More stories

  • in

    Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism

    1.Collier, S. M. & Moffett, P. NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci. 14, 521–529 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. & Klessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–676 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Takahashi, H. et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32, 655–667 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.de Ronde, D., Butterbach, P. & Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 5, 307 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Takahashi, H. et al. Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 79, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    6.Wright, K. et al. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Lukan, T. et al. Cell death is not sufficient for the restriction of potato virus Y spread in hypersensitive response-conferred resistance in potato. Front. Plant Sci. 9, 168 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Sekine, K. T. et al. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21, 1398–1407 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Grech-Baran, M. et al. Extreme resistance to potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor. Plant Biotechnol. J. 18, 655–667 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Patel, P. N. Genetics of cowpea reactions to two strains of cowpea mosaic virus from Tanzania. Phytopathology 72, 460–466 (1982).Article 

    Google Scholar 
    12.Kiraly, L., Cole, A. B., Bourque, J. E. & Schoelz, J. E. Systemic cell death is elicited by the interaction of a single gene in Nicotiana clevelandii and gene VI of cauliflower mosaic virus. Mol. Plant Microbe Interact. 12, 919–925 (1999).CAS 
    Article 

    Google Scholar 
    13.Jones, R. A. C. & Smith, L. J. Inheritance of hypersensitive resistance to bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Ann. Appl. Biol. 146, 539–543 (2005).Article 

    Google Scholar 
    14.Ravelo, G., Kagaya, U., Inukai, T., Sato, M. & Uyeda, I. Genetic analysis of lethal tip necrosis induced by clover yellow vein virus infection in pea. J. Gen. Plant Pathol. 73, 59–65 (2007).CAS 
    Article 

    Google Scholar 
    15.Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S. & Uyeda, I. Activation of the salicylic acid signaling pathway enhances clover yellow vein virus virulence in susceptible pea cultivars. Mol. Plant Microbe Interact. 22, 166–175 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Nyalugwe, E. P., Barbetti, M. J. & Jones, R. A. C. Studies on resistance phenotypes to turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 141, 647–666 (2015).CAS 
    Article 

    Google Scholar 
    17.Kehoe, M. A. & Jones, R. A. C. Improving potato virus Y strain nomenclature: lessons from comparing isolates obtained over a 73-year period. Plant Pathol. 65, 322–333 (2016).CAS 
    Article 

    Google Scholar 
    18.Jones, R. A. C. & Vincent, S. J. Strain-specific hypersensitive and extreme resistance phenotypes elicited by potato virus Y among 39 potato cultivars released in three world regions over a 117-year period. Plant Dis. 102, 185–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Xu, P., Blancaflor, E. B. & Roossinck, M. J. In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol. Plant Microbe Interact. 16, 467–476 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seo, Y. S. et al. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl Acad. Sci. U. S. A. 103, 11856–11861 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Kim, B., Masuta, C., Matsuura, H., Takahashi, H. & Inukai, T. Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant Microbe Interact. 21, 260–268 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Nyalugwe, E. P., Barbetti, M. J., Clode, P. L. & Jones, R. A. C. Systemic hypersensitive resistance to turnip mosaic virus in Brassica juncea is associated with multiple defense responses, especially phloem necrosis and xylem occlusion. Plant Dis. 100, 1261–1270 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Komatsu, K. et al. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol. Plant-Microbe Interact. 23, 283–293 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25, 1489–1505 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Michel, V. et al. NtTPN1: a RPP8-like R gene required for potato virus Y-induced veinal necrosis in tobacco. Plant J. 95, 700–714 (2018).CAS 
    Article 

    Google Scholar 
    26.Ando, S., Miyashita, S. & Takahashi, H. Plant defense systems against cucumber mosaic virus: lessons learned from CMV–Arabidopsis interactions. J. Gen. Plant Pathol. 85, 174–181 (2019).Article 

    Google Scholar 
    27.Takahashi, H. et al. Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol. 42, 340–347 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Takahashi, H. et al. RCY1-mediated resistance to cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol. Plant Microbe Interact. 25, 1171–1185 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ishihara, T., Sato, Y. & Takahashi, H. Microarray analysis of R-gene-mediated resistance to viruses in Plant Virology Protocols, Methods in Molecular Biology (eds Uyeda, I. & Masuta, C.) 197–218 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-1743-3_1530.Takebe, I. & Ohtsuki, Y. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proc. Natl Acad. Sci. U. S. A. 64, 843–848, https://www.pnas.org/content/64/3/843 (1969).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Hibi, T., Rezelman, G. & van Kammen, A. Infection of cowpea mesophyll protoplasts with cowpea mosaic virus. Virology 64, 308–318 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Motoyoshi, F., Hull, R. & Flack, I. H. Infection of tobacco mesophyll protoplasts by alfalfa mosaic virus. J. Gen. Virol. 27, 263–266 (1975).Article 

    Google Scholar 
    33.Renaudin, J., Bove, J. M., Otsuki, Y. & Takebe, I. Infection of brassica protoplasts by turnip yellow mosaic virus. Mol. Gen. Genet. 141, 59–68 (1975).Article 

    Google Scholar 
    34.Okuno, H., Furusawa, I. & Hiruki, C. Infection of barley protoplasts with brome mosaic virus. Phytopathology 67, 610–615 (1977).CAS 
    Article 

    Google Scholar 
    35.French, R. & Stenger, D. C. Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 41, 199–214 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Miyashita, S., Ishibashi, K., Kishino, H. & Ishikawa, M. Viruses roll the dice: the stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLoS Biol. 13, e1002094 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Nemecek, T., Fischlin, A., Derron, J. & Roth, O. Distance and direction of trivial flights of aphids in a potato field. Syst. Ecol. ETHZ (1993).39.Takahashi, H., Fukuhara, T., Kitazawa, H. & Kormelink, R. Virus latency and the impact on plants. Front. Microbiol. 10, 2764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Farkas, G., Kiraly, Z. & Solymosy, F. Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421 (1960).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiraly, L., Hafez, Y., Fodor, J. & Kiraly, Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Virol. 89, 799–808 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hafez, Y., Bacso, R., Kiraly, Z., Kunstler, A. & Kiraly, L. Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102, 848–856 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kunstler, A., Bacso, R., Gullner, G., Hafez, Y. & Kiraly, L. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 93, 75–84 (2016).Article 

    Google Scholar 
    44.Xie, Z., Fan, B., Chen, C. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl Acad. Sci. U. S. A. 98, 6516–6521 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, W. et al. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 31, 905–916 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Miyashita, S. Studies on replication and evolution mechanisms of plant RNA viruses. J. Gen. Plant Pathol. 84, 427–428 (2018).CAS 
    Article 

    Google Scholar 
    47.Qu, F. et al. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive sense RNA viruses. Virus Evol. 6, veaa86 (2020).Article 

    Google Scholar 
    48.Gonzalez-Jara, P., Fraile, A., Canto, T. & Garcia-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gutierrez, S. et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).50.Moury, B., Fabre, F., Hebrard, E. & Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 98, 862–873 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McLeish, M. J., Fraile, A. & Garcia-Arenal, F. Evolution of plant–virus interactions: host range and virus emergence. Curr. Opin. Virol. 34, 50–55 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gao, Y. et al. Out of water: the origin and early diversification of plant R-genes. Plant Physiol. 177, 82–89 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Chandra-Shekara, A. C. et al. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ando, S., Obinata, A. & Takahashi, H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 85, 8–15 (2014).CAS 
    Article 

    Google Scholar 
    55.Fukuyo, M., Sasaki, A. & Kobayashi, I. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    56.Cheng, Y., Jones, R. A. C. & Thackray, D. J. Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Ann. Appl. Biol. 140, 69–79 (2002).Article 

    Google Scholar 
    57.Thackray, D. J., Smith, L. J., Cheng, Y. & Jones, R. A. C. Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Ann. Appl. Biol. 141, 45–59 (2002).Article 

    Google Scholar 
    58.Suzuki, M. et al. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Takeshita, M. et al. Infection dynamics in viral spread and interference under the synergism between cucumber mosaic virus and turnip mosaic virus. Mol. Plant Microbe Interact. 25, 18–27 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020).62.Miyashita, S. R scripts for MOI estimation and simulation for plant suicidal population resistance by systemic hypersensitive response. Zenodo https://doi.org/10.5281/zenodo.5105622 (2021). More

  • in

    Purple sulfur bacteria fix N2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue

    SamplingSamples were collected on 28 August 2018 during a field campaign to Lake Cadagno29, Switzerland. In situ measurements and water collection was performed at the deepest part of the lake (21 m). Water was collected using a pump CTD system as described in Di Nezio et al.36. Online in situ data were obtained during a continuous downcast of the CTD-system from the water surface down to ~17.5 m depth. During the upcast, discrete water samples were collected from a total of 20 depths (between 12 m and 17 m) above, in, and below the chemocline for chemical analyses and from 3 depths for incubation experiments (13.7 m, 14 m, and 15.5 m).In Lake Cadagno, wind-driven internal waves lead to vertical shifts of the water masses and their corresponding physicochemical parameters56. While sampling, it was apparent that the depths of the individual water masses had slightly shifted between the down- and the upcast. Therefore, we corrected the water depths of the samples collected during the upcast so that the physicochemical parameters during sampling best matched those of the continuous downcast, to ensure that samples were assigned to the respective water mass that they originated from. A custom R script was employed for the depth correction. In brief, all parameters measured by the CTD-system during the upcast and the downcast were normalized to percent (with 100% as the maximum observed value, and 0% the minimum observed value). Per individual sampling depth (during the upcast, where the pump cast CTD remained stationary for some time), average values of conductivity, temperature, and pressure were calculated and converted to percent values. Then, the depth from the downcast profile was identified that best matched all calculated percent values. This was achieved by subtracting the percent values per parameter from all respective data points of the downcast profile. Absolute values of the calculated differences per data row were summed. The depth with the lowest resulting sum, i.e., with the most similar physicochemical parameters, was then chosen as the corrected depth.Chemical analyses, flux calculations, and rate determinationsFor chemical analyses, lake water from the individual sampling depths was sterile-filtered (0.2 µm, cellulose acetate filter) and frozen at −20 °C until analysis. Samples were analyzed with a QuAAtro39 autoanalyzer (Seal Analytical) using the methods described in Strickland and Parsons57 to determine concentrations of dissolved inorganic phosphorus (PO43−), nitrite (NO2−), nitrate (NO3−), and reactive silica (Si). Ammonium concentrations were determined from the same filtered samples using the colorimetric analysis described in Kempers et al.58. Molybdenum concentrations were determined from filtered samples after acidification with 1% HNO3 (69%, ROTIPURAN®, Roth) using an ICP-MS 7900 (Agilent, Santa Clara, USA). Molybdenum was analyzed on mass 95 in He-mode using a multi-element calibration SRM (21 elements, Bernd Kraft). The SRM NIST 1643f was analyzed in parallel to guarantee the quality of analyses. Concentrations of sulfide were determined colorimetrically from unfiltered Lake water samples, following Cline59.To calculate the turbulent flux (J) of ammonium into the chemocline, we assumed a steady-state using Fick’s first law: J = −D∂C/∂x. A turbulent diffusion coefficient (D) of 1.6 × 10−6 m2 s−1 was used, corresponding to turbulence at the Lake Cadagno chemocline boundaries60. The change in concentration (∂C) was calculated over 14.25 m to 14.77 m depth, where the steepest ammonium gradient was observed. Ammonium uptake rates were calculated for the chemocline by integrating this flux over the chemocline from 13.45 m to 14.45 m depth.To quantify N2 fixation and primary production (i.e., CO2 fixation) rates, stable isotope incubations with 15N2 and 13CO2 were performed using established protocols61. Briefly, lake water from three different depths of the chemocline was sampled directly from the CTD pump system into five 250 ml serum bottles per depth. Water was filled into the bottles from bottom to top, allowing 1–2 bottle volumes to overflow to minimize oxygen contamination before crimp-sealing the bottles headspace-free with butyl rubber stoppers. Back in the field laboratory, no more than 8 h after sampling, one bottle per depth was filtered onto pre-combusted (460 °C, 6 h) glass microfiber filters (GF/F, Whatman®, UK) for in situ natural abundance of C and N. 13C-labeled sodium bicarbonate (NaH13CO3, 98 atom% 13C, dissolved in autoclaved MilliQ water; Sigma-Aldrich) was injected (320 µL) into three bottles per depth, to achieve a final concentration of 160 µmol L−1. Then, a volume of 5 ml 15N2 gas (Cambridge Isotope Laboratories, >98 atom% 15N, Lot #: I-19197/AR0586172) was injected as a bubble into the same bottles and shaken for 20 min to equilibrate the 15N2 gas. Sulfide solution was injected aiming for a final concentration of approximately 2 µM to remove trace oxygen contamination in the incubation bottles. Finally, the 15N2 gas bubble was replaced by anoxic in situ lake water from the respective depth. The bottles, together with one untreated control bottle per depth (containing unamended lake water), were incubated for a full light-dark cycle (13 h light, 11 h dark) under natural light conditions (0–8267 Lux, average: 247 Lux, median: 10.8 Lux, as determined by a HOBO pendant data logger, Onset Computer Corporation, Bourne, USA) in a water bath kept at ~12 °C.After incubation, samples were filtered onto pre-combusted GF/F filters. The filters were dried at room temperature and frozen at −20 °C for transport and storage. In addition, subsamples for nanoscale secondary ion mass spectrometry (nanoSIMS) analysis and for the determination of 13C and 15N enrichments in the substrate pools were taken from all bottles amended with 13C and 15N. NanoSIMS samples were fixed with 2% (final w/v) formaldehyde solution for 1 h at room temperature, prior to filtration onto gold-sputtered 0.22 µm polycarbonate membrane filters (GTTP IsoporeTM, Merck Millipore, USA). Subsamples for label% determinations were taken in gas-tight glass vials (Exetainer Labco, UK) and biological activity was terminated with HgCl2.Samples on GF/F filters were analyzed for C and N content and the respective isotopic composition by an elemental analyzer (Thermo Flash EA, 1112 Series) coupled to a continuous-flow isotope ratio mass spectrometer (Delta Plus XP IRMS; Thermo Finnigan, Dreieich, Germany). Enrichment of 15N in the N2 pool was determined using a membrane inlet mass spectrometer (MIMS; GAM200, IPI). Enrichment of 13C in the dissolved inorganic carbon pool was determined from 13C/12C-CO2 ratios after sample acidification with phosphoric acid using cavity ring-down spectroscopy (G2201-I coupled to a Liaison A0301, Picarro Inc., connected to an AutoMate Prep Device, Bushnell, USA). In addition, we tested the used 15N2 gas bottle for contamination with 15N-ammonia62. Briefly, a 2 ml subsample of the used 15N2 gas was injected into a 12 ml gas-tight glass vial (Exetainer) filled with MilliQ (pH 95% sequence identity to any of the MAG NifD/NifK sequences were identified with a blastp search74 to the NCBI nr database. Multiple sequence alignments were obtained with MAFFT87. All full-length sequences were used to construct base trees with RAxML88 and 100 bootstraps in ARB90. The ARB Parsimony function was employed to add partial sequences to the base trees.The resulting trees were visualized in iTOL91.FISH, cell counts, and cell sizesFrom each incubation depth, 10–30 ml lake water was filtered onto 0.22 µm polycarbonate membrane filters (GTTP IsoporeTM, Merck Millipore, USA). The filters were fixed in 2% formaldehyde solution in sterile-filtered lake water for 10–12 h at 4 °C and then washed with MilliQ water. The filters were frozen and stored at −20 °C until further processing.The 16S rRNA FISH probe “Thiosyn459” (Table S7), exclusively targeting T. syntrophicum Cad16, was designed in ARB90. In addition, two competitor probes and four helper probes92 were designed (Table S7) to ensure efficient and specific binding of the probe to the target. All FISH probes and respective formamide concentrations are listed in Table S7. Probes, but not helpers and competitors, were double-labeled with either Atto488 or Atto594 fluorophores. Samples were embedded in 0.05% low melting point agarose. Cells were permeabilized with lysozyme (1.5 mg ml−1) for 30 min at 37 °C. Hybridization was performed for 2–4.5 h at 46 °C. Washing included 15 min in washing buffer at 48 °C and 20 min in 1× PBS buffer at room temperature. We used the hybridization and washing buffers described in Barrero-Canosa et al.93 to reduce background fluorescence. Cells were counterstained with DAPI.Samples were analyzed using a Zeiss Axio Imager.M2 microscope equipped with a Zeiss Axiocam 506 mono camera. Z-stack images were taken and the number of fluorescently labeled cells per image was counted for the individual probes. For each PSB population, we analyzed ≥38 randomly selected fields of view and ≥54 target cells, on one filter replicate each (see Supplementary File S1). Total cell counts were obtained in triplicates through flow cytometry as described in Danza et al.94.For cluster-forming organisms (Thiodictyon syntrophicum, Lamprocystis purpurea, Lamprocystis roseopersicina, and Lamprocystis spp.), the cell size (length and width, for biovolume and C-content calculations, see section below) of 100 cells per population was determined from the maximum-intensity projection of the z-stack images using the Zeiss Zen blue software 3.2.Single-cell analysis with nanoSIMSFor nanoSIMS analyses, we chose the replicate sample from 13.7 m depth that exhibited the highest bulk N2 fixation rate. Random spots were marked with a laser microdissection microscope (6000 B, Leica) on the gold-sputtered GTTP filter covered with cells incubated with 15N2 and 13CO2. After laser marking, FISH was performed as described above. For analysis of Thiodictyon cells, no permeabilization was performed, while for analysis of the other population’s permeabilization was reduced to 15 min at 37 °C using 2 mg ml−1 Lysozyme. Within one hybridization reaction, we simultaneously applied Apur453 with S453D and Laro453 with Cmok453, each probe double labeled with different fluorescent dyes (Atto488 and Atto594).Single-cell 15N- and 13C-assimilation from incubation experiments with 15N2 and 13CO2 was measured using a nanoSIMS 50 L instrument (CAMECA), as described in Martínez-Pérez et al.53. Briefly, instrument precision was monitored regularly on graphite planchet. Samples were pre-sputtered with a Cs+ beam (~300 pA) before the measurements with a beam current of around 1.5 pA. The diameter of the primary beam was tuned More

  • in

    The importance of species interactions in eco-evolutionary community dynamics under climate change

    Modeling frameworkWe consider S species distributed in L distinct habitat patches. The patches form a linear latitudinal chain going around the globe, with dispersal between adjacent patches (Fig. 1). The state variables are species’ local densities and local temperature optima (the temperature at which species achieve maximum intrinsic population growth). This temperature optimum is a trait whose evolution is governed by quantitative genetics18,19,20,21,22: each species, in every patch, has a normally distributed temperature optimum with a given mean and variance. The variance is the sum of a genetic and an environmental contribution. The genetic component is given via the infinitesimal model23,24, whereby a very large number of loci each contribute a small additive effect to the trait. This has two consequences. First, a single round of random mating restores the normal shape of the trait distribution, even if it is distorted by selection or migration. Second, the phenotypic variance is unchanged by these processes, with only the mean being affected25 (we apply a reduction in genetic variance at very low population densities to prevent such species from evolving rapidly; see the Supplementary Information [SI], Section 3.4). Consequently, despite selection and the mixing of phenotypes from neighboring patches, each species retains a normally-shaped phenotypic distribution with the same phenotypic variance across all patches—but the mean temperature optimum may evolve locally and can therefore differ across patches (Fig. 1).Fig. 1: Illustration of our modeling framework.There are several patches hosting local communities, arranged linearly along a latitudinal gradient. Patch color represents the local average temperature, with warmer colors corresponding to higher temperatures. The graph depicts the community of a single patch, with four species present. They are represented by the colored areas showing the distributions of their temperature optima, with the area under each curve equal to the population density of the corresponding species. The green species is highlighted for purposes of illustration. Each species has migrants to adjacent patches (independent of local adaptedness), as well as immigrants from them (arrows from and to the green species; the distributions with dashed lines show the trait distributions of the green species’ immigrant individuals). The purple line is the intrinsic growth rate of a phenotype in the patch, as a function of its local temperature optimum (this optimum differs across patches, which is why the immigrants are slightly maladapted to the temperature of the focal patch.) Both local population densities and local adaptedness are changed by the constant interplay of temperature-dependent intrinsic growth, competition with other species in the same patch, immigration to or emigration from neighboring patches, and (in certain realizations of the model) pressure from consumer species.Full size imageSpecies in our setup may either be resources or consumers. Their local dynamics are governed by the following processes. First, within each patch, we allow for migration to and from adjacent patches (changing both local population densities and also local adaptedness, due to the mixing of immigrant individuals with local ones). Second, each species’ intrinsic rate of increase is temperature-dependent, influenced by how well their temperature optima match local temperatures (Fig. 2a). For consumers, metabolic loss and mortality always result in negative intrinsic growth, which must be compensated by sufficient consumption to maintain their populations. Third, there is a local competition between resource species, which can be thought of as exploitative competition for a set of shared substitutable lower-level resources26. Consumers, when present, compete only indirectly via their shared resource species. Fourth, each consumer has feeding links to five of the resource species (pending their presence in patches where the consumer is also present), which are randomly determined but always include the one resource which matches the consumer’s initial mean temperature optimum. Feeding rates follow a Holling type II functional response. Consumers experience growth from consumption, and resource species experience loss due to being consumed.Fig. 2: Temperature optima and climate curves.a Different growth rates at various temperatures. Colors show species with different mean temperature optima, with warmer colors corresponding to more warm-adapted species. The curves show the maximum growth rate achieved when a phenotype matches the local temperature, and how the growth rate decreases with an increased mismatch between a phenotype and local temperature, for each species. The dashed line shows zero growth: below this point, the given phenotype of a species mismatches the local temperature to the extent that it is too maladapted to be able to grow. Note the tradeoff between the width and height of the growth curves, with more warm-tolerant species having larger maximum growth at the cost of being viable for only a narrower range of temperatures62,63. b Temperature changes over time. After an initial establishment phase of 4000 years during which the pre-climate change community dynamics stabilize, temperatures start increasing at t = 0 for 300 years (vertical dotted line, indicating the end of climate change). Colors show temperature change at different locations along the spatial gradient, with warmer colors indicating lower latitudes. The magnitude and latitudinal dependence of the temperature change is based on region-specific predictions by 2100 CE, in combination with estimates giving an approximate increase by 2300 CE, for the IPCC intermediate emission scenario27.Full size imageFollowing the previous methodology, we derive our equations in the weak selection limit22 (see also the Discussion). We have multiple selection forces acting on the different components of our model. Species respond to local climate (frequency-independent directional selection, unless a species is at the local environmental optimum), to consumers and resources (frequency-dependent selection), and competitors (also frequency-dependent selection, possibly complicated by the temperature-dependence of the competition coefficients mediating frequency dependence). These different modes of selection do not depend on the parameterization of evolution and dispersal, which instead are used to adjust the relative importance of these processes.Communities are initiated with 50 species per trophic level, subdividing the latitudinal gradient into 50 distinct patches going from pole to equator (results are qualitatively unchanged by increasing either the number of species or the number of patches; SI, Section 5.9–5.10). We assume that climate is symmetric around the equator; thus, only the pole-to-equator region needs to be modeled explicitly (SI, Section 3.5). The temperature increase is based on predictions from the IPCC intermediate emission scenario27 and corresponds to predictions for the north pole to the equator. The modeled temperature increase is represented by annual averages and the increase is thus smooth. Species are initially equally spaced, and adapted to the centers of their ranges. We then integrate the model for 6500 years, with three main phases: (1) an establishment period from t = −4000 to t = 0 years, during which local temperatures are constant; (2) climate change, between t = 0 and t = 300 years, during which local temperatures increase in a latitude-specific way (Fig. 2b); and (3) the post-climate change period from t = 300 to t = 2500 years, where temperatures remain constant again at their elevated values.To explore the influence and importance of dispersal, evolution, and interspecific interactions, we considered the fully factorial combination of high and low average dispersal rates, high and low average available genetic variance (determining the speed and extent of species’ evolutionary responses), and four different ecological models. These were: (1) the baseline model with a single trophic level and constant, patch- and temperature-independent competition between species; (2) two trophic levels and constant competition; (3) single trophic level with temperature-dependent competition (where resource species compete more if they have similar temperature optima); and (4) two trophic levels as well as temperature-dependent competition. Trophic interactions can strongly influence diversity in a community, either by apparent competition28 or by acting as extra regulating agents boosting prey coexistence29. Temperature-dependent competition means that the strength of interaction between two phenotypes decreases with an increasing difference in their temperature optima. Importantly, while differences in temperature adaptation may influence competition, they do not influence trophic interactions.The combination of high and low genetic variance and dispersal rates, and four model setups, gives a total of 2 × 2 × 4 = 16 scenarios. For each of them, some parameters (competition coefficients, tradeoff parameters, genetic variances, dispersal rates, consumer attack rates, and handling times; SI, Section 6) were randomly drawn from pre-specified distributions. We, therefore, obtained 100 replicates for each of these 16 scenarios. While replicates differed in the precise identity of the species which survived or went extinct, they varied little in the overall patterns they produced.We use the results from these numerical experiments to explore patterns of (1) local species diversity (alpha diversity), (2) regional trends, including species range breadths and turnover (beta diversity), (3) global (gamma) diversity, and global changes in community composition induced by climate change. In addition, we also calculated the interspecific community-wide trait lag (the difference between the community’s density-weighted mean temperature optima and the current temperature) as a function of the community-wide weighted trait dispersion (centralized variance in species’ density-weighted mean temperature optima; see Methods). The response capacity is the ability of the biotic community to close this trait lag over time30 (SI, Section 4). Integrating trait lag through time31 gives an overall measure of different communities’ ability to cope with changing climate over this time period; furthermore, this measure is comparable across communities. The integrated trait lag summarizes, in a single functional metric, the performance and adaptability of a community over space and time. The reason it is related to performance is that species that on average live more often under temperatures closer to their optima (creating lower trait lags) will perform better than species whose temperature optima are far off from local conditions in space and/or time. Thus, a lower trait lag (higher response capacity) may also be related to other ecosystem functions, such as better carbon uptake which in turn has the potential to feedback to global temperatures32.Overview of resultsWe use our framework to explore the effect of species interactions on local, regional, and global biodiversity patterns, under various degrees of dispersal and available genetic variance. For simplicity, we focus on the dynamics of the resource species, which are present in all scenarios. Results for consumers, when present, are in the SI (Section 5.8). First, we display a snapshot of species’ movement across the landscape with time; before, during, and after climate change. Then we proceed with analyzing local patterns, followed by regional trends, and finally, global trends.Snapshots from the time series of species’ range distributions reveal useful information about species’ movement and coexistence (Fig. 3). Regardless of model setup and parameterization, there is a northward shift in species’ ranges: tropical species expand into temperate regions and temperate species into polar regions. This is accompanied by a visible decline in the number of species globally, with the northernmost species affected most. The models do differ in the predicted degree of range overlap: trophic interactions and temperature-dependent competition both lead to broadly overlapping ranges, enhancing local coexistence (the overlap in spatial distribution is particularly pronounced with high available genetic variance). Without these interactions, species ranges overlap to a substantially lower degree, diminishing local diversity. Below we investigate whether these patterns, observed for a single realization of the dynamics for each scenario, play out more generally as well.Fig. 3: Species’ range shift through time, along a latitudinal gradient ranging from polar to tropical climates (ordinate).Species distributions are shown by colored curves, with the height of each curve representing local density in a single replicate (abscissa; note the different scales in the panels), with the color indicating the species’ initial (i.e., at t = 0) temperature adaptation. The model was run with only 10 species, for better visibility. The color of each species indicates its temperature adaptation at the start of the climate change period, with warmer colors belonging to species with a higher temperature optimum associated with higher latitudes. Rows correspond to a specific combination of genetic variance and dispersal ability of species, columns show species densities at different times (t = 0 start of climate change, t = 300 end of climate change, t = 2500 end of simulations). Each panel corresponds to a different model setup; a the baseline model, b an added trophic level of consumers, c temperature-dependent competition coefficients, and d the combined influence of consumers and temperature-dependent competition.Full size imageLocal trendsTrophic interactions and temperature-dependent competition indeed result in elevated local species richness levels (Fig. 4). The fostering of local coexistence by trophic interactions and temperature-dependent competition is in line with general ecological expectations. Predation pressure can enhance diversity by providing additional mechanisms of density regulation and thus prey coexistence through predator partitioning28,29. In turn, temperature-dependent competition means species can reduce interspecific competition by evolving locally suboptimal mean temperature optima22, compared with the baseline model’s fixed competition coefficients. Hence with temperature-dependent competition, the advantages of being sufficiently different from other locally present species can outweigh the disadvantages of being somewhat maladapted to the local temperatures. If competition is not temperature-dependent, interspecific competition is at a fixed level independent of the temperature optima of each species. An important question is how local diversity is affected when the two processes act simultaneously. In fact, any synergy between their effects is very weak, and is even slightly negative when both the available genetic variance and dispersal abilities are high (Fig. 4, top row).Fig. 4: Local species richness of communities over time, from the start of climate change to the end of the simulation, averaged over replicates.Values are given in 100-year steps. At each point in time, the figure shows the mean number of species per patch over the landscape (points) and their standard deviation (shaded region, extending one standard deviation both up- and downwards from the mean). Panel rows show different parameterizations (all four combinations of high and low genetic variance and dispersal ability); columns represent various model setups (the baseline model; an added trophic level of consumers; temperature-dependent competition coefficients; and the combined influence of consumers and temperature-dependent competition). Dotted vertical lines indicate the time at which climate change ends.Full size imageRegional trendsWe see a strong tendency for poleward movement of species when looking at the altered distributions of species over the spatial landscape (Fig. 3). Indeed, looking at the effects of climate change on the fraction of patches occupied by species over the landscape reveals that initially cold-adapted species lose suitable habitat during climate change, and even afterwards (Fig. 5). For the northernmost species, this always eventuate to the point where all habitat is lost, resulting in their extinction. This pattern holds universally in every model setup and parameterization. Only initially warm-adapted species can expand their ranges, and even they only do so under highly restrictive conditions, requiring both good dispersal ability and available genetic variance as well as consumer pressure (Fig. 5, top row, second and third panel).Fig. 5: Range breadth of each species expressed as the percentage of the whole landscape they occupy (ordinate) at three different time stamps (colors).The mean (points) and plus/minus one standard deviation range (colored bands) are shown over replicates. Numbers along the abscissa represent species, with initially more warm-adapted species corresponding to higher values. The range breadth of each species is shown at three time stamps: at the start of climate change (t = 0, blue), the end of climate change (t = 300, green), and at the end of our simulations (t = 2500, yellow). Panel layout as in Fig. 4.Full size imageOne can also look at larger regional changes in species richness, dividing the landscape into three equal parts: the top third (polar region), the middle third (temperate region), and the bottom third (tropical region). Region-wise exploration of changes in species richness (Fig. 6) shows that the species richness of the polar region is highly volatile. It often experiences the greatest losses; however, with high dispersal ability and temperature-dependent competition, the regional richness can remain substantial and even increase compared to its starting level (Fig. 6, first and third rows, last two columns). Of course, change in regional species richness is a result of species dispersing to new patches and regions as well as of local extinctions. Since the initially most cold-adapted species lose their habitat and go extinct, altered regional species richness is connected to having altered community compositions along the spatial gradient. All regions experience turnover in species composition (SI, Section 5.1), but in general, the polar region experiences the largest turnover, where the final communities are at least 50% and sometimes more than 80% dissimilar to the community state right before the onset of climate change—a result in agreement with previous studies as well7,33.Fig. 6: Relative change in global species richness from the community state at the onset of climate change (ordinate) over time (abscissa), averaged over replicates and given in 100-year steps (points).Black points correspond to species richness over the whole landscape; the blue points to richness in the top third of all patches (the polar region), green points to the middle third (temperate region), and yellow points to the last third (tropical region). Panel layout as in Fig. 4; dotted horizontal lines highlight the point of no net change in global species richness.Full size imageGlobal trendsHence, the identity of the species undergoing global extinction is not random, but strongly biased towards initially cold-adapted species. On a global scale, these extinctions cause decreased richness, and the model predicts large global biodiversity losses for all scenarios (Fig. 6). These continue during the post-climate change period with stable temperatures, indicating a substantial extinction debt which has been previously demonstrated34. Temperature-dependent competition reduces the number of global losses compared to the baseline and trophic models.A further elucidating global pattern is revealed by analyzing the relationship between the time-integrated temperature trait lag and community-wide trait dispersion (Fig. 7). There is an overall negative correlation between the two, but more importantly, within each scenario (unique combination of model and parameterization) a negative relationship is evident. Furthermore, the slopes are very similar: the main difference between scenarios is in their mean trait lag and trait dispersion values (note that the panels do not share axis value ranges). The negative trend reveals the positive effect of more varied temperature tolerance strategies among the species on the community’s ability to respond to climate change. This is analogous to Fisher’s fundamental theorem35, stating that the speed of the evolution of fitness r is proportional to its variance: dr/dt ~ var(r). More concretely, this relationship is also predicted by trait-driver theory, a mathematical framework that focuses explicitly on linking spatiotemporal variation in environmental drivers to the resulting trait distributions30. Communities generated by different models reveal differences in the magnitude of this relationship: trait dispersion is much higher in models with temperature-dependent competition (essentially, niche differentiation with respect to temperature), resulting in lower trait lag. The temperature-dependent competition also separates communities based on their spatial dispersal ability, with faster dispersal corresponding to greater trait dispersion and thus lower trait lag. Interestingly, trophic interactions tend to erode the relationship between trait lag and trait dispersion slightly (R2 values are lower in communities with trophic interactions, both with and without temperature-dependent competition). We have additionally explored the relationship between species richness and trait dispersion, finding a positive relationship between the two (SI, Section 4.1).Fig. 7: The ability of communities in four different models (panels) to track local climatic conditions (ordinate), against observed variation in traits within those communities (abscissa).Larger values along the ordinate indicate that species’ temperature optima are lagging behind local temperatures, meaning a low ability of communities to track local climate conditions. Both quantities are averaged over the landscape and time from the beginning to the end of the climate change period, yielding a single number for every community (points). The greater the average local diversity of mean temperature optima in a community, the closer it is able to match the prevailing temperature conditions. Species’ dispersal ability and available genetic variance (colors) are clustered along this relationship.Full size image More

  • in

    COVID vaccine inequity, species swaps — the week in infographics

    NEWS
    06 August 2021

    COVID vaccine inequity, species swaps — the week in infographics

    Nature highlights three key infographics from the week in science and research.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Inequity in vaccine accessRich nations’ plans to administer booster doses of COVID-19 vaccine to people who have been fully vaccinated have drawn criticism from many global health researchers, who highlight the growing disparities between wealth and access to vaccines. A July report from KFF, a health-policy organization based in San Francisco, California, finds that at current vaccination rates, low-income countries won’t achieve substantial levels of protection until at least 2023.

    Sources: KFF/Our World in Data/World Bank

    The changing face of ecosystemsDespite alarming declines in some animal and plant species, total biodiversity in many ecosystems is not decreasing. But that doesn’t mean such ecosystems are static. In fact, the mix of species in local communities is changing rapidly almost everywhere on Earth. As some inhabitants disappear, colonizers move in and add to species richness.

    Source: S. A. Blowes et al. Science 366, 339–345 (2019).

    Genetics behind the menopauseGenetic variants associated with age at onset of menopause have been identified in a large-scale genomic analysis, findings that bring scientists a step closer to predicting and treating early menopause. When the DNA of egg cells in ovaries is damaged in mice, expression of the gene Chek1 promotes DNA repair, whereas expression of Chek2 promotes destruction of the affected cell. The analysis found that variants of the human equivalent of Chek2 and other genes involved in the response to DNA damage are associated with differences in age at natural menopause. It also showed that mice carrying an extra copy of Chek1, or lacking expression of Chek2, had a longer reproductive age span than did typical mice.

    doi: https://doi.org/10.1038/d41586-021-02151-z

    Related Articles

    COVID boosters for wealthy nations spark outrage

    The world’s species are playing musical chairs: how will it end?

    Genomic analysis identifies variants that can predict the timing of menopause

    Read the paper: Genetic insights into biological mechanisms governing human ovarian ageing

    Subjects

    SARS-CoV-2

    Vaccines

    Biodiversity

    Genetics

    Latest on:

    SARS-CoV-2

    Delta threatens rural regions that dodged earlier COVID waves
    News 06 AUG 21

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Vaccines

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Text-message nudges encourage COVID vaccination
    News & Views 02 AUG 21

    Biodiversity

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Biodiversity needs every tool in the box: use OECMs
    Comment 26 JUL 21

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    Jobs

    Chief Editor – Nature Water

    Springer Nature
    London, United Kingdom

    Scientific director

    Federal Institute for Risk Assessment (BfR)
    Berlin, Germany

    PhD Student (m/f/d) in the field of Computer Vision / Data Scientist (m/f/d) in Cancer Research

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    PhD Students (m/f/d)

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Biotic threats for 23 major non-native tree species in Europe

    Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Str. 82, 1190, Wien, AustriaElisabeth PötzelsbergerEuropean Forest Institute, Platz der Vereinten Nationen 7, 53113, Bonn, GermanyElisabeth PötzelsbergerForest Entomology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandMartin M. GossnerETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, SwitzerlandMartin M. GossnerForest Protection, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandLudwig Beenken & Sophie StrohekerFaculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Kraków, PolandAnna Gazda & Srđan KerenForest Research, Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Great BritainMichal PetrNatural Resources Institute Finland, Luke, Latokartanonkaari 9, 00790, Helsinki, FinlandTiina YliojaFEM Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaThe EFI Project Centre on Mountain Forests MOUNTFOR, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaForest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, 57006, GreeceDimitrios N. AvtzisWalloon Public service (SPW), 23 av Maréchal Juin, 5030, Gembloux, BelgiumElodie Bay & Marjana WestergrenSlovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, SloveniaMaarten De Groot & Nikica OgrisInstitute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, 51006, Tartu, EstoniaRein DrenkhanFaculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229, Suceava, RomaniaMihai-Leonard DudumanInstitute for Plant Protection in Horticulture and Forests, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyRasmus EnderleDepartment of Entomology, Phytopathologyy and Game fauna, Forest Research Institute – Bulgarian Academy of Sciences, St. Kliment Ohridski 132, 1756, Sofia, BulgariaMargarita GeorgievaDepartment of Fungal Plant Pathology in Forestry, Agriculture and Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Innocamp Steinkjer, skolegata 22, 7713, Steinkjer, NorwayAri M. HietalaInstitute for National and International Plant Health, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyBjörn HoppeBiodiversité, Gènes et Communautés (BioGeCo), French National Institute for Agriculture, Food, and Environment (INRAE), University Bordeaux, F-33610, Cestas, FranceHervé JactelDepartment of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Vecna pot 83, 1000, Ljubljana, SloveniaKristjan JarniFaculty of Forestry, University of Banja Luka, Bulevar vojvode Stepe Stepanovica 75A, 51000, Banja Luka, Bosnia and HerzegovinaSrđan KerenForest Research Institute, National Agricultural Research and Innovation Centre, Farkassziget 3, H-4150, Püspökladány, HungaryZsolt KeseruDepartment of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaCentre for Climate Change Research, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaInstitute of Plant Genetics and Biotechnology SAS, Akademicka 2, P. O. Box 39A, SK-950 07, Nitra, SlovakiaAndrej KormuťákUnidade de Xestión Ambiental e Forestal Sostible, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, SpainMaría Josefa LombarderoLaboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics (NICPB), Akadeemia tee 23, 12618, Tallinn, EstoniaAljona LukjanovaFaculty of Forest Science and Ecology, Agriculture Academy, Vytautas Magnus University, Studentu 11, Akademija, 53361, Kaunas, LithuaniaVitas MarozasMediterranean Facility, European Forest Institute, Sant Pau Art Nouveau Site, Sant Antoni M. Claret 167, 08025, Barcelona, SpainEdurad MauriCentro di Ricerca Foreste e Legno, Council for agricultural research and analysis of the agricultural economy (CREA), Viale Santa Margherita, 80, 52100, Arezzo, ItalyMaria Cristina MonteverdiNorwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431, Ås, NorwayPer Holm Nygaard“Marin Drăcea” National Research-Development Institute in Forestry, Station Câmpulung Moldovenesc, Calea Bucovinei, 73bis, 725100, Câmpulung Moldovenesc, RomaniaNicolai OleniciEFI Atlantic, European Forest Institute, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioIEFC Institut Européen de la Forêt Cultivée, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioDepartment of Forest Protection, Austrian Federal Research Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131, Vienna, AustriaBernhard PernyCentre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, PortugalGlória PintoCoillte Unit 27, Coillte Forest, Danville Business Park, Kilkenny, R95 YT95, IrelandMichael PowerDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C., GermanyHans Peter RavnUCD Forestry, School of Agriculture and Food Science, University College Dublin, UCD Forestry, School of Agriculture and Food Science, University College Dublin, D04 V1W8, Dublin, IrelandIgnacio SevillanoForest Research, Forestry Commission, Northern Research Station, Roslin, Midlothian, EH25 9SY, Great BritainPaul TaylorInstitute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization “Demeter”-, Terma Alkmanos, 11528, Athens, GreecePanagiotis TsopelasFaculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00, Brno, Czech RepublicJosef UrbanSiberian Federal University, Svobodnyy Ave, 79, 660041, Krasnoyarsk, RussiaJosef UrbanInstitute of Forestry and Rural Engineering, EstonianUniversity of Life Sciences, Kreutzwaldi 5, 51006, Tartu, EstoniaKaljo VoolmaSouthern Swedish Forest Research Center, PO Box 49, SE-230 53, Alnarp, SwedenJohanna WitzellPolissya Branch, Ukrainian Research Institute of Forestry and Forest Melioration, Neskorenych st. 2, Dovzhik, UkraineOlga ZborovskaInstitute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Antona Cehova 13d, 21 000, Novi Sad, SerbiaMilica ZlatkovicE.P., A.G, M.P., T.Y. and N.L.P. developed the concept and design of the study and organised the data collection, E.P., M.M.G. and L.B. managed the database, homogenised and cleaned the data, E.P. and M.M.G. performed the analysis and all other co-authors collected and synthesised the information for their respective countries. E.P., M.M.G. and L.B. wrote the paper and all other co-authors reviewed the paper. More

  • in

    Rice paddy soils are a quantitatively important carbon store according to a global synthesis

    1.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).Article 
    CAS 

    Google Scholar 
    2.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    3.Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).4.Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).
    Google Scholar 
    5.Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).Article 

    Google Scholar 
    6.Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).7.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    8.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 
    CAS 

    Google Scholar 
    9.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    10.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).CAS 
    Article 

    Google Scholar 
    11.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    12.Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).13.Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).Article 
    CAS 

    Google Scholar 
    14.Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).CAS 
    Article 

    Google Scholar 
    15.Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 
    Article 

    Google Scholar 
    16.FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).17.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).CAS 
    Article 

    Google Scholar 
    18.Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).Article 

    Google Scholar 
    19.Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).CAS 
    Article 

    Google Scholar 
    20.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    21.Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).Article 
    CAS 

    Google Scholar 
    22.Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).Article 

    Google Scholar 
    23.Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).Article 

    Google Scholar 
    24.Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).CAS 
    Article 

    Google Scholar 
    25.Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).CAS 
    Article 

    Google Scholar 
    26.Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).Article 

    Google Scholar 
    27.Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).CAS 
    Article 

    Google Scholar 
    28.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    29.Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).CAS 
    Article 

    Google Scholar 
    30.Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).CAS 
    Article 

    Google Scholar 
    31.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    32.Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).Article 

    Google Scholar 
    33.Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).CAS 
    Article 

    Google Scholar 
    34.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    35.Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).36.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).Article 

    Google Scholar 
    37.Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).38.Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).Article 

    Google Scholar 
    39.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    40.Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).Article 

    Google Scholar 
    41.Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).Article 

    Google Scholar 
    42.Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).CAS 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).CAS 
    Article 

    Google Scholar 
    44.Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).CAS 
    Article 

    Google Scholar 
    45.Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).CAS 
    Article 

    Google Scholar 
    46.Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).Article 

    Google Scholar 
    47.Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).CAS 
    Article 

    Google Scholar 
    48.Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 
    Article 

    Google Scholar 
    49.Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).CAS 
    Article 

    Google Scholar 
    50.Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    51.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).Article 

    Google Scholar 
    52.Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).CAS 
    Article 

    Google Scholar 
    53.Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).CAS 
    Article 

    Google Scholar 
    54.Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).CAS 
    Article 

    Google Scholar 
    55.Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).CAS 
    Article 

    Google Scholar 
    56.Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).CAS 
    Article 

    Google Scholar 
    57.Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).Article 

    Google Scholar 
    58.Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).59.Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).CAS 
    Article 

    Google Scholar 
    60.Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).Article 

    Google Scholar 
    61.Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).CAS 
    Article 

    Google Scholar 
    62.Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).Article 

    Google Scholar 
    63.Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).
    Google Scholar 
    64.Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).Article 

    Google Scholar 
    65.IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).66.Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).CAS 
    Article 

    Google Scholar 
    67.Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).Article 

    Google Scholar 
    68.Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).Article 

    Google Scholar 
    69.Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).Article 

    Google Scholar 
    70.Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).CAS 

    Google Scholar 
    71.Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    CAS 

    Google Scholar 
    72.Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).Article 

    Google Scholar 
    73.Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).CAS 
    Article 

    Google Scholar 
    74.Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).Article 

    Google Scholar 
    75.Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).CAS 
    Article 

    Google Scholar 
    76.Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).Article 

    Google Scholar 
    77.Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).Article 

    Google Scholar 
    78.Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 
    Article 

    Google Scholar 
    79.Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).CAS 
    Article 

    Google Scholar 
    80.Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).Article 

    Google Scholar 
    81.Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).Article 

    Google Scholar 
    82.Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).83.Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).Article 

    Google Scholar 
    84.Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).85.Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).
    Google Scholar 
    86.FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).87.Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).88.Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).CAS 
    Article 

    Google Scholar 
    89.Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).Article 

    Google Scholar 
    90.Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).91.Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).CAS 
    Article 

    Google Scholar 
    92.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    93.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    94.Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).Article 
    CAS 

    Google Scholar  More

  • in

    An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

    1.Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).Article 

    Google Scholar 
    2.Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).Book 

    Google Scholar 
    3.Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).Article 

    Google Scholar 
    4.Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).Article 

    Google Scholar 
    8.Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).Article 

    Google Scholar 
    10.Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).Article 

    Google Scholar 
    13.Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).Article 

    Google Scholar 
    17.Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).18.Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).19.McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).Article 

    Google Scholar 
    21.Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).
    Google Scholar 
    24.Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).
    Google Scholar 
    28.Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).Article 

    Google Scholar 
    29.Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).Article 

    Google Scholar 
    31.Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).
    Google Scholar 
    32.Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).CAS 
    Article 

    Google Scholar 
    34.Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).
    Google Scholar 
    35.Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).CAS 

    Google Scholar 
    38.Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).
    Google Scholar 
    39.Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).CAS 

    Google Scholar 
    40.Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).Article 

    Google Scholar 
    41.Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).CAS 
    Article 

    Google Scholar 
    42.Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).Article 

    Google Scholar 
    44.Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).45.Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Harnessing the power of host–microbe symbioses to address grand challenges

    1.McFall-Ngai, M. et al. Animals in a bacterial world: a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    Article 

    Google Scholar 
    2.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    Article 

    Google Scholar 
    3.Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).CAS 
    Article 

    Google Scholar 
    4.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    Article 

    Google Scholar 
    6.Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968 (2018).Article 

    Google Scholar 
    7.Bosch, T. C. G., Guillemin, K. & McFall-Ngai, M. Evolutionary “experiments” in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host–microbe interactions. Bioessays 41, e1800256 (2019).8.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 
    PubMed 

    Google Scholar 
    9.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 
    PubMed 

    Google Scholar 
    10.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).Article 

    Google Scholar  More