Rodent host population dynamics drive zoonotic Lyme Borreliosis and Orthohantavirus infections in humans in Northern Europe
1.Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS
Article
Google Scholar
2.Karesh, W. B. et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 380, 1936–1945 (2012).PubMed
PubMed Central
Article
Google Scholar
3.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346-1351.e2 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed
PubMed Central
Article
Google Scholar
7.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. 117, 9423 LP – 9430 (2020).Article
CAS
Google Scholar
9.Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B Biol. Sci. 280, 20122753 (2013).Article
Google Scholar
10.Wardeh, M., Sharkey, K. J. & Baylis, M. Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs. Proc. R. Soc. B Biol. Sci. 287, 20192882 (2020).CAS
Article
Google Scholar
11.Maes, P. et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 164, 927–941 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Vapalahti, K., Virtala, A.-M., Vaheri, A. & Vapalahti, O. Case-control study on Puumala virus infection: Smoking is a risk factor. Epidemiol. Infect. 138, 576–584 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).PubMed
Article
PubMed Central
Google Scholar
14.Avšič-Županc, T., Saksida, A. & Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 21, e6–e16 (2019).Article
Google Scholar
15.Olsson, G. E., Leirs, H. & Henttonen, H. Hantaviruses and their hosts in Europe: Reservoirs here and there, but not everywhere?. Vector-Borne Zoonotic Dis. 10, 549–561 (2010).PubMed
Article
PubMed Central
Google Scholar
16.Cook, M. J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 8, 1–8 (2014).PubMed
PubMed Central
Article
Google Scholar
17.Sykes, R. A. & Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe†. J. Public Health (Bangkok) 39, 74–81 (2016).
Google Scholar
18.Kuehn, B. M. CDC estimates 300000 US cases of lyme disease annually. JAMA J. Am. Med. Assoc. 310, 1110 (2013).CAS
Article
Google Scholar
19.Davis, S., Calvet, E. & Leirs, H. Review fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector-Borne Zoonotic Dis. 5, 305–314 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Tian, H. Y. et al. Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005–2012. PLoS Negl. Trop. Dis. 9, 2005–2012 (2015).Article
CAS
Google Scholar
21.Kallio, E. R. et al. Cyclic hantavirus epidemics in humans: Predicted by rodent host dynamics. Epidemics 1, 101–107 (2009).PubMed
Article
PubMed Central
Google Scholar
22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
23.Korpela, K. et al. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. B Biol. Sci. 281, 20142119 (2014).Article
Google Scholar
24.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Biol. Sci. 272, 193–202 (2005).Article
Google Scholar
25.Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–1520 (2001).Article
Google Scholar
26.Hansson, L. & Henttonen, H. Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195–200 (1988).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Sane, J. et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol. Infect. 144, 2883–2888 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).PubMed
Article
PubMed Central
Google Scholar
29.Olsson, G. E., Hjertqvist, M., Lundkvist, Å. & Hörnfeldt, B. Predicting high risk for human hantavirus infections, Sweden. Emerg. Infect. Dis. 15, 104–106 (2009).PubMed
PubMed Central
Article
Google Scholar
30.Khalil, H., Ecke, F., Evander, M., Bucht, G. & Hörnfeldt, B. Population dynamics of bank voles predicts human puumala hantavirus risk. EcoHealth 16, 545–557 (2019).PubMed
PubMed Central
Article
Google Scholar
31.Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026 (1998).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
32.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on lyme disease risk. Proc. Natl. Acad. Sci. U. S. A. 100, 567–571 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
33.Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–1068 (2006).CAS
Article
Google Scholar
34.Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1 (2015).Article
CAS
Google Scholar
35.Krawczyk, A. I. et al. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasit. Vectors 13, 34 (2020).PubMed
PubMed Central
Article
Google Scholar
36.Bregnard, C., Rais, O. & Voordouw, M. J. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit. Vectors 13, 1–12 (2020).Article
Google Scholar
37.Bregnard, C., Rais, O. & Voordouw, M. J. Masting by beech trees predicts the risk of Lyme disease. Parasit. Vectors 14, 1–22 (2021).Article
CAS
Google Scholar
38.Schauber, E. M., Ostfeld, R. S. & Evans, A. S. What is the best predictor of annual lyme disease incidence: Weather, mice, or acorns?. Ecol. Appl. 15, 575–586 (2005).Article
Google Scholar
39.Tkadlec, E., Václavík, T. & Široký, P. Rodent host abundance and climate variability as predictors of tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 25, 1738–1741 (2019).PubMed
PubMed Central
Article
Google Scholar
40.Bogdziewicz, M. & Szymkowiak, J. Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic Appl. Ecol. 17, 300–307 (2016).Article
Google Scholar
41.Pietiäinen, H., Sundell, J., Valkama, J. & Huitu, O. vole interactions in northern Europe: The role of− Predator. (2014).42.Lindgren, E. & Jaenson, T. G. T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology, ecology and adaptation measures. World Heal. Org. https://doi.org/10.1093/ntr/ntu261 (2006).Article
Google Scholar
43.Laaksonen, M. et al. Tick-borne pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasit. Vectors 11, 556 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
44.Sajanti, E. et al. Lyme borreliosis in Finland in 1995–2014. Emerg. Infect. Dis. 23, 128–1288 (2017).Article
Google Scholar
45.Amori, G. et al. Myodes glareolus. In:The IUCN Red List of Threatened Species. (2007) (accessed 28 February 2020). https://www.iucnredlist.org/species/4973/1110516846.Brummer-Korvenkontio, M. et al. Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 141, 131–134 (1980).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Hanincová, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).PubMed
Article
PubMed Central
Google Scholar
49.Tälleklint, L., Jaenson, T. G. T. & Mather, T. N. Seasonal variation in the capacity of the bank vole to infect larval ticks (Acari: Ixodidae) with the lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 30, 812–815 (1993).PubMed
Article
PubMed Central
Google Scholar
50.Gern, L. et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fur Bakteriol. 287, 196–204 (1998).CAS
Article
Google Scholar
51.Tersago, K. et al. Hantavirus outbreak in Western Europe: Reservoir host infection dynamics related to human disease patterns. Epidemiol. Infect. 139, 381–390 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
52.Jaenson, T. G. T., Hjertqvist, M., Bergström, T. & Lundkvist, Å. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Swedena. Parasit. Vectors 5, 184 (2012).PubMed
PubMed Central
Article
Google Scholar
53.Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Chang. Biol. 19, 697–710 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
55.Koivula, M., Koskela, E., Mappes, T. & Oksanen, T. A. Cost of reproduction in the wild: Manipulation of reproductive effort in the bank vole. Ecology 84, 398–405 (2003).Article
Google Scholar
56.Cayol, C., Koskela, E., Mappes, T., Siukkola, A. & Kallio, E. R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit. Vectors 10, 1–11 (2017).Article
Google Scholar
57.Rösch, A. & Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R package version 1.1. (2018).58.R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria (2019).59.Cazelles, B., Chavez, M., De Magny, G. C., Guégan, J. F. & Hales, S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 4, 625–636 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Pinherio, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R package Version 3. 1–142 (2019).61.Ostfeld, R. S. et al. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 1, 55–63 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).https://doi.org/10.1007/978-0-387-22456-5_7 .Book
MATH
Google Scholar
64.Barton, K. MuMIn: Multi-Model Inference. (2019).65.Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 26, 1–22 (2008).
Google Scholar
66.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 4, 1–12 (2013).
Google Scholar
67.Lindgren, E., Tälleklint, L. & Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 108, 119–123 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proc. Natl. Acad. Sci. U. S. A. 114, 8041–8046 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
69.Xiao, H. et al. Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991–2010. PLoS Negl. Trop. Dis. 7, 1–7 (2013).CAS
Google Scholar
70.Guan, P. et al. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: A 17-year data analysis based on structure equation model. BMC Infect. Dis. 9, 1 (2009).Article
Google Scholar
71.Amirpour Haredasht, S. et al. Modelling seasonal and multi-annual variation in bank vole populations and nephropathia epidemica. Biosyst. Eng. 121, 25–37 (2014).Article
Google Scholar
72.Hardestam, J. et al. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Infect. Dis. 14, 1209–1215 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. 109, 10942–10947 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
74.Ostfeld, R. S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C. D. Tick-borne disease risk in a forest food web. Ecology 99, 1562–1573 (2018).PubMed
Article
PubMed Central
Google Scholar
75.Wilhelmsson, P. et al. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vectors 6, 362 (2013).PubMed
PubMed Central
Article
Google Scholar
76.Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Otranto, D. et al. Ticks infesting humans in Italy and associated pathogens. Parasit. Vectors 7, 328 (2014).PubMed
PubMed Central
Article
Google Scholar
78.Faulde, M. K. et al. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick. Borne. Dis. 5, 594–599 (2014).PubMed
Article
Google Scholar
79.Gustav, T., Jaenson, T., Lundqvist, L., Olsen, B. & Chirico, J. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden mites and insects view project flavivirus view project. Artic. J. Med. Entomol. https://doi.org/10.1093/jmedent/31.2.240 (1994).Article
Google Scholar
80.Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors 9, 1–8 (2016).Article
CAS
Google Scholar
81.Jaenson, T. G. T. & Wilhelmsson, P. First records of tick-borne pathogens in populations of the taiga tick Ixodes persulcatus in Sweden. Parasit. Vectors 12, 559 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Pakanen, V. M., Sormunen, J. J., Sippola, E., Blomqvist, D. & Kallio, E. R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasit. Vectors 13, 384 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Laaksonen, M. et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg. Microbes Infect. 6, 1–7 (2017).Article
CAS
Google Scholar
84.Kovalevskii, Y. V. & Korenberg, E. I. Differences in Borrelia infections in adult Ixodes persulcatus and Ixodes ricinus ticks (Acari: Ixodidae) in populations of north-western Russia. Exp. Appl. Acarol. 19, 19–29 (1995).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article
Google Scholar
86.Massey, F., Smith, M., Lambin, X. & Hartley, S. Are silica defences in grasses driving vole population cycles?. Biol. Lett. 4, 419–422 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mammal Res. 64, 301–318 (2019).Article
Google Scholar
88.Mysterud, A. et al. Contrasting emergence of Lyme disease across ecosystems. Nat. Commun. 7, 1 (2016).Article
CAS
Google Scholar
89.Rosà, R. & Pugliese, A. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Math. Biosci. 208, 216–240 (2007).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
90.Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. & Rizzoli, A. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne Zoonotic Dis. 7, 285–295 (2007).PubMed
Article
PubMed Central
Google Scholar
91.Halsey, S. J. & Miller, J. R. Maintenance of Borrelia burgdorferi among vertebrate hosts: A test of dilution effect mechanisms. Ecosphere 11, e03048 (2020).Article
Google Scholar
92.Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).Article
Google Scholar
93.Murray, T. S. & Shapiro, E. D. Lyme disease. Clin. Lab. Med. 30, 311–328 (2010).PubMed
PubMed Central
Article
Google Scholar
94.Kramski, M., Achazi, K., Klempa, B. & Krüger, D. H. Nephropathia epidemica with a 6-week incubation period after occupational exposure to Puumala hantavirus. J. Clin. Virol. 44, 99–101 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
95.Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O. & Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci. Rep. 6, 1–15 (2016).Article
CAS
Google Scholar
96.Klemola, T., Korpimaki, E. & Koivula, M. Rate of population change in voles from different phases of the population cycle. Oikos 96, 291–298 (2002).Article
Google Scholar More