Hybridization with mountain hares increases the functional allelic repertoire in brown hares
1.Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. S. 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317 (2009).Article
Google Scholar
2.Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185, E81-93. https://doi.org/10.1086/680220 (2015).Article
PubMed
Google Scholar
3.MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Chang. Biol 23, 4094–4105. https://doi.org/10.1111/gcb.13736 (2017).ADS
Article
PubMed
Google Scholar
4.Reid, N. European hare (Lepus europaeus) invasion ecology: Implication for the conservation of the endemic Irish hare (Lepus timidus hibernicus). Biol. Invas. 13, 559–569. https://doi.org/10.1007/s10530-010-9849-x (2011).Article
Google Scholar
5.Thulin, C.-G. The distribution of mountain hares (Lepus timidus, L. 1758) in Europe: A challenge from brown hares (L. europaeus, Pall 1778)?. Mammal Rev. 33, 29–42. https://doi.org/10.1046/j.1365-2907.2003.00008.x (2003).Article
Google Scholar
6.Levanen, R., Kunnasranta, M. & Pohjoismaki, J. Mitochondrial DNA introgression at the northern edge of the brown hare (Lepus europaeus) range. Ann. Zool. Fenn. 55, 15–24 (2018).Article
Google Scholar
7.Lönnberg, D. On hybrids between Lepus timidus L. and Lepus europeus Pall. from southern Sweden. Proc. Zool. Soc. Lond. 1, 278–287 (1905).
Google Scholar
8.Thenius, E. Grundzüge der Faunen- und Verbreitungsgesichte der Säugetiere (Gustav Fisher Verlag, 1980).
Google Scholar
9.Levanen, R., Thulin, C. G., Spong, G. & Pohjoismaki, J. L. O. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PLoS ONE https://doi.org/10.1371/journal.pone.0191790 (2018).Article
PubMed
PubMed Central
Google Scholar
10.Angerbjorn, A. & Flux, J. E. C. Lepus timidus. Mammalian Sp. 495, 1–11 (1995).
Google Scholar
11.Ferreira, M. S. et al. The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Mol. Ecol. 26, 4173–4185. https://doi.org/10.1111/mec.14177 (2017).Article
PubMed
Google Scholar
12.Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358. https://doi.org/10.1126/science.aar5273 (2018).ADS
CAS
Article
PubMed
Google Scholar
13.Cheng, E., Hodges, K. E., Melo-Ferreira, J., Alves, P. C. & Mills, L. S. Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Mol. Ecol. 23, 2929–2942. https://doi.org/10.1111/mec.12790 (2014).CAS
Article
PubMed
Google Scholar
14.Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. Convergent evolution of seasonal camouflage in response to reduced snow cover across the snowshoe hare range. Evolution 74, 2033–2045. https://doi.org/10.1111/evo.13976 (2020).CAS
Article
PubMed
Google Scholar
15.Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. The origin and spread of locally adaptive seasonal camouflage in snowshoe hares. Am. Nat. 196, 316–332. https://doi.org/10.1086/710022 (2020).Article
PubMed
Google Scholar
16.Ferreira, M. S. et al. Transcriptomic regulation of seasonal coat color change in hares. Ecol. Evol. 10, 1180–1192. https://doi.org/10.1002/ece3.5956 (2020).Article
PubMed
PubMed Central
Google Scholar
17.Ferreira, M. S. et al. The legacy of recurrent introgression during the radiation of hares. Syst. Biol. 70, 593–607. https://doi.org/10.1093/sysbio/syaa088 (2021).Article
PubMed
Google Scholar
18.Giska, I. et al. Introgression drives repeated evolution of winter coat color polymorphism in hares. Proc. Natl. Acad. Sci. U.S.A. 116, 24150–24156. https://doi.org/10.1073/pnas.1910471116 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
19.Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307. https://doi.org/10.1111/ele.12568 (2016).Article
PubMed
Google Scholar
20.Zimova, M., Mills, L. S., Lukacs, P. M. & Mitchell, M. S. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proc. Biol. Sci. 281, 20140029. https://doi.org/10.1098/rspb.2014.0029 (2014).Article
PubMed
PubMed Central
Google Scholar
21.Zimova, M. et al. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc. Biol. Sci. 287, 20201786. https://doi.org/10.1098/rspb.2020.1786 (2020).Article
PubMed
Google Scholar
22.Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37. https://doi.org/10.1016/j.cmet.2018.11.002 (2019).CAS
Article
PubMed
Google Scholar
23.Nowack, J., Giroud, S., Arnold, W. & Ruf, T. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front. Physiol. 8, 889. https://doi.org/10.3389/fphys.2017.00889 (2017).Article
PubMed
PubMed Central
Google Scholar
24.Hancock, A. M., Clark, V. J., Qian, Y. D. & Di Rienzo, A. Population genetic analysis of the uncoupling proteins supports a role for UCP3 in human cold resistance. Mol. Biol. Evol. 28, 601–614. https://doi.org/10.1093/molbev/msq228 (2011).CAS
Article
PubMed
Google Scholar
25.Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96, 7–21. https://doi.org/10.1038/sj.hdy.6800724 (2006).CAS
Article
Google Scholar
26.Sin, Y. W. et al. Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles). Mol. Ecol. 23, 5072–5088. https://doi.org/10.1111/mec.12917 (2014).CAS
Article
PubMed
Google Scholar
27.Borghans, J. A., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739. https://doi.org/10.1007/s00251-003-0630-5 (2004).CAS
Article
PubMed
Google Scholar
28.Apanius, V., Penn, D., Slev, P. R., Ruff, L. R. & Potts, W. K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 37, 75–120. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.10 (2017).Article
PubMed
Google Scholar
29.Manlik, O. et al. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol. Evol. 9, 6986–6998. https://doi.org/10.1002/ece3.5265 (2019).Article
PubMed
PubMed Central
Google Scholar
30.Radwan, J., Biedrzycka, A. & Babik, W. Does reduced MHC diversity decrease viability of vertebrate populations?. Biol. Conserv. 143, 537–544. https://doi.org/10.1016/j.biocon.2009.07.026 (2010).Article
PubMed
Google Scholar
31.Lan, H., Zhou, T., Wan, Q. H. & Fang, S. G. Genetic diversity and differentiation at structurally varying MHC haplotypes and microsatellites in bottlenecked populations of endangered crested ibis. Cells-Basel https://doi.org/10.3390/cells8040377 (2019).Article
Google Scholar
32.Cornetti, L., Hilfiker, D., Lemoine, M. & Tschirren, B. Small-scale spatial variation in infection risk shapes the evolution of a Borrelia resistance gene in wild rodents. Mol. Ecol. 27, 3515–3524. https://doi.org/10.1111/mec.14812 (2018).CAS
Article
PubMed
Google Scholar
33.Tschirren, B., Andersson, M., Scherman, K., Westerdahl, H. & Raberg, L. Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species. Evolution 66, 720–731. https://doi.org/10.1111/j.1558-5646.2011.01473.x (2012).CAS
Article
PubMed
Google Scholar
34.Mukherjee, S., Ganguli, D. & Majumder, P. P. Global footprints of purifying selection on Toll-like receptor genes primarily associated with response to bacterial infections in humans. Genome Biol. Evol. 6, 551–558. https://doi.org/10.1093/gbe/evu032 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
35.Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities?. Mol. Ecol. 21, 4942–4957. https://doi.org/10.1111/mec.12006 (2012).CAS
Article
PubMed
Google Scholar
36.Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323 (1973).ADS
CAS
Article
Google Scholar
37.Klein, J., Sato, A. & Nikolaidis, N. MHC, TSP, and the origin of species: From immunogenetics to evolutionary genetics. Annu. Rev. Genet. 41, 281–304. https://doi.org/10.1146/annurev.genet.41.110306.130137 (2007).CAS
Article
PubMed
Google Scholar
38.Surridge, A. K. et al. Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60, 515–525. https://doi.org/10.1007/s00251-008-0309-z (2008).CAS
Article
PubMed
Google Scholar
39.Smith, S., de Bellocq, J. G., Suchentrunk, F. & Schaschl, H. Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus. Immunogenetics 63, 743–751. https://doi.org/10.1007/s00251-011-0539-3 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
40.Excoffier, L., Hofer, T. & Foll, M. Detecting loci under selection in a hierarchically structured population. Heredity (Edinb) 103, 285–298. https://doi.org/10.1038/hdy.2009.74 (2009).CAS
Article
Google Scholar
41.Thulin, C. G., Jaarola, M. & Tegelstrom, H. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6, 463–467 (1997).CAS
Article
Google Scholar
42.Marques, J. P. et al. Range expansion underlies historical introgressive hybridization in the Iberian hare. Sci. Rep. https://doi.org/10.1038/Srep40788 (2017).Article
PubMed
PubMed Central
Google Scholar
43.Melo-Ferreira, J., Boursot, P., Suchentrunk, F., Ferrand, N. & Alves, P. C. Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol. Ecol. 14, 2459–2464. https://doi.org/10.1111/j.1365-294X.2005.02599.x (2005).CAS
Article
PubMed
Google Scholar
44.Glover, K. A. et al. A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet. 11, 2. https://doi.org/10.1186/1471-2156-11-2 (2010).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Kristensen, T. N., Hoffmann, A. A., Pertoldi, C. & Stronen, A. V. What can livestock breeders learn from conservation genetics and vice versa?. Front. Genet. https://doi.org/10.3389/Fgene.2015.00038 (2015).Article
PubMed
PubMed Central
Google Scholar
46.Nishimura, T., Katsumura, T., Motoi, M., Oota, H. & Watanuki, S. Experimental evidence reveals the UCP1 genotype changes the oxygen consumption attributed to non-shivering thermogenesis in humans. Sci. Rep. 7, 5570. https://doi.org/10.1038/s41598-017-05766-3 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
47.Glanville, E. J., Murray, S. A. & Seebacher, F. Thermal adaptation in endotherms: Climate and phylogeny interact to determine population-level responses in a wild rat. Funct. Ecol. 26, 390–398. https://doi.org/10.1111/j.1365-2435.2011.01933.x (2012).Article
Google Scholar
48.Leroy, G., Phocas, F., Hedan, B., Verrier, E. & Rognon, X. Inbreeding impact on litter size and survival in selected canine breeds. Vet. J. 203, 74–78. https://doi.org/10.1016/j.tvjl.2014.11.008 (2015).Article
PubMed
Google Scholar
49.Zhang, P. et al. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations. BMC Evol. Biol https://doi.org/10.1186/s12862-018-1148-7 (2018).Article
PubMed
PubMed Central
Google Scholar
50.Cortazar-Chinarro, M., Meyer-Lucht, Y., Laurila, A. & Hoglund, J. Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenetics 70, 477–484. https://doi.org/10.1007/s00251-017-1051-1 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
51.Darfour-Oduro, K. A., Megens, H. J., Roca, A. L., Groenen, M. A. & Schook, L. B. Adaptive evolution of toll-like receptors (TLRs) in the Family Suidae. PLoS ONE 10, e0124069. https://doi.org/10.1371/journal.pone.0124069 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
52.Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192. https://doi.org/10.1111/mec.12725 (2014).Article
PubMed
PubMed Central
Google Scholar
53.Quesada-Lopez, T. et al. GPR120 controls neonatal brown adipose tissue thermogenic induction. Am. J. Physiol. Endocrinol. Metab. 317, E742–E750. https://doi.org/10.1152/ajpendo.00081.2019 (2019).CAS
Article
PubMed
Google Scholar
54.Luijten, I. H. N., Feldmann, H. M., von Essen, G., Cannon, B. & Nedergaard, J. In the absence of UCP1-mediated diet-induced thermogenesis, obesity is augmented even in the obesity-resistant 129S mouse strain. Am. J. Physiol. Endocrinol. Metab. 316, E729–E740. https://doi.org/10.1152/ajpendo.00020.2019 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
55.Klein, J., Sato, A., Nagl, S. & OhUigin, C. Molecular trans-species polymorphism. Annu. Rev. Ecol. Syst. 29, 1. https://doi.org/10.1146/annurev.ecolsys.29.1.1 (1998).Article
Google Scholar
56.Gouy Bellocq, J., Suchentrunk, F., Baird, S. J. & Schaschl, H. Evolutionary history of an MHC gene in two leporid species: Characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics 61, 131–144. https://doi.org/10.1007/s00251-008-0349-4 (2009).Article
Google Scholar
57.Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P. & Slowinski, J. B. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740. https://doi.org/10.1146/annurev.ecolsys.33.010802.150500 (2002).Article
Google Scholar
58.Lenz, T. L. Adaptive value of novel MHC immune gene variants. Proc. Natl. Acad. Sci. U.S.A. 115, 1414–1416. https://doi.org/10.1073/pnas.1722600115 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
59.Fijarczyk, A., Dudek, K., Niedzicka, M. & Babik, W. Balancing selection and introgression of newt immune-response genes. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.0819 (2018).Article
PubMed
PubMed Central
Google Scholar
60.Grossen, C., Keller, L., Biebach, I., Croll, D. & Consortium, I. G. G. Introgression from domestic goat generated variation at the major histocompatibility complex of alpine Ibex. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004438 (2014).Article
Google Scholar
61.Nadachowska-Brzyska, K., Zielinski, P., Radwan, J. & Babik, W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol. Ecol. 21, 887–906. https://doi.org/10.1111/j.1365-294X.2011.05347.x (2012).CAS
Article
PubMed
Google Scholar
62.Wegner, K. M. & Eizaguirre, C. New(t)s and views from hybridizing MHC genes: Introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 21, 779–781. https://doi.org/10.1111/j.1365-294X.2011.05401.x (2012).CAS
Article
PubMed
Google Scholar
63.Thulin, C. G. The distribution of mountain hares Lepus timidus in Europe: A challenge from brown hares L-europaeus ?. Mammal. Rev. 33, 29–42. https://doi.org/10.1046/j.1365-2907.2003.00008.x (2003).Article
Google Scholar
64.Jansson, G. & Pehrson, A. The recent expansion of the brown hare (Lepus europaeus) in Sweden with possible implications to the mountain hare (L-timidus). Eur. J. Wildlife Res. 53, 125–130. https://doi.org/10.1007/s10344-007-0086-2 (2007).Article
Google Scholar
65.Smith, S. et al. Nonreceding hare lines: Genetic continuity since the Late Pleistocene in European mountain hares (Lepus timidus). Biol. J. Linn Soc. 120, 891–908 (2017).Article
Google Scholar
66.Levanen, R., Pohjoismaki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).Article
Google Scholar
67.Palo, J. U., Ulmanen, I., Lukka, M., Ellonen, P. & Sajantila, A. Genetic markers and population history: Finland revisited. Eur. J. Hum. Genet. EJHG 17, 1336–1346. https://doi.org/10.1038/ejhg.2009.53 (2009).Article
PubMed
Google Scholar
68.RCoreTeam. R: A language and environment for statistical computing., Vol. https://www.R-project.org/. ( R Foundation for Statistical Computing, 2020).69.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Vol. https://ggplot2.tidyverse.org (Springer-Verlag, 2016).70.Biedrzycka, A., Sebastian, A., Migalska, M., Westerdahl, H. & Radwan, J. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol. Ecol. Resour. 17, 642–655. https://doi.org/10.1111/1755-0998.12612 (2017).CAS
Article
PubMed
Google Scholar
71.Sebastian, A., Migalska, M. & Biedrzycka, A. AmpliSAS and AmpliHLA: Web server tools for MHC typing of non-model species and human using NGS data. Methods Mol. Biol. 249–273, 2018. https://doi.org/10.1007/978-1-4939-8546-3_18 (1802).CAS
Article
Google Scholar
72.Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
73.Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article
PubMed
PubMed Central
Google Scholar
74.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
75.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
76.Rambaut, A. FigTree. 1.4.3. Graphical viewer of phylogenetic trees. (http://tree.bio.ed.ac.uk/software/figtree/), (2018).77.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resourc. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article
Google Scholar
78.Smith, S. et al. Homozygosity at a class II MHC locus depresses female reproductive ability in European brown hares. Mol. Ecol. 19, 4131–4143. https://doi.org/10.1111/j.1365-294X.2010.04765.x (2010).Article
PubMed
Google Scholar
79.Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630. https://doi.org/10.1111/mec.12886 (2014).CAS
Article
PubMed
Google Scholar
80.Matthee, C. A., van Vuuren, B. J., Bell, D. & Robinson, T. J. A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst. Biol. 53, 433–447. https://doi.org/10.1080/10635150490445715 (2004).Article
PubMed
Google Scholar
81.Humphreys, A. M. & Barraclough, T. G. The evolutionary reality of higher taxa in mammals. Proc. Biol. Sci. 281, 20132750. https://doi.org/10.1098/rspb.2013.2750 (2014).Article
PubMed
PubMed Central
Google Scholar
82.Ge, D. et al. Evolutionary history of lagomorphs in response to global environmental change. PLoS ONE 8, e59668. https://doi.org/10.1371/journal.pone.0059668 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
83.Soria-Carrasco, V. & Castresana, J. Diversification rates and the latitudinal gradient of diversity in mammals. Proc. Biol. Sci. 279, 4148–4155. https://doi.org/10.1098/rspb.2012.1393 (2012).Article
PubMed
PubMed Central
Google Scholar
84.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
85.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
86.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
Article
Google Scholar More