Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood
1.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
2.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
3.Rinne-Garmston, K. T. et al. Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Glob. Chang. Biol. 25, 1852–1867 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
4.Šamonil, P. et al. Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma 376, 114499 (2020).ADS
Article
Google Scholar
5.Tláskal, V. et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078–20 (2021).PubMed
PubMed Central
Article
Google Scholar
6.Odriozola, I. et al. Fungal communities are important determinants of bacterial community composition in deadwood. mSystems 6, e01017–20 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
7.Valášková, V., de Boer, W., Gunnewiek, P. J. A. K., Pospíšek, M. & Baldrian, P. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 3, 1218–1221 (2009).PubMed
Article
CAS
PubMed Central
Google Scholar
8.Brunner, A. & Kimmins, J. P. Nitrogen fixation in coarse woody debris of Thuja plicata and Tsuga heterophylla forests on northern Vancouver Island. Can. J. For. Res. 33, 1670–1682 (2003).CAS
Article
Google Scholar
9.Rinne, K. T. et al. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct. Ecol. 31, 530–541 (2016).Article
Google Scholar
10.Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article
Google Scholar
11.Tláskal, V. & Baldrian, P. Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Front. Microbiol. 12, 685303 (2021).PubMed
PubMed Central
Article
Google Scholar
12.Lemos, L. N., Mendes, L. W., Baldrian, P. & Pylro, V. S. Genome-resolved metagenomics is essential for unlocking the microbial black box of the soil. Trends Microbiol. 29, 279–282 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).PubMed
PubMed Central
Article
Google Scholar
14.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
15.Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Muller-landau, H. C. & Wright, S. J. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).Article
Google Scholar
16.Baldrian, P. et al. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23, 109–122 (2016).Article
Google Scholar
17.Smyth, C. E. et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant Soil 9, 46–62 (2016).
Google Scholar
18.Král, K. et al. Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling. For. Ecol. Manage. 260, 2196–2203 (2010).Article
Google Scholar
19.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Lanzén, A. et al. CREST – Classification resources for environmental sequence tags. PLoS One 7, e49334 (2012).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
21.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Žifčáková, L., Větrovský, T., Howe, A. & Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288–301 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
23.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS
Article
Google Scholar
25.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Lee, M. D. GToTree: A user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
31.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS
MathSciNet
CAS
PubMed
PubMed Central
Article
Google Scholar
32.Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
34.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
35.Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Větrovský, T., Baldrian, P. & Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
37.Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. 7, 1–8 (2013).MathSciNet
Article
Google Scholar
38.Nilsson, R. H. et al. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 3, 284–287 (2010).Article
Google Scholar
39.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classification. Nucleic Acids Res. 47, D259–D264 (2018).PubMed Central
Article
CAS
Google Scholar
42.Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8, 352–359 (2016).Article
Google Scholar
43.Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 140 (2018).PubMed
PubMed Central
Article
Google Scholar
44.NCBI BioProject https://identifiers.org/ncbi/bioproject:PRJNA603240 (2020).45. NCBI Sequence Read Archive, https://identifiers.org/ncbi/bioproject:PRJNA672674 (2020).46.Sutela, S., Poimala, A. & Vainio, E. J. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol. Ecol. 95, fiz119 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
48.Mackelprang, R. et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States. Front. Microbiol. 9, 1775 (2018).PubMed
PubMed Central
Article
Google Scholar
49.Hervé, V. et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 8, e8614 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
50.Clissmann, F. et al. First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiol. Ecol. 91, fiv050 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
51.Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3, e2527 (2008).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
52.Geisen, S. et al. Metatranscriptomic census of active protists in soils. ISME J. 9, 2178–2190 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).Article
CAS
Google Scholar
54.Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species reveal great heterogeneous distribution between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Christofides, S. R., Hiscox, J., Savoury, M., Boddy, L. & Weightman, A. J. Fungal control of early-stage bacterial community development in decomposing wood. Fungal Ecol. 42, 100868 (2019).Article
Google Scholar
56.Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Seibold, S. et al. Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149 (2015).Article
Google Scholar More