More stories

  • in

    MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology

    1.Sohn, H. B. et al. Barcode system for genetic identification of soybean [Glycine max (L.) Merrill] cultivars using InDel markers specific to dense variation blocks. Front. Plant Sci. 8, 520 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Korir, N. K. et al. Plant variety and cultivar identification: advances and prospects. Crit. Rev. Biotechnol. 33, 111–125 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Jamali, S. et al. Identification and distinction of soybean commercial cultivars using morphological and microsatellite markers., Iranian. J. Crop Sci. 13, 131–145 (2011).
    Google Scholar 
    4.Wu, K. et al. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genet. 15, 35 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Lee, S. H. et al. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 71, 1–13 (2017).Article 

    Google Scholar 
    6.Zhao, C., Chan, S. S. F., Cham, W.-K. & Chu, L. M. Plant identification using leaf shapes: a pattern counting approach. Pattern Recognit. 48, 3203–3215 (2015).Article 

    Google Scholar 
    7.Price, C. A. et al. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles. Plant Physiol. 155, 236–245 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.De Vylder, J., Vandenbussche, F. & Hu, Y. et al. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects[J]. Plant physiology 160, 1149–1159 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Zhou, J. et al. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat. Plant Methods 13, 117 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Biot, E. et al. Multi-scale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis. Development 143, 3417–3428 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Minervini, M. et al. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. 90, 204–216 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Neto, J. C. et al. Plant species identification using Elliptic Fourier leaf shape analysis. Computers Electron. Agriculture 50, 121–134 (2006).Article 

    Google Scholar 
    13.Cope, J. S. et al. in International Symposium on Visual Computing (eds Bebis, G. et al.) 669–677 (Springer, 2010).14.Chaki, J. & Parekh, R. Plant leaf recognition using shape based features and neural network classifiers, Int. J. Adv. Comp. Sci. Appl. 2, 41–47 (2011).15.Naresh, Y. & Nagendraswamy, H. Classification of medicinal plants: an approach using modified LBP with symbolic representation. Neurocomputing 173, 1789–1797 (2016).Article 

    Google Scholar 
    16.Pradeep Kumar, T., Veera Prasad Reddy, M. & Bora, P. K. Leaf identification using shape and texture features. Proceedings of International Conference on Computer Vision and Image Processing (eds Raman B., Kumar S., Roy P. P., Sen D.) 531–541 (Springer Singapore, 2017).17.Tharwat, A., Gaber, T., Awad, Y. M., Dey, N. & Hassanien, A. E. Plants identification using feature fusion technique and bagging classifier. (eds Gaber T., Hassanien A. E., El-Bendary N., Dey N.). The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. 461–471 (Springer International Publishing, 2016).18.Codizar, A. L. & Solano, G. Plant leaf recognition by venation and shape using artificial neural networks. In: 2016 7th International Conference on Information,Intelligence, Systems & Applications (IISA). 1–4 (IEEE, 2016).19.Yang, C. Plant leaf recognition by integrating shape and texture features. Pattern Recognit. 112, 107809 (2021).Article 

    Google Scholar 
    20.Liu, C. et al. A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input. Symmetry 12, 217 (2020).Article 

    Google Scholar 
    21.Baldi, A. et al. A leaf-based back propagation neural network for oleander (Nerium oleander L.) cultivar identification. Computers Electron. Agriculture 142, 515–520 (2017).Article 

    Google Scholar 
    22.X. Yu, et al. Patchy image structure classification using multi-orientation region transform. in Proceedings of the AAAI Conference on Artificial Intelligence. 12741–12748 (AAAI, 2020).23.Edelsbrunner, H & Harer, J. in Persistent Homology—a Survey (eds Goodman, J. E., Pach, J., Pollack, R.). 257–282 (Contemporary Mathematics American Mathematical Society, 2008).24.Li, M. et al. Topological data analysis as a morphometric method: using persistent homology to demarcate a leaf morphospace. Front. Plant Sci. 9, 553 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Reininghaus, J. et al. A stable multi-scale kernel for topological machine learning, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4741–4748 (IEEE, Boston, MA, USA, 2015).26.Li, C., Ovsjanikov, M. & Chazal, F. Persistence-based structural recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1995–2002 (IEEE Computer Society, 2014).27.Dey, T., Mandal, S. & Varcho, W. Improved image classification using topological persistence. in Proceedings of the Conference on Vision, Modeling and Visualization. 161–168 (Eurographics Association, 2017).28.MacLane, S. Homology. Bull. Am. Math. Soc. 70, 329–331 (1964).Article 

    Google Scholar 
    29.Qaiser, T. et al. Tumor segmentation in whole slide images using persistent homology and deep convolutional features. in Annual Conference on Medical Image Understanding and Analysis. 320–329 (Springer, 2017).30.Qaiser, T. et al. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Med. Image Anal. 55, 1–14 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Zeppelzauer, M. et al. A study on topological descriptors for the analysis of 3d surface texture. Computer Vis. Image Underst. 167, 74–88 (2018).Article 

    Google Scholar 
    32.Chollet, F. Xception: Deep learning with depthwise separable convolutions. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1251–1258 (IEEE Computer Society, 2017).33.Hofer, C. et al. Deep learning with topological signatures. In: Advances in Neural Information Processing Systems. 1634–1644 (Curran Associates Inc., 2017).34.Turner, K., Mukherjee, S. & Boyer, D. M. Persistent homology transform for modeling shapes and surfaces. Inf. Inference.: A J. IMA 3, 310–344 (2014).Article 

    Google Scholar 
    35.Deng, J. et al. Imagenet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255 (IEEE, 2009).36.Adams, H. et al. Persistence images: A stable vector representation of persistent homology. J. Mach. Learn. Res. 18, 218–252 (2017).
    Google Scholar 
    37.Bubenik, P. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015).
    Google Scholar 
    38.Wang, B. et al. From species to cultivar: Soybean cultivar recognition using joint leaf image patterns by multi-scale sliding chord matching. Biosyst. Eng. 194, 99–111 (2020).Article 

    Google Scholar 
    39.Heiberger, R. M., & Neuwirth E. One-way ANOVA. In: R through Excel. 165–191 (Springer, 2009).40.Ling, H. & Jacobs, D. W. Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wang, B. & Gao, Y. Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval. IEEE Trans. Image Process 23, 4101–4111 (2014).42.Kaya, A. et al. Analysis of transfer learning for deep neural network-based plant classification models. Computers Electron. Agriculture 158, 20–29 (2019).Article 

    Google Scholar 
    43.Yanping, Z. & Liu, W. WeizhenLiuBioinform/mfcis: source code of mfcis. (Version 1.0.2). Zenodo https://doi.org/10.5281/zenodo.4739746 (2021).44.Barré, P. et al. LeafNet: a computer vision system for automatic plant species identification. Ecol. Inform. 40, 50–56 (2017).Article 

    Google Scholar 
    45.Beghin, T. et al. Shape and texture-based plant leaf classification. in International Conference on Advanced Concepts for Intelligent Vision Systems, 345–353 (Springer, 2010).46.Blonder, B. et al. X-ray imaging of leaf venation networks. N. Phytologist 196, 1274–1282 (2012).Article 

    Google Scholar 
    47.Gan, Y. et al. Automatic hierarchy classification in venation networks using directional morphological filtering for hierarchical structure traits extraction. Computational Biol. Chem. 80, 187–194 (2019).CAS 
    Article 

    Google Scholar 
    48.Cui, F. & Yang, G. Score level fusion of fingerprint and finger vein recognition. J. Computational Inf. Syst. 7, 5723–5731 (2011).
    Google Scholar 
    49.Park, H.-A. & Park, K. R. Iris recognition based on score level fusion by using SVM. Pattern Recognit. Lett. 28, 2019–2028 (2007).Article 

    Google Scholar 
    50.Ghosh, S. et al. Software for systems biology: from tools to integrated platforms. Nat. Rev. Genet. 12, 821–832 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Smulders, M., Booy, I. & Vosman, B. Use of molecular and biochemical methods for identification of plant varieties throughout the agri-chain. (eds Trienekens, J. H. & Zuurbier, P. J. P.) In Proceedings of the 2nd International Conference on Chain Management in Agri-and Food Business. 591–600 (Department of Management studies Wageningen Agricultural University, May 1996).52.Park, H. et al. Molecular identification of sweet potato accessions using ARMS-PCR based on SNPs. J. Plant Biotechnol. 47, 124–130 (2020).Article 

    Google Scholar 
    53.Fufa, H. et al. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145, 133–146 (2005).CAS 
    Article 

    Google Scholar 
    54.Kim, M. et al. Genome-wide SNP discovery and core marker sets for DNA barcoding and variety identification in commercial tomato cultivars. Sci. Horticulturae 276, 109734 (2021).CAS 
    Article 

    Google Scholar 
    55.Patzak, J., Henychová, A., Paprštein, F. & Sedlák, J. Evaluation of S-incompatibility locus, genetic diversity and structure of sweet cherry (Prunus avium L.) genetic resources by molecular methods and phenotypic characteristics. J. Horticultural Sci. Biotechnol. 95, 84–92 (2020).CAS 
    Article 

    Google Scholar 
    56.Pourkhaloee, A. et al. Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites. Horticulture Environ. Biotechnol. 59, 875–888 (2018).CAS 
    Article 

    Google Scholar 
    57.Cho, K. H. et al. Sequence-characterized amplified region markers and multiplex-polymerase chain reaction assays for kiwifruit cultivar identification. Horticulture Environ., Biotechnol. 61, 395–406 (2020).CAS 
    Article 

    Google Scholar 
    58.Agarwal, M., Shrivastava, N. & Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27, 617–631 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Nadeem, M. A. et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnological Equip. 32, 261–285 (2018).CAS 
    Article 

    Google Scholar 
    60.Yamaç, S. S. & Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875 (2020).Article 

    Google Scholar 
    61.Reisi Gahrouei, O., McNairn, H., Hosseini, M. & Homayouni, S. Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches. Can. J. Remote Sens. 46, 84–99 (2020).Article 

    Google Scholar 
    62.Colmer, J. et al. SeedGerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. N. Phytologist 228, 778–793 (2020).CAS 
    Article 

    Google Scholar 
    63.Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops. ISPRS J. Photogramm. Remote Sens. 173, 278–296 (2021).Article 

    Google Scholar 
    64.Zeiler, M. D. & Fergus R. in Visualizing and Understanding Convolutional Networks (eds Fleet D., Pajdla T., Schiele B., Tuytelaars T.). Computer Vision–ECCV 2014. 818–833 (Springer International Publishing, 2014).65.Erhan, D., Bengio, Y., Courville, A. & Vincent, P. Visualizing higher-layer features of a deep network. Univ. Montr. 1341, 1 (2009).
    Google Scholar 
    66.Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps[C]//InWorkshop at International Conference on Learning Representations. (2014).67.Islam, M. R. Feature and score fusion based multiple classifier selection for iris recognition. Computational Intell. Neurosci. 2014, e380585 (2014).Article 

    Google Scholar 
    68.Yang, J. et al. Feature fusion: parallel strategy vs. serial strategy. Pattern Recognit. 36, 1369–1381 (2003).Article 

    Google Scholar 
    69.Bryson, A. E. et al. Composite modeling of leaf shape across shoots discriminates Vitis species better than individual leaves. Preprint at bioRxiv https://doi.org/10.1101/2020.06.22.163899 (2020). More

  • in

    Integrating plant-to-plant communication and rhizosphere microbial dynamics: ecological and evolutionary implications and a call for experimental rigor

    1.Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends Ecol Evol. 2010;25:137–44.Article 

    Google Scholar 
    2.Rubin IN, Ellner SP, Kessler A, Morrell KA. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model. J Anim Ecol. 2015;84:1273–85.Article 

    Google Scholar 
    3.Kalske A, Shiojiri K, Uesugi A, Sakata Y, Morrell K, Kessler A. Insect herbivory selects for volatile-mediated plant-plant communication. Curr Biol. 2019;29:3128–33.CAS 
    Article 

    Google Scholar 
    4.Frisen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. Microbially mediated plant functional traits. Ann Rev Ecol Evol Syst. 2011;42:23–46.Article 

    Google Scholar 
    5.Lebeis SL, Herrera Paredes S, Lundberg DS, Breakfield N, Gehrin J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4.CAS 
    Article 

    Google Scholar 
    6.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    Article 

    Google Scholar 
    7.Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol. 2014;52:347–75.CAS 
    Article 

    Google Scholar 
    8.Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler J-P, et al. Isoprene and β-caryophyllene confer plant resistance via different plant internal signaling pathways. Plant Cell Environ. 2021;44:1151–64.CAS 
    Article 

    Google Scholar 
    9.Kong HG, Song GC, Sim H-J, Ryu C-M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 2021;15:397–408.CAS 
    Article 

    Google Scholar 
    10.Dicke M, Bruin J. Chemical information transfer between plants: back to the future. Biochem Syst Ecol. 2001;29:981–94.CAS 
    Article 

    Google Scholar 
    11.Peacher MD, Meiners SJ. Inoculum handling alters the strength and direction of plant-microbe interactions. Ecology. 2020;4:e02994.
    Google Scholar 
    12.Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol. 2012;28:489–521.CAS 
    Article 

    Google Scholar 
    13.Erb M. Volatiles as inducers and suppressors of plant defense and immunity—origins, specificity, perception, and signalling. Curr Opin Plant Biol. 2018;44:117–21.CAS 
    Article 

    Google Scholar 
    14.Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, et al. Transcriptional regulators involved in responses to volatile organic compounds in plants. J Biol Chem. 2019;294:2256–66.CAS 
    Article 

    Google Scholar 
    15.Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol. 2011;11:21.Article 

    Google Scholar 
    16.Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci. 2018;115:E1157–65.CAS 
    Article 

    Google Scholar 
    17.Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol Lett. 2019;22:1274–84.Article 

    Google Scholar 
    18.Tidbury HJ, Best A, Boots M. The epidemiological consequences of immune priming. Proc R Soc B: Biol Sci. 2015;279:4505–12.Article 

    Google Scholar 
    19.Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbiomes alter flowering phenology and the intensity of selection of flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.Article 

    Google Scholar 
    20.Petipas RH, Geber MA, Lau JA. Microbe-mediated adaptation in plants. Ecol Lett. 2021;24:1302–17. More

  • in

    Lytic archaeal viruses infect abundant primary producers in Earth’s crust

    1.Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    4.Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    9.Weinbauer, M. G. & Rassoulzadegan, F. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6, 1–11 (2004).PubMed 
    Article 

    Google Scholar 
    10.Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    12.Kyle, J. E., Eydal, H. S., Ferris, F. G. & Pedersen, K. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J. 2, 571–574 (2008).PubMed 
    Article 

    Google Scholar 
    13.Labonté, J. M. et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front. Microbiol. 6, 349 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Hylling, O. et al. Two novel bacteriophage genera from a groundwater reservoir highlight subsurface environments as underexplored biotopes in bacteriophage ecology. Sci. Rep. 10, 11879 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    15.Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    17.Pauly, M. D., Bautista, M. A., Black, J. A. & Whitaker, R. J. Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180093 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Henneberger, R., Moissl, C., Amann, T., Rudolph, C. & Huber, R. New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface. Appl. Environ. Microbiol. 72, 192–199 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    20.Probst, A. J. et al. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. ISME J. 7, 635–651 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. Front. Microbiol. 7, 1221 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361–370 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Rudolph, C., Wanner, G. & Huber, R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 2336–2344 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    25.Rudolph, C., Moissl, C., Henneberger, R. & Huber, R. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50, 1–11 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Schwank, K. et al. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 13, 2135–2139 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Probst, A. J. & Moissl-Eichinger, C. “Altiarchaeales”: uncultivated archaea from the subsurface. Life 5, 1381–1395 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Makarova, K. S. et al. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 18, 877–893 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Anderson, R. E., Brazelton, W. J. & Baross, J. A. The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface. Carbon Earth 75, 649–675 (2013).CAS 
    Article 

    Google Scholar 
    31.Rodrigues, R. A. L. et al. An anthropocentric view of the virosphere-host relationship. Front. Microbiol. 8, 1673 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Munson-McGee, J. H., Snyder, J. C. & Young, M. J. Archaeal viruses from high-temperature environments. Genes 9, 128 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    33.Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    34.Philosof, A. et al. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr. Biol. 27, 1362–1368 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Gudbergsdottir, S. R., Menzel, P., Krogh, A., Young, M. & Peng, X. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ. Microbiol. 18, 863–874 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Munson-McGee, J. H., Rooney, C. & Young, M. J. An uncultivated virus infecting a nanoarchaeal parasite in the hot springs of Yellowstone National Park. J. Virol. 94, e01213-19 (2020).38.Zablocki, O., van Zyl, L. J., Kirby, B. & Trindade, M. Diversity of dsDNA viruses in a South African hot spring assessed by metagenomics and microscopy. Viruses 9, 348 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    39.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, 338103 (2018).Article 

    Google Scholar 
    41.Hochstein, R. A., Amenabar, M. J., Munson-McGee, J. H., Boyd, E. S. & Young, M. J. Acidianus tailed spindle virus: a new archaeal large tailed spindle virus discovered by culture-independent methods. J. Virol. 90, 3458–3468 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jahn, M. T. et al. Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. ISME J. 15, 1–11 (2021).43.Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol. 2, 219 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Bornemann, T. L. V. et al. Geological degassing enhances microbial metabolism in the continental subsurface. https://doi.org/10.1101/2020.03.07.980714 (2020).46.Sharrar, A. M. et al. Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron Basin. Front. Microbiol. 8, 791 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Reports, in press (2021).49.Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Short, C. M. & Suttle, C. A. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71, 480–486 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    53.Bautista, M. A., Black, J. A., Youngblut, N. D. & Whitaker, R. J. Differentiation and structure in Sulfolobus islandicus rod-shaped virus populations. Viruses 9, 120 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    54.Held, N. L. & Whitaker, R. J. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ. Microbiol. 11, 457–466 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Baquero, D. P. et al. New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME J. 14, 1821–1833 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Molnár, J. et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLoS ONE 15, e0231864 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Prangishvili, D., Garrett, R. A. & Koonin, E. V. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res. 117, 52–67 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87, 1088–1099 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Silas, S. et al. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Elife 6, e27601 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Guo, T., Han, W. & She, Q. Tolerance of Sulfolobus SMV1 virus to the immunity of IA and III-B CRISPR-Cas systems in Sulfolobus islandicus. RNA Biol. 16, 549–556 (2019).PubMed 
    Article 

    Google Scholar 
    61.Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    62.Bhoobalan-Chitty, Y., Johansen, T. B., Di Cianni, N. & Peng, X. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179, 448–458 e411 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microbiol. Ecol. 13, 19–27 (1997).Article 

    Google Scholar 
    64.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea—viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).Article 

    Google Scholar 
    65.Probst, A. J. et al. Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria. ISME J. 14, 1547–1560 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Dong, X. et al. Fermentative spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. ISME J. 12, 2039–2050 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D. & Drescher, K. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat. Microbiol. 3, 26–31 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Probst, A. J. et al. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. PLoS ONE 9, e99801 (2014).71.John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Joshi, N. & Fass, J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle (2011).73.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    75.Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Bornemann, T. L. V., Esser, S. P., Stach, T. L., Burg, T. & Probst, A.J. uBin—a manual refining tool for metagenomic bins designed for educational purposes. https://doi.org/10.1101/2020.07.15.204776 (2020).77.Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Medvedeva, S. et al. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat. Commun. 10, 5204 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    79.Iranzo, J., Faure, G., Wolf, Y. I. & Koonin, E. V. Game-theoretical modeling of interviral conflicts mediated by mini-CRISPR arrays. Front. Microbiol. 11, 381 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Denman, R. B. Using Rnafold to predict the activity of small catalytic RNAs. Biotechniques 15, 1090-& (1993).
    Google Scholar 
    81.Lange, S. J., Alkhnbashi, O. S., Rose, D., Will, S. & Backofen, R. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res. 41, 8034–8044 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Moller, A. G. & Liang, C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ 5, e3788 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Bischoff, V. et al. Cobaviruses—a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME J. 13, 1404–1421 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Boratyn, G. M. et al. Domain enhanced lookup time accelerated BLAST. Biol. Direct 7, 12 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    88.Marz, M. et al. Challenges in RNA virus bioinformatics. Bioinformatics 30, 1793–1799 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Meier-Kolthoff, J. P. & Göker, M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33, 3396–3404 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 60 (2013).Article 

    Google Scholar 
    96.Göker, M., Garcia-Blazquez, G., Voglmayr, H., Telleria, M. T. & Martin, M. P. Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE 4, e6319 (2009).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    97.Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    98.Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. PeerJ 5, e3243 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Brister, J. R., Ako-Adjei, D., Bao, Y. & Blinkova, O. NCBI viral genomes resource. Nucleic Acids Res. 43, D571–D577 (2015).CAS 
    Article 

    Google Scholar 
    100.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12, 1268 (2020).102.Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Team RC. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.104.Papadopoulos, J. S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    106.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    107.Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Rambaut, A. FigTree, a graphical viewer of phylogenetic trees and as a program for producing publication-ready figures. http://tree.bio.ed.ac.uk/software/figtree/ (2006).110.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Barrero-Canosa, J. & Moraru, C. Linking microbes to their genes at single cell level with direct-geneFISH. In: An Overview of FISH Concepts and Protocols for Microbial Cells (eds Almeida, C. & Azevedo, N.). (Springer Nature, 2020).112.Barrero-Canosa, J., Moraru, C., Zeugner, L., Fuchs, B. M. & Amann, R. Direct-geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environ. Microbiol. 19, 70–82 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Perras, A. K. et al. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Front. Microbiol. 6, 543 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Moissl, C., Rudolph, C., Rachel, R., Koch, M. & Huber, R. In situ growth of the novel SM1 euryarchaeon from a string-of-pearls-like microbial community in its cold biotope, its physical separation and insights into its structure and physiology. Arch. Microbiol. 180, 211–217 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Flechsler, J. et al. 2D and 3D immunogold localization on (epoxy) ultrathin sections with and without osmium tetroxide. Microsc. Res. Tech. 83, 691–705 (2020).117.Schlitzer, R. Data Analysis and Visualization with Ocean Data View, CMOS Bulletin SCMO. 43, 9–13 (2015). More

  • in

    Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge

    The composition of bacterial and fungal microbiotas changes during vermicomposting of sewage sludgeThe bacterial community of the raw sewage sludge included 19 phyla and was mainly comprised of Bacteroidota, Bdellovibrionota, Campilobacterota, Firmicutes and Proteobacteria (Fig. 1). Bacterial communities of fresh earthworm casts were dominated by the phyla Bacteroidota, Proteobacteria and Verrucomicrobiota (Fig. 1). Large changes in bacterial community composition were found after transit of the sewage sludge through the gut of the earthworms (GAP), with significant decreases in the abundance of Campilobacterota, Firmicutes and Bacteroidota, and significant increases in the abundance of Verrucomicrobiota, Proteobacteria and Bacteroidota (Supplementary Table S1). At the genus level, transit through the gut significantly reduced the abundance of bacterial genera Terrimonas, Acetoanaerobium, Bacteroides, Cloacibacterium, Proteocatella and Macellibacteroides among others (Fig. 1, Supplementary Table S2), and increased significantly the abundance of Dyadobacter, Aeromonas, Luteolibacter, Edaphobaculum, Cellvibrio, Pedobacter, Sphingomonas, Devosia, Cetobacterium and Rhodanobacter among others (Fig. 1, Supplementary Table S2). At ASV level, transit through the earthworm gut significantly reduced the relative abundance of 49 bacterial ASVs and increased the relative abundance of 54 bacterial ASVs (Supplementary Table S3).Figure 1Relative abundance of the main phyla and genera of bacteria in sewage sludge, fresh earthworm casts and vermicompost (3 months old) during vermicomposting of sewage sludge. Low abundance bacterial phyla and genera ( More

  • in

    Male diet affects female fitness and sperm competition in human- and bat-associated lineages of the common bedbug, Cimex lectularius

    1.Coyne, J. A. & Orr, A. H. Speciation. (Sinauer associates, Inc., 2004).2.Nosil, P. Ecological speciation. (Oxford University Press, 2012). https://doi.org/10.1093/acprof:osobl/9780199587100.001.00013.Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).Article 

    Google Scholar 
    4.Almbro, M., Dowling, D. K. & Simmons, L. W. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol. Lett. 14, 891–895 (2011).PubMed 
    Article 

    Google Scholar 
    5.Sutter, A. & Immler, S. Within-ejaculate sperm competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20200066 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Balfour, V. L., Black, D. & Shuker, D. M. Mating failure shapes the patterns of sperm precedence in an insect. Behav. Ecol. Sociobiol. 74, 1–14 (2020).Article 

    Google Scholar 
    7.Reinhardt, K., Dobler, R. & Abbott, J. An ecology of sperm: Sperm diversification by natural selection. Annu. Rev. Ecol. Evol. Syst. 46, 435–459 (2015).Article 

    Google Scholar 
    8.Dobler, R. & Reinhardt, K. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster. J. Evol. Biol. 29, 929–941 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Evans, J. P., Lymbery, R. A., Wiid, K. S., Rahman, M. M. & Gasparini, C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol. Lett. 13, 20170087 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Alavi, S. M. H. & Cosson, J. Sperm motility in fishes. I. Effects of temperature and pH: A review. Cell Biol. Int. 29, 101–110 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Foresta, C. et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil. Steril. 93, 802–806 (2010).PubMed 
    Article 

    Google Scholar 
    12.Mann, T. The biochemistry of semen and the male reproductive tract. (London: Methuen & Co (1964), 1964).13.Otti, O., McTighe, A. P. & Reinhardt, K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226 (2013).Article 

    Google Scholar 
    14.Valdebenito, I., Fletcher, C., Vera, V. & Fernández, J. Physical-chemical factors that regulate spermatic motility in fish: Basic and applied aspects. A review. . Arch. Med. Vet. 41, 97–106 (2009).CAS 
    Article 

    Google Scholar 
    15.Werner, M. & Simmons, L. W. Insect sperm motility. Biol. Rev. 83, 191–208 (2008).PubMed 
    Article 

    Google Scholar 
    16.Barros, C. M., Pegorer, M. F., Vasconcelos, J. L. M., Eberhardt, B. G. & Monteiro, F. M. Importance of sperm genotype (indicus versus taurus) for fertility and embryonic development at elevated temperatures. Theriogenology 65, 210–218 (2006).PubMed 
    Article 

    Google Scholar 
    17.Blanco, J. M., Gee, G., Wildt, D. E. & Donoghue, A. M. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol. Reprod. 63, 1164–1171 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Chacur, M. G. M., Mizusaki, K. T., Filho, L. R. A. G., Oba, E. & Ramos, A. A. Seasonal effects on semen and testosterone in zebu and taurine bulls. Acta Sci. Vet. 41, 1110 (2013).
    Google Scholar 
    19.Lewis, S. M., Tigreros, N., Fedina, T. & Ming, Q. L. Genetic and nutritional effects on male traits and reproductive performance in Tribolium flour beetles. J. Evol. Biol. 25, 438–451 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Schramm, G.-P. Studies on genotype specific modified methods for cryopreservation of cock semen. Züchtungskunde 80, 137–145 (2008).
    Google Scholar 
    21.Rohmer, C., David, J. R., Moreteau, B. & Joly, D. Heat induced male sterility in Drosophila melanogaster: Adaptive genetic variations among geographic populations and role of the Y chromosome. J. Exp. Biol. 207, 2735–2743 (2004).PubMed 
    Article 

    Google Scholar 
    22.Reinhardt, K. & Otti, O. Comparing sperm swimming speed. Evol. Ecol. Res. 14, 1–8 (2012).
    Google Scholar 
    23.Öst, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Wathes, D. C., Abayasekara, D. R. E. & Aitken, R. J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 77, 190–201 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Diaz-Fontdevila, M. & Bustos-Obregon, E. Cholesterol and polyunsaturated acid enriched diet: Effect on kinetics of the acrosome reaction in rabbit spermatozoa. Mol. Reprod. Dev. 35, 176–180 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Keber, R., Rozman, D. & Horvat, S. Sterols in spermatogenesis and sperm maturation. J. Lipid Res. 54, 20–33 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Guo, R. & Reinhardt, K. Dietary polyunsaturated fatty acids affect volume and metabolism of Drosophila melanogaster sperm. J. Evol. Biol. https://doi.org/10.1111/jeb.13591 (2020).Article 
    PubMed 

    Google Scholar 
    28.Rato, L., Alves, M. G., Cavaco, J. E. & Oliveira, P. F. High-energy diets: a threat for male fertility?. Obes. Rev. 15, 996–1007 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Ferramosca, A., Moscatelli, N., Di Giacomo, M. & Zara, V. Dietary fatty acids influence sperm quality and function. Andrology 5, 423–430 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Paynter, E. et al. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Sci. Rep. 7, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    31.Chinoy, N. J., Mehta, D. & Jhala, D. Effects of fluoride ingestion with protein deficient or protein enriched diets on sperm function of mice. Fluoride 39, 11–16 (2006).CAS 

    Google Scholar 
    32.Watkins, A. J. et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. U. S. A. 115, 10064–10069 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ferramosca, A. & Zara, V. Bioenergetics of mammalian sperm capacitation. Biomed Res. Int. 2014, 902953 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Vawda, A. I. & Mandlwana, J. G. The effects of dietary protein deficiency on rat testicular function. Andrologia 22, 575–583 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Carvalho, M. et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 8, 600 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. 94, 1722–1739 (2019).PubMed 
    Article 

    Google Scholar 
    37.Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Wainwright, M. S. et al. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc. Natl. Acad. Sci. USA 118, e2019622118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Elofsson, H., Van Look, K., Borg, B. & Mayer, I. Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback. J. Fish Biol. 63, 1429–1438 (2003).Article 

    Google Scholar 
    40.Otti, O., Johnston, P. R., Horsburgh, G. J., Galindo, J. & Reinhardt, K. Female transcriptomic response to male genetic and nongenetic ejaculate variation. Behav. Ecol. 26, 681–688 (2015).Article 

    Google Scholar 
    41.Balvín, O., Munclinger, P., Kratochvíl, L. & Vilímová, J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 111, 457–469 (2012).PubMed 
    Article 

    Google Scholar 
    42.Booth, W., Balvín, O., Vargo, E. L., Vilímová, J. & Schal, C. Host association drives genetic divergence in the bed bug. Cimex lectularius. Mol. Ecol. 24, 980–992 (2015).PubMed 
    Article 

    Google Scholar 
    43.Wawrocka, K. & Bartonička, T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol. Res. 112, 3897–3904 (2013).PubMed 
    Article 

    Google Scholar 
    44.Aak, A. & Rukke, B. A. Bed bugs, their blood sources and life history parameters: A comparison of artificial and natural feeding. Med. Vet. Entomol. 28, 50–59 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Reinhardt, K., Naylor, R. & Siva-Jothy, M. T. Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proc. R. Soc. B Biol. Sci. 270, 2371–2375 (2003).Article 

    Google Scholar 
    46.Reinhardt, K., Naylor, R. A. & Siva-Jothy, M. T. Situation exploitation: Higher male mating success when female resistance is reduced by feeding. Evolution (N. Y.). 63, 29–39 (2009).
    Google Scholar 
    47.Siva-Jothy, M. T. & Stutt, A. D. A matter of taste: Direct detection of female mating status in the bedbug. Proc. R. Soc. B Biol. Sci. 270, 649–652 (2003).Article 

    Google Scholar 
    48.Davis, N. T. Studies of the reproductive physiology of Cimicidae (Hemiptera)-II. Artificial insemination and the function of the seminal fluid. J. Insect. Physiol. 11, 355–366 (1965).Article 

    Google Scholar 
    49.Kaldun, B. & Otti, O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol. Evol. 6, 2548–2558 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Reinhardt, K., Naylor, R. A. & Siva-Jothy, M. T. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. Proc. Natl. Acad. Sci. USA 106, 21743–21747 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    51.Reinhardt, K., Naylor, R. & Siva-Jothy, M. T. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius. . PLoS ONE 6, 282 (2011).Article 
    CAS 

    Google Scholar 
    52.Fountain, T., Duvaux, L., Horsburgh, G., Reinhardt, K. & Butlin, R. K. Human-facilitated metapopulation dynamics in an emerging pest species. Cimex lectularius. Mol. Ecol. 23, 1071–1084 (2014).PubMed 
    Article 

    Google Scholar 
    53.R Core Team. R: A language and environment for statistical computing. (2020).54.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    55.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    56.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    57.Therneau, T. M. coxme: Mixed effects cox models. (2019).58.Harrison, X. A. A comparison of observation-level randomeffect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ 2015, 114 (2015).
    Google Scholar 
    59.Clark, A. G., Aguadé, M., Prout, T. R., Harshman, L. G. & Langley, C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139, 189–201 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Friberg, U., Lew, T. A., Byrne, P. G. & Rice, W. R. Assessing the potential for an ongoing arms race within and between the sexes: selection and heritable variation. Evol. (N.Y.) 59, 1540 (2005).
    Google Scholar 
    61.Morimoto, J. & Wigby, S. Differential effects of male nutrient balance on pre-and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster. Sci. Rep. 6, 27673 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    62.Rahman, M. M., Gasparini, C., Turchini, G. M. & Evans, J. P. Experimental reduction in dietary omega-3 polyunsaturated fatty acids depresses sperm competitiveness. Biol. Lett. 10, 20140623 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Hawkey, C. M. Comparative mammalian haematology : cellular components and blood coagulation of captive wild animals. (Butterworth-Heinemann, 2017).64.Wawrocka, K. & Bartonička, T. Erythrocyte size as one of potential causes of host preferences in cimicids (Heteroptera: Cimicidae: Cimex). Vespertilio 17, 215–220 (2014).
    Google Scholar 
    65.Bunning, H. et al. Protein and carbohydrate intake influence sperm number and fertility in male cockroaches, but not sperm viability. Proc. R. Soc. B Biol. Sci. 282, 1 (2015).CAS 

    Google Scholar 
    66.Perez-Staples, D., Harmer, A. M. T., Collins, S. R. & Taylor, P. W. Potential for pre-release diet supplements to increase the sexual performance and longevity of male Queensland fruit flies. Agric. For. Entomol. 10, 255–262 (2008).Article 

    Google Scholar 
    67.Dàvila, F. & Aron, S. Protein restriction affects sperm number but not sperm viability in male ants. J. Insect. Physiol. 100, 71–76 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Olsen, J. & Ramlau-Hansen, C. H. Dietary fats may impact semen quantity and quality. Asian J. Androl. 14, 511–512 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Birkhead, T. R., Martínez, J. G., Burke, T. & Froman, D. P. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. B Biol. Sci. 266, 1759–1764 (1999).CAS 
    Article 

    Google Scholar 
    70.Colegrave, N., Birkhead, T. R. & Lessells, C. M. Sperm precedence in zebra finches does not require special mechanisms of sperm competition. Proc. R. Soc. B Biol. Sci. 259, 223–228 (1995).Article 
    ADS 

    Google Scholar 
    71.Simmons, L. W. Sperm competition and its evolutionary consequences in the insects. (Princeton University Press, 2001).72.Tsubaki, Y. & Yamagishi, M. ‘Longevity’ of sperm within the female of the melon fly, Dacus cucurbitae (Diptera: Tephritidae), and its relevance to sperm competition. J. Insect. Behav. 4, 243–250 (1991).Article 

    Google Scholar 
    73.Yamagishi, M., Itô, Y. & Tsubaki, Y. Sperm competition in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae): Effects of sperm ‘longevity’ on sperm precedence. J. Insect. Behav. 5, 599–608 (1992).Article 

    Google Scholar 
    74.Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).PubMed 
    Article 

    Google Scholar 
    75.Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups

    1.Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.PubMed 
    Article 

    Google Scholar 
    3.Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol. 1999;65:4666–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Sorokin DY, Yu, Sorokin D, Tourova TP, Henstra AM, Stams AJM, et al. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 2008;154:1444–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Si Y, Zou Y, Liu X, Si X, Mao J. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere 2015;122:206–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol. 2011;13:1125–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Tan S, Liu J, Fang Y, Hedlund BP, Lian Z-H, Huang L-Y, et al. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J 2019;13:2044–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S, Senoo K. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ. 2017;32:180–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Liu J, Häggblom MM. Genome-guided identification of organohalide-respiring Deltaproteobacteria from the marine environment. MBio 2018;9:e02471–18.PubMed 
    PubMed Central 

    Google Scholar 
    11.Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol. 1996;178:2402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333:1296–1300.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Liu Y, Zhang J, Zhao L, Zhang X, Xie S. Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology. 2014;15:249–56.Article 

    Google Scholar 
    19.Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012;78:8264–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Expanding the world of marine bacterial and archaeal clades. Front Microbiol. 2016;6:1524.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-cell genomics reveals a diverse metabolic potential of uncultivated Desulfatiglans-related Deltaproteobacteria widely distributed in marine sediment. Front Microbiol. 2018;9:2038.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun. 2018;9:4999.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Joshi N, Sickle FJ. A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). 2011. https://github.com/najoshi/sickle.26.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–12.Article 

    Google Scholar 
    28.Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016;102:3–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Eren AM, Esen ÖC, Quince C, Vineis JH, Sogin ML, Delmont TO. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42.CAS 
    Article 

    Google Scholar 
    39.Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019;36:1925–7.PubMed Central 
    PubMed 

    Google Scholar 
    46.Bowers RM. The Genome Standards Consortium, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    56.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    57.Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Greening C. Greening lab metabolic marker gene databases. https://doi.org/10.26180/c.5230745.59.Zhou Z, Tran P, Liu Y, Kieft K, Anantharaman K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv. 2019. Preprint at https://doi.org/10.1101/761643.60.Terrapon N, Lombard V, Drula E, Coutinho PM, Henrissat B. The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In: Aoki-Kinoshita KF (ed). A Practical Guide to Using Glycomics Databases. (Springer Japan, Tokyo, 2017) pp 117–31.61.Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman FSL. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 2016;44:D663–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Callaghan AV, Wawrik B. AnHyDeg: a curated database of anaerobic hydrocarbon degradation genes. GitHub. 2016. https://github.com/AnaerobesRock/AnHyDeg.63.McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.McDaniel EA, Anantharaman K, McMahon KD. metabolisHMM: Phylogenomic analysis for exploration of microbial phylogenies and metabolic pathways. bioRxiv. 2019. Preprint at https://doi.org/10.1101/2019.12.20.884627.65.De Anda V, Zapata-Peñasco I, Poot-Hernandez AC, Eguiarte LE, Contreras-Moreira B, Souza V. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 2017;6:1–17.PubMed 
    PubMed Central 

    Google Scholar 
    66.Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ Jr. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Natl Acad Sci. 2014;111:E4668–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, et al. Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth and is mediated by genomically divergent microorganisms. Nat Microbiol. 2019;4:1356–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature 2018;560:49–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Han K, Li Z-F, Peng R, Zhu L-P, Zhou T, Wang L-G, et al. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep. 2013;3:1–7.
    Google Scholar 
    71.Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol. 2002;68:893–900.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Castaño-Cerezo S, Pastor JM, Renilla S, Bernal V, Iborra JL, Cánovas M. An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Micro Cell Fact. 2009;8:54.Article 
    CAS 

    Google Scholar 
    73.Meinke A, Gilkes NR, Kwan E, Kilburn DG, Warren RA, Miller RC,Jr. et al. CbhA) from the cellulolytic bacterium Cellulomonas fimi is a beta-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBH II. Mol Microbiol. 1994;12:413–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Zverlov VV, Hertel C, Bronnenmeier K, Hroch A, Kellermann J, Schwarz WH. The thermostable alpha-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial alpha-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol. 2000;35:173–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Galinier A, Josef Deutscher, Martin-Verstraete I. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. Edited by IB Holland. J Mol Biol. 1999; 286: 307–14.76.Schmetterer G, Valladares A, Pils D, Steinbach S, Pacher M, Muro-Pastor AM, et al. The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413. J Bacteriol. 2001;183:6429–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ducluzeau A-L, Ouchane S, Nitschke W. The cbb3 oxidases are an ancient innovation of the domain bacteria. Mol Biol Evol. 2008;25:1158–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Green GN, Fang H, Lin RJ, Newton G, Mather M, Georgiou CD, et al. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1988;263:13138–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Upadhyay AK, Hooper AB, Hendrich MP. NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea. J Am Chem Soc. 2006;128:4330–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Davidova IA, Marks CR, Suflita JM. Anaerobic hydrocarbon-degrading Deltaproteobacteria. In: McGenity TJ (ed). Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. (Springer International Publishing, Cham, 2019) pp 207–43.82.Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, et al. Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol. 2014;80:7592–603.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Temme HR, Carlson A, Novak PJ. Presence, diversity, and enrichment of respiratory reductive dehalogenase and non-respiratory hydrolytic and oxidative dehalogenase genes in terrestrial environments. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    84.Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M. The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett. 2001;496:40–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Aeckersberg F, Rainey FA, Widdel F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol. 1998;170:361–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 2007;449:898–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Krzycki JA. Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol. 2004;8:484–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Cole JR, Fathepure BZ, Tiedje JM. Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedjei DCB-1. Biodegradation 1995;6:167–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Micro Physiol. 2011;59:1–100.CAS 
    Article 

    Google Scholar 
    94.Liesack W, Finster K. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol. 1994;44:753–8.Article 

    Google Scholar 
    95.Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Tremblay P-L, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, et al. The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA. 2007;104:7600–5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu Y-L, Hugenholtz P, et al. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol. 2006;72:2080–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Bertagnolli AD, Konstantinidis KT, Stewart FJ. Non-denitrifier nitrous oxide reductases dominate marine biomes. Environ Microbiol Rep. 2020;12:681–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep. 2017;9:323–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. MBio 2017;8:e00671–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Marcia M, Ermler U, Peng G, Michel H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 2010;78:1073–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Lencina AM, Ding Z, Schurig-Briccio LA, Gennis RB. Characterization of the type III sulfide:quinone oxidoreductase from Caldivirga maquilingensis and its membrane binding. BBA-Bioenerg. 2013;1827:266–75.CAS 
    Article 

    Google Scholar 
    104.Onley JR, Ahsan S, Sanford RA, Löffler FE. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol. 2018;84:e01985–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Masuda Y, Yamanaka H, Xu Z-X, Shiratori Y, Aono T, Amachi S, et al. Diazotrophic Anaeromyxobacter isolates from soils. Appl Environ Microbiol. 2020;86:e01985–17.
    Google Scholar 
    106.Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol. 2011;13:2603–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Taubert M, Grob C, Howat AM, Burns OJ, Pratscher J, Jehmlich N, et al. Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environ Microbiol. 2017;19:2246–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Kaneko R, Hayashi T, Tanahashi M, Naganuma T. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Mar Biotechnol. 2007;9:429–36.CAS 
    Article 

    Google Scholar 
    109.Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Villar E, Cabrol L, Heimbürger-Boavida L-E. Widespread microbial mercury methylation genes in the global ocean. Env Microbiol Rep. 2020;12:277–87.CAS 
    Article 

    Google Scholar 
    111.Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 2017;11:2754–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Landgraf P, Antileo ER, Schuman EM, Dieterich DC. BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol Biol. 2015;1266:199–215.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Equatorial pliosaurid from Venezuela marks the youngest South American occurrence of the clade

    1.Madzia, D. & Cau, A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: Discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Benson, R. B. et al. A giant pliosaurid skull from the Late Jurassic of England. PLoS ONE 8, e65989. https://doi.org/10.1371/journal.pone.0065989 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Schumacher, B. A., Carpenter, K. & Everhart, M. J. A new Cretaceous pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas. J. Vertebrate Paleontol. 33, 613–628 (2013).Article 

    Google Scholar 
    4.Madzia, D. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England. PeerJ 4, e1998 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Zverkov, N. G., Fischer, V., Madzia, D. & Benson, R. B. J. Increased pliosaurid dental disparity across the Jurassic–Cretaceous transition. Palaeontology 61, 825–846 (2018).Article 

    Google Scholar 
    6.Madzia, D., Sachs, S. & Lindgren, J. Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geol. Mag. 156, 1201–1216 (2019).Article 

    Google Scholar 
    7.Tarlo, L. B. A review of the Upper Jurassic pliosaurs. Bull. Br. Museum (Nat. Hist.) Geol. Lond. 4(5), 145–189 (1960).
    Google Scholar 
    8.Noè, L. F. A taxonomic and functional study of the Callovian (Middle Jurassic) Pliosauroidea (Reptilia, Sauropterygia), PhD thesis, University of Derby, 616 pp (2001).9.Ketchum, H. F. & Benson, R. B. J. The cranial anatomy and taxonomy of Peloneustes philarchus (Sauropterygia, Pliosauridae) from the Peterborough member (Callovian, Middle Jurassic) of the United Kingdom. Palaeontology 54(3), 639–665 (2011).Article 

    Google Scholar 
    10.Knutsen, E. M. A taxonomic revision of the genus Pliosaurus (Owen, 1841a) Owen, 1841b. Norw. J. Geol. 92, 259–276 (2012).
    Google Scholar 
    11.Knutsen, E. M., Druckenmiller, P. S. & Hurum, J. H. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian of central Spitsbergen, Norway. Norw. J. Geol. 92, 235–258 (2012).
    Google Scholar 
    12.Williston, S. W. North American plesiosaurs. Field Columbian Museum, Pub. 73, Geological Series 2, 1–79 (1903).
    13.Williston, S. W. The skull of Brachauchenius, with special observations on the relationships of the plesiosaurs. US Natl. Museum Proc. 32, 477–489 (1907).Article 

    Google Scholar 
    14.Welles, S. P. & Slaughter, B. H. The first record of the plesiosaurian genus Polyptychodon (Pliosauridae) from the New World. J. Paleontol. 37, 131–133 (1963).
    Google Scholar 
    15.Hampe, O. Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungs-Institut Senckenberg 145, 1–32 (1992).
    Google Scholar 
    16.Carpenter, K. A review of short-necked plesiosaurs from the Cretaceous of the Western Interior, North America. Neues Jb. Geol. Paläontol. Abh. 201, 259–287 (1996).Article 

    Google Scholar 
    17.VonLoh, J. P. & Bell, G. L. Jr. Fossil Reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills Region, South Dakota. Dakoterra 5, 28–38 (1998).
    Google Scholar 
    18.Kear, B. P. Cretaceous marine reptiles of Australia: A review of taxonomy and distribution. Cretac. Res. 24, 277–303 (2003).Article 

    Google Scholar 
    19.Hampe, O. Considerations on a Brachauchenius skeleton (Pliosauroidea) from the lower Paja Formation (late Barremian) of Villa de Leyva area (Colombia). Fossil Record 8, 37–51 (2005).Article 

    Google Scholar 
    20.Liggett, G. A., Shimada, K., Bennett, S. C. & Schumacher, B. A. Cenomanian (Late Cretaceous) reptiles from northwestern Russell County, Kansas. PaleoBios 25, 9–17 (2005).
    Google Scholar 
    21.Schumacher, B. A. & Everhart, M. J. A stratigraphic and taxonomic review of plesiosaurs from the old “Fort Benton Group” of central Kansas: A new assessment of old records. Paludicola 5, 33–54 (2005).
    Google Scholar 
    22.Albright, B. L., Gillette, D. D. & Titus, A. L. Plesiosaurs from the Upper Cretaceous (Cenomanian-Turonian) tropic shale of southern Utah. Part 1: New records of the pliosaur Brachauchenius lucasi. J. Vertebrate Paleontol. 27, 41–58 (2007).Article 

    Google Scholar 
    23.Ketchum, H. F. & Benson, R. B. J. Global interrelationships of Plesiosauria (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of phylogenetic analyses. Biol. Rev. 85, 361–392 (2010).PubMed 
    Article 

    Google Scholar 
    24.Páramo-Fonseca, M. E., Gómez-Pérez, M., Noè, L. F. & Etayo-Serna, F. Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the Upper Barremian (Lower Cretaceous) of Villa de Leiva, Colombia, South America. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 40, 84–103 (2016).Article 

    Google Scholar 
    25.Gómez-Pérez, M. & Noè, L. F. Cranial anatomy of a new pliosaurid Acostasaurus pavachoquensis from the Lower Cretaceous of Colombia, South America. Palaeontogr. Abt. A 310, 5–42 (2017).Article 

    Google Scholar 
    26.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new large pliosaurid from the Barremian (Lower Cretaceous) of Sáchica, Boyacá, Colombia. Earth Sci. Res. J. 22, 223–238 (2018).Article 

    Google Scholar 
    27.Fischer, V. et al. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid. R. Soc. Open Sci. 2, 150552 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Fischer, V. et al. Plasticity and convergence in the evolution of short-necked plesiosaurs. Curr. Biol. 27, 1667-1676.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zverkov, N. G. On a typically Late Jurassic pliosaur from the Lower Cretaceous of Crimea. The International Scientific Conference on the Jurassic/Cretaceous boundary, Samara, Russia, 89–94 (2015).30.Angst, D. & Bardet, N. A new record of the pliosaur Brachauchenius lucasi [Williston, 1903] (Reptilia: Sauropterygia) of Turonian (Late Cretaceous) age, Morocco. Geol. Mag. 153, 449–459 (2016).CAS 
    Article 

    Google Scholar 
    31.Madzia, D. & Machalski, M. Isolated pliosaurid teeth from the Albian-Cenomanian (Cretaceous) of Annopol, Poland. Acta Geol. Pol. 67, 393–403 (2017).CAS 
    Article 

    Google Scholar 
    32.Lukeneder, A. & Zverkov, N. G. First evidence of a conical-toothed pliosaurid (Reptilia, Sauropterygia) in the Hauterivian of the Northern Calcareous Alps, Austria. Cretaceous Res. 106, 104248 (2020).Article 

    Google Scholar 
    33.Zverkov, N. G. & Pervushov, E. M. A gigantic pliosaurid from the Cenomanian (Upper Cretaceous) of the Volga Region, Russia. Cretaceous Res. 110, 104419 (2020).Article 

    Google Scholar 
    34.Kear, B. P., Ekrt, B., Prokop, J. & Georgalis, G. L. Turonian marine amniotes from the Bohemian Cretaceous Basin, Czech Republic. Geol. Mag. 151, 183–198 (2014).Article 

    Google Scholar 
    35.Benson, R. B. J. & Druckenmiller, P. S. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biol. Rev. 89, 1–23 (2014).PubMed 
    Article 

    Google Scholar 
    36.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new specimen of Stenorhynchosaurus munozi (Páramo-Fonseca et al., 2016) (Plesiosauria, Pliosauridae), from the Barremian of Colombia: new morphological features and ontogenetic implications. J. Vertebrate Paleontol. 39, e1663426 (2019).Article 

    Google Scholar 
    37.Albino, A. M., Carrillo-Briceño, J. D. & Neenan, J. M. An enigmatic snake from the Cenomanian of Northern South America. PeerJ 4, e2027. https://doi.org/10.7717/peerj.2027 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.de Juana, C. G., de Arocena, J. I. & Picard, X. Geologia de Venezuela y de sus Cuencas Petroliferas Vol. 103, 1 (Foninves, 1980).
    Google Scholar 
    39.Renz, O. Estratigrafía del Cretáceo en Venezuela occidental. Boletín de Geología 5(10), 3–48 (1959).
    Google Scholar 
    40.Guinot, G. & Carrillo-Briceño, J. D. Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela. Cretac. Res. 82, 1–20 (2018).Article 

    Google Scholar 
    41.Colbert, E. A new Cretaceous plesiosaur from Venezuela. Am. Mus. Novit. 1420, 1–22 (1949).
    Google Scholar 
    42.Bengston, P. & Kakabadze, M. V. Ammonites and the mid-Cretaceous saga. Cretac. Res. 88, 90–99 (2018).Article 

    Google Scholar 
    43.Páramo-Fonseca, M. E., O’Gorman, J. P., Gasparini, Z., Padilla, S. & Parra-Ruge, M. L. A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia. Cretaceous Res. 99, 30–40 (2019).Article 

    Google Scholar 
    44.Welles, S. P. A new species of elasmosaur from the Aptian of Colombia, and a review of the Cretaceous plesiosaurs. Univ. California Publ. Geol. Sci. 44, 1–96 (1962).
    Google Scholar 
    45.Carpenter, K. Revision of North American elasmosaurs from the Cretaceous of the Western Interior. Paludicola 2, 148–173 (1999).
    Google Scholar 
    46.Jaimes, J. J. & Parra, E. N. Callawayasaurus colombiensis (Welles) Carpenter 1999 el plesiosaurio de Villa de Leyva (Boyacá, Colombia). ¿Un nuevo espécimen?. Boletín de Geología 23(38), 9–19 (2001).
    Google Scholar 
    47.Goñi, R. & Gasparini, Z. B. Nuevos restos de “Alzadasaurus colombiensis” (Reptilia, Plesiosauria) del Cretácico temprano de Colombia. Geologia Norandina 7, S.49–54 (1983).
    Google Scholar 
    48.Meza-Velez, I. & O’Gorman, J. E. registro fósil de plesiosaurios (Diapsida, Sauropterygia) en el Perú. Rev. Peru. Biol. 28(2), 1–8 (2021).Article 

    Google Scholar 
    49.Jaillard, E., Cordova, A., Mazin, J.-M. & Mourier, T. La transgression du Cénomanien supérieur-Turonien inférieur dans le région de Jaén (Nord du Pérou): donnés sédimentologique et stratigraphiques: Découverte du premier saurien marin du Pérou, Série II. C. R. Acad. Sc. Paris 301(20), 1429–1432 (1985).
    Google Scholar 
    50.Carvalho, I., Velas Bôas, I. & Bergqvist, L. Plesiossauros da regiao equatorial Brasileira Bacia de Sao Luís (Cretáceo Superior) Brazil. Acta Geologica Leopoldensia 23(51), S33–S41 (2000).
    Google Scholar 
    51.Velas Bôas, I. & Carvalho, I. Répteis Marinhos (Mosasauria e Plesiosauria) do Cretáceo Superior da Bacia de São Luís (Maranhão, Brasil). O Cretáceo na Bacia de São Luís-Grajaú, 223–233 (2001).52.O’Gorman, J. P. & Varela, A. N. The oldest lower Upper Cretaceous plesiosaurs (Reptilia, Sauropterygia) from southern Patagonia, Argentina. Ameghiniana 47, 447–459 (2010).Article 

    Google Scholar 
    53.Ameghino, F. Sobre la presencia de vertebrados de aspecto mesozoico en la formación Santacruceña de la Patagonia austral. Revista del Jardín Zoológico de Buenos Aires 1, 76–84 (1893).
    Google Scholar 
    54.Zumberge, J. E. Source rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. Petroleum geochemistry and source rock potential of carbonate rocks. AAPG Stud. Geol. 18, 127133 (1984).
    Google Scholar 
    55.Tribovillard, N. P. et al. Cretaceous black shales of Venezuelan Andes: Preliminary results on stratigraphy and paleoenvironmental interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 313–321 (1991).Article 

    Google Scholar 
    56.Bralower, T. J. & Lorente, M. A. Paleogeography and stratigraphy of the La Luna Formation and related Cretaceous anoxic depositional systems. Palaios 18(4–5), 301–304 (2003).Article 

    Google Scholar 
    57.Zapata, E. et al. Biostratigraphic, sedimentologic, and chemostratigraphic study of the La Luna Formation (Late Turonian-Campanian) in the San Miguel and Las Hernández sections, western Venezuela. Palaios 18, 367–377. https://doi.org/10.1669/0883-1351(2003)018%3c0367:BSACSO%3e2.0.CO;2 (2003).Article 

    Google Scholar 
    58.MINISTERIO DE ENERGIA Y MINAS. Lexico Estratigraifico de Venezuela, 3’d ed. Boletin de Geologia 12, 1–828 (1997).
    Google Scholar 
    59.Carrillo Briceño, J. D., Alvarado-Ortega, J. & Patiño Torres, C. Primer registro de Xiphactinus Leidy, 1870 (Teleostei, Ichthyodectiformes) en el Cretácico Superior de América del Sur (Formación La Luna, Venezuela). Revista Brasileira de Paleontologia. 15(3), 327–335 (2012).Article 

    Google Scholar 
    60.Albino, A. M., Rothschild, B., Carrillo-Briceño, J. D. & Neenan, J. M. Spondyloarthropathy in vertebrae of the aquatic Cretaceous snake Lunaophis aquaticus, and its first recognition in modern snakes. Sci. Nat. 105(9), 51 (2018).Article 
    CAS 

    Google Scholar 
    61.Renz, O. Die Ammonoidea im Stratotyp des Vraconien bei Sainte Croix (Kanton Waadt). Schweizerische palaontologische Abhandlungen 87, 1–97 (1968).
    Google Scholar 
    62.Erlich, R. N., Macsotay, O., Nederbragt, A. J. & Lorente, M. A. Palaeoceanography, palaeoecology, and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 203–238 (1999).Article 

    Google Scholar 
    63.Renz, O. The Cretaceous Ammonites of Venezuela (Birkhäuser Verlag, 1982).
    Google Scholar 
    64.Moody, J. M. & Maisey, J. G. New Cretaceous marine vertebrate assemblages from North-Western Venezuela and their significance. J. Vertebr. Paleontol. 14(1), 1–8 (1994).Article 

    Google Scholar 
    65.Macsotay, O., Erlich, R. N. & Peraza, T. Sedimentary structures of the La Luna, Navay and Querecual Formations, Upper Cretaceous of Venezuela. Palaios 18(4–5), 334–348 (2003).Article 

    Google Scholar 
    66.Davis, C., Pratt, L. & Sliter, W. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In Evolution of the Cretaceous Ocean-Climate System Vol. 332 (eds Barrera, E. & Johnson, C. C.) 203–231 (Geological Society of America Special Paper Geological Society of America, 1999).
    Google Scholar 
    67.Martinez, J. I. & Hernandez, R. Evolution and drowning of the Late Cretaceous Venezuelan carbonate platform. J. S. Am. Earth Sci. 5(2), 197–210 (1992).Article 

    Google Scholar 
    68.Ford, A. B., & Houbolt, J. J. H. C. The microfacies of the Cretaceous of western Venezuela: International Sedimentary Petrographical Series 6. EJ Brill, Publisher, Leiden, Germany, 1–109 (1963).69.Caron, M. & Spezzaferri, S. Scanning electron microscope documentation of the lost holotypes of Mornod, 1949: Thalmanninella reicheli and Rotalipora montsalvensis. J. Foraminiferal Res. 36(4), 374–378 (2006).Article 

    Google Scholar 
    70.Veigal, R. & Dzelalija, F. A Regional Overview of the La Luna Formation and the Villeta Groups as Shale Gas/Shale Oil in the Catatumbo Magdalena Valley and Eastern Cordillera Regions, Colombia, Article #10565 21 (American Association of Petroleum Geologists, Search and Discovery, 2014).
    Google Scholar 
    71.Spickert, A. Petroleum System Analysis: Middle Magdalena Valley Basin, Colombia, South America. MSC Report 1–48 (University of Washington, 2014).
    Google Scholar 
    72.De Romero, L. M. et al. An integrated calcareous microfossil biostratigraphic and carbon-isotope stratigraphic framework for the La Luna Formation, western Venezuela. Palaios 18(4–5), 349–366 (2003).Article 

    Google Scholar 
    73.Mendez, C. E. La Formacion La Luna. Caracteristica de una cuenca anoxica en una plataforma de aguas someras. Proceedings of the 7th Congreso Geologico Venezolano, 852–866 (1981).74.Weiler, W. Fischreste aus der Umgebung von San Cristobal, SW. Venezuela. Zentralblatt für Mineralogie Geologie und Paläontologie (B). 1949, 240–255 (1940).
    Google Scholar 
    75.Sánchez-Villagra, M. R., Brinkmann, W. & Lozsán, R. The Paleozoic and Mesozoic vertebrate record of Venezuela: An overview, summary of previous discoveries and report of a mosasaur from the La Luna Formation (Cretaceous). Paläontol. Z. 82(2), 113–124 (2008).Article 

    Google Scholar 
    76.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971).Article 

    Google Scholar 
    77.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/ (2019).78.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Smith, J. B. & Dodson, P. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. J. Vertebr. Paleontol. 23, 1–12 (2003).Article 

    Google Scholar 
    80.de Blainville, H. D. Description de quelques espècesde reptiles de la Californie, précédé de l’analyse d’unsystème général d’Erpétologie et d’Amphibiologie. Nouvelles Annales du Museum National d’Histoire Naturelle Paris 4, 233–296 (1835).
    Google Scholar 
    81.Seeley, H. G. Note on some of the generic modifications of the plesiosaurian pectoral arch. Q. J. Geol. Soc. Lond. 30, 436–449 (1874).Article 

    Google Scholar 
    82.McHenry, C. R. Devourer of gods: The palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. Doctoral dissertation, University of Newcastle (2009).83.Sato, T., Hasegawa, Y. & Manabe, M. A new elasmosaurid plesiosaur from the Upper Cretaceous of Fukushima, Japan. Palaeontology 49, 467–484 (2006).Article 

    Google Scholar 
    84.Sachs, S. Redescription of Elasmosaurus platyurus Cope 1868 (Plesiosauria: Elasmosauridae) from the Upper Cretaceous (lower Campanian) of Kansas, USA. Paludicola 5, 92–106 (2005).
    Google Scholar 
    85.Welles, S. P. Elasmosaurid plesiosaurs with a description of new material from California and Colorado. Univ. California Publ. Geol. Sci. 13, 125–215 (1943).
    Google Scholar 
    86.Welles, S. P. A new elasmosaur from the Eagle Ford Shale of Texas. Part I. Systematic description. Fondren Sci. Series 1, 1–28 (1949).
    Google Scholar 
    87.Sachs, S. Remarks on the pectoral girdle of Hydrotherosaurus alexandrae (Plesiosauria: Elasmosauridae). PalArch Vertebr. Palaeontol. 4(1), 1–6 (2005).
    Google Scholar 
    88.O’Gorman, J. P. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. J. Vertebr. Paleontol. 39(5), e1692025 (2020).Article 

    Google Scholar 
    89.Sachs, S., Kear, B.P. & Lindgren, J. Re-description of Thalassomedon haningtoni—An elasmosaurid from the Cenomanian of North America. 5th Triennial Mosasaur Meeting—A Global Perspective on Mesozoic Marine Amniotes. Abstracts and Program (Sachs, S., Kear, B.P. & Lindgren, eds.), 38–40 (2016).90.Sachs, S. & Kear, B. P. Postcranium of the paradigm elasmosaurid plesiosaurian Libonectes morgani (Welles, 1949). Geol. Mag. 152, 694–710 (2015).Article 

    Google Scholar 
    91.Sachs, S. & Kear, B. P. Redescription of the elasmosaurid plesiosaurian Libonectes atlasense from the Upper Cretaceous of Morocco. Cretac. Res. 74, 205–222 (2017).Article 

    Google Scholar 
    92.Sachs, S., Lindgren, J., Madzia, D. & Kear, B. P. Cranial osteology of the mid-Cretaceous elasmosaurid Thalassomedon haningtoni from the Western Interior Seaway of North America. Cretaceous Res. 123,104769 (2021).93.McKean, R. S. A new species of polycotylid plesiosaur (Reptilia: Sauropterygia) from the Lower Turonian of Utah: Extending the stratigraphic range of Dolichorhynchops. Cretac. Res. 34, 184–199 (2012).Article 

    Google Scholar 
    94.Sachs, S., Madzia, D., Püttmann, T. & Kear, B. P. Enigmatic plesiosaur vertebral remains from the middle Turonian of Germany. Cretaceous Res. 110, 104406 (2020).Article 

    Google Scholar  More

  • in

    DNA methylation profiling in mummified human remains from the eighteenth-century

    1.Orlando, L., Gilbert, M. T. & Willerslev, E. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16, 395–408 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Smith, Z. D. & Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Schmidt, M., Maie, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Koch, C. M. & Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany N.Y.) 3, 1018–1027 (2011).CAS 

    Google Scholar 
    7.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Dabney, J., Meyer, M. & Paabo, S. Ancient DNA damage. Cold Spring Harb. Perspect Biol. 5, a012567 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Gokhman, D. et al. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344, 523–527 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Pap, I., Susa, E. & Joszsa, L. Mummies from the 18–19th century Domanical Church of Vác, Hungary. Acta Biol. Szegediensis 42, 107–112 (1997).
    Google Scholar 
    14.Donoghue, H. D., Pap, I., Szikossy, I. & Spigelman, M. The Vác Mummy Project: Investigation of 265 eighteenth-century mummified remains from the TB pandemic era. In The Handbook of Mummy Studies (eds Shin, D. H. & Bianucci, R.) 1–30 (Springer, 2021).
    Google Scholar 
    15.Hotz, G. et al. Der rätselhafte Mumienfund aus der Barfüsserkirche in Basel. Ein aussergewöhnliches Beispiel interdisziplinärer Familienforschung. Jahrbuch der Schweizerischen Gesellschaft für Familienforschung 2018, 1–30 (2018).
    Google Scholar 
    16.Hotz, G. Das Rätsel der Anna Catharina Bischoff. Spektrum der Wissenschaft 3, 76–81 (2018).
    Google Scholar 
    17.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: Reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Triche, T. J., Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D. low-level processing of illumina infinium DNA methylation beadarrays. Nucleic Acids Res. 41, e90 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ruiz-Hernandez, A. et al. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenet. 7, 55 (2015).Article 
    CAS 

    Google Scholar 
    20.Pedersen, J. S. et al. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res. 24, 454–466 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Gaudin, M. & Desnues, C. Hybrid capture-based next generation sequencing and its application to human infectious diseases. Front. Microbiol. 9, 2924 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes (Basel) 1, 227–243 (2010).CAS 
    Article 

    Google Scholar 
    23.Koop, B. E. et al. Postmortem age estimation via DNA methylation analysis in buccal swabs from corpses in different stages of decomposition—A “proof of principle” study. Int. J. Legal Med. 135, 167–173 (2021).PubMed 
    Article 

    Google Scholar 
    24.Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bozic, T. et al. Investigation of measurable residual disease in acute myeloid leukemia by DNA methylation patterns. Leukemia https://doi.org/10.1038/s41375-021-01316-z (2021).Article 
    PubMed 

    Google Scholar 
    26.Pap, I. et al. 18–19th century tuberculosis in naturally mummified individuals (Vác, Hungary). In Tuberculosis Past and Present (eds Pálfi, G. et al.) 421–428 (Golden Books/Tuberculosis Foundation, 1999).
    Google Scholar 
    27.Kreissl Lonfat, B. M., Kaufmann, I. M. & Ruhli, F. A code of ethics for evidence-based research with ancient human remains. Anat. Rec. (Hoboken) 298, 1175–1181 (2015).Article 

    Google Scholar 
    28.Maixner, F. et al. The Iceman’s last meal consisted of fat, wild meat, and cereals. Curr. Biol. 28, 2348–2355 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tang, J. N. et al. An effective method for isolation of DNA from pig faeces and comparison of five different methods. J. Microbiol. Methods 75, 432–436 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, 5448 (2010).Article 

    Google Scholar 
    32.Rosenbloom, K. R. et al. The UCSC genome browser database: 2015 update. Nucleic Acids Res. 43, D670–D681 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Peltzer, A. et al. EAGER: Efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. & Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Huson, D. H. et al. MEGAN Community edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    39.Xu, Z., Langie, S. A., De Boever, P., Taylor, J. A. & Niu, L. RELIC: A novel dye-bias correction method for illumina methylation beadchip. BMC Genomics 18, 4 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Lee, D. D. & Seung, H. S. Algorithms for non-negative matrix factorization. Adv. Neural. Inf. Process. Syst. 13(13), 556–562 (2001).
    Google Scholar 
    41.Schmidt, M., Maié, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 34, 1969 (2020).
    Google Scholar 
    42.Frobel, J. et al. Leukocyte counts based on DNA methylation at individual cytosines. Clin. Chem. 64, 566–575 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More