholar 
    9.Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B Biol. Sci. 280, 20122753 (2013).Article 

    Google Scholar 
    10.Wardeh, M., Sharkey, K. J. & Baylis, M. Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs. Proc. R. Soc. B Biol. Sci. 287, 20192882 (2020).CAS 
    Article 

    Google Scholar 
    11.Maes, P. et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 164, 927–941 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Vapalahti, K., Virtala, A.-M., Vaheri, A. & Vapalahti, O. Case-control study on Puumala virus infection: Smoking is a risk factor. Epidemiol. Infect. 138, 576–584 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Avšič-Županc, T., Saksida, A. & Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 21, e6–e16 (2019).Article 

    Google Scholar 
    15.Olsson, G. E., Leirs, H. & Henttonen, H. Hantaviruses and their hosts in Europe: Reservoirs here and there, but not everywhere?. Vector-Borne Zoonotic Dis. 10, 549–561 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Cook, M. J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 8, 1–8 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Sykes, R. A. & Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe†. J. Public Health (Bangkok) 39, 74–81 (2016).
    Google Scholar 
    18.Kuehn, B. M. CDC estimates 300000 US cases of lyme disease annually. JAMA J. Am. Med. Assoc. 310, 1110 (2013).CAS 
    Article 

    Google Scholar 
    19.Davis, S., Calvet, E. & Leirs, H. Review fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector-Borne Zoonotic Dis. 5, 305–314 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Tian, H. Y. et al. Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005–2012. PLoS Negl. Trop. Dis. 9, 2005–2012 (2015).Article 
    CAS 

    Google Scholar 
    21.Kallio, E. R. et al. Cyclic hantavirus epidemics in humans: Predicted by rodent host dynamics. Epidemics 1, 101–107 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Korpela, K. et al. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. B Biol. Sci. 281, 20142119 (2014).Article 

    Google Scholar 
    24.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    25.Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–1520 (2001).Article 

    Google Scholar 
    26.Hansson, L. & Henttonen, H. Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195–200 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sane, J. et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol. Infect. 144, 2883–2888 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Olsson, G. E., Hjertqvist, M., Lundkvist, Å. & Hörnfeldt, B. Predicting high risk for human hantavirus infections, Sweden. Emerg. Infect. Dis. 15, 104–106 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Khalil, H., Ecke, F., Evander, M., Bucht, G. & Hörnfeldt, B. Population dynamics of bank voles predicts human puumala hantavirus risk. EcoHealth 16, 545–557 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on lyme disease risk. Proc. Natl. Acad. Sci. U. S. A. 100, 567–571 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–1068 (2006).CAS 
    Article 

    Google Scholar 
    34.Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1 (2015).Article 
    CAS 

    Google Scholar 
    35.Krawczyk, A. I. et al. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasit. Vectors 13, 34 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bregnard, C., Rais, O. & Voordouw, M. J. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit. Vectors 13, 1–12 (2020).Article 

    Google Scholar 
    37.Bregnard, C., Rais, O. & Voordouw, M. J. Masting by beech trees predicts the risk of Lyme disease. Parasit. Vectors 14, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    38.Schauber, E. M., Ostfeld, R. S. & Evans, A. S. What is the best predictor of annual lyme disease incidence: Weather, mice, or acorns?. Ecol. Appl. 15, 575–586 (2005).Article 

    Google Scholar 
    39.Tkadlec, E., Václavík, T. & Široký, P. Rodent host abundance and climate variability as predictors of tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 25, 1738–1741 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Bogdziewicz, M. & Szymkowiak, J. Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic Appl. Ecol. 17, 300–307 (2016).Article 

    Google Scholar 
    41.Pietiäinen, H., Sundell, J., Valkama, J. & Huitu, O. vole interactions in northern Europe: The role of− Predator. (2014).42.Lindgren, E. & Jaenson, T. G. T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology, ecology and adaptation measures. World Heal. Org. https://doi.org/10.1093/ntr/ntu261 (2006).Article 

    Google Scholar 
    43.Laaksonen, M. et al. Tick-borne pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasit. Vectors 11, 556 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Sajanti, E. et al. Lyme borreliosis in Finland in 1995–2014. Emerg. Infect. Dis. 23, 128–1288 (2017).Article 

    Google Scholar 
    45.Amori, G. et al. Myodes glareolus. In:The IUCN Red List of Threatened Species. (2007) (accessed 28 February 2020). https://www.iucnredlist.org/species/4973/1110516846.Brummer-Korvenkontio, M. et al. Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 141, 131–134 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hanincová, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Tälleklint, L., Jaenson, T. G. T. & Mather, T. N. Seasonal variation in the capacity of the bank vole to infect larval ticks (Acari: Ixodidae) with the lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 30, 812–815 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gern, L. et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fur Bakteriol. 287, 196–204 (1998).CAS 
    Article 

    Google Scholar 
    51.Tersago, K. et al. Hantavirus outbreak in Western Europe: Reservoir host infection dynamics related to human disease patterns. Epidemiol. Infect. 139, 381–390 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Jaenson, T. G. T., Hjertqvist, M., Bergström, T. & Lundkvist, Å. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Swedena. Parasit. Vectors 5, 184 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Chang. Biol. 19, 697–710 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Koivula, M., Koskela, E., Mappes, T. & Oksanen, T. A. Cost of reproduction in the wild: Manipulation of reproductive effort in the bank vole. Ecology 84, 398–405 (2003).Article 

    Google Scholar 
    56.Cayol, C., Koskela, E., Mappes, T., Siukkola, A. & Kallio, E. R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit. Vectors 10, 1–11 (2017).Article 

    Google Scholar 
    57.Rösch, A. & Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R package version 1.1. (2018).58.R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria (2019).59.Cazelles, B., Chavez, M., De Magny, G. C., Guégan, J. F. & Hales, S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 4, 625–636 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Pinherio, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R package Version 3. 1–142 (2019).61.Ostfeld, R. S. et al. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 1, 55–63 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).https://doi.org/10.1007/978-0-387-22456-5_7 .Book 
    MATH 

    Google Scholar 
    64.Barton, K. MuMIn: Multi-Model Inference. (2019).65.Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 26, 1–22 (2008).
    Google Scholar 
    66.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 4, 1–12 (2013).
    Google Scholar 
    67.Lindgren, E., Tälleklint, L. & Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 108, 119–123 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proc. Natl. Acad. Sci. U. S. A. 114, 8041–8046 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xiao, H. et al. Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991–2010. PLoS Negl. Trop. Dis. 7, 1–7 (2013).CAS 

    Google Scholar 
    70.Guan, P. et al. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: A 17-year data analysis based on structure equation model. BMC Infect. Dis. 9, 1 (2009).Article 

    Google Scholar 
    71.Amirpour Haredasht, S. et al. Modelling seasonal and multi-annual variation in bank vole populations and nephropathia epidemica. Biosyst. Eng. 121, 25–37 (2014).Article 

    Google Scholar 
    72.Hardestam, J. et al. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Infect. Dis. 14, 1209–1215 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. 109, 10942–10947 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Ostfeld, R. S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C. D. Tick-borne disease risk in a forest food web. Ecology 99, 1562–1573 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Wilhelmsson, P. et al. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vectors 6, 362 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Otranto, D. et al. Ticks infesting humans in Italy and associated pathogens. Parasit. Vectors 7, 328 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Faulde, M. K. et al. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick. Borne. Dis. 5, 594–599 (2014).PubMed 
    Article 

    Google Scholar 
    79.Gustav, T., Jaenson, T., Lundqvist, L., Olsen, B. & Chirico, J. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden mites and insects view project flavivirus view project. Artic. J. Med. Entomol. https://doi.org/10.1093/jmedent/31.2.240 (1994).Article 

    Google Scholar 
    80.Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors 9, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    81.Jaenson, T. G. T. & Wilhelmsson, P. First records of tick-borne pathogens in populations of the taiga tick Ixodes persulcatus in Sweden. Parasit. Vectors 12, 559 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Pakanen, V. M., Sormunen, J. J., Sippola, E., Blomqvist, D. & Kallio, E. R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasit. Vectors 13, 384 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Laaksonen, M. et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg. Microbes Infect. 6, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    84.Kovalevskii, Y. V. & Korenberg, E. I. Differences in Borrelia infections in adult Ixodes persulcatus and Ixodes ricinus ticks (Acari: Ixodidae) in populations of north-western Russia. Exp. Appl. Acarol. 19, 19–29 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article 

    Google Scholar 
    86.Massey, F., Smith, M., Lambin, X. & Hartley, S. Are silica defences in grasses driving vole population cycles?. Biol. Lett. 4, 419–422 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mammal Res. 64, 301–318 (2019).Article 

    Google Scholar 
    88.Mysterud, A. et al. Contrasting emergence of Lyme disease across ecosystems. Nat. Commun. 7, 1 (2016).Article 
    CAS 

    Google Scholar 
    89.Rosà, R. & Pugliese, A. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Math. Biosci. 208, 216–240 (2007).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    90.Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. & Rizzoli, A. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne Zoonotic Dis. 7, 285–295 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Halsey, S. J. & Miller, J. R. Maintenance of Borrelia burgdorferi among vertebrate hosts: A test of dilution effect mechanisms. Ecosphere 11, e03048 (2020).Article 

    Google Scholar 
    92.Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).Article 

    Google Scholar 
    93.Murray, T. S. & Shapiro, E. D. Lyme disease. Clin. Lab. Med. 30, 311–328 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kramski, M., Achazi, K., Klempa, B. & Krüger, D. H. Nephropathia epidemica with a 6-week incubation period after occupational exposure to Puumala hantavirus. J. Clin. Virol. 44, 99–101 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O. & Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci. Rep. 6, 1–15 (2016).Article 
    CAS 

    Google Scholar 
    96.Klemola, T., Korpimaki, E. & Koivula, M. Rate of population change in voles from different phases of the population cycle. Oikos 96, 291–298 (2002).Article 

    Google Scholar  More

  • in

    Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest

    1.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.FAO. Global Forest Resources Assessment 2015. (2015).3.Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    4.Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    5.Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Costa, L. P. & Leite, Y. L. R. Biogeography of South American forest mammals: Endemism and diversity in the Atlantic Forest. Phys.Chem. Earth B Hydrol. Oceans Atmos. 87, 2–881 (2000).
    Google Scholar 
    8.Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793 (2000).Article 

    Google Scholar 
    9.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Visconti, P. et al. Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2693–2702 (2011).
    Google Scholar 
    11.Mittermeier, R. A., Myers, N., Gil, P. R. & Mittermeier, C.G . Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey, Mexico, 1999).
    Google Scholar 
    12.Huang, C. et al. Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—a Landsat assessment. Remote Sens. Environ. 106, 460–466 (2007).ADS 
    Article 

    Google Scholar 
    13.Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    14.Rezende, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).
    Google Scholar 
    15.Bicudo da Silva, R. F., Millington, J. D. A., Moran, E. F., Batistella, M. & Liu, J. Three decades of land-use and land-cover change in mountain regions of the Brazilian Atlantic Forest. Landsc. Urban Plann. 204, 103948 (2020).Article 

    Google Scholar 
    16.Da Ponte, E. et al. Tropical forest cover dynamics for Latin America using Earth observation data: A review covering the continental, regional, and local scale. Int. J. Remote Sens. 36, 3196–3242 (2015).Article 

    Google Scholar 
    17.Da Ponte, E., Roch, M., Leinenkugel, P., Dech, S. & Kuenzer, C. Paraguay’s Atlantic Forest cover loss—Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl. Geogr. 79, 37–49 (2017).Article 

    Google Scholar 
    18.Rosa, M. R. et al. Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci. Adv. 7, eabc4547 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Nowosad, J. & Stepinski, T. F. Stochastic, empirically informed model of landscape dynamics and its application to deforestation scenarios. Geophys. Res. Lett. 46, 13845–13852 (2019).ADS 
    Article 

    Google Scholar 
    20.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. U. S. A. 107, 8650–8655 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
    Google Scholar 
    23.de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers. Distrib. 20, 1058–1070 (2014).Article 

    Google Scholar 
    24.de la Sancha, N. U. et al. An annotated checklist of the mammals of Paraguay. Therya 8, 241–260 (2017).Article 

    Google Scholar 
    25.Lanzone, C. et al. Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Rev. Mus. Argent. Cienc. Nat. 20, 151–164 (2018).Article 

    Google Scholar 
    26.Da Ponte, E. et al. Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosyst. Serv. 24, 200–212 (2017).Article 

    Google Scholar 
    27.Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. For. Trees Livelihoods 8, 389 (2017).
    Google Scholar 
    28.Fleytas, F. C. Cambios en el paisaje: Evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una Aproximación a Sus Realidades (eds. Salas Dueñas, D. A. & Facetti, J. F.), 77–88 (Fundación Moisés Bertoni, 2007).29.Esquivel, A. et al. Conservation status and challenges of the Atlantic Forest birds of Paraguay. Divers. 11, 247 (2019).Article 

    Google Scholar 
    30.de la Sancha, N. U. & Boyle, S. A. Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS One 14, e0226529 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).Article 

    Google Scholar 
    32.Andelman, S. J. & Willig, M. R. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conserv. Biol. 16, 1352–1363 (2002).Article 

    Google Scholar 
    33.Gorresen, P. M., Marcos Gorresen, P. & Willig, M. R. Landscape responses of bats to habitat fragmentation in Atlantic Forest of Paraguay. J. Mammal. 85, 688–697 (2004).Article 

    Google Scholar 
    34.McCulloch, E. S. et al. Fragmentation of Atlantic forest has not affected gene flow of a widespread seed-dispersing bat. Molec. Ecol. 22, 4619–4633 (2013).Article 

    Google Scholar 
    35.Crooks, K. R. & Sanjayan, M. Connectivity conservation: Maintaining connections for nature. In Connectivity Conservation. (eds. Crooks, K. R. & Sanjayan, M.), 1–20 (Cambridge University Press, 2006).36.Calabrese, J. M. & Fagan, W. F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2, 529–536 (2004).Article 

    Google Scholar 
    37.Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).PubMed 
    Article 

    Google Scholar 
    38.de la Sancha, N.U., Boyle S.A., McIntyre, N.E., Brooks, D.M, Yanosky, A., Cuellar Soto E., Mereles, F., Camino, M., & Stevens, R. D. The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol. https://doi.org/10.1007/s10980-021-01291-x (2021).Article 

    Google Scholar 
    39.Keitt, T., Urban, D. & Milne, B. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1(1), (1997).40.Tischendorf, L. & Fahrig, L. How should we measure landscape connectivity?. Landsc. Ecol. 15, 633–641 (2000).Article 

    Google Scholar 
    41.McIntyre, N. E., Collins, S. D., Heintzman, L. J., Starr, S. M. & van Gestel, N. The challenge of assaying landscape connectivity in a changing world: A 27-year case study in the southern Great Plains (USA) playa network. Ecol. Indic. 91, 607–616 (2018).Article 

    Google Scholar 
    42.Ruiz, L. et al. Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc. Ecol. 29, 507–516 (2014).Article 

    Google Scholar 
    43.Bovendorp, R. S. et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42, 23–35 (2019).Article 

    Google Scholar 
    44.Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Stevens, R. D., Rowe, R. J. & Badgley, C. Gradients of mammalian biodiversity through space and time. J. Mammal. 100, 1069–1086 (2019).Article 

    Google Scholar 
    46.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    47.McBride, R. T. & Thompson, J. J. Spatial ecology of Paraguay’s last remaining Atlantic Forest Jaguars (Panthera onca): Implications for their long-term survival. Biodivers. 20, 20–26 (2019).Article 

    Google Scholar 
    48.Morato, R. G. et al. Space use and movement of a neotropical top predator: The endangered jaguar. PLoS One 11, e0168176 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).Article 

    Google Scholar 
    50.Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Movement behaviour within and beyond perceptual ranges in three small mammals: Effects of matrix type and body mass. J. Anim. Ecol. 79, 1315–1323 (2010).PubMed 
    Article 

    Google Scholar 
    51.Cartes, J. L. et al. Cetartiodactyla y Perissodactyla: Animales con pezuñas. In Libro Rojo de los Mamíferos del Paraguay: Especies amenazadas de extinción (eds. Saldivar, S., Rojas, V. & Giménez, D.), 103–121 (CREATIO, 2017).52.Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol. Conserv. 142, 1191–1200 (2009).Article 

    Google Scholar 
    53.Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J. Zool. 284, 53–59 (2011).Article 

    Google Scholar 
    54.Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).Article 

    Google Scholar 
    55.Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).Article 

    Google Scholar 
    56.Umetsu, F. & Pardini, R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 22, 517–530 (2007).Article 

    Google Scholar 
    57.Umetsu, F., Paul Metzger, J. & Pardini, R. Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: A test with Atlantic forest small mammals. Ecography 31, 359–370 (2008).Article 

    Google Scholar 
    58.Boyle, S. A., de la Sancha, N. U., Pérez, P. & Kabelik, D. Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest. Sci. Rep. 11, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    59.Diniz, M. F., Coelho, M. T. P., de Sousa, F. G., Hasui, É. & Loyola, R. The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect. Ecol. Conser. 19, 81–89 (2021).
    Google Scholar 
    60.Johnston, C. A. & McIntyre, N. E. Effects of cropland encroachment on prairie pothole wetlands: Numbers, density, size, shape, and structural connectivity. Landsc. Ecol. 34, 827–841 (2019).Article 

    Google Scholar 
    61.Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 144, 44–55 (2011).Article 

    Google Scholar 
    62.de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2020).Article 

    Google Scholar 
    63.Gardner, R. H. & Gustafson, E. J. Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecol. Modell. 171, 339–358 (2004).Article 

    Google Scholar 
    64.Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).Article 

    Google Scholar 
    65.Catie, U. Proyecto: Mejorando la Conservación de la Biodiversidad y el Manejo Sostenible de la Tierra en el Bosque Atlántico del Paraguay Oriental: (Paraguay Biodiversidad): Módulo De Capacitación: Cadenas De Valor Agropecuarias Y Forestales. (2018).66.Di Bitteti, M., Placci, G. & Dietz, L. A. A Biodiversity Vision of the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Landscape and Setting Priorities for Conservation Action. 1–145 (World Wildlife Fund, 2003).67.McIntyre, N. E., Drake, J. C. & Griffis-Kyle, K. L. A connectivity and wildlife management conflict in isolated desert waters: Connectivity of isolated desert waters. J. Wildl. Manag. 80, 655–666 (2016).Article 

    Google Scholar 
    68.Drake, J. C., Griffis-Kyle, K. & McIntyre, N. E. Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8, e01652 (2017).Article 

    Google Scholar 
    69.Boyle, S. A. et al. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One 9, e86908 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).Article 

    Google Scholar 
    71.ESRI. ArcGIS. (2019).72.Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Comp. Sys. 1695 (2006).73.R Core Team. R: A language and environment for statistical computing. (2013).74.Bovendorp, R. S. et al. Atlantic small-mammal: A dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98, 2226 (2017).PubMed 
    Article 

    Google Scholar 
    75.Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026113 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 066111 (2004).Article 
    CAS 

    Google Scholar 
    77.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol. Conserv. 3, 824–830 (2015).Article 

    Google Scholar 
    79.Galpern, P. Modelling landscape connectivity for highly-mobile terrestrial animals: A continuous and scalable approach. (Natural Resources Institute, 2012).80.Minor, E. S. & Urban, D. L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol. Appl. 17, 1771–1782 (2007).PubMed 
    Article 

    Google Scholar 
    81.Fusco-Costa, R., Ingberman, B., do Couto, H. T. Z., Nakano-Oliveira, E. & de Araujo Monteiro-Filho, E. L. Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil. Mamm. Biol. 75, 358–362 (2010).Article 

    Google Scholar 
    82.Medici, E. P. Assessing the viability of lowland Tapir populations in a fragmented landscape. (University of Kent, 2010).83.Bianconi, G. V., Mikich, S. B. & Pedro, W. A. Movements of bats (Mammalia, Chiroptera) in the Atlantic Forest remnants in southern Brazil. Rev. Bras. Zool. 23, 1199–1206 (2006).Article 

    Google Scholar 
    84.Lira, P. K., dos Santos Fernandez, F. A., Carlos, H. S. A. & de Lima Curzio, P. Use of a fragmented landscape by three species of opossum in south-eastern Brazil. J. Trop. Ecol. 23, 427–435 (2007).Article 

    Google Scholar 
    85.Mendel, S. M. & Vieira, M. V. Movement distances and density estimation of small mammals using the spool-and-line technique. Acta Theriol. 48, 289–300 (2003).Article 

    Google Scholar 
    86.Passamani, M. & Fernando, A. S. Movements of small mammals among Atlantic Forest fragments in Espırito Santo, Southeastern Brazil. Mammalia 75, 83–86 (2011).Article 

    Google Scholar 
    87.Püttker, T., Meyer-Lucht, Y. & Sommer, S. Movement distances of five rodent and two marsupial species in forest fragments of the coastal Atlantic Rainforest, Brazil. Ecotropica 12, 131–139 (2006).
    Google Scholar 
    88.Moraes Junior, E. A. & Chiarello, A. G. A radio tracking study of home range and movements of the marsupial Micoureus demerarae (Thomas) (Mammalia, Didelphidae) in the Atlantic Forest of south-eastern Brazil. Rev. Bras. Zool. 22, 85–91 (2005).Article 

    Google Scholar 
    89.Delciellos, A. C., Ribeiro, S. E. & Vieira, M. V. Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J. Mammal. 98, 1129–1136 (2017).Article 

    Google Scholar 
    90.Püttker, T., de Barros, C. dos S., Martins, T. K., Sommer, S. & Pardini, R. Suitability of distance metrics as indexes of home-range size in tropical rodent species. J. Mammal. 93, 115–123 (2012).Article 

    Google Scholar  More

  • in

    Assessing effectiveness of exclusion fences in protecting threatened plants

    1.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Chapin, F. S., Sala, O. E. & Huber-Sannwald, E. Global Biodiversity in a Changing Environment Vol 152 (Springer, 2001).Book 

    Google Scholar 
    3.Hobohm, C. Endemism in Vascular Plants (Springer, 2014). https://doi.org/10.1007/978-94-007-6913-7.Book 

    Google Scholar 
    4.Al-Rowaily, S. L. et al. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 22, 430–437 (2015).Article 

    Google Scholar 
    5.Alonso, I., Hartley, S. E. & Thurlow, M. Competition between heather and grasses on Scottish moorlands: Interacting effects of nutrient enrichment and grazing regime. J. Veg. Sci. 12, 249–260 (2001).Article 

    Google Scholar 
    6.Diamond, J. Guns, Germs and Steel: The Fate of Human Societies (W.W. Norton & Company, 1997). https://doi.org/10.4324/9781912128273.Book 

    Google Scholar 
    7.Hayward, M. W. & Kerley, G. I. H. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).Article 

    Google Scholar 
    8.Hayward, M. W. et al. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).Article 

    Google Scholar 
    9.Santoro, R. et al. Effects of trampling limitation on coastal dune plant communities. Environ. Manag. 49, 534–542 (2012).ADS 
    Article 

    Google Scholar 
    10.Fenu, G. et al. A common approach to the conservation of threatened island vascular plants: First results in the Mediterranean Basin. Diversity 12, 157 (2020).Article 

    Google Scholar 
    11.Fenu, G., Cogoni, D. & Bacchetta, G. The role of fencing in the success of threatened plant species translocation. Plant Ecol. 217, 207–217 (2016).Article 

    Google Scholar 
    12.Fazan, L. et al. Free behind bars: Effects of browsing exclusion on the growth and regeneration of Zelkova abelicea. For. Ecol. Manag. 488, 118967 (2021).Article 

    Google Scholar 
    13.Aschero, V. & García, D. The fencing paradigm in woodland conservation: Consequences for recruitment of a semi-arid tree. Appl. Veg. Sci. 15, 307–317 (2012).Article 

    Google Scholar 
    14.Bessega, C., Pometti, C., Campos, C., Saidman, B. O. & Vilardi, J. C. Implications of mating system and pollen dispersal indices for management and conservation of the semi-arid species Prosopis flexuosa (Leguminosae). For. Ecol. Manag. 400, 218–227 (2017).Article 

    Google Scholar 
    15.Scofield, R. P., Cullen, R. & Wang, M. Are predator-proof fences the answer to New Zealand’s terrestrial faunal biodiversity crisis?. N. Z. J. Ecol. 35, 312–317 (2011).
    Google Scholar 
    16.Tanentzap, A. J. & Lloyd, K. M. Fencing in nature? Predator exclusion restores habitat for native fauna and leads biodiversity to spill over into the wider landscape. Biol. Conserv. 214, 119–126 (2017).Article 

    Google Scholar 
    17.Valderrábano, E. M., Gil, T., Heywood, V. & Montmollin, B. D. Conserving Wild Plants in the South and East Mediterranean Region (IUCN, International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.21.en.Book 

    Google Scholar 
    18.Bañares, A., Blanca, G., Guemes, J., Moreno, J. & Ortiz, S. Atlas y Libro Rojo de la Flora Vascular Amenazada de España (Ministerio de Medio Ambiente Medio Rural y Marino, 2004).
    Google Scholar 
    19.Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article 

    Google Scholar 
    20.Gutiérrez, L., García, S., Cuerda, D. & Marchal, F. Aportaciones al conocimiento de la distribución y el estado de conservación del endemismo amenazado Solenanthus reverchonii Debeaux ex Degen (Boraginaceae ) en Andalucía ( España ). An. Biol. 36, 135–140 (2014).
    Google Scholar 
    21.Spooner, P., Lunt, I. & Robinson, W. Is fencing enough? The short-term effects of stock exclusion in remnant grassy woodlands in southern NSW. Ecol. Manag. Restor. 3, 117–126 (2002).Article 

    Google Scholar 
    22.Prober, S. M., Standish, R. J. & Wiehl, G. After the fence: Vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Aust. J. Bot. 59, 369–381 (2011).Article 

    Google Scholar 
    23.Newman, M., Mitchell, F. J. G. & Kelly, D. L. Exclusion of large herbivores: Long-term changes within the plant community. For. Ecol. Manag. 321, 136–144 (2014).Article 

    Google Scholar 
    24.Cogoni, D., Fenu, G., Concas, E. & Bacchetta, G. The effectiveness of plant conservation measures: The Dianthus morisianus reintroduction. Oryx 47, 203–206 (2013).Article 

    Google Scholar 
    25.Schowalter, T. D. Herbivory. Insect Ecology 347–382 (Elsevier, 2006). https://doi.org/10.1016/B978-012088772-9/50038-8.Book 

    Google Scholar 
    26.van der Waal, C. et al. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165, 1095–1107 (2011).ADS 
    Article 

    Google Scholar 
    27.Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).Article 

    Google Scholar 
    28.Körner, C. Alpine Treelines (Springer, 2012). https://doi.org/10.1007/978-3-0348-0396-0.Book 

    Google Scholar 
    29.Anderson, P. M. L. & Hoffman, M. T. Grazing response in the vegetation communities of the Kamiesberg, South Africa: Adopting a plant functional type approach. J. Arid Environ. 75, 255–264 (2011).ADS 
    Article 

    Google Scholar 
    30.Hardin, G. The tragedy of the commons. Science (80–) 162, 1243–1248 (1968).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Vera, J. A. Geología de Andalucía. Enseñanza Cien. Tierra 2, 306–317 (1994).
    Google Scholar 
    32.Gómez-Mercado, F. Vegetación y flora de la Sierra de Cazorla. Guineana 17, 1–481 (2011).
    Google Scholar 
    33.Benavente, A. Flora y vegetacion: Parque Natural de las Sierras de Cazorla, Segura y Las Villas. Anu. Adelantamiento Cazorla 50, 149–153 (2008).
    Google Scholar 
    34.Soriguer, R., Fandos, P., Granados, J., Castillo, A. & Serrano, E. Herbivoría por ungulados silvestres en el piso mesomediterráneo de las Sierras de Cazorla, Segura y Las Villas. In “In memoriam” al profesor Dr Isidoro Ruiz Martínez 479–504 (Universidad de Jaén, 2003).
    Google Scholar 
    35.García-González, R. & Cuartas, P. A comparison of the diets of the wild goat (Capra pyrenaica), Domesc Goat (Capra hircus), Mouflon (Ovis musimon) and the domestic sheep (Ovis aries) in the Cazorla Mountain range. Acta Biol. 9, 123–132 (1989).
    Google Scholar 
    36.Araque, E. Territorio y patrimonio rural en las sierras de Cazorla, Segura y las Villas. Nuevas perspectivas de investigación. Rev. PH 84, 28–47 (2013).
    Google Scholar 
    37.Tíscar Oliver, P. Patterns of shrub diversity and tree regeneration across topographic and stand-structural gradients in a Mediterranean forest. For. Syst. 24, 1–11 (2015).
    Google Scholar 
    38.Lorite, J., Navarro, F. B. & Valle, F. Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosyst. 141, 1–14 (2007).Article 

    Google Scholar 
    39.Blanca, G. et al. Flora Vascular de Andalucía Oriental. vol. 4 (Servicios de Publicaciones de las universidades de Granada, Almería, Jaén y Málaga, 2011).
    Google Scholar 
    40.Mateos, M. et al. FAME. Aplicación Web de apoyo al seguimiento, localización e integración de la información sobre flora amenazada y de interés generada en Andalucía. In Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos 222–229 (2010).41.Valle, F. et al. Mapa de Series de Vegetación de Andalucía (Editorial Rueda, 2003).
    Google Scholar 
    42.Sutherland, W. J. Ecological Census Techniques: A Handbook 2nd edn. (Cambridge University Press, 2006).Book 

    Google Scholar 
    43.Lorite, J., Peñas, J., Benito, B., Cañadas, E. & Valle, F. Conservation status of the first known population of Polygala balansae in Europe. Ann. Bot. Fenn. 47, 45–50 (2010).Article 

    Google Scholar 
    44.Blanca, G., Cabezudo, B., Cueto, M., Morales, C. & Salazar, C. Flora vascular de Andalucía oriental (2a Edición Corregida y Aumentada) (Universidad de Granada, 2011).
    Google Scholar 
    45.R Core Development Team. R: A Language and Environment for Statistical Computing (R Core Development Team, 2019).
    Google Scholar 
    46.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. (2018).47.Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. (2020).48.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    49.Wheeler, R. E. R. et al. lmPerm: Permutation tests for linear models. 24 (2016).50.Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches

    1.Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).Article 

    Google Scholar 
    3.Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).ADS 
    Article 

    Google Scholar 
    4.Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    5.Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).Article 

    Google Scholar 
    6.Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).Article 

    Google Scholar 
    7.Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).Article 

    Google Scholar 
    8.Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).CAS 
    Article 

    Google Scholar 
    9.WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).
    Google Scholar 
    10.Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).ADS 
    Article 

    Google Scholar 
    11.Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).Article 

    Google Scholar 
    12.Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).Book 

    Google Scholar 
    13.Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).Article 

    Google Scholar 
    14.Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).Article 

    Google Scholar 
    15.Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).
    Google Scholar 
    16.Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).
    Google Scholar 
    17.Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).
    Google Scholar 
    18.Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).
    Google Scholar 
    19.Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).Article 

    Google Scholar 
    20.Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).Article 

    Google Scholar 
    21.Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).Chapter 

    Google Scholar 
    22.Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).
    Google Scholar 
    23.Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).CAS 
    Article 

    Google Scholar 
    24.Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    27.Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).Article 

    Google Scholar 
    28.Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).Article 

    Google Scholar 
    30.Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).ADS 
    CAS 

    Google Scholar 
    31.Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).PubMed 
    Article 

    Google Scholar 
    36.Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    39.de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).Article 

    Google Scholar 
    40.Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).CAS 
    Article 

    Google Scholar 
    41.Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed 
    Article 

    Google Scholar 
    46.Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).Article 

    Google Scholar 
    50.Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).Article 
    CAS 

    Google Scholar 
    51.Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).Article 

    Google Scholar 
    52.Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).
    Google Scholar 
    53.Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).Article 

    Google Scholar 
    54.Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).Article 

    Google Scholar 
    55.Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).56.Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).
    Google Scholar 
    57.Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).
    Google Scholar 
    58.Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).
    Google Scholar 
    59.Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).
    Google Scholar 
    60.Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).
    Google Scholar 
    61.Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).
    Google Scholar 
    63.Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article 

    Google Scholar 
    64.Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).Article 

    Google Scholar 
    65.Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).Article 

    Google Scholar 
    66.Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).
    Google Scholar 
    67.Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)71.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).Article 

    Google Scholar 
    73.Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).
    Google Scholar 
    76.Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).PubMed 
    Article 

    Google Scholar 
    79.Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).PubMed 
    Article 

    Google Scholar 
    81.Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).Article 

    Google Scholar 
    82.Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article 
    CAS 

    Google Scholar 
    84.Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).Article 

    Google Scholar 
    85.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    86.Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed 
    Article 

    Google Scholar 
    87.Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
    Google Scholar 
    89.Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).
    Google Scholar  More

  • in

    Effect of EPSPS gene copy number and glyphosate selection on fitness of glyphosate-resistant Bassia scoparia in the field

    Seed sourceSeeds of a segregating GR B. scoparia population identified from a wheat field (45°54′54.76″N; 108°14′44.15″W) in 2013 in Hill County, Montana, USA (designated as MT009) were used. The field was under a continuous no-till wheat-fallow rotation for  > 8 years and had a history of repeated glyphosate use (at least 3 applications per year) for weed control during the summer fallow phase prior to winter wheat planting. The permission of land owner was obtained prior to B. scoparia seed collection. All experimental research and field studies on plants, including the collection of plant material complied with the Montana State University guidelines and state/US legislation. Seeds of the field-collected population were used to generate GS and GR B. scoparia subpopulations through recurrent group selection procedure as described below.Development of GS and GR subpopulationsField collected seeds of MT009 population were sown on the surface of plastic trays (53 by 35 by 10 cm) filled with commercial potting soil (VERMISOIL, Vermicrop Organics, 4265 Duluth Avenue, Rocklin, CA, USA) in a greenhouse in the fall of 2013 at the Montana State University Southern Agricultural Research Center (MSU-SARC) near Huntley, MT, USA. Growth conditions in greenhouse were maintained at 25/22 ± 2 °C day/night temperatures and 16/8 h day/night photoperiods supplemented with metal halide lamps (450 μmol m-2 s-1). After emergence, approximately 200 uniform seedlings were individually transplanted in plastic pots (10-cm diam) containing the same potting mixture and grown for 6 weeks. A set of three clones (3 shoot cuttings) from each plant were then prepared and transplanted in plastic pots (10-cm diam) as described by Kumar and Jha22. At the 8- to 10-cm height, all cloned seedlings were separately treated with 435 (0.5×), 870 (1×), and 1740 (2×) g ae ha−1 of glyphosate (Roundup Powermax, Bayer Crop Science, Saint Louis, MO, USA) where 1× = field-use rate of glyphosate. All three glyphosate treatments included ammonium sulfate (2% w/v). Glyphosate applications were made using a cabinet spray chamber (Research Track Sprayer, De Vries Manufacturing, RR 1 Box 184, Hollandale, MN, USA) equipped with an even flat-fan nozzle tip (Teejet 8001EXR, Spraying System Co., Wheaton, IL, USA), calibrated to deliver 140 L ha−1 of spray solution at 276 kPa. Treated seedlings were returned to the greenhouse, watered as needed, and fertilized [Miracle-Gro water soluble fertilizer (24-8-16), Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH, USA] bi-weekly to maintain good plant growth. At 21 days after treatment, clones surviving the 2× rate of glyphosate were considered as ‘glyphosate-resistant (GR)’ and the clones that did not survive 1× rate of glyphosate were considered as ‘glyphosate-susceptible (GS)’. The parent B. scoparia plants corresponding to survived (resistant) or not-survived (susceptible) clones were transplanted separately in 20-L plastic pots (group of 3 to 4 plants pot−1) containing same potting soil for seed production. All 3- to 4 plants in each pot were collectively covered with a single pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flower initiation to restrict cross-pollination between GR and GS plants. At maturity, seeds from the respective GR and GS parent plants were collected and cleaned separately using an air column blower. The collected seeds from GR plants were subjected to three generations of recurrent group selection with the 2× rate of glyphosate in each generation. Seeds of GS plants were also subjected to recurrent group selection for three generations without glyphosate. Progenies of the GS plants were grown and sprayed with 1× rate of glyphosate to confirm the susceptibility to glyphosate in each generation23. This procedure allowed the development of relatively genetically homogenous GR and GS subpopulations from within a single B. scoparia population.Determination of EPSPS gene copy numberPreviously established protocols were adopted to estimate the relative EPSPS gene copy number in seedlings of GR and GS subpopulations through quantitative real-time polymerase chain reaction (qPCR)16,17,18. The ALS gene was used as reference since the relative ALS gene copy number and transcript abundance did not vary across B. scoparia samples17,18,29. Relative EPSPS:ALS gene copy number is a ratio of EPSPS to ALS PCR product fluorescence. Due to small differences in amplicon size, qPCR run conditions, and fluorescence detection, the values presented were estimates of relative gene copy number29.A total of 600 seedlings from the GR (450 seedlings) and GS (150 seedlings) B. scoparia subpopulations (developed by recurrent group selection) were grown in a greenhouse at MSU-SARC near Huntley, MT, USA in 2015 and 2016 to select enough plants for the field study each year. At 4-to 6-cm height, young leaf tissues (100 mg) from each seedling were sampled, frozen with liquid nitrogen and ground into powder using mortar and pestle. Genomic DNA were extracted from the tissue samples using the protocol from Qiagen Dneasy plant mini kit (Qiagen Inc., Valencia, CA, USA). Genomic DNA quantity and quality were determined using a Smartspec Plus spectrophotometer (Bio-Rad Company, CA, USA) and gel electrophoresis with 1% agarose, respectively. High quality genomic DNA (260/280 ratio of ≥ 1.8) were used to determine the relative EPSPS gene copy number. Two sets of primers to amplify the EPSPS and ALS genes, the final reaction volume and reagents used for each qPCR reaction, and the qPCR conditions used in this study were the same as previously described by Kumar and Jha22. Each qPCR reaction was performed on a Bio-Rad 96-well PCR plate in triplicates and fluorescence was detected using CFX Connect Real-Time PCR detection system. A negative control consisting of 250 nM of each forward and reverse primer, 1× Perfecta SYBR Green supermix, and deionized water with no DNA template was included. The EPSPS genomic copy number relative to ALS gene was estimated by ΔCT method (ΔCT = CT, ALS-CT, EPSPS)18,29. The relative increase in the EPSPS gene copy number was calculated as 2ΔCT.Survival and fecundity traits of GR and GS B. scoparia subpopulationsSeedlings (4- to 6-cm tall) of GR and GS B. scoparia subpopulations with known EPSPS gene copy numbers were transplanted into a fallow field in the summer of 2015 and 2016 at the MSU-SARC near Huntley, MT, USA. All transplanted B. scoparia seedlings were equally spaced at 1.5 m apart from each other and all plants were fertilized biweekly [2 to 3 g of MIRACLE-GRO water soluble fertilizer (24-8-16)] and irrigated as and when needed to avoid moisture stress. Experiments were conducted with a factorial arrangement of treatments (Factor A and Factor B) in a randomized complete block design, with 6 replications. Each transplanted B. scoparia seedling was an experimental unit. The factor A (4 levels) was comprised of B. scoparia plants with 1, 2–4, 5–6, and ≥ 8 EPSPS gene copy numbers, which were categorized as susceptible, low, moderate, and highly resistant plants, respectively based on their percent visible injury response to glyphosate. The factor B (ten levels) was comprised of increasing rates of glyphosate applied as single or sequential applications. Current labels of glyphosate allow a total of 3954 g ae ha−1 in split POST applications in GR sugar beet. As per the label, the maximum glyphosate rate of 2214 g ae ha−1 is allowed from crop emergence to 8-leaf stage of sugar beet and 1740 g ae ha−1 of glyphosate from 8-leaf stage to canopy closure or 30 days prior to sugar beet harvest. Hence, the tested total glyphosate rates were 0, 108, 217, 435, 870, 1265, 1740 [870 followed by ( +) 870], 2214 [1265 + 949], 3084 [1265 + 949 + 870], and 3954 [1265 + 949 + 870 + 870] g ae ha−1 along with ammonium sulfate (2% w/v). Sequential applications were made at 7- to 14-day intervals, with first application at 8- to 10-cm tall B. scoparia seedlings using a CO2-operated backpack sprayer fitted with a single AIXR 8001 flat-fan nozzle calibrated to deliver 94 L ha−1. Glyphosate rates and applications timings were selected to simulate the 2-leaf, 6-leaf, 8–10 leaf, and the canopy closure stage of GR sugar beet.Data collectionPercent visible control (relative to the non-treated) on a scale of 0 to 100 (0 means no control and 100 means complete plant death30) for each individual plant (240 plants total each year) were assessed at 7, 14, and 21 days after glyphosate treatment. Data on number of days from transplanting to 50% flowering (half of the inflorescences from each plant were covered with visible flowers) and seed set (seeds on half of the inflorescences from each plant were turned brown) were recorded for an individual plant. Each plant was covered with a pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flowering to prevent any cross-pollination. At the time of flowering, pollens from each survived plant were collected in early morning hours (between 8 to 10 am). At maturity, each individual plant was harvested and threshed to determine 1000-seed weight and seeds plant−1.Pollen and progeny seed viabilityPollens and seeds collected from individual B. scoparia plants (240 plants total each year) were tested for viability using a tetrazolium test. Pollens were collected in petri dishes by shaking the whole plant at the time of flowering. Four sub-samples of pollens from each petri dish were transferred into glass slides. The pollens in the glass slides were soaked with a tetrazolium chloride solution (10 g L−1), sealed with a cover slip using a nail polish and were incubated at room temperature for an hour. Viable (red) and non-viable pollens (yellow/white) were counted using a simple microscope. The physical structure of viable and non-viable pollens was also checked for any deformity using a compound microscope. Pollen viability for individual plants (240 plants total each year) was calculated as percent viable pollens of the total number of pollens counted.For seed viability test, twenty-five intact seeds collected from each individual plant (240 plants total each year) from the field were evenly placed in between two layers of filter papers (WHATMAN Grade 2, SigmaAldrich, St Louis, MO, USA) inside a 10-cm-diameter petri dish. Seeds were soaked with a 5-ml of distilled water and the filter papers were kept moist for the entire duration of the germination test. Light is not required for B. scoparia seed germination31, so the petri dishes were wrapped with a thin aluminum foil and placed inside an incubator (VMR International, Sheldon Manufacturing, Cornelius, OR, USA) with alternating day/night temperatures set to 20/25 °C23. Seeds with a visible uncoiled radicle tip longer than the seed diameter was considered germinated32,33. Radicle length was measured from three randomly selected germinated seeds 24 h after incubation to test the seedling vigor. The number of germinated seeds in each petri dish were counted daily until no further germination was observed for 10 consecutive days. Non-germinated seeds were tested for viability by soaking the seeds with tetrazolium chloride solution (10 g L−1) for 24 h23,34. Seeds with a red-stained embryo examined under a dissecting microscope (tenfold magnification) were considered viable35. Seed viability was expressed as the percentage of total viable seeds.Relative fitness (w)Fitness is the evolutionary potential for success of a genotype based on survival, competitive ability, and reproduction. Individuals with the greatest number of offspring and with the most genes contributing to the gene pool of a population are considered most fit genotypes36. Fitness of a genotype is determined by comparison of its vigor, productivity or competitiveness relative to the other genotype by quantifying specific traits such as seed dormancy, flowering date, seedling vigor, seed production, and other factors that can possibly influence the survival and reproductive success of a genotype36,37. In this study, relative fitness (w) of GR B. scoparia was calculated as the reproductive rate (seed production plant−1) of a resistant genotype (B. scoparia plants with 2–4, 5–6, and ≥ 8 EPSPS gene copies) relative to the maximum reproductive rate of the susceptible genotype (B. scoparia plants with 1 EPSPS gene copy) in the population. The relative fitness (w) of susceptible plants was assumed to be one.Statistical analysesA natural logarithm transformation was performed on data for time to 50% flowering, time to seed set, seeds plant−1. An arcsine square root transformation was performed on data for pollen viability, visible control, seed viability, and relative fitness (w) before subjecting to analysis of variance, however all data were presented in their back-transformed values. No transformation was needed for 1000-seed weight and radicle length data. Experimental year, B. scoparia plants with different EPSPS copy number groups, glyphosate rate, and their interactions were considered fixed effects and replication nested within a year was considered as a random effect in the model. Data on percent visible control, time to 50% flowering, pollen viability, time to seed set, 1000-seed weight, and seeds plant−1, seed viability and radicle length were subjected to ANOVA using Proc Mixed in SAS (SAS version 9.4, SAS Institute, Cary, NC, USA) to test the significance of experimental run, treatment factors, and interactions. The ANOVA assumptions for normality of residuals and homogeneity of variance were tested using Proc Univariate and PROC GLM in SAS. Means were separated using Tukey–Kramer’s HSD with α = 0.05. Furthermore, data on percent visible control and seeds plant-1 for each group of B. scoparia plants with different EPSPS gene copy number were regressed against total glyphosate rates using a four-parameter log-logistic model Eq. (1)38,39:$$Y=c+{d-c/{1+mathrm{exp}[bleft(mathrm{log}left(xright)-mathrm{log}left(ED50right)right)]}$$
    (1)
    where Y is the percent visible control or seed production plant−1 (% of nontreated); d is the upper asymptote (the highest estimated % control or % seed reduction); c is the lower asymptote (the lowest estimated % control or % seed reduction); ED50 is the effective rate of glyphosate needed to achieve 50% control or 50% reduction in seed production; and b denotes the slope around the inflection point “ED50.” Slope parameter (b) indicates the response rate of each group of B. scoparia plants with different EPSPS gene copy number to glyphosate rates (i.e., a slope with a large negative value suggests a rapid response of selected B. scoparia group). The Akaike Information Criterion (AIC) was used to select the nonlinear four-parameter model. A lack-of-fit test (P  > 0.10) was used to confirm that the nonlinear regression model Eq. (1) described the response data for each B. scoparia group38. Parameter estimates, ED90, and SR99 values (i.e. effective rate required for 90% control or effective rate required for 99% reduction in seed production) for each group of B. scoparia plants with different EPSPS gene copy number were determined using the ‘drc’ package in R software37,39. Parameter estimates of B. scoparia groups were compared using the approximate t-test with the ‘compParm’ and ‘EDcomp’ functions in the ‘drc’ package of the R software39,40. More

  • in

    Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

    1.Genty, B., Wonders, J. & Baker, N. R. Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth. Res. 26, 133–139 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Franck, F., Juneau, P. & Popovic, R. Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim. Biophys. Acta 1556, 239–246 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Neubauer, C. & Schreiber, U. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. f.ür. Naturforsch. C. 42, 1246–1254 (1987).CAS 
    Article 

    Google Scholar 
    4.Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. in Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration Vol. 19 (eds Papageorgiou G. C. & Govindjee) 321–362 (Springer, 2004).5.Schreiber, U., Schliwa, U. & Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Govindjee, E. 63 years since Kautsky-chlorophyll-a fluorescence. Aust. J. Plant Physiol. 22, 131–160 (1995).CAS 

    Google Scholar 
    8.Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Tikkanen, M., Rantala, S., Grieco, M. & Aro, E. Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions–from biophysical measurements to molecular mechanisms. Plant Physiol. Biochem. 112, 290–301 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kolber, Z. et al. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth. Res. 84, 121–129 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Keller, B. et al. Genotype specific photosynthesis × environment interactions captured by automated fluorescence canopy scans over two fluctuating growing seasons. Front. Plant Sci. 10, 1482 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mohammed, G. H. et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Evain, S., Camenen, L. & Moya, I. Three-channel detector for remote sensing of chlorophyll fluorescence and reflectance from vegetation. In: 8th International Symposium: Physical Measurements and Signatures in Remote Sensing (ed. Leroy, M.) 395–400 (CNES, 2001).14.Louis, J. et al. Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery. Remote Sens. Environ. 96, 37–48 (2005).Article 

    Google Scholar 
    15.Guanter, L. et al. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 34, L08401 (2007).Article 
    CAS 

    Google Scholar 
    16.Aasen, H. et al. Sun-induced chlorophyll fluorescence II: review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sens. 11, 927 (2019).Article 

    Google Scholar 
    17.Yang, X. et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).CAS 
    Article 

    Google Scholar 
    18.Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Bendig, J., Malenovský, Z., Gautam, D. & Lucieer, A. Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction. IEEE Trans. Geosci. Remote Sens. 58, 3437–3444 (2019).Article 

    Google Scholar 
    20.Vargas, J. Q. et al. Unmanned aerial systems (UAS)-based methods for solar induced chlorophyll fluorescence (SIF) retrieval with non-imaging spectrometers: state of the art. Remote Sens. 12, 1624 (2020).Article 

    Google Scholar 
    21.Rascher, U. et al. Sun-induced fluorescence—a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Change Biol. 21, 4673–4684 (2015).CAS 
    Article 

    Google Scholar 
    22.Frankenberg, C. et al. The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sens. Environ. 217, 523–536 (2018).Article 

    Google Scholar 
    23.Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 17706 (2011).Article 
    CAS 

    Google Scholar 
    24.Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI. Geophys. Res. Lett. 47, e2020GL087541 (2020).Article 
    CAS 

    Google Scholar 
    25.Drusch, M. et al. The fluorescence explorer mission concept—ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2016).Article 

    Google Scholar 
    26.Olascoaga, B., Mac Arthur, A., Atherton, J. & Porcar-Castell, A. A comparison of methods to estimate photosynthetic light absorption in leaves with contrasting morphology. Tree Physiol. 36, 368–379 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Zhang, Z. et al. Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agric. Meteorol. 295, 108147 (2020).Article 

    Google Scholar 
    28.Bittner, T., Irrgang, K., Renger, G. & Wasielewski, M. R. Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach. J. Phys. Chem. 98, 11821–11826 (1994).CAS 
    Article 

    Google Scholar 
    29.Kalaji, H. M. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132, 13–66 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Genty, B., Briantais, J. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    31.Anderson, J. M., Chow, W. S. & Goodchild, D. J. Thylakoid membrane organisation in sun/shade acclimation. Funct. Plant Biol. 15, 11–26 (1988).Article 

    Google Scholar 
    32.Ballottari, M., Dall’Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schreiber, U., Klughammer, C. & Kolbowski, J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 113, 127–144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Laisk, A. et al. A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ. 25, 923–943 (2002).CAS 
    Article 

    Google Scholar 
    35.Pfündel, E. Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Res. 56, 185–195 (1998).Article 

    Google Scholar 
    36.Peterson, R. B. et al. Fluorescence Fo of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth. Res. 122, 41–56 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pfündel, E. E. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. Photosynth. Res. 147, 345–358 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Demmig-Adams, B. & Adams, W. W. III Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. N. Phytol. 172, 11–21 (2006).CAS 
    Article 

    Google Scholar 
    39.Porcar-Castell, A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol. Plant. 143, 139–153 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Van der Tol, C., Berry, J. A., Campbell, P. & Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. 119, 2312–2327 (2014).Article 

    Google Scholar 
    41.Springer, K. R., Wang, R. & Gamon, J. A. Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees. Remote Sens. 9, 691 (2017).Article 

    Google Scholar 
    42.Zhang, C. et al. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ. 42, 3264–3279 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ensminger, I. et al. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob. Change Biol. 10, 995–1008 (2004).Article 

    Google Scholar 
    44.Verhoeven, A. Sustained energy dissipation in winter evergreens. New Phytol. 201, 57–65 (2014).Article 

    Google Scholar 
    45.Gu, L., Han, J., Wood, J. D., Chang, C. Y. & Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 223, 1179–1191 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Raczka, B. et al. Sustained nonphotochemical quenching shapes the seasonal pattern of solar-induced fluorescence at a high-elevation evergreen forest. J. Geophys. Res. 124, 2005–2020 (2019).Article 

    Google Scholar 
    47.Nixon, P. J. Chlororespiration. Philos. Trans. R. Soc. Lond. B 355, 1541–1547 (2000).CAS 
    Article 

    Google Scholar 
    48.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35, 415–442 (1984).CAS 
    Article 

    Google Scholar 
    49.Asada, K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Biol. 50, 601–639 (1999).CAS 
    Article 

    Google Scholar 
    50.Morfopoulos, C. et al. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytol. 203, 125–139 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Maseyk, K., Lin, T., Cochavi, A., Schwartz, A. & Yakir, D. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. Tree Physiol. 39, 1767–1782 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Migliavacca, M. et al. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 214, 1078–1091 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kallel, A. FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation. J. Quant. Spectrosc. Radiat. Transf. 253, 107183 (2020).CAS 
    Article 

    Google Scholar 
    54.Sabater, N. et al. Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy–leaving sun–induced chlorophyll fluorescence. Remote Sens. 10, 1551 (2018).Article 

    Google Scholar 
    55.Sabater, N., Kolmonen, P., Van Wittenberghe, S., Arola, A. & Moreno, J. Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. Remote Sens. Environ. 254, 112226 (2021).Article 

    Google Scholar 
    56.Iermak, I., Vink, J., Bader, A. N., Wientjes, E. & van Amerongen, H. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta 1857, 1473–1478 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Romero, J. M., Cordon, G. B. & Lagorio, M. G. Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sens. Environ. 204, 138–146 (2018).Article 

    Google Scholar 
    58.Magney, T. S. et al. Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. J. Geophys. Res. 124, 1491–1507 (2019).Article 

    Google Scholar 
    59.Murchie, E. H. et al. Measuring the dynamic photosynthome. Ann. Bot. 122, 207–220 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47, e2020GL091098 (2020).Article 

    Google Scholar 
    61.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences 18, 441–465 (2021).CAS 
    Article 

    Google Scholar 
    62.Liu, X. et al. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sens. Environ. 231, 110772 (2019).Article 

    Google Scholar 
    63.Joiner, J. et al. Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals. Remote Sens. 12, 2346 (2020).Article 

    Google Scholar 
    64.Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).Article 

    Google Scholar 
    65.He, L. et al. From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys. Res. Lett. 47, e2020GL087474 (2020).
    Google Scholar 
    66.Ač, A. et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 168, 420–436 (2015).Article 

    Google Scholar 
    67.Wohlfahrt, G. et al. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 14169 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J. & Samson, R. Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties: A bottom-up approach. Remote Sens. Environ. 158, 169–179 (2015).Article 

    Google Scholar 
    69.Magney, T. S. et al. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 215, 1594–1608 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Rajewicz, P. A., Atherton, J., Alonso, L. & Porcar-Castell, A. Leaf-level spectral fluorescence measurements: comparing methodologies for broadleaves and needles. Remote Sens. 11, 532 (2019).Article 

    Google Scholar 
    71.Van Wittenberghe, S., Alonso, L., Malenovský, Z. & Moreno, J. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes. Photosynth. Res. 142, 283–305 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Meeker, E. W., Magney, T. S., Bambach, N., Momayyezi, M. & McElrone, A. J. Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions. AoB Plants 13, plaa066 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Acebron, K. et al. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytol. 229, 2104–2119 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D. & Robinson, S. A. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol. Evol. 8, 1842–1857 (2017).Article 

    Google Scholar 
    75.Atherton, J., Nichol, C. J. & Porcar-Castell, A. Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics. Remote Sens. Environ. 176, 17–30 (2016).Article 

    Google Scholar 
    76.Van Wittenberghe, S. et al. Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: evidence for the multifunctional energy quenching role of xanthophylls. Biochim. Biophys. Acta 1862, 148351 (2021).Article 
    CAS 

    Google Scholar 
    77.Gamon, J. A. et al. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85, 1–7 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).Article 

    Google Scholar 
    79.Peñuelas, J., Filella, I. & Gamon, J. A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291–296 (1995).Article 

    Google Scholar 
    80.Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Costa, J. M., Grant, O. M. & Chaves, M. M. Thermography to explore plant-environment interactions. J. Exp. Bot. 64, 3937–3949 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Konings, A. G., Rao, K. & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. 223, 1166–1172 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Junttila, S. et al. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sens. Environ. 255, 112274 (2021).Article 

    Google Scholar 
    84.Whelan, M. E. Two scientific communities striving for a common cause: innovations in carbon cycle science. Bull. Am. Meteorol. Soc. 101, E1537–1543 (2020).Article 

    Google Scholar 
    85.Farquhar, G. D., von Caemmerer, S. V. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. 124, 3281–3306 (2019).Article 

    Google Scholar 
    87.Norton, A. J. et al. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16, 3069–3093 (2019).CAS 
    Article 

    Google Scholar 
    88.Thum, T. et al. Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14, 1969–1987 (2017).CAS 
    Article 

    Google Scholar 
    89.Qiu, B., Chen, J. M., Ju, W., Zhang, Q. & Zhang, Y. Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sens. Environ. 233, 111373 (2019).Article 

    Google Scholar 
    90.Johnson, J. E. & Berry, J. A. The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynth. Res. https://doi.org/10.1007/s11120-021-00840-4 (2021).91.Janoutová, R. et al. Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests 10, 292 (2019).Article 

    Google Scholar 
    92.Liu, W. et al. Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements. Remote Sens. Environ. 232, 111274 (2019).Article 

    Google Scholar 
    93.Pinto, F. et al. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39, 1500–1512 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Siegmann, B. et al. The high-performance airborne imaging spectrometer HyPlant—From raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. Remote Sens. 11, 2760 (2019).Article 

    Google Scholar 
    95.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).Article 

    Google Scholar 
    96.Zeng, Y. et al. A radiative transfer model for solar induced fluorescence using spectral invariants theory. Remote Sens. Environ. 240, 111678 (2020).Article 

    Google Scholar 
    97.Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wang, S. et al. Urban–rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 3, 1076–1085 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Long, S. P., Farage, P. K. & Garcia, R. L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 47, 1629–1642 (1996).CAS 
    Article 

    Google Scholar 
    100.Baldocchi, D. D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9, 479–492 (2003).Article 

    Google Scholar 
    101.Kaiser, Y. I., Menegat, A. & Gerhards, R. Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 53, 399–406 (2013).CAS 
    Article 

    Google Scholar 
    102.Sievänen, R., Godin, C., DeJong, T. M. & Nikinmaa, E. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Damm, A., Paul-Limoges, E., Kükenbrink, D., Bachofen, C. & Morsdorf, F. Remote sensing of forest gas exchange: considerations derived from a tomographic perspective. Glob. Change Biol. 26, 2717–2727 (2020).Article 

    Google Scholar 
    104.Ensminger, I. Fast track diagnostics: Hyperspectral reflectance differentiates disease from drought stress in trees. Tree Physiol. 40, 1143–1146 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Mutka, A. M. & Bart, R. S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 5, 734 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    108.Skidmore, A. K. et al. Environmental science: Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Tagliabue, G. et al. Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sens. Environ. 247, 111934 (2020).Article 

    Google Scholar 
    110.Pacheco-Labrador, J. et al. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sens. Environ. 234, 111362 (2019).Article 

    Google Scholar 
    111.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).Article 

    Google Scholar 
    112.Kellner, J. R., Albert, L. P., Burley, J. T. & Cushman, K. C. The case for remote sensing of individual plants. Am. J. Bot. 106, 1139–1142 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Flexas, J. et al. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 114, 231–240 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).CAS 
    Article 

    Google Scholar 
    115.Maes, W. H. et al. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens. Environ. 249, 112030 (2020).Article 

    Google Scholar 
    116.Shan, N. et al. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens. Environ. 252, 112134 (2021).Article 

    Google Scholar 
    117.Wang, X. et al. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. J. Geophys. Res. Biogeosci. 125, e2020JG005732 (2020).
    Google Scholar 
    118.Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science 358, eaam5690 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    119.Albert, L. P. et al. Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence. In Proc. SPIE 10986, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV (eds Velez-Reyes, M. & Messinger, D. W.) 109860G (SPIE, 2019).120.Meroni, M. et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009).Article 

    Google Scholar 
    121.Cendrero-Mateo, M. P. et al. Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sens. 11, 962 (2019).Article 

    Google Scholar 
    122.Vilfan, N. et al. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 211, 345–356 (2018).Article 

    Google Scholar 
    123.Yang, P., Prikaziuk, E., Verhoef, W. & van der Tol, C. SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2020-251 (2020).124.Gastellu-Etchegorry, J. et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2640–2649 (2017).Article 

    Google Scholar  More