1.Litchman, E., Ohman, M. D. & Kiørboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484. https://doi.org/10.1093/plankt/fbt019 (2013).Article
Google Scholar
2.Kiørboe, T. & Hirst, A. G. Shifts in mass scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms. Am. Nat. 183, E118–E130. https://doi.org/10.1086/675241 (2014).Article
PubMed
Google Scholar
3.Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 1–25. https://doi.org/10.1146/annurev-marine-122414-034144 (2015).Article
Google Scholar
4.Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595–708 (1847).
Google Scholar
5.Woodson, C., Schramski, J. R. & Joye, S. B. A unifying theory for top-heavy ecosystem structure in the ocean. Nat. Commun. 9, 1–8. https://doi.org/10.1038/s41467-017-02450-y (2018).CAS
Article
Google Scholar
6.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 (2004).Article
Google Scholar
7.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. Trends Ecol. Evol. 26, 285–291. https://doi.org/10.1016/j.tree.2011.03.005 (2011).Article
PubMed
Google Scholar
8.Angilletta, M. J., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509. https://doi.org/10.1093/icb/44.6.498 (2004).Article
PubMed
Google Scholar
9.Atkinson, D. Temperature and organism size: A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58. https://doi.org/10.1016/S0065-2504(08)60212-3 (1994).Article
Google Scholar
10.Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239. https://doi.org/10.1016/S0169-5347(97)01058-6 (1997).CAS
Article
PubMed
Google Scholar
11.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359. https://doi.org/10.1126/science.1261359 (2015).CAS
Article
PubMed
Google Scholar
12.Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms?. Glob. Ecol. Biogeogr. 28, 64–77. https://doi.org/10.1111/geb.12847 (2018).Article
Google Scholar
13.Begon, M., Townsend, C. R. & Harper, J. L. Ecology: From Individuals to Ecosystems 4th edn. (Blackwell Publishing, New York, 2006).
Google Scholar
14.Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T. J. & Barlow, R. G. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 112, 3153–3159. https://doi.org/10.1016/j.rse.2008.03.011 (2008).ADS
Article
Google Scholar
15.Kostadinov, T., Siegel, D. & Maritorena, S. Global variability of phytoplankton functional types from space: Assessment via the particle size distribution. Biogeosciences 7, 3239–3257. https://doi.org/10.5194/bg-7-3239-2010 (2010).ADS
Article
Google Scholar
16.Brun, P., Payne, M. R. & Kiørboe, T. Trait biogeography of marine copepods: An analysis across scales. Ecol. Lett. 19, 1403–1413. https://doi.org/10.1111/ele.12688 (2016).Article
PubMed
Google Scholar
17.Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999. https://doi.org/10.1111/geb.12460 (2016).Article
Google Scholar
18.Garzke, J., Hansen, T., Ismar, S. M. H. & Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11, e0155952. https://doi.org/10.1371/journal.pone.0155952 (2006).CAS
Article
Google Scholar
19.Stelzer, C. P. Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: Mechanisms and adaptive significance. Funct. Ecol. 16, 835–841. https://doi.org/10.1046/j.1365-2435.2002.00693.x (2002).Article
Google Scholar
20.Riemer, K., Anderson-Teixeira, K. J., Smith, F. A., Harris, D. J. & Ernest, S. K. M. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Global Ecol. Biogeogr. 27, 958–967. https://doi.org/10.1111/geb.12757 (2018).Article
Google Scholar
21.Gorsky, G. et al. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32, 285–303. https://doi.org/10.1093/plankt/fbp124 (2010).Article
Google Scholar
22.Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097. https://doi.org/10.1016/j.cell.2019.10.008 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
23.Hoefnagel, K. N. & Verberk, W. C. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?. J. Therm. Biol. 54, 56–65. https://doi.org/10.1016/j.jtherbio.2014.12.003 (2015).Article
PubMed
Google Scholar
24.Wojewodzic, M. W., Kyle, M., Elser, J. J., Hessen, D. O. & Andersen, T. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna. Oecologia 165, 837–846. https://doi.org/10.1007/s00442-010-1863-2 (2011).ADS
Article
PubMed
Google Scholar
25.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251. https://doi.org/10.1126/science.1061967 (2001).ADS
CAS
Article
PubMed
Google Scholar
26.Czarnoleski, M., Ejsmont-Karabin, J., Angilletta, M. K. & Kozlowski, J. Colder rotifers grow larger but only in oxygenated waters. Ecosphere 6, 1–5. https://doi.org/10.1890/ES15-00024.1 (2015).Article
Google Scholar
27.Kiørboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x (2011).Article
PubMed
Google Scholar
28.Benedetti, F., Gasparini, S. & Ayata, S.-D. Identifying copepod functional groups from species functional traits. J. Plankton Res. 38, 159–166. https://doi.org/10.1093/plankt/fbv096 (2016).Article
PubMed
Google Scholar
29.Brun, P., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113. https://doi.org/10.5194/essd-9-99-2017 (2017).ADS
Article
Google Scholar
30.Anderson, T. R. Plankton functional type modelling: Running before we can walk?. J. Plankton Res. 27, 1073–1081. https://doi.org/10.1093/plankt/fbi076 (2005).ADS
Article
Google Scholar
31.Biard, T. et al. In situ observations unveil an unexpectedly large biomass of Radiolaria and Phaeodaria (Rhizaria) in the oceans. Nature 532, 504–507. https://doi.org/10.1038/nature17652 (2016).ADS
CAS
Article
PubMed
Google Scholar
32.Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396. https://doi.org/10.5194/bg-16-3377-2019 (2019).ADS
CAS
Article
Google Scholar
33.Rink, S., Kühl, M., Bijma, J. & Spero, H. J. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583–595. https://doi.org/10.1007/s002270050350 (1998).Article
Google Scholar
34.Lombard, F., Erez, J., Michel, E. & Labeyrie, L. Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnol. Oceanogr. 54, 210–218. https://doi.org/10.4319/lo.2009.54.1.0210 (2009).ADS
CAS
Article
Google Scholar
35.Lesser, M. P. Coral Bleaching: Causes and Mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, 2011).
Google Scholar
36.Villar, E. et al. Symbiont chloroplasts remain active during bleaching-like response induced by thermal stress in Collozoum pelagicum (Collodaria, Retaria). Front. Mar. Sci. 5, 387. https://doi.org/10.3389/fmars.2018.00387 (2018).Article
Google Scholar
37.Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer-Verlag, 1989).Book
Google Scholar
38.Suzuki, N. & Not, F. Biology and ecology of radiolaria. In Marine Protists: Diversity and Dynamics (eds Ohtsuka, S. et al.) (Springer, 2015).
Google Scholar
39.de Puelles, F. et al. Zooplankton abundance and diversity in the tropical and subtropical ocean. Diversity 11, 203. https://doi.org/10.3390/d11110203 (2019).CAS
Article
Google Scholar
40.Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. PNAS 107, 10120–10124. https://doi.org/10.1073/pnas.0913855107 (2010).ADS
Article
PubMed
PubMed Central
Google Scholar
41.Brun, P. et al. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3, 416–423. https://doi.org/10.1038/s41559-018-0780-3 (2019).Article
PubMed
Google Scholar
42.Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cyc. 33, 458–468. https://doi.org/10.1029/2018GB006110 (2019).ADS
CAS
Article
Google Scholar
43.Follows, M. J., Dutkiewicz, J., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846. https://doi.org/10.1126/science.1138544 (2007).ADS
CAS
Article
PubMed
Google Scholar
44.Ward, B. A., Dutkiewicz, S., Jahn, O. & Follows, J. F. A size-structured food-web model for the global ocean. Limnol. Oceanogr. 57, 1877–1891. https://doi.org/10.4319/lo.2012.57.6.1877 (2012).ADS
Article
Google Scholar
45.Sailley, S. F. et al. Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecol. Model. 261, 43–57. https://doi.org/10.1016/j.ecolmodel.2013.04.006 (2013).Article
Google Scholar
46.Le Quéré, C. et al. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13, 4111–4133. https://doi.org/10.5194/bg-13-4111-2016 (2016).ADS
CAS
Article
Google Scholar
47.Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355–358. https://doi.org/10.1038/nclimate3265 (2017).ADS
CAS
Article
Google Scholar
48.Sunagawa, S. et al. Tara Oceans: Towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445. https://doi.org/10.1038/s41579-020-0364-5 (2020).CAS
Article
PubMed
Google Scholar
49.Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023. https://doi.org/10.1038/sdata.2015.23 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
50.Picheral, M. et al. Vertical profiles of environmental parameters measured on discrete water samples collected with Niskin bottles at station TARA_147 during the Tara Oceans expedition 2009–2013. PANGAEA https://doi.org/10.1594/PANGAEA.839235 (2014).51.Guidi, L. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about sensor data in the targeted environmental feature. PANGAEA https://doi.org/10.1594/PANGAEA.875576 (2017).52.Guidi, L. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about pigment concentrations (HPLC) in the targeted environmental feature. PANGAEA https://doi.org/10.1594/PANGAEA.875569 (2017).53.Guidi, L. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about nutrients in the targeted environmental feature. PANGAEA https://doi.org/10.1594/PANGAEA.875575 (2017).54.Speich, S. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about the water column features at the sampling location. PANGAEA https://doi.org/10.1594/PANGAEA.875579 (2017).55.de Boyer-Montegut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003. https://doi.org/10.1029/2004JC002378 (2004).ADS
Article
Google Scholar
56.Aminot, A., Kérouel, R. & Coverly, S. C. Nutrients in seawater using segmented flow analysis. In Practical Guidelines for the Analysis of Seawater (ed. Wurl, O.) (CRC Press, 2009).
Google Scholar
57.Uitz, J., Claustre, H., Morel, A. & Hooker, S. B. Vertical distribution of phytoplankton communities in Open Ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 111, C08005. https://doi.org/10.1029/2005JC003207 (2006).ADS
Article
Google Scholar
58.Pante, E. & Simon-Bouhet, B. marmap: A Package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
59.Picheral, M., Colin, S. & Irisson J.-O. EcoTaxa, A Tool for the Taxonomic Classification of Images. http://ecotaxa.obs-vlfr.fr (2017).60.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book
Google Scholar
61.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article
Google Scholar
62.Giorgino, T. Computing and visualizing dynamic time warping alignments in R: The dtw package. J. Stat. Softw. 31, 1–24. https://doi.org/10.18637/jss.v031.i07 (2009).Article
Google Scholar
63.Park, H.-S. & Jun, C.-H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 36, 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039 (2009).Article
Google Scholar
64.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.65.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).ADS
Article
Google Scholar
66.Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1–40, https://CRAN.R-project.org/package=HH (2020).67.Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article
Google Scholar
68.Sarda-Espinosa, A. dtwclust: Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance. R package version 5.5.6, https://CRAN.R-project.org/package=dtwclust (2019). More