Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil
1.CONAB—Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos. V.7 – SAFRA 2019/20 – N. 12 – Décimo segundo levantamento. https://www.conab.gov.br/info-agro/safras (2020).2.Panizzi, A. R. & Corrêa-Ferreira, B. S. Dynamics in the insect fauna adaption to soybeans in the tropics. Trends Entomol. 1, 71–88 (1997).
Google Scholar
3.Cattelan, A. J. & Dall’Agnol, A. The rapid soybean growth in Brazil. Oilseeds Fats Crops Lipids 25, D102 (2018).
Google Scholar
4.Freitas, P. L. & Landers, J. N. The transformation of agriculture in Brazil through development and adoption of Zero Tillage Conservation Agriculture. Int. Soil Wat. Cons. Res. 2, 35–46 (2014).
Google Scholar
5.Brookes, G., Taheripour, F. & Tyner, W. E. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8, 216–228 (2017).PubMed
PubMed Central
Article
Google Scholar
6.Bueno, R. C. O. F., Bueno, A. F., Moscardi, F., Parra, J. R. P. & Hoffmann-Campo, C. B. Lepidopteran larva consumption of soybean foliage: Basis for developing multiple-species economic thresholds for pest management decisions. Pest Manag. Sci. 67, 170–174 (2011).CAS
PubMed
Article
Google Scholar
7.Panizzi, A. R. History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop. Entomol. 42, 119–127 (2013).CAS
PubMed
Article
Google Scholar
8.Bortolotto, A. et al. The use of soybean integrated pest management in Brazil: A review. Embrapa Soja-Artigo em periódico indexado (ALICE) Agron. Sci. Biotechnol. 1, 25–32 (2015).
Google Scholar
9.CIB; AGROCONSULT. Impactos Econômicos e Sócio-ambientais da Tecnologia de Plantas Resistentes a Insetos no Brasil – Análise Histórica, Perspectivas e Desafios Futuros. http://apps.agr.br/wp-content/uploads/2018/12/Impactos-do-Milho-Bt-no-Brasil.pdf (2018).10.Brookes, G. The farm level economic and environmental contribution of Intacta soybeans in South America: The first five years. GM Crops Food 9, 140–151 (2018).PubMed
PubMed Central
Article
Google Scholar
11.Macrae, T. C. et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J. Econ. Entomol. 98, 577–587 (2005).PubMed
Article
Google Scholar
12.Bernardi, O. et al. Assessment of the high-dose concept and level of control provided by MON 87701× MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).CAS
PubMed
Article
Google Scholar
13.Bernardi, O. et al. High levels of biological activity of Cry1Ac protein expressed on MON 87701× MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag. Sci. 70, 588–594 (2014).CAS
PubMed
Article
Google Scholar
14.Dourado, P. M. et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS ONE 11, e0161388 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Bernardi, O. et al. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 58, 33–40 (2014).CAS
Article
Google Scholar
16.Edgerton, M. D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).CAS
PubMed
Article
Google Scholar
17.Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).ADS
CAS
PubMed
Article
Google Scholar
18.Carrière, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 100, 1519–1523 (2003).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
19.Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).ADS
CAS
PubMed
Article
Google Scholar
20.Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y. & Zhao, J. Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321, 1676–1678 (2008).ADS
CAS
PubMed
Article
Google Scholar
21.Dively, G. P. et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 115, 3320–3325 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Lu, Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 1151–1154 (2010).ADS
CAS
PubMed
Article
Google Scholar
23.Zhao, J. H., Ho, P. & Azadi, H. Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ. Monit. Assess. 173, 985–994 (2011).PubMed
Article
Google Scholar
24.Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).CAS
PubMed
Article
Google Scholar
25.Van Rensburg, J. B. J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).Article
Google Scholar
26.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).PubMed
Article
Google Scholar
27.Dhurua, S. & Gujar, G. T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).CAS
PubMed
Article
Google Scholar
28.Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
29.Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).ADS
Article
Google Scholar
30.Fatoretto, J. C., Michel, A. P., Silva Filho, M. C. & Silva, N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integr. Pest Manag. 8, 17 (2017).Article
Google Scholar
31.Silva, C. S. et al. Population expansion and genomic adaptation to agricultural environments of the soybean looper, Chrysodeixis includens. Evol. Appl. 13, 2071–2085 (2020).PubMed
PubMed Central
Article
Google Scholar
32.Herzog, D. C. Sampling soybean looper on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 141–168 (Springer, 1980).Chapter
Google Scholar
33.Sosa-Gómez, D. R. et al. Manual de Identificação de Insetos e Outros Invertebrados da Cultura da Soja (Embrapa Soja-Documentos (INFOTECA-E), 2014).
Google Scholar
34.Gilligan, T. M. & Passoa, S. C. LepIntercept–An identification resource for intercepted Lepidoptera larvae. (Identification Technology Program (ITP), 2014). http://idtools.org/id/leps/lepintercept/key.html.35.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.36.Kaster, M. & Farias, J. R. B. Regionalização dos Testes de Valor de Cultivo e Uso e da indicação de Cultivares de Soja-terceira Aproximação (Embrapa Soja-Documentos (INFOTECA-E), 2012).
Google Scholar
37.Sosa-Gómez, D. R., Delpin, K. E., Moscardi, F. & Nozaki, M. D. H. The impact of fungicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop. Entomol. 32, 287–291 (2003).Article
Google Scholar
38.Specht, A., Paula-Moraes, S. V. & Sosa-Gómez, D. R. Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae). Rev. Bras. Entomol. 59, 343–345 (2015).Article
Google Scholar
39.Andrade, K. et al. Bioecological characteristics of Chrysodeixis includens (Lepidoptera: Noctuidae) fed on different hosts. Austral. Entomol. 55, 449–454 (2016).Article
Google Scholar
40.Moonga, M. N. & Davis, J. A. Partial life history of Chrysodeixis includens (Lepidoptera: Noctuidae) on summer hosts. J. Econ. Entomol. 109, 1713–1719 (2016).CAS
PubMed
Article
Google Scholar
41.Specht, A. et al. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 19, 8 (2019).PubMed
PubMed Central
Article
Google Scholar
42.Zulin, D., Ávila, C. J. & Schlick-Souza, E. C. Population fluctuation and vertical distribution of the soybean looper (Chrysodeixis includes) in soybean culture. Am. J. Plant Sci. 9, 1544–1556 (2018).Article
Google Scholar
43.Stacke, R. F. et al. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere 259, 127499 (2020).ADS
CAS
PubMed
Article
Google Scholar
44.Stacke, R. F. et al. Inheritance of lambda-cyhalothrin resistance, fitness costs and cross-resistance to other pyrethroids in soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). Crop Prot. 131, 105096 (2020).CAS
Article
Google Scholar
45.Yano, S. A. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2016).CAS
PubMed
Article
Google Scholar
46.Silva, M. T. B. & Moscardi, F. Field efficacy of the nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of formulations, water pH, volume and time of application, and type of spray nozzle. Neotrop. Entomol. 31, 75–83 (2002).Article
Google Scholar
47.Herzog, D. C. & Todd, J. W. Sampling velvetbean caterpillar on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 107–140 (Springer, 1980).Chapter
Google Scholar
48.Panizzi, A. R., Oliveira, L. J. & Silva, J. J. Survivorship, larval development and pupal weight of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) feeding on potential leguminous host plants. Neotrop. Entomol. 33, 563–567 (2004).Article
Google Scholar
49.Leite, N. A., Alves-Pereira, A., Corrêa, A. S., Zucchi, M. I. & Omoto, C. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil. PLoS ONE 9, e113286 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
50.Leite, N. A. et al. Pan-American similarities in genetic structures of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) with implications for hybridization. Environ. Entomol. 46, 1024–1034 (2017).CAS
PubMed
Article
Google Scholar
51.Sosa-Gómez, D. R. et al. Timeline and geographical distribution of Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae: Heliothinae) in Brazil. Rev. Bras. Entomol. 60, 101–104 (2016).Article
Google Scholar
52.Dourado, P. M. et al. Host plant use of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Brazilian agricultural landscape. Pest Manag. Sci. 77, 780–794 (2021).CAS
PubMed
Article
Google Scholar
53.Czepak, C., Albernaz, K. C., Vivan, L. M., Guimarães, H. O. & Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesqui. Agropecu. Trop. 43, 110–113 (2013).Article
Google Scholar
54.Gomes, E. S., Santos, V. & Ávila, C. J. Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomol. Sci. 20, 419–426 (2017).Article
Google Scholar
55.Luttrell, R. G. & Mink, J. S. Damage to cotton fruiting structures by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Cotton Sci. 3, 35–44 (1999).
Google Scholar
56.Martinelli, S., Barata, R. M., Zucchi, M. I., DeCastroSilva-Filho, M. & Omoto, C. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. J. Econ. Entomol. 99, 519–526 (2006).CAS
PubMed
Article
Google Scholar
57.Barros, E. M., Torres, J. B., Ruberson, J. R. & Oliveira, M. D. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Ent. Exp. Appl. 137, 237–245 (2010).Article
Google Scholar
58.Silva, D. M. D. et al. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 74, 18–31 (2017).Article
Google Scholar
59.Machado, E. P. et al. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Sci. Rep. 10, 1–9 (2020).Article
CAS
Google Scholar
60.Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).Article
Google Scholar
61.Nagoshi, R. N. & Meagher, R. L. Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554 (2008).
Google Scholar
62.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
63.Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest Sci. 92, 429–441 (2019).Article
Google Scholar
64.Diez-Rodríguez, G. I. & Omoto, C. Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina. Neotrop. Entomol. 30, 311–316 (2001).Article
Google Scholar
65.Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S. & Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 8, e62268 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
66.Nascimento, A. R. B. et al. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Manag. Sci. 72, 810–815 (2016).PubMed
Article
CAS
Google Scholar
67.Okuma, D. M. et al. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to Spinosad in Brazil. Pest Manag. Sci. 74, 1441–1448 (2018).CAS
PubMed
Article
Google Scholar
68.Bolzan, A. et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag. Sci. 75, 2682–2689 (2019).CAS
PubMed
Article
Google Scholar
69.Lira, E. C. et al. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Manag. Sci. 76, 2674–2680 (2020).CAS
PubMed
Article
Google Scholar
70.Paulillo, L. C. M. et al. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. J. Econ. Entomol. 93, 892–896 (2000).CAS
PubMed
Article
Google Scholar
71.Silva-Brandão, K. L. et al. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genom. 18, 1–15 (2017).Article
CAS
Google Scholar
72.Montezano, D. G., Specht, A., Sosa-Gomez, D. R., Roque-Specht, V. F. & Barros, N. M. Immature stages of Spodoptera eridania (Lepidoptera: Noctuidae): Developmental parameters and host plants. J. Insect Sci. 14, 238 (2014).PubMed
PubMed Central
Article
Google Scholar
73.Santos, K. B., Meneguim, A. M. & Neves, P. M. O. J. Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotrop. Entomol. 34, 903–910 (2005).Article
Google Scholar
74.Justiniano, W., Fernandes, M. G. & Viana, C. L. T. P. Diversity, composition and population dynamics of arthropods in the genetically modified soybeans Roundup Ready® RR1 (GT 40-3-2) and Intacta RR2 PRO (MON87701 x MON89788). J. Agric. Sci. 6, 33 (2014).
Google Scholar
75.Specht, A. et al. Owlet moths (Lepidoptera: Noctuoidea) associated with Bt and non-Bt soybean in the Brazilian savanna. Braz. J. Biol. 79, 248–256 (2019).PubMed
Article
Google Scholar
76.Specht, A. & Roque-Specht, V. F. Immature stages of Spodoptera cosmioides (Lepidoptera: Noctuidae): Developmental parameters and host plants. Zoologia 33, e20160053 (2016).Article
Google Scholar
77.Habib, M. E. M., Paleari, M. L. & Amaral, M. E. C. Effect of three larval diets on the development of the armyworm, Spodoptera latifascia Walker, 1856 (Lepidoptera: Noctuidae). Rev. Bras. Zool. 1, 177–182 (1983).Article
Google Scholar
78.Silva, D. M. et al. Biology of Spodoptera eridania and Spodoptera cosmioides (Lepidoptera: Noctuidae) on different host plants. Fla. Entomol. 100, 752–760 (2017).Article
Google Scholar
79.Tomquelski, G. V. & Maruyama, L. C. T. Lagarta-da-macã em soja. Rev. Cultiv. 117, 20–22 (2009).
Google Scholar
80.Blanco, C. A. Heliothis virescens and Bt cotton in the United States. GM Crops Food 3, 201–212 (2012).PubMed
Article
Google Scholar
81.Barrionuevo, M. J., Murúa, M. G., Goane, L., Meagher, R. & Navarro, F. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Fla. Entomol. 95, 944–951 (2012).Article
Google Scholar
82.Specht, A. et al. Ocorrência de Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) em Fumo (Nicotiana tabacum L.) no Rio Grande do Sul. Neotrop. Entomol. 35, 705–706 (2006).PubMed
Article
Google Scholar
83.Trentin, L. B. et al. The complete genome of Rachiplusia nu nucleopolyhedrovirus (RanuNPV) and the identification of a baculoviral CPD-photolyase homolog. Virology 534, 64–71 (2019).CAS
PubMed
Article
Google Scholar
84.Perini, C. R. et al. Genetic structure of two Plusiinae species suggests recent expansion of Chrysodeixis includens in the American continent. Agric. For. Entomol. 23, 2502–3260 (2020).
Google Scholar
85.Bacalhau, F. B. et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key Lepidopteran pests in Brazil. J. Econ. Entomol. 113, 2883–2889 (2020).PubMed
Article
Google Scholar
86.Machado, E. P. et al. Survival and development of Spodoptera eridania, Spodoptera cosmioides and Spodoptera albula (Lepidoptera: Noctuidae) on genetically-modified soybean expressing Cry1Ac and Cry1F proteins. Pest Manag. Sci. 76, 4029–4035 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Horikoshi, R. J. et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: Implications for resistance management. Sci. Rep. 6, 1–8 (2016).Article
CAS
Google Scholar More