Habitat suitability mapping of the black coral Leiopathes glaberrima to support conservation of vulnerable marine ecosystems
1.Bo, M. et al. Characteristics of a black coral meadow in the twilight zone of the Central Mediterranean Sea. Mar. Ecol. Prog. Ser. 397, 53–61 (2009).ADS
Article
Google Scholar
2.Fabri, M. et al. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep Sea Res. Part II Top. Stud. Oceanogr. 104, 184–207 (2014).ADS
Article
Google Scholar
3.Opresko, D. M. & Baron-Szabo, R. Re-descriptions of the antipatharian corals described by E. J. C. ESPER with selected English translations of the original German text (Cnidaria, Anthozoa, Antipatharia). Senckenb. Biol. 81, 1–21 (2019).
Google Scholar
4.Molodstova, T. N. Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Antipatharia. Invertebr. Zool. 11, 3–7 (2014).Article
Google Scholar
5.IUCN. No Title. (2020). Available at: http://www.iucn.it/scheda.php?id=-512293580. Accessed: 27th August 2020.6.Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. 19 Occurrence and Biogeography of Mediterranean Cold-Water Corals. (2019). https://doi.org/10.1007/978-3-319-91608-8_197.Bo, M. et al. Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia). PLoS ONE 10, 1–21 (2015).Article
CAS
Google Scholar
8.Cau, A. et al. Leiopathes glaberrima millennial forest from SW Sardinia as nursery ground for the small spotted catshark Scyliorhinus canicula. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 731–735 (2017).Article
Google Scholar
9.D’Onghia, G. Cold-water corals as shelter, feeding and life-history critical habitats for fish species: Ecological interactions and fishing impact. In Mediterranean cold-water corals: Past, present and future (eds. Covadonga, O. & Jiménez, C.) 335–356 (Springer, 2019).10.Etnoyer, P. J. et al. Models of habitat suitability, size, and age-class structure for the deep-sea black coral Leiopathes glaberrima in the Gulf of Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 150, 218–228 (2018).ADS
Article
Google Scholar
11.Vitale, S. et al. Black coral age and growth validation using 14C dating in the central Mediterranean Sea. In 2nd international radiocarbon in the environment conference (2017).12.Carlier, A. et al. Trophic relationships in a deep mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian sea). Mar. Ecol. Prog. Ser. 397, 125–137 (2009).ADS
CAS
Article
Google Scholar
13.Wagner, D., Luck, D. G. & Toonen, R. J. The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia. Adv. Mar. Biol. 63, 67–132 (2012).PubMed
Article
PubMed Central
Google Scholar
14.Bo, M. et al. Deep coral oases in the South Tyrrhenian Sea. PLoS ONE 7, e49870 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
15.Mytilineou, C., Smith, C., Anastasopoulou, A., Papadopoulou, K. & Christidis, G. New cold-water coral occurrences in the Eastern Ionian Sea: Results from experimental long line fishing. Deep. Res. Part I Oceanogr. Res. Pap. 99, 146–157 (2014).ADS
Google Scholar
16.Angeletti, L. et al. First report of live deep water cnidarian assemblages from the Malta Escarpment. Ital. J. Zool. 82, 291–297 (2015).
Google Scholar
17.Costantini, F., Fauvelot, C. & Abbiati, M. Fine-scale genetic structuring in Corallium rubrum: Evidence of inbreeding and limited effective larval dispersal. Mar. Ecol. Prog. Ser. 340, 109–119 (2007).ADS
CAS
Article
Google Scholar
18.Miller, K. Short-distance dispersal of black coral larvae:inference from spatial analysis of colony genotypes. Mar. Ecol. Prog. Ser. 171, 225–233 (1998).ADS
Article
Google Scholar
19.Bo, M. et al. The coral assemblages of an off-shore deep Mediterranean rocky bank (NW Sicily, Italy). Mar. Ecol. 35, 332–342 (2014).ADS
Article
Google Scholar
20.Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Conserv. 171, 167–176 (2014).Article
Google Scholar
21.Deidun, A., Tsounis, G., Balzan, F. & Micallef, A. Records of black coral (Antipatharia) and red coral (Corallium rubrum) fishing activities in the Maltese Islands. Mar. Bioldivers. Rec. 3, 1–6 (2010).Article
Google Scholar
22.Tsounis, G. et al. The exploitation and conservation of precious corals. Oceanogr. Mar. Biol. An Annu. Rev. 48, 161–211 (2010).Article
Google Scholar
23.Deidun, A. et al. First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Ital. J. Zool. 82, 271–280 (2015).
Google Scholar
24.Thompson, A., Sanders, J., Tandstad, M., Carocci, F. & Fuller, M. Vulnerable Marine Ecosystems: Processes and Practices in the High Seas (2016).25.Fabri, M. C. et al. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep. Res. Part II Top. Stud. Oceanogr. 104, 184–207 (2014).ADS
Article
Google Scholar
26.Pearson, R. G. Species distribution modeling for conservation educators and practitioners synthesis. In (2008).27.Sundahl, H., Buhl-Mortensen, P. & Buhl-Mortensen, L. Distribution and Suitable Habitat of the Cold-Water Corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar. Sci. 7, 1–22 (2020).Article
Google Scholar
28.Tittensor, D. P. et al. Predicting global habitat suitability for stony corals on seamounts. J. Biogeogr. 36, 1111–1128 (2009).Article
Google Scholar
29.Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
30.Bargain, A. et al. Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Prog. Oceanogr. 169, 151–168 (2018).ADS
Article
Google Scholar
31.Lauria, V. et al. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Sci. Rep. 7, 1–14 (2017).CAS
Article
Google Scholar
32.Massi, D. et al. Spatial distribution of the black coral Leiopathes glaberrima (Esper, 1788) (Antipatharia: Leiopathidae) in the Mediterranean: A prerequisite for protection of Vulnerable Marine Ecosystems (VMEs). Eur. Zool. J. 85, 170–179 (2018).Article
Google Scholar
33.Hayes, D. R. et al. Review of the circulation and characteristics of intermediate water masses of the mediterranean: Implications for cold-water coral habitats. In Mediterranean cold-water corals: Past, present and future (eds. Orejas, C. & Jiménez, C.) 195–212 (Springer, 2019).34.Pinardi, N. & Masetti, E. Variabilityofthelarge-scalegeneralcirculationofthe, MediterraneanSeafromobservationsandmodelling:areview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 153–173 (2000).Article
Google Scholar
35.Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).ADS
Article
Google Scholar
36.Astraldi, M. et al. Water mass properties and chemical signatures in the central Mediterranean region. J. Mar. Syst. 133–134, 155–177 (2002).Article
Google Scholar
37.Taviani, M. et al. The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep. Res. Part II Top. Stud. Oceanogr. 145, 61–78 (2017).ADS
Article
Google Scholar
38.EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM 2016). EMODnet Bathymetry Consortium (2016). https://doi.org/10.12770/c7b53704-999d-4721-b1a3-04ec60c87238.39.McArthur, M. et al. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 88, 21–32 (2010).ADS
Article
Google Scholar
40.Lauria, V. et al. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Sci. Rep. 7, 8049 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
41.Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35 (2007).Article
Google Scholar
42.Tong, R., Purser, A., Unnithan, V. & Guinan, J. Multivariate statistical analysis of distribution of deep-water gorgonian corals in relation to seabed topography on the norwegian margin. PLoS ONE 7, 1–13 (2012).
Google Scholar
43.Savini, A., Vertino, A., Marchese, F., Beuck, L. & Freiwald, A. Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (central Mediterranean): An assessment of coral coverage and associated vulnerability. PLoS ONE 9, e102405 (2014).Article
CAS
Google Scholar
44.Sbrocco, E. & Barber, P. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979 (2013).Article
Google Scholar
45.White, M., Mohn, C., Stigter, H. & Mottram, G. Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In eds. Freiwald, A. & Robert, JM. 503−514 (2005).46.Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol. Oceanogr. 54, 620–629 (2009).ADS
Article
Google Scholar
47.Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 system). (2019).48.Guinotte, J. Climate change and deep-sea corals. J. Mar. Educ. 21, 48–49 (2005).
Google Scholar
49.Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data. (Springer2007).50.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
51.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).Article
Google Scholar
52.Tong, Y., Chen, X. & Chen, Y. Evaluating alternative management strategies for bigeye tuna, Thunnus obesus in the Indian Ocean. Sci. Mar. 77, 449–460 (2013).Article
Google Scholar
53.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article
Google Scholar
54.Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article
Google Scholar
55.Bargain, A., Marchese, F., Savini, A., Taviani, M. & Fabri, M. C. Santa Maria di Leuca province (Mediterranean Sea): Identification of suitable mounds for cold-water coral settlement using geomorphometric proxies and maxent methods. Front. Mar. Sci. 4, 1–17 (2017).Article
Google Scholar
56.Fabri, M. C., Bargain, A., Pairaud, I., Pedel, L. & Taupier-Letage, I. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions. Deep. Res. Part II Top. Stud. Oceanogr. 137, 436–453 (2017).ADS
Article
Google Scholar
57.Phillips, S. J. & Dudı, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. 161–175 (2008). https://doi.org/10.1111/j.2007.0906-7590.05203.x58.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article
Google Scholar
59.Phillips, S. J. & Dudik, M. Modeling of species distributions withMaxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).Article
Google Scholar
60.Young, N., Lane, C. & Evangelista, P. A MaxEnt Model Tutorial (ArcGISv10) (2011).61.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. Opening the black box: an open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).Article
Google Scholar
62.Mytilineou, C. et al. New cold-water coral occurrences in the Eastern Ionian Sea: Results from experimental long line fishing. Deep. Res. Part II Top. Stud. Oceanogr. 99, 146–157 (2014).ADS
Article
Google Scholar
63.Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. Coral reefs of the world. In Mediterranean cold-water corals: Past; present and future (eds. Orejas, C. & Jiménez C.) 213–243 (Springer, 2019).64.Mascle, J., Migeon, S., Coste, M., Hassoun, V. & Rouillard, P. Rocky vs sedimentary canyons around the mediterranean sea and the black sea. In Submarine canyon dynamics in the mediterranean and tributary seas—An integrated geological, oceanographic and biological perspective CIESM (ed. Briand, F.) (2015).65.Canals, M. et al. Flushing submarine canyons. Nature 444, 354–357 (2006).ADS
CAS
PubMed
Article
Google Scholar
66.Huvenne, V. A. I. et al. picture on the wall: innovative mapping reveals coldwater coral refuge in submarine canyon. PLoS ONE 6, e28755 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
67.Bo, M. et al. Coral assemblages off the Calabrian Coast (South Italy) with new observations on living colonies of Antipathes dichotoma. Ital. J. Zool. 78, 231–242 (2010).Article
Google Scholar
68.Freiwald, A. & Roberts, M. J. Cold-water corals and ecosystems: preface. In Cold-water corals and ecosystems (ed. Freiwald, A. R.) 1243 (Springer, 2005).69.Khripounoff, A. et al. Deep cold-water coral ecosystems in the Brittany submarine canyons (Northeast Atlantic): Hydrodynamics, particle supply, respiration, and carbon cycling. Limnol. Oceanogr. 59, 87–98 (2014).ADS
CAS
Article
Google Scholar
70.Davies, A. J., Wisshak, M., Orr, J. C. & Murray Roberts, J. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep. Res. Part I Oceanogr. Res. Pap. 55, 1048–1062 (2008).ADS
Article
Google Scholar
71.Greathead, C. F., Donnan, D. W., Mair, J. M. & Saunders, G. R. The sea pens Virgularia mirabilis, Pennatula phosphorea and Funiculina quadrangularis: Distribution and conservation issues in Scottish waters. J. Mar. Biol. Assoc. UK 87, 1095–1103 (2007).Article
Google Scholar
72.Barry, S. & Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 43, 413–423 (2006).Article
Google Scholar
73.Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 763–773 (2008).74.Parolo, G., Rossi, G. & Ferrarini, A. oward improved species niche mod-elling: arnica montana in the Alps as a case study. J. Appl. Ecol. 45, 1410–1418 (2008).Article
Google Scholar
75.Gogol-Prokurat, M. Predicting habitat suitability for rare plants at localspatial scales using a species distribution model. Ecol. Appl. 21, 33–47 (2011).PubMed
Article
Google Scholar
76.Bean, W. T., Stafford, R. & Brashares, J. S. he effects of small sample sizeand sample bias on threshold selection and accuracy assessment of species dis-tribution models. Ecography (Cop.) 35, 250–258 (2012).Article
Google Scholar
77.Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ (2017).78.Opresko, D. M. & Försterra, G. No Title. in El Mar Mediterraneo: fauna, flora, ecologia. (ed. Hofrichter, R.) 506–509 (2004).79.Aguilar, R. & Marín, P. Mediterranean deep-sea corals : reasons protection under the Barcelona Convention. 1–18 (2013).80.FAO. International Guidelines for the Management of Deep-sea Fisheries in the High Seas. 73 (2009).81.Marin, P. & Aguilar, R. Mediterranean submarine canyons 2012: pending protection. in Mediterranean Submarine Canyons: Ecology and Governance 191–206 (IUCN, 2012).82.Thurstan, R. H., Brockington, S. & Roberts, C. M. The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat. Commun. 1, 1–6 (2010).CAS
Article
Google Scholar
83.Worm, B. & Tittensor, D. P. Range contraction in large pelagic predators. Proc. Natl. Acad. Sci. USA 108, 11942–11947 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
84.Gross, M. Deep sea in deep trouble?. Curr. Biol. 25, 1019-R1021 (2015).Article
CAS
Google Scholar
85.Morato, T., Watson, R., Pitcher, T. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).Article
Google Scholar
86.Roberts, C. M. Deep impact: The rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).MathSciNet
Article
Google Scholar More