More stories

  • in

    Adaptive ecological niche migration does not negate extinction susceptibility

    1.Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Edie, S. M., Huang, S., Collins, K. S., Roy, K. & Jablonski, D. Loss of biodiversity dimensions through shifting climates and ancient mass extinctions. Integr. Comp. Biol. 58, 1179–1190. https://doi.org/10.1093/icb/icy111 (2018).Article 
    PubMed 

    Google Scholar 
    3.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111. https://doi.org/10.1038/S51586-019-1132-4 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351. https://doi.org/10.1126/science.1203060 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Smits, P. & Finnegan, S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. B Biol. Sci. 374, 1. https://doi.org/10.1098/rstb.2019.0392 (2019).Article 

    Google Scholar 
    6.Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927. https://doi.org/10.1111/j.1469-185X.2011.00178.x (2011).Article 
    PubMed 

    Google Scholar 
    7.Edgar, K. M., Hull, P. M. & Ezard, T. H. G. Evolutionary history biases inferences of ecology and environment from δ13C but not δ18O values. Nat. Commun. 8, 1106. https://doi.org/10.1038/s41467-017-01154-7 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Knappertsbusch, M. Morphological variability of Globorotalia menardii (planktonic foraminifera) in two DSDP cores from the Caribbean Sea and the Eastern Equatorial Pacific. Carnets de Géologie/Notebooks Geol. CG2007 1–34. https://doi.org/10.4267/2042/8455 (2007).9.Wade, B. S., Al-Sabouni, N., Hemleben, C. & Kroon, D. Symbiont bleaching in fossil planktonic foraminifera. Evol. Ecol. 22, 253–265. https://doi.org/10.1007/s10682-007-9176-6 (2008).Article 

    Google Scholar 
    10.Wade, B. S. & Olsson, R. K. Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 39–46. https://doi.org/10.1016/j.palaeo.2009.08.026 (2009).Article 

    Google Scholar 
    11.Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene climatic optimum. Geology 41, 15–18. https://doi.org/10.1130/G33388.1 (2013).ADS 
    Article 

    Google Scholar 
    12.Pearson, P. N. & Ezard, T. H. G. Evolution and speciation in the Eocene planktonic foraminifer Turborotalia. Paleobiology 40, 130–143. https://doi.org/10.1666/13004 (2014).Article 

    Google Scholar 
    13.Wade, B. S., Poole, C. R. & Boyd, J. L. Giantism in Oligocene planktonic foraminifera Paragloborotalia opima: Morphometric constraints from the equatorial Pacific Ocean. Newsl. Stratigr. 49, 421–444. https://doi.org/10.1127/nos/2016/0270 (2016).Article 

    Google Scholar 
    14.Brombacher, A., Wilson, P. A., Bailey, I. & Ezard, T. H. G. The breakdown of static and evolutionary allometries during climatic upheaval. Am. Nat. https://doi.org/10.5061/dryad.8jf2k (2017).15.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kučera, M. Disruptive selection and bet-hedging in planktonic Foraminifera: Shell morphology as predictor of extinctions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2014.00064 (2014).Article 

    Google Scholar 
    16.Weinkauf, M. F. G., Bonitz, F. G. W., Martini, R. & Kučera, M. An extinction event in planktonic Foraminifera preceded by stabilizing selection. PLoS ONE 14, 1–21. https://doi.org/10.1371/journal.pone.0223490 (2019).CAS 
    Article 

    Google Scholar 
    17.Falzioni, F., Petrizzo, M. R. & Valagussa, M. A morphometric methodology to assess planktonic foraminiferal response to environmental perturbations: The case study of Oceanic Anoxic Event 2, Late Cretaceous. Bollettino della Società Paleontologica Italiana 57, 103–124. https://doi.org/10.4435/BSPI.2018.07 (2018).Article 

    Google Scholar 
    18.Si, W. & Aubry, M. P. Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene thermal maximum, implications for paleoclimate. Paleoceanogr. Paleoclimatol. 33, 112–125. https://doi.org/10.1002/2017PA003219 (2018).ADS 
    Article 

    Google Scholar 
    19.Fox, L. R., Stukins, S., Hill, T. & Miller, G. Quantifying the effect of anthropogenic climate change on calcifying plankton. Sci. Rep. 10, 1620. https://doi.org/10.1038/s41598-020-58501-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Todd, C. L., Schmidt, D. N., Robinson, M. M. & De Schepper, S. Planktonic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003738 (2020).Article 

    Google Scholar 
    21.Shaw, J. O. et al. Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum. Paleobiology https://doi.org/10.1017/pab.2021.7 (2021).Article 

    Google Scholar 
    22.Schmidt, D. N., Thierstein, H. R. & Bollmann, J. The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 159–180. https://doi.org/10.1016/j.palaeo.2004.06.002 (2004).Article 

    Google Scholar 
    23.Brierley, C. M. & Fedorov, A. V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene–Pleistocene climate evolution. Paleoceanogr. Paleoclimatol. 25, 1–16. https://doi.org/10.1029/2009PA001809 (2010).Article 

    Google Scholar 
    24.Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Mar. Micropaleontol. 101, 127–145. https://doi.org/10.1016/j.marmicro.2013.02.002 (2013).ADS 
    Article 

    Google Scholar 
    25.
    Grubbs, F. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21. https://doi.org/10.1080/00401706.1969.10490657 (1969).Article 

    Google Scholar 
    26.Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60. https://doi.org/10.1214/aoms/1177730491 (1947).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean 1–350 (Springer, 2017). https://doi.org/10.1007/978-3-66250297-6.Book 

    Google Scholar 
    28.Schmidt, D. N., Thierstein, H. R., Bollmann, J. & Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 303, 207–210. https://doi.org/10.1126/science.1090592 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rillo, M., Miller, G., Kučera, M. & Ezard, T. Predictability of intraspecific size variation in extant planktonic foraminifera. BioRxiv https://doi.org/10.1101/468165 (2018).Article 

    Google Scholar 
    30.Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection 327 (Blakiston Company, 1949).
    Google Scholar 
    31.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315. https://doi.org/10.1111/j.1558-5646.1987.tb05799.x (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Williams, G. C. Natural Selection. Domains Levels and Challenges 53–103 ( Oxford University Press, 1992).
    Google Scholar 
    33.West-Eberhard, M. J. Developmental Plasticity and Evolution 794 (Oxford University Press, 2003).Book 

    Google Scholar 
    34.Slatkin, M. Hedging one’s evolutionary bets. Nature 250, 704705. https://doi.org/10.1038/250704b0 (1974).Article 

    Google Scholar 
    35.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44. https://doi.org/10.1016/0169-5347(89)90138-9 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Grafen, A. Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 799–803. https://doi.org/10.1098/rspb.1999.0708 (1999).Article 

    Google Scholar 
    37.Wade, B. S. & Twitchett, R. J. Extinction, dwarfing and the Lilliput effect: Extinction, dwarfing and the Lilliput effect. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 1–3. https://doi.org/10.1016/j.palaeo.2009.08.019 (2009).Article 

    Google Scholar 
    38.Wade, B. S. et al. Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Dentoglobigerina and Globoquadrina. In Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al.) Lawrence, KS, Cushman Foundation for Foraminiferal Research, Special Publication No. 46 (2018) 331–384.39.Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology 35–49 (Oxford University Press, 1991).
    Google Scholar 
    40.O’Brien, C. L. et al. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl. Acad. Sci. 117, 25302–25309. https://doi.org/10.1073/pnas.2003914117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Stoecker, D. K., Johnson, M. D., De Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310. https://doi.org/10.3354/ame01340 (2009).Article 

    Google Scholar 
    42.Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396. https://doi.org/10.5194/bg-16-3377-2019 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Luciani, V., D’Onofrio, R., Dickens, G. R. & Wade, B. S. Did photosymbiont bleaching lead to the Demise planktic foraminifer Morozovella at the Early Eocene climatic optimum. Paleoceanography 32, 1115–1136. https://doi.org/10.1002/2017PA003138 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Lutz, B. P. Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7, 151–176 (2010).
    Google Scholar 
    45.Norris, R. D. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals, and foraminifera. Paleontol. Soc. Pap. 4, 68–100. https://doi.org/10.1017/S1089332600000401 (1998).Article 

    Google Scholar 
    46.Ezard, T. H. G., Edgar, K. M. & Hull, P. M. Environmental and biological controls on size-specific δ13C and δ18O in recent planktonic foraminifera. Paleoceanography 30, 151–173. https://doi.org/10.1002/2014PA002735 (2015).ADS 
    Article 

    Google Scholar 
    47.Hughes, T. P. et al. Global warming transforms coral reef assemblages Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56, 1587–1602. https://doi.org/10.4319/lo.2011.56.5.1587 (2011).ADS 
    Article 

    Google Scholar 
    49.Spezzaferri, S., El Kateb, A., Pisapia, C. & Hallock, P. In situ observations of foraminiferal bleaching in the Maldives, Indian Ocean. J. Foraminifer. Res. 48, 75–84. https://doi.org/10.2113/gsjfr.48.1.75 (2018).Article 

    Google Scholar 
    50.Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the World’s Coral Reefs 1985–2012. Sci. Rep. 6, 38402. https://doi.org/10.1038/srep38402 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138. https://doi.org/10.1007/s003380050249 (1997).Article 

    Google Scholar 
    53.Saravanan, R., Ranjith, L., Jasmine, S. & Joshi, K. K. Coral bleaching: Causes, consequences and mitigation. Mar. Fish. Inf. Serv. Tech. Extens. Ser. 231, 3–9 (2017).
    Google Scholar 
    54.Kucera, M. & Darling, K. F. Cryptic species of planktonic foraminifera: Their effect on palaeoceanographic reconstructions . Proc. R. Soc Lond. Ser. A Math. Phys. Eng. Sci. 360, 695–718. https://doi.org/10.1098/rsta.2001.0962 (2002).ADS 
    Article 

    Google Scholar 
    55.Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kucera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073. https://doi.org/10.1111/j.1365-294X.2012.05686 (2012).Article 
    PubMed 

    Google Scholar 
    56.Matsui, H. et al. Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific. Paleoceanography 31, 715–731. https://doi.org/10.1002/2016PA002950 (2016).ADS 
    Article 

    Google Scholar 
    57.Morard, R., Reinelt, M., Chiessi, C. M., Groeneveld, J. & Kucera, M. Tracing shifts in oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata. Paleoceanography 31, 1193–1205. https://doi.org/10.1002/2016PA002977 (2016).ADS 
    Article 

    Google Scholar 
    58.Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30. https://doi.org/10.1371/journal.pone.0225246 (2019).CAS 
    Article 

    Google Scholar 
    59.Prasanna, K., Ghosh, P., Bhattacharya, S. K., Mohan, K. & Anilkumar, N. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean. Sci. Rep. 6, 21533. https://doi.org/10.1038/srep21533 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Waterson, A. M., Edgar, K. M., Schmidt, D. N. & Valdes, P. J. Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography 32, 74–89. https://doi.org/10.1002/2016PA002964 (2017).ADS 
    Article 

    Google Scholar 
    61.Andre, A. et al. Disconnection between genetic and morphological diversity in the planktonic foraminifer Neogloboquadrina pachyderma from the Indian sector of the Southern Ocean. Mar. Micropaleontol. 144, 1424. https://doi.org/10.1016/j.marmicro.2018.10.001 (2018).Article 

    Google Scholar 
    62.Schiebel, R. et al. Advances in planktonic foraminifer research: New perspectives for paleoceanography. Rev. Micropaléontol. 61, 113–138. https://doi.org/10.1016/j.revmic.2018.10.001 (2018).Article 

    Google Scholar 
    63.Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152. https://doi.org/10.1126/science.abb6643 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Pälike, H. et al. Site 1338. Proceedings of the Integrated Ocean Drilling Program, vol 320/321. https://doi.org/10.2204/iodp.proc.320321.101.2010 (2010).65.Drury, A. J., Lee, G. P., Pennock, G. M. & John, C. M. Data report: Late Miocene to early Pliocene coccolithophore and
    foraminiferal preservation at Site U1338 from scanning electron microscopy. In Proceedings of the Integrated Ocean Drilling Program, 320/321 (eds Pälike, H. et al.) https://doi.org/10.2204/iodp.proc.320321.218.2014 (Integrated Ocean Drilling Program Management International, Inc., Tokyo, 2014).66.Fox, L. R. & Wade, B. S. Systematic taxonomy of early-middle Miocene planktonic foraminifera from the Equatorial Pacific Ocean: Integrated Ocean Drilling Program, Site U1338. J. Foraminifer. Res. 43, 374–405. https://doi.org/10.2113/gsjfr.43.4.374 (2015).Article 

    Google Scholar 
    67.Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142. https://doi.org/10.1016/j.earscirev.2010.09.003 (2011).ADS 
    Article 

    Google Scholar 
    68.Kennett, J. P. & Srinivasan, M. S. Neogene Planktonic Foraminifera: A Phylogenetic Atlas 1–265 (Hutchinson Ross Publishing Co., 1983).
    Google Scholar 
    69.Lyle, M., Joy Drury, A., Tian, J., Wilkens, R. & Westerhold, T. Late Miocene to Holocene high-resolution eastern equatorial pacific carbonate records: Stratigraphy linked by dissolution and paleoproductivity. Clim. Past 15, 1715–1739. https://doi.org/10.5194/cp-15-1715-2019 (2019).Article 

    Google Scholar 
    70.Kotov, S. & Pälike, H. QAnalySeries—A cross-platform time series tuning and analysis tool. AGU https://doi.org/10.1002/essoar.10500226.1 (2018).Article 

    Google Scholar 
    71.Brombacher, A., Wilson, P. A. & Ezard, T. H. G. Calibration of the repeatability of foraminiferal test size and shape measures with recommendations for future use. Mar. Micropaleontol. 133, 21–27. https://doi.org/10.1016/j.marmicro.2017.05.003 (2017).ADS 
    Article 

    Google Scholar 
    72.Brombacher, A., Elder, L. E., Hull, P. M., Wilson, P. A. & Ezard, T. H. G. Calibration of test diameter and area as proxies for body size in the planktonic foraminifer Globoconella puncticulata. J. Foraminifer. Res. 48, 241–245. https://doi.org/10.2113/gsjfr.48.3.241 (2018).Article 

    Google Scholar 
    73.Silverman, B. W. Density Estimation for Statistics and Data Analysis 176 (Chapman & Hall/CRC, 1986).Book 

    Google Scholar 
    74.R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org (2020).75.Cohen, J. Statistical Power Analysis for the Behavioural Sciences (Lawrence Earlbaum Associates, 1988).MATH 

    Google Scholar 
    76.Champely, S. pwr: Basic Functions for Power Analysis. R package version 1.3–0 (2020) https://CRAN.R-project.org/package=pwr.77.Edgar, K. M., Pälike, H. & Wilson, P. A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 28, 468–480. https://doi.org/10.1002/palo.20045 (2013).ADS 
    Article 

    Google Scholar 
    78.Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography https://doi.org/10.1029/2008PA001683 (2009).Article 

    Google Scholar 
    79.Rasmussen, T. L. & Thomsen, E. Holocene temperature and salinity variability of the Atlantic Water inflow to the Nordic seas. Holocene 20, 1223–1234. https://doi.org/10.1177/0959683610371996 (2010).ADS 
    Article 

    Google Scholar 
    80.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    81.Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).82.Fay, M. P. asht: Applied Statistical Hypothesis Tests. R package version 0.9.6. https://CRAN.R-project.org/package=asht (2020).83.Arnholt, A. T. & Evans, B. BSDA: Basic Statistics and Data Analysis. R package version 1.2.0. https://CRAN.R-project.org/package=BSDA (2017). More

  • in

    Colour and motion affect a dune wasp’s ability to detect its cryptic spider predators

    1.Smith, M. Q. R. P. & Ruxton, G. D. Camouflage in predators. Biol. Rev. 63, 178–216 (2020).
    Google Scholar 
    2.Anderson, A. G. & Dodson, G. N. Colour change ability and its effect on prey capture success in female Misumenoides formosipes crab spiders. Ecol. Entomol. 40, 106–113 (2015).Article 

    Google Scholar 
    3.Gonzálvez, F. G. & Rodríguez-Gironés, M. A. Seeing is believing: information content and behavioural response to visual and chemical cues. Proc. R. Soc. Lond. Ser. B Biol. Sci. 280, 20130886–20130888 (2013).
    Google Scholar 
    4.Schwantes, C. J., Carper, A. L. & Bowers, M. D. Solitary floral specialists do not respond to cryptic flower-occupying predators. J. Insect Behav. 31, 642–655 (2018).Article 

    Google Scholar 
    5.Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, Princeton, 2014).Book 

    Google Scholar 
    6.Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).Article 

    Google Scholar 
    7.Burnett, N. P., Badger, M. A. & Combes, S. A. Wind and obstacle motion affect honeybee flight strategies in cluttered environments. J. Exp. Biol. 223, jeb222471-9 (2020).
    Google Scholar 
    8.Hennessy, G. et al. Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 161, 23–31 (2020).Article 

    Google Scholar 
    9.Thery, M. & Casas, J. The multiple disguises of spiders: web colour and decorations, body colour and movement. Philos. Trans. R. Soc. B Biol. Sci. 364, 471–480 (2009).Article 

    Google Scholar 
    10.Oxford, G. & Gillespie, R. Evolution and ecology of spider coloration. Annu. Rev. Entomol. 43, 619–643 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Rodríguez-Morales, D. et al. Context-dependent crypsis: a prey’s perspective of a color polymorphic predator. Sci. Nat. 105, 81 (2018).Article 
    CAS 

    Google Scholar 
    12.Gavini, S. S., Quintero, C. & Tadey, M. Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecol. 95, 100–107 (2019).ADS 
    Article 

    Google Scholar 
    13.Morse, D. H. Predatory risk to insects foraging at flowers. Oikos 46, 223–228 (1986).Article 

    Google Scholar 
    14.Brechbuhl, R., Casas, J. & Bacher, S. Ineffective crypsis in a crab spider: a prey community perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 277, 739–746 (2010).
    Google Scholar 
    15.Rodríguez-Gironés, M. A. & Maldonado, M. Detectable but unseen: imperfect crypsis protects crab spiders from predators. Anim. Behav. 164, 83–90 (2020).Article 

    Google Scholar 
    16.Heiling, A., Herberstein, M. & Chittka, L. Pollinator attraction: crab-spiders manipulate flower signals. Nature 421, 334–334 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Llandres, A. L. & Rodríguez-Gironés, M. A. Spider movement, UV reflectance and size, but not spider Crypsis, affect the response of honeybees to Australian crab spiders. PLoS ONE 6, e17136–e17211 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Vieira, C., Ramires, E. N., Vasconcellos-Neto, J., Poppi, R. J. & Romero, G. Q. Crab spider lures prey in flowerless neighborhoods. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    19.Robertson, I. C. & Maguire, D. K. Crab spiders deter insect visitations to slickspot peppergrass flowers. Oikos 109, 577–582 (2005).Article 

    Google Scholar 
    20.Yokoi, T. & Fujisaki, K. Hesitation behaviour of hoverflies Sphaerophoria spp. to avoid ambush by crab spiders. Sci. Nat. 96, 195–200 (2008).Article 
    CAS 

    Google Scholar 
    21.Defrize, J., Thery, M. & Casas, J. Background colour matching by a crab spider in the field: a community sensory ecology perspective. J. Exp. Biol. 213, 1425–1435 (2010).PubMed 
    Article 

    Google Scholar 
    22.Reader, T., Higginson, A. D., Barnard, C. J. & Gilbert, F. S. The effects of predation risk from crab spiders on bee foraging behavior. Behav. Ecol. 17, 933–939 (2006).Article 

    Google Scholar 
    23.Ings, T. & Chittka, L. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 18, 1520–1524 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Ings, T. C., Wang, M. Y. & Chittka, L. Colour-independent shape recognition of cryptic predators by bumblebees. Behav. Ecol. Sociobiol. 66, 487–496 (2011).Article 

    Google Scholar 
    25.Collett, T. S. & Zeil, J. Flights of learning. Curr. Dir. Psychol. Sci. 5, 149–155 (1996).Article 

    Google Scholar 
    26.Stürzl, W., Zeil, J., Boeddeker, N. & Hemmi, J. M. How wasps acquire and use views for homing. Curr. Biol. 26, 470–482 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Zeil, J., Kelber, A. & Voss, R. Structure and function of learning flights in bees and wasps. J. Exp. Zool. A Ecol. Genet. Physiol. 199, 245–252 (1996).CAS 

    Google Scholar 
    28.Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., & Lindemann, J. P. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front. Neural Circuits. 6, 1–23 (2012).Article 

    Google Scholar 
    29.Lehrer, M. Small-scale navigation in the honeybee: active acquisition of visual information about the goal. J. Evol. Biol. 199, 253–261 (1996).CAS 

    Google Scholar 
    30.Lehrer, M. & Campan, R. Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190, 1–13 (2004).Article 

    Google Scholar 
    31.Nityananda, V., Skorupski, P. & Chittka, L. Can bees see at a glance?. J. Exp. Biol. 217, 1933–1939 (2014).PubMed 

    Google Scholar 
    32.Kral, K. & Poteser, M. Motion parallax as a source of distance information in locusts and mantids. J. Insect Behav. 10, 145–163 (1997).Article 

    Google Scholar 
    33.Dukas, R. Effects of predation risk on pollinators and plants. in Cognitive ecology of pollination 214–236 (Cambridge University Press, Cambridge, 2019).
    Google Scholar 
    34.Rodríguez-Morales, D. et al.. Response of flower visitors to the morphology and color of crab spiders in a coastal environment of the Gulf of Mexico. Isr. J. Ecol. Evol. 66, 32–40 (2019).Article 

    Google Scholar 
    35.Uexküll, J. V. A Foray Into the Worlds of Animals and Humans: With a Theory of Meaning Vol. 12 (University of Minnesota Press, Minnesota, 2013).
    Google Scholar 
    36.Caves, E. M., Nowicki, S. & Johnsen, S. V. Uexküll revisited: addressing human biases in the study of animal perception. Integr. Comp. Biol. 215, 1184–1212 (2019).
    Google Scholar 
    37.Álvarez-Molina, L. L. et al. Biological flora of coastal dunes and wetlands: Palafoxia lindenii A. Gray. J. Coast. Res. 29, 680–693 (2013).
    Google Scholar 
    38.Evans, H. E., O’Neill, K. M. & Evans, H. E. The Sand Wasps: Natural History and Behavior (Harvard University Press, Harvard, 2009).
    Google Scholar 
    39.Alcock, J. & Ryan, A. F. The behavior of microbembex nigrifons. Pan-Pac. Entomol. 49, 144–148 (1973).
    Google Scholar 
    40.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    42.Peitsch, D. et al. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 170, 23–40 (1992).CAS 
    Article 

    Google Scholar 
    43.Feller, K. D. et al. Surf and turf vision: patterns and predictors of visual acuity in compound eye evolution. Arthropod Struct. Dev. 60, 101002 (2021).PubMed 
    Article 

    Google Scholar 
    44.van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2019).Article 

    Google Scholar 
    45.Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).PubMed 
    Article 

    Google Scholar 
    46.McLean, D. J. & Volponi, M. A. S. trajr: An R package for characterisation of animal trajectories. Ethology 124, 440–448 (2018).Article 

    Google Scholar 
    47.Fu, A.W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A. & Wong, R.C.-W. Scaling and time warping in time series querying. VLDB J. 17, 899–921 (2008).Article 

    Google Scholar 
    48.Hu, B., Chen, Y., & Keogh, E. Time series classification under more realistic assumptions. in Proceedings of the 2013 SIAM international conference on data mining 578–586 (Society for Industrial and Applied Mathematics, 2013).
    Google Scholar 
    49.Keogh, E. & Ratanamahatana, C. A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7, 358–386 (2005).Article 

    Google Scholar 
    50.Pewsey, A., Neuhäuser, M. & Ruxton, G. D. Circular Statistics in R (Oxford University Press, Oxford, 2013).MATH 

    Google Scholar  More

  • in

    Habitat monitoring and conservation prioritization of Western Hoolock Gibbon in upper Brahmaputra Valley, Assam, India

    1.Brown, J. H., Mehlman, D. W. & Stevens, G. C. Spatial variation in abundance. Ecology 76, 2028–2043 (1985).Article 

    Google Scholar 
    2.Rylands, A. B. Primate communities in Amazonian forests: Their habitats and food resources. Experientia 43, 267–279 (1987).Article 

    Google Scholar 
    3.Chapman, C. A. & Peres, C. A. Primate conservation in the new millennium: The role of scientists. Evol. Anthropol. 10, 16–33 (2001).Article 

    Google Scholar 
    4.Anderson, J., Cowlishaw, G. & Rowcliff, J. M. Effects of forest fragmentation on the abundance of Colobus angolensis palliates in Kenya’s coastal forests. Int. J. Primatol. 28, 637–655 (2007).Article 

    Google Scholar 
    5.Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportion of suitable habitat: A review. Oikos 7, 340–346 (1994).
    Google Scholar 
    6.Marsh, L. K. Primates in Fragments: Ecology and Conservation (Kluwer/Plenum, 2003).Book 

    Google Scholar 
    7.Harcourt, A. H. Ecological indicators of risk for primates, as judged by susceptibility to logging. In Behavioral Ecology and Conservation Biology (ed Caro, T. M.) pp. 56–79. (Oxford University Press, 1998).8.Harcourt, A. H. Empirical estimates of minimum viable population sizes for primates: Tens to tens of thousands?. Anim. Conserv. 5, 237–244 (2002).Article 

    Google Scholar 
    9.Lindenmayer, D. B. Future directions for biodiversity conservation in managed forests: Indicator species, impact studies and monitoring programs. For. Ecol. Manag. 115, 277–287 (1999).Article 

    Google Scholar 
    10.Das, J. et al. Distribution of hoolock gibbon (Bunopithecus hoolock hoolock) in India and Bangladesh. Zoos Print J. 18, 969–976 (2003).Article 

    Google Scholar 
    11.Das, J., Biswas, J., Bhattacherjee, P. C. & Mohnot, S. M. The distribution and abundance of hoolock gibbons in India. In The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology (eds Lappan, S. & Whittacker, D. J.) 409–433 (Springer, 2009).Chapter 

    Google Scholar 
    12.Islam, M. A. & Feeroz, M. M. Ecology of hoolock gibbons in Bangladesh. Primates 33, 451–464 (1992).Article 

    Google Scholar 
    13.Brockelman, W. Y. et al. Census of eastern hoolock gibbons (Hoolock leuconedys) in Mahamyaing Wildlife Sanctuary, Sagaing Division, Myanmar. In The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology (eds Lappan, S. & Whittaker, D. J.) 435–452 (Springer, 2009).Chapter 

    Google Scholar 
    14.Fan, F. P. et al. Distribution and conservation status of the vulnerable eastern hoolock gibbon Hoolock leuconedys in China. Oryx 45, 129–134 (2011).Article 

    Google Scholar 
    15.Kumar, A., Devi, A., Gupta, A.K., & Sarma, K. Population and Behavioural Ecology and Conservation of Hoolock Gibbon in Northeast India. In: Rare Animals of India (ed Singaravelan, N) 242–266 (Bentham Science Publisher, 2013).16.Kakati, K. Impact on Forest Fragmentation on the Hoolock Gibbon in Assam, India. PhD thesis, University of Cambridge.17.Ray, P. C. et al. Habitat characteristics and their effects on the density of groups of western hoolock gibbon (Hoolock hoolock) in Namdapha National Park, Arunachal Pradesh, India. Int. J. Primatol. 36(3), 445–459 (2015).Article 

    Google Scholar 
    18.Leighton, D.R. Gibbons: Territoriality and monogamy. In Primate Societies (ed Smuts, B. B. et al.) 135–145 (University of Chicago Press, 1987).19.Palombit, R. A. A preliminary study of vocal communication in wild long-tailed macaques (Macaca fascicularis). II. Potential of calls to regulate intragroup spacing. Int. J. Primatol. 13, 183–207 (1992).Article 

    Google Scholar 
    20.Das, J. Socioecology of hoolock gibbon Hylobates hoolock hoolock (Harlan, 1834) in Response to Habitat Change. PhD thesis. Department of Zoology, Gauhati University, Guwahati, India (2002).21.Sarma, K. Studies on Population Status, Behavioural and Habitat Ecology of Eastern Hoolock gibbon (Hoolock leuconedys) in Arunachal Pradesh, India. PhD thesis. Department of Forestry, North Eastern Regional Institute of Science & Technology (NERIST), Itanagar, India (2015).22.Kakati, K. Food Selection and Ranging in the Hoolock Gibbon (Hylobates hoolock) in Borajan Reserve Forest, Assam. MSc dissertation. Wildlife Institute of India, Dehradun, India (1997).23.Sharma, N., Madhusudan, M. D. & Sinha, A. Local and landscape correlates of primate distribution and persistence in the remnant lowland rainforests of the Upper Brahmaputra valley, northeastern India. Conserv. Biol. 28, 95–106 (2013).PubMed 
    Article 

    Google Scholar 
    24.Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J., & Possingham, H.P. prioritizr: Systematic conservation prioritization in R. Available at https://github.com/prioritizr/prioritizr (2018).25.Champion, H. G. & Seth, S. K. Revised Survey of Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    26.Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K. & Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theor. Appl. Climatol. 114, 61–71 (2013).ADS 
    Article 

    Google Scholar 
    27.Nath, K. K. & Deka, R. L. Climate change and agriculture over Assam. In Climate Change and Agriculture Over India (eds Rao, G. S. L. H. V. et al.) 224–243 (PHI Learning Private Ltd., 2010).
    Google Scholar 
    28.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    29.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    30.Phillips, S.J., Dudík, M., & Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 655–662 (2004).31.Flory, A. R., Kumar, S., Stohlgren, T. J. & Cryan, P. M. Environmental conditions associated with bat whitenose syndrome mortality in the north-eastern United States. J. Appl. Ecol. 49, 680–689 (2012).
    Google Scholar 
    32.Mas, J. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 20, 139–152 (1999).ADS 
    Article 

    Google Scholar 
    33.Hazarika, N., Das, A. & Borah, S. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote. Sens. 39, 107–118 (2015).
    Google Scholar 
    34.Twisa, S. & Buchroithner, M. F. Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land 8, 1–15 (2019).Article 

    Google Scholar 
    35.Garcia, M. & Alvarez, R. TM digital processing of a tropical forest region in southern Mexico. Int. J. Remote Sens. 15, 1611–1632 (1994).ADS 
    Article 

    Google Scholar 
    36.Xiao, H. & Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 85, 245–257 (2007).Article 

    Google Scholar 
    37.Gao, J. & Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int J Appl Earth Obs Geoinf 12, 9–16 (2010).Article 

    Google Scholar 
    38.Richards, J. A. & Jia, X. Interpretation of hyperspectral image data. In Remote Sensing Digital Image Analysis: An Introduction 359–388 (Springer, 2006).
    Google Scholar 
    39.Rosenfield, G. H. & Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. PhotogrammEng Remote Sens. 52, 223–227 (1986).
    Google Scholar 
    40.Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991).ADS 
    Article 

    Google Scholar 
    41.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    42.McGarigal, K., Cushman, S.A., Neel, M.C., & Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at www.umass.edu/landeco/research/fragstats/fragstats.html (2002).43.Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J., & Possingham, H.P. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. Available at https://CRAN.R-project.org/package=prioritizr (2020).44.Sharma, N., Madhusudan, M. D., Sarkar, P., Bawri, M. & Sinha, A. Trends in extinction and persistence of diurnal primates in the fragmented lowland rainforests of the Upper Brahmaputra Valley, northeastern India. Oryx 46, 308–311 (2012).Article 

    Google Scholar 
    45.Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).Article 

    Google Scholar 
    46.Corbane, C. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. 37, 7–16 (2015).Article 

    Google Scholar 
    47.Kakati, K., Raghavan, R., Chellam, R., Qureshi, Q. & Chivers, D. J. Status of western hoolock gibbon (Hoolock hoolock) populations in non-protected forests of eastern Assam. Primate Conserv. 24, 127–137 (2009).Article 

    Google Scholar 
    48.Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2, 1–10 (2005).Article 

    Google Scholar 
    50.Sarma, K., Kumar, A., Krishna, M., Medhi, M. & Tripathi, O. P. Predicting suitable habitats for the Vulnerable Eastern Hoolock Gibbon Hoolock leuconedys, in India using the Maxent model. Folia Primatol. 86, 387–397 (2015).Article 

    Google Scholar 
    51.Sharma, N., Madhusudan, M. D. & Sinha, A. Socio-economic drivers of forest cover change in Assam: A historical perspective. Econ. Polit. Wkly. 47, 64–72 (2012).
    Google Scholar 
    52.Sarma, K., Kumar, A., Krishna, M., Tripathi, O. P. & Gajurel, P. R. Ground feeding observations on corn (Zea mays) by eastern hoolock gibbon (Hoolock leuconedys). Curr. Sci. 104, 587–589 (2013).
    Google Scholar 
    53.Chetry, D., Chetry, R., & Bhattacharjee, P.C. Hoolock: The Ape of India. Gibbon Conservation Centre, Assam, India (2007). More

  • in

    Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland

    1.European Centre for Disease Prevention and Control and European Food Safety Authority. Tick maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps (2020).
    Accessed 1 May 2021.2.Zając, Z., Woźniak, A. & Kulisz, J. Density of Dermacentor reticulatus ticks in eastern Poland. Int. J. Environ. Res. Public Health. 17, 2814 (2020).PubMed Central 
    Article 

    Google Scholar 
    3.Levytska, V. A. Seasonal activity of ixodid ticks in Podilskyi region. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Vet. Sci. 22, 66–70 (2020).
    Google Scholar 
    4.Rybarova, M., Honsová, M., Papousek, I. & Siroky, P. Variability of species of Babesia Starcovici, 1893 in three sympatric ticks (Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna) at the edge of Pannonia in the Czech Republic and Slovakia. Folia Parasitol. (Praha) 64, 028 (2017).Article 
    CAS 

    Google Scholar 
    5.Chisu, V., Foxi, C. & Masala, G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. Exp. Appl. Acarol. 79, 245–254 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hornok, S. et al. East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin. Parasit. Vectors 10, 1–11 (2017).Article 
    CAS 

    Google Scholar 
    7.Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa: A Guide to Species Identification 189–196 (Springer, 2018).
    Google Scholar 
    8.Younsi, H. et al. Ixodes inopinatus and Ixodes ricinus (Acari: Ixodidae) are sympatric ticks in North Africa. J. Med. Entomol. 57, 952–956 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fares, W. et al. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick Borne Dis. 12, 101606 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Boularias, G. et al. High-throughput microfluidic real-time PCR for the detection of multiple microorganisms in Ixodid cattle ticks in northeast Algeria. Pathogens 10, 362 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gunes, T. & Ataş, M. The prevalence of tick-borne pathogens in ticks collected from the northernmost province (Sinop) of Turkey. Vector Borne Zoonotic Dis. 20, 171–176 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Keskin, A., Selçuk, A. Y. & Kefelioğlu, H. Ticks (Acari: Ixodidae) infesting some small mammals from Northern Turkey with new tick–host associations and locality records. Exp. Appl. Acarol. 73, 521–526 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Mancini, F. et al. Prevalence of tick-borne pathogens in an urban park in Rome, Italy. Ann. Agric. Environ. Med. 21, 723–727 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulz, M., Mahling, M. & Pfister, K. Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. J. Vector Ecol. 39, 56–65 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lees, A. D. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1–20 (1946).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Milne, A. The ecology of the sheep tick, Ixodes ricinus L.; host relationships of the tick; observations on hill and moorland grazings in northern England. Parasitology 39, 173–197 (1949).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gassner, F. et al. Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands. Vector Borne Zoonotic Dis. 11, 523–532 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Gustafson, R. Epidemiological studies of Lyme borreliosis and tick-borne encephalitis. Scand. J. Infect. Dis. Suppl. 92, 1–63 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Atlas o Infectious Diseases. ECDC. https://atlas.ecdc.europa.eu/public/index.aspx. Accessed 1 May 2021.23.Gnativ, B. & Tokarevich, N. K. Long-term monitoring of tick-borne viral encephalitis and tick-borne borreliosis in the Komi Republic. Infektsiia Immun. https://doi.org/10.15789/2220-7619-ROL-1299 (2020).Article 

    Google Scholar 
    24.Vandekerckhove, O., De Buck, E. & Van Wijngaerden, E. Lyme disease in Western Europe: An emerging problem? A systematic review. Acta Clin. Belg. 76, 244–252 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Rizzoli, A. P. et al. Lyme borreliosis in Europe. Euro Surveill. 16, 19906 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hubálek, Z. & Rudolf, I. Tick-borne viruses in Europe. Parasitol. Res. 111, 9–36 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Grankvist, A. et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic non-infectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rizzoli, A. P. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public. Health. 2, 251 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Wójcik-Fatla, A. et al. Occurrence of Francisella spp. in Dermacentor reticulatus and Ixodes ricinus ticks collected in eastern Poland. Ticks Tick Borne Dis. 6, 253–257 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Körner, S. et al. Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks. Parasit. Vectors 13, 75 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.van den Wijngaard, C. C. et al. The cost of Lyme borreliosis. Eur. J. Public Health 27, 538–547 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Muller, I. et al. Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: A retrospective model analysis. Clin. Dev. Immunol 20, 595427 (2012).
    Google Scholar 
    33.Lohr, B. et al. Epidemiology and cost of hospital care for Lyme borreliosis in Germany: Lessons from a health care utilization database analysis. Ticks Tick Borne Dis 6, 56–62 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Maes, E., Lecomte, P. & Ray, N. A cost-of-illness study of Lyme disease in the United States. Clin. Ther. 20, 993–1008 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Rogalska, A. et al. What are the costs of diagnostics and treatment of Lyme borreliosis in Poland?. Front. Public Health 8, 1022 (2021).Article 

    Google Scholar 
    36.Gray, J. S. Ixodes ricinus seasonal activity: Implications of global warming indicated by revisiting tick and weather data. Int. J. Med. Microbiol. 298, 19–24 (2008).Article 

    Google Scholar 
    37.Nilsson, A. Seasonal occurrence of Ixodes ricinus (Acari) in vegetation and on small mammals in southern Sweden. Ecography 11, 161–165 (1988).Article 

    Google Scholar 
    38.Grigoryeva, L. A., Tokarevich, N. K., Freilikhman, O. A., Samoylova, E. P. & Lunina, G. A. Seasonal changes in populations of sheep tick, Ixodes ricinus (L., 1758) (Acari: Ixodinae) in natural biotopes of St. Petersburg and Leningrad province, Russian Federation. Syst. Appl. Acarol. 24, 701–710 (2019).
    Google Scholar 
    39.Kiewra, D. & Lonc, E. Biology of Ixodes ricinus (L.) and its pathogens in Wrocław area. Wiad. Parazytol. 50, 259–264 (2004).PubMed 

    Google Scholar 
    40.Randolph, S. E. Tick ecology: Processes and patterns behind the epidemiological risk posed by Ixodid ticks as vectors. Parasitology 129, S37–S65 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiewra, D. & Sobczyński, M. Biometrical analysis of the common tick, Ixodes ricinus, in the Ślęża Massif (Lower Silesia, Poland). J. Vector Ecol. 31, 239–244 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Tagliapietra, V. et al. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 183, 114–124 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Perret, J. L., Guigoz, E., Rais, O. & Gern, L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol. Res. 86, 554–557 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Kubiak, K. & Dziekonska-Rynko, J. Seasonal activity of the common European tick, Ixodes ricinus [Linnaeus, 1758], in the forested areas of the city of Olsztyn and its sorroundings. Wiad. Parazytol. 52, 59–64 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    45.Welc-Falęciak, R., Bajer, A., Paziewska-Harris, A., Baumann-Popczyk, A. & Siński, E. Diversity of Babesia in Ixodes ricinus ticks in Poland. Adv. Med. Sci. 57, 364–369 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Buczek, A., Ciura, D., Bartosik, K., Zając, Z. & Kulisz, J. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit. Vectors 7, 562 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bartosik, K. et al. Environmental conditioning of incidence of tick-borne encephalitis in the south-eastern Poland in 1996–2006. Ann. Agric. Environ. Med. 18, 119–126 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    48.Földvári, G. Life cycle and ecology of Ixodes ricinus: The roots of public health importance. In Ecology and Prevention of Lyme borreliosis. Ecology and Control of Vector-Borne Diseases Vol. 4 (eds Braks, M. A. H. et al.) 31–40 (Wageningen Academic Publishers, 2016).Chapter 

    Google Scholar 
    49.Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).Article 

    Google Scholar 
    50.Mihalca, A. D. & Sándor, A. D. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe. Front. Cell Infect. Microbiol. 3, 56 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Opalińska, P. et al. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci. Rep. 11, 1–10 (2021).Article 
    CAS 

    Google Scholar 
    52.van Oeveren, F. M. The Role of Ungulates in Ixodes ricinus Density in Europe. Master Thesis, Utrecht University, Faculty of Veterinary Medicine (2021).53.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 3, 29 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, e00609-e617 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Cisak, E. et al. Study on Lyme borreliosis focus in the Lublin region (eastern Poland). Ann. Agric. Environ. Med. 15, 327–332 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    56.Wójcik-Fatla, A., Cisak, E., Zając, V., Zwoliński, J. & Dutkiewicz, J. Prevalence of tick-borne encephalitis virus in Ixodes ricinus and Dermacentor reticulatus ticks collected from the Lublin region (eastern Poland). Ticks Tick Borne Dis. 2, 16–19 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.National Institute of Public Health, Department of Epidemiology and Surveillance of Infectious Diseases, Laboratory of Monitoring and Epidemiological Analysis. Reports on cases of infectious diseases and poisonings in Poland. http://wwwold.pzh.gov.pl/oldpage/epimeld/index_p.html (2017–2020). Accessed 1 May 2021.58.Barrios, J. M. et al. Relating land cover and spatial distribution of nephropathia epidemica and Lyme borreliosis in Belgium. Int. J. Environ. Health Res. 23, 132–154 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Robertson, J. N., Gray, J. S. & Stewart, P. Tick bite and Lyme borreliosis risk at a recreational site in England. Eur. J. Epidemiol. 16, 647–652 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Szekeres, S. Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasit. Vectors 8, 309 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Gilbert, L. The impacts of climate change on ticks and tick-borne disease risk. Ann. Rev. Entomol. 66, 373–388 (2021).CAS 
    Article 

    Google Scholar 
    63.Statistical Yearbook of Lubelskie Voivodship. https://lublin.stat.gov.pl/publikacje-i-foldery/roczniki-statystyczne/rocznik-statystyczny-wojewodztwa-lubelskiego-2020,2,20.html (2020). Accessed 1 May 2021.64.Kaszewski, B. M. Climatic Conditions of the Lublin Region 1–42 (Maria Curie-Skłodowska University Publishing House, 2008).
    Google Scholar 
    65.Climate data: Poland, Historical weather data in Poland https://en.tutiempo.net/climate/poland.html (2020). Accessed on 1 May 2021.66.Matuszkiewicz, J. M. Plant landscapes and geobotanical regions 1: 2,500,000. Plant landscapes and geobotanical regions. In Atlas of the Republic of Poland (IGiPZ PAN, Chief National Surveyor, 1994).67.Randolph, S. E. & Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 36, 741–748 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Complex population structure of the Atlantic puffin revealed by whole genome analyses

    1.Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Velarde, E., Anderson, D. W. & Ezcurra, E. Seabird clues to ecosystem health. Science 365, 116–117 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Piatt, J. F., Sydeman, W. J. & Wiese, F. Introduction: a modern role for seabirds as indicators. Mar. Ecol. Prog. Ser. 352, 199–204 (2007).Article 

    Google Scholar 
    4.Boersma, P. D., Clark, J. A. & Hillgarth, N. Seabird conservation. In Biology of Marine Birds (eds. Schreiber, E. & Burger, J.) 559–579 (CRC Press Boca Raton, 2002).5.Denlinger, L. & Wohl, K. Seabird harvest regimes in the circumpolar nations. Conservation of Arctic Flora and Fauna (CAFF), (2001).6.Merkel, F. & Barry, T. Seabird Harvest in the Arctic. Conservation of Arctic Flora and Fauna (CAFF), (2008).7.Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird. Conserv. Int. 22, 1–34 (2012).Article 

    Google Scholar 
    8.Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950-2010. PLoS ONE 10, e0129342 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Frederiksen, M. Seabirds in the North East Atlantic. Summary of status, trends and anthropogenic impact. TemaNord 587, 21–24 (2010).
    Google Scholar 
    10.Chardine, J. & Mendenhall, V. Human Disturbance at Arctic Seabird Colonies. Conservation of Arctic Flora and Fauna (CAFF), (1998).11.Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Friesen, V. L. Speciation in seabirds: why are there so many species… and why aren’t there more? J. Ornithol. 156, 27–39 (2015).Article 

    Google Scholar 
    16.Taylor, R. S. et al. Sympatric population divergence within a highly pelagic seabird species complex (Hydrobates spp.). J. Avian Biol. 49, 1–14 (2018).Article 

    Google Scholar 
    17.Rexer‐Huber, K. et al. Genomics detects population structure within and between ocean basins in a circumpolar seabird: the white‐chinned petrel. Mol. Ecol. 28, 4552–4572 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Clucas, G. V. et al. Comparative population genomics reveals key barriers to dispersal in Southern Ocean penguins. Mol. Ecol. 27, 4680–4697 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Frugone, M. J. et al. More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Mol. Phylogenet. Evol. 139, 106563 (2019).PubMed 
    Article 

    Google Scholar 
    20.Cristofari, R. et al. Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci. Rep. 9, 2021 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Tigano, A., Shultz, A. J., Edwards, S. V., Robertson, G. J. & Friesen, V. L. Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecol. Evol. 7, 2370–2381 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Somvichian-Clausen, A. Behind the stunning photo of a puffin gorging on fish. Natl Geographic (2017).24.Huijbens, E. H. & Einarsson, N. Feasting on Friends: Whales, Puffins, and Tourism in Iceland. In Tourism Experiences and Animal Consumption (ed. Kline, C.) 10–27 (Routledge, 2018).25.Lund, K. A., Kjartansdóttir, K. & Loftsdóttir, K. ‘Puffin love’: performing and creating Arctic landscapes in Iceland through souvenirs. Tour. Stud. 18, 142–158 (2018).Article 

    Google Scholar 
    26.Hodgetts, L. M. Animal bones and human society in the late younger stone age of arctic Norway. (Durham University, 1999).27.Dove, C. J. & Wickler, S. Identification of bird species used to make a Viking age feather pillow. Arctic 69, 29–36 (2016).Article 

    Google Scholar 
    28.Harris, M. P. & Wanless, S. The puffin (T & AD Poyser, Bloomsbury Publishing, 2011).29.BirdLife International. Fratercula arctica. The IUCN Red List of Threatened Species 2017 (2017)30.Anker-Nilssen, T. & Aarvak, T. The population ecology of puffins at Røst. Status after the breeding season 2001. NINA Oppdragsmeld. 736, 1–40 (2002).
    Google Scholar 
    31.Anker-Nilssen, T. et al. Key-site monitoring in Norway 2019, including Svalbard and Jan Mayen. SEAPOP Short Report 1–2020 (2020).32.Lilliendahl, K. et al. Recruitment failure of Atlantic puffins Fratercula arctica and sandeels Ammodytes marinus in Vestmannaeyjar Islands. N.áttúrufræðingurinn 83, 65–79 (2013).
    Google Scholar 
    33.Walker, S. J. & Meijer, H. J. M. Size variation in mid-Holocene North Atlantic Puffins indicates a dynamic response to climate change. PLoS ONE 16, e0246888 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Burnham, K. K., Burnham, J. L. & Johnson, J. A. Morphological measurements of Atlantic puffin (Fratercula arctica naumanni) in High-Arctic Greenland. Polar Res. 39. https://doi.org/10.33265/polar.v39.5242 (2020).35.Gaston, A. J. & Provencher, J. F. A specimen of the high arctic subspecies of Atlantic Puffin, Fratercula arctica naumanni, in Canada. Can. Field-Nat. 126, 50–54 (2012).Article 

    Google Scholar 
    36.Salomonsen, F. The Atlantic Alcidae. vol. 6 (Elanders boktryckeri aktiebolag, 1944).37.Moen, S. M. Morphologic and genetic variation among breeding colonies of the Atlantic puffin (Fratercula arctica). Auk 108, 755–763 (1991).
    Google Scholar 
    38.Harris, M. P. Measurements and weights of British Puffins. Bird. Study 26, 179–186 (1979).Article 

    Google Scholar 
    39.Kim, J. A., Kang, S.-G., Yang, J. W., Hur, W.-H. & Kil, H.-J. Complete mitochondrial genome of Aethia cristatella (Charadriiformes: Alcidae). Mitochondrial DNA Part B 5, 31–32 (2020).Article 

    Google Scholar 
    40.Eo, S. H. & An, J. The complete mitochondrial genome sequence of Japanese murrelet (Aves: Alcidae) and its phylogenetic position in Charadriiformes. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 4574–4575 (2016).CAS 
    PubMed 

    Google Scholar 
    41.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Sánchez-Barreiro, F. et al. Historical Population Declines Prompted Significant Genomic Erosion in the Northern and Southern White Rhinoceros (Ceratotherium Simum). Molecular Ecology. 1–15 https://doi.org/10.1111/mec.16043 (2021).43.Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Lombal, A. J., O’dwyer, J. E., Friesen, V., Woehler, E. J. & Burridge, C. P. Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds. Biol. Rev. Camb. Philos. Soc. 95, 625–651 (2020).PubMed 
    Article 

    Google Scholar 
    45.Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Breton, A. R., Diamond, A. W. & Kress, S. W. Encounter, survival, and movement probabilities from an Atlantic puffin (Fratercula arctica) metapopulation. Ecol. Monogr. 75, 133–149 (2006).47.Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Burg, T. M. & Croxall, J. P. Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol. Ecol. 10, 2647–2660 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Lowther, P. E., Diamond, T., Kress, S. W., Robertson, G. J. & Gill, F. Atlantic Puffin (Fratercula arctica). The Birds of North America Online 18, (2002).50.Wojczulanis-Jakubas, K. et al. Weak population genetic differentiation in the most numerous Arctic seabird, the little auk. Polar Biol. 37, 621–630 (2014).Article 

    Google Scholar 
    51.Smith, A. L., Monteiro, L., Hasegawa, O. & Friesen, V. L. Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol. Phylogenet. Evol. 43, 755–773 (2007).PubMed 
    Article 

    Google Scholar 
    52.Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gottinger Stud. 3, 595–708 (1847).
    Google Scholar 
    53.James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390 (1970).Article 

    Google Scholar 
    54.Yamamoto, T. et al. Geographical variation in body size of a pelagic seabird, the streaked shearwater Calonectris leucomelas. J. Biogeogr. 43, 801–808 (2016).Article 

    Google Scholar 
    55.Barrett, R. T., Anker-Nilssen, T. & Krasnov, Y. V. Can Norwegian and Russian razorbills (Alca torda) be identified by their measurements? Mar. Ornithol. 25, 5–8 (1997).
    Google Scholar 
    56.Anker-Nilssen, T., Aarvak, T. & Bangjord, G. Mass mortality of Atlantic Puffins Fratercula arctica off Central Norway, spring 2002: causes and consequences. Atl. Seab. 5, 57–72 (2003).
    Google Scholar 
    57.Pearce, R. L. et al. Mitochondrial DNA suggests high gene flow in ancient murrelets. Condor 104, 84–91 (2002).Article 

    Google Scholar 
    58.Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).59.Milot, E., Weimerskirch, H. & Bernatchez, L. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol. Ecol. 17, 1658–1673 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Edwards, S. & Bensch, S. Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol. Ecol. 18, 2930–2936 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.IPCC. Global Warming of 1.5 °C—Summary for Policy Makers. (2018).62.Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).PubMed 
    Article 

    Google Scholar 
    64.Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9, 1056–1082 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–33 (2013).Article 

    Google Scholar 
    67.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Matschiner, M. Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics 32, 1250–1252 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Watterson, G. A. Heterosis or neutrality? Genetics 85, 789–814 (1977).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Chakraborty, R. & Mitochondrial, D. N. A. polymorphism reveals hidden heterogeneity within some Asian populations. Am. J. Hum. Genet. 47, 87–94 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).Article 

    Google Scholar 
    77.Orlando, L. & Librado, P. Origin and evolution of deleterious mutations in horses. Genes 10, 649 (2019).78.Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    84.Lichstein, J. W. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).Article 

    Google Scholar 
    85.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Pante, E., Simon-Bouhet, B. & Irisson, J.-O. marmap—R package. (2019).87.Goslee, S. & Urban, D. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw., Artic. 22, 1–19 (2007).
    Google Scholar 
    88.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article 

    Google Scholar 
    89.Blanchet, F. G., Legendre, P. & Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Modell. 215, 325–336 (2008).Article 

    Google Scholar 
    90.Benestan, L. M. et al. Population genomics and history of speciation reveal fishery management gaps in two related redfish species (Sebastes mentella and Sebastes fasciatus). Evol. Appl. 14, 588–606 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 8, 551–566 (2018).PubMed 
    Article 

    Google Scholar 
    92.Kersten, O. Code for Population Genomics Analyses of Atlantic Puffin (Fratercula arctica) using Whole Genome Sequencing (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4899575 (2021). More

  • in

    DNA methylation profiling in mummified human remains from the eighteenth-century

    1.Orlando, L., Gilbert, M. T. & Willerslev, E. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16, 395–408 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Smith, Z. D. & Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Schmidt, M., Maie, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Koch, C. M. & Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany N.Y.) 3, 1018–1027 (2011).CAS 

    Google Scholar 
    7.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Dabney, J., Meyer, M. & Paabo, S. Ancient DNA damage. Cold Spring Harb. Perspect Biol. 5, a012567 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Gokhman, D. et al. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344, 523–527 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Pap, I., Susa, E. & Joszsa, L. Mummies from the 18–19th century Domanical Church of Vác, Hungary. Acta Biol. Szegediensis 42, 107–112 (1997).
    Google Scholar 
    14.Donoghue, H. D., Pap, I., Szikossy, I. & Spigelman, M. The Vác Mummy Project: Investigation of 265 eighteenth-century mummified remains from the TB pandemic era. In The Handbook of Mummy Studies (eds Shin, D. H. & Bianucci, R.) 1–30 (Springer, 2021).
    Google Scholar 
    15.Hotz, G. et al. Der rätselhafte Mumienfund aus der Barfüsserkirche in Basel. Ein aussergewöhnliches Beispiel interdisziplinärer Familienforschung. Jahrbuch der Schweizerischen Gesellschaft für Familienforschung 2018, 1–30 (2018).
    Google Scholar 
    16.Hotz, G. Das Rätsel der Anna Catharina Bischoff. Spektrum der Wissenschaft 3, 76–81 (2018).
    Google Scholar 
    17.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: Reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Triche, T. J., Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D. low-level processing of illumina infinium DNA methylation beadarrays. Nucleic Acids Res. 41, e90 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ruiz-Hernandez, A. et al. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenet. 7, 55 (2015).Article 
    CAS 

    Google Scholar 
    20.Pedersen, J. S. et al. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res. 24, 454–466 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Gaudin, M. & Desnues, C. Hybrid capture-based next generation sequencing and its application to human infectious diseases. Front. Microbiol. 9, 2924 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes (Basel) 1, 227–243 (2010).CAS 
    Article 

    Google Scholar 
    23.Koop, B. E. et al. Postmortem age estimation via DNA methylation analysis in buccal swabs from corpses in different stages of decomposition—A “proof of principle” study. Int. J. Legal Med. 135, 167–173 (2021).PubMed 
    Article 

    Google Scholar 
    24.Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bozic, T. et al. Investigation of measurable residual disease in acute myeloid leukemia by DNA methylation patterns. Leukemia https://doi.org/10.1038/s41375-021-01316-z (2021).Article 
    PubMed 

    Google Scholar 
    26.Pap, I. et al. 18–19th century tuberculosis in naturally mummified individuals (Vác, Hungary). In Tuberculosis Past and Present (eds Pálfi, G. et al.) 421–428 (Golden Books/Tuberculosis Foundation, 1999).
    Google Scholar 
    27.Kreissl Lonfat, B. M., Kaufmann, I. M. & Ruhli, F. A code of ethics for evidence-based research with ancient human remains. Anat. Rec. (Hoboken) 298, 1175–1181 (2015).Article 

    Google Scholar 
    28.Maixner, F. et al. The Iceman’s last meal consisted of fat, wild meat, and cereals. Curr. Biol. 28, 2348–2355 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tang, J. N. et al. An effective method for isolation of DNA from pig faeces and comparison of five different methods. J. Microbiol. Methods 75, 432–436 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, 5448 (2010).Article 

    Google Scholar 
    32.Rosenbloom, K. R. et al. The UCSC genome browser database: 2015 update. Nucleic Acids Res. 43, D670–D681 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Peltzer, A. et al. EAGER: Efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. & Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Huson, D. H. et al. MEGAN Community edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    39.Xu, Z., Langie, S. A., De Boever, P., Taylor, J. A. & Niu, L. RELIC: A novel dye-bias correction method for illumina methylation beadchip. BMC Genomics 18, 4 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Lee, D. D. & Seung, H. S. Algorithms for non-negative matrix factorization. Adv. Neural. Inf. Process. Syst. 13(13), 556–562 (2001).
    Google Scholar 
    41.Schmidt, M., Maié, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 34, 1969 (2020).
    Google Scholar 
    42.Frobel, J. et al. Leukocyte counts based on DNA methylation at individual cytosines. Clin. Chem. 64, 566–575 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Dry corridors opened by fire and low CO2 in Amazonian rainforest during the Last Glacial Maximum

    1.Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563 (2000).Article 

    Google Scholar 
    2.Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137 (1969).Article 

    Google Scholar 
    3.Carnaval, A. C. & Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 35, 1187–1201 (2008).Article 

    Google Scholar 
    4.Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C. & Bush, M. B. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 85 (1996).Article 

    Google Scholar 
    5.Burbridge, R. E., Mayle, F. E. & Killeen, T. J. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat. Res. 61, 215–230 (2004).Article 

    Google Scholar 
    6.Bush, M. B. & Silman, M. R. Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. J. Quat. Sci. 19, 677–684 (2004).Article 

    Google Scholar 
    7.Cowling, S. A., Maslin, M. A. & Sykes, M. T. Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat. Res. 55, 140–149 (2001).Article 

    Google Scholar 
    8.Claussen, M., Selent, K., Brovkin, V., Raddatz, T. & Gayler, V. Impact of CO2 and climate on Last Glacial Maximum vegetation—a factor separation. Biogeosciences 10, 3593–3604 (2013).Article 

    Google Scholar 
    9.O’ishi, R. & Abe-Ouchi, A. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum. Clim. Past 9, 1571–1587 (2013).Article 

    Google Scholar 
    10.Hopcroft, P. O. & Valdes, P. J. Last Glacial Maximum constraints on the Earth system model HadGEM2-ES. Clim. Dyn. 45, 1657–1672 (2015).Article 

    Google Scholar 
    11.Hermanowski, B., da Costa, M. L. & Behling, H. Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record. Quat. Res. 77, 138–148 (2012).Article 

    Google Scholar 
    12.Fontes, D. et al. Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quat. Sci. Rev. 173, 161–180 (2017).Article 

    Google Scholar 
    13.D’Apolito, C., Absy, M. L. & Latrubesse, E. M. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quat. Sci. Rev. 76, 140–155 (2013).Article 

    Google Scholar 
    14.AdrianQuijada-Mascareñas, J. et al. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. J. Biogeogr. 34, 1296–1312 (2007).Article 

    Google Scholar 
    15.Prado, D. E. & Gibbs, P. E. Patterns of species distributions in the dry seasonal forests of South America. Ann. MO Bot. Gard. 80, 902–927 (1993).Article 

    Google Scholar 
    16.Cardoso Da Silva, J. M. & Bates, J. M. Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. AIBS Bull. 52, 225–234 (2002).
    Google Scholar 
    17.da Silva, J. M. C. Biogeographic analysis of the South American Cerrado avifauna. Steenstrupia 21, 49–67 (1995).
    Google Scholar 
    18.Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W. & Costa, G. C. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39, 1695–1706 (2012).Article 

    Google Scholar 
    19.Wuster, W. et al. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 14, 1095–1108 (2005).Article 

    Google Scholar 
    20.Prentice, I. C. et al. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25, GB3005 (2011).Article 

    Google Scholar 
    21.Colinvaux, P. A., De Oliveira, P. E. & Bush, M. B. Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat. Sci. Rev. 19, 141–169 (2000).Article 

    Google Scholar 
    22.Bush, M. B. Climate science: the resilience of Amazonian forests. Nature 541, 167 (2017).Article 

    Google Scholar 
    23.Mayle, F. E., Beerling, D. J., Gosling, W. D. & Bush, M. B. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the Last Glacial Maximum. Philos. Trans. R. Soc. Lond. B 359, 499–514 (2004).Article 

    Google Scholar 
    24.Costa, G. C. et al. Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob. Ecol. Biogeogr. 27, 285–297 (2018).Article 

    Google Scholar 
    25.Wilson, J. B. & Agnew, A. D. in Advances in Ecological Research Vol. 23 (eds Begon, M. & Fitter, A. H.) 263–336 (Academic Press, 1992).26.Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New. Phytol. 201, 908–915 (2014).Article 

    Google Scholar 
    27.Aleixo, A. & de Fátima Rossetti, D. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? J. Ornithol. 148, 443–453 (2007).Article 

    Google Scholar 
    28.Pennington, R. T. & Dick, C. W. Diversification of the Amazonian Flora and Its Relation to Key Geological and Environmental Events: A Molecular Perspective (Blackwell, 2010).29.Leite, R. N. & Rogers, D. S. Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives. Org. Divers. Evol. 13, 639–664 (2013).Article 

    Google Scholar 
    30.Haffer, J. R. Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers. Conserv. 6, 451–476 (1997).Article 

    Google Scholar 
    31.Garzón-Orduña, I. J., Benetti-Longhini, J. E. & Brower, A. V. Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. J. Biogeogr. 41, 1631–1638 (2014).Article 

    Google Scholar 
    32.Smith, B. T., Amei, A. & Klicka, J. Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. Proc. R. Soc. B 279, 3520–3526 (2012).Article 

    Google Scholar 
    33.Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).Article 

    Google Scholar 
    34.Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).Article 

    Google Scholar 
    35.McMahon, S. M. et al. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol. 26, 249–259 (2011).Article 

    Google Scholar 
    36.Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    37.Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991 (2010).Article 

    Google Scholar 
    38.Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18, 357–364 (1995).Article 

    Google Scholar 
    39.Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels Research Paper INT-115 (USDA, 1972).40.Prentice, I. C., Harrison, S. P. & Bartlein, P. J. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 189, 988–998 (2011).Article 

    Google Scholar 
    41.Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313–3340 (2013).Article 

    Google Scholar 
    42.Kelley, D. I., Harrison, S. P. & Prentice, I. C. Improved simulation of fire–vegetation interactions in the land surface processes and exchanges dynamic global vegetation model (LPX-Mv1). Geosci. Model Dev. 7, 2411–2433 (2014).Article 

    Google Scholar 
    43.Kelley, D. I. & Harrison, S. P. Enhanced Australian carbon sink despite increased wildfire during the 21st century. Environ. Res. Lett. 9, 104015 (2014).Article 

    Google Scholar 
    44.Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Climate 3, 261–277 (2007).
    Google Scholar 
    45.Martin Calvo, M. & Prentice, I. C. Effects of fire and CO2 on biogeography and primary production in glacial and modern climates. New Phytol. 208, 987–994 (2015).Article 

    Google Scholar 
    46.Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate 3, 279–296 (2007).
    Google Scholar 
    47.Harris, I. P. D. J., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    48.Mayle, F. E., Burn, M. J., Power, M. & Urrego, D. H. in Past Climate Variability in South America and Surrounding Regions (eds Vimeux, F. et al.) 89–112 (Springer, 2009).49.Marchant, R. et al. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate 5, 725–767 (2009).
    Google Scholar 
    50.Stein, U. & Alpert, P. I. N. H. A. S. Factor separation in numerical simulations. J. Atmos. Sci. 50, 2107–2115 (1993).Article 

    Google Scholar 
    51.Argollo, J. & Mourguiart, P. Late Quaternary climate history of the Bolivian Altiplano. Quat. Int. 72, 37–51 (2000).Article 

    Google Scholar 
    52.Watts, W. A. & Bradbury, J. P. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat. Res. 17, 56–70 (1982).Article 

    Google Scholar 
    53.del Socorro Lozano-Garcia, M. & Ortega-Guerrero, B. Palynological and magnetic susceptibility records of Lake Chalco, central Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 177–191 (1994).Article 

    Google Scholar 
    54.del Socorro Lozano-García, M. & Ortega-Guerrero, B. Late Quaternary environmental changes of the central part of the Basin of Mexico; correlation between Texcoco and Chalco basins. Rev. Palaeobot. Palynol. 99, 77–93 (1998).Article 

    Google Scholar 
    55.Leyden, B. W. Guatemalan forest synthesis after Pleistocene aridity. Proc. Natl Acad. Sci. USA 81, 4856–4859 (1984).Article 

    Google Scholar 
    56.Piperno, D. R., Bush, M. B. & Colinvaux, P. A. Paleoecological perspectives on human adaptation in central Panama. I. Pleistocene. Geoarchaeology 6, 201–226 (1991).Article 

    Google Scholar 
    57.Hooghiemstra, H., Cleef, A. M., Noldus, C. W. & Kappelle, M. Upper Quaternary vegetation dynamics and palaeoclimatology of the La Chonta bog area (Cordillera de Talamanca, Costa Rica). J. Quat. Sci. 7, 205–225 (1992).Article 

    Google Scholar 
    58.van der Hammen, T. & Hooghiemstra, H. Interglacial–glacial Fuquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Glob. Planet. Change 36, 181–199 (2003).Article 

    Google Scholar 
    59.Graf, K. Pollendiagramme aus den Anden: Eine Synthese zur Klimageschichte und Vegetationsentwicklung seit der letzten Eiszeit (Universität Zürich-Irchel-Geographisches Institut, 1992).60.Van Geel, B. & Van der Hammen, T. Upper Quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera, Colombia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 14, 9–92 (1973).Article 

    Google Scholar 
    61.Behling, H. & Hooghiemstra, H. Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. J. Paleolimnol. 21, 461–476 (1999).Article 

    Google Scholar 
    62.Wille, M., Negret, J. A. & Hooghiemstra, H. Paleoenvironmental history of the Popayán area since 27 000 yr BP at Timbio, southern Colombia. Rev. Palaeobot. Palynol. 109, 45–63 (2000).Article 

    Google Scholar 
    63.Oliveira, P. E. D. A Palynological Record of Late Quaternary Vegetational and Climatic Change in Southeastern Brazil. PhD dissertation, The Ohio State Univ. (1992).64.Ledru, M. P. et al. Late-glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil. Quat. Res. 55, 47–56 (2001).Article 

    Google Scholar 
    65.Behling, H., Arz, H. W., Pätzold, J. & Wefer, G. Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeogr. Palaeoclimatol. Palaeoecol. 179, 227–243 (2002).Article 

    Google Scholar 
    66.Van der Hammen, T. & González, E. Upper Pleistocene and Holocene climate and vegetation of the ‘Sabana de Bogota’ (Colombia, South America). Leidse Geologische Mededelingen 25, 261–315 (1960).
    Google Scholar 
    67.Guimarães, J. T. F. et al. Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. Holocene 27, 1055–1066 (2017).Article 

    Google Scholar 
    68.Van der Hammen, T. & Absy, M. L. Amazonia during the last glacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 247–261 (1994).Article 

    Google Scholar 
    69.Hansen, B. C. S. et al. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 79–108 (2003).Article 

    Google Scholar 
    70.Mayle, F. E., Burbridge, R. & Killeen, T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).Article 

    Google Scholar 
    71.Urrego, D. H., Bush, M. B. & Silman, M. R. A long history of cloud and forest migration from Lake Consuelo, Peru. Quat. Res. 73, 364–373 (2010).Article 

    Google Scholar 
    72.Barberi, M., Salgado-Labouriau, M. L. & Suguio, K. Paleovegetation and paleoclimate of ‘Vereda de Águas Emendadas’, central Brazil. J. South Am. Earth Sci. 13, 241–254 (2000).Article 

    Google Scholar 
    73.Mourguiart, P., Argollo, J. & Wirrmann, D. In Climas Cuaternarios en America del Sur = Quaternary Climates of South America. 157–171 (ORSTOM, 1995).74.Mourguiart, P. & Ledru, M. P. Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, 195–198 (2003).Article 

    Google Scholar 
    75.Salgado-Labouriau, M. L., Barberi, M., Ferraz-Vicentini, K. R. & Parizzi, M. G. A dry climatic event during the late Quaternary of tropical Brazil. Rev. Palaeobot. Palynol. 99, 115–129 (1998).Article 

    Google Scholar 
    76.Ledru, M. P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).Article 

    Google Scholar 
    77.Chepstow-Lusty, A. et al. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quat. Res. 63, 90–98 (2005).Article 

    Google Scholar 
    78.Behling, H. & Lichte, M. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quat. Res. 48, 348–358 (1997).Article 

    Google Scholar 
    79.Behling, H. South and southeast Brazilian grasslands during late Quaternary times: a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 19–27 (2002).Article 

    Google Scholar 
    80.Behling, H. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129, 407–422 (1997).Article 

    Google Scholar 
    81.Ledru, M. P., Mourguiart, P. & Riccomini, C. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 140–152 (2009).Article 

    Google Scholar 
    82.Pessenda, L. C. R. et al. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quat. Res. 71, 437–452 (2009).Article 

    Google Scholar 
    83.Behling, H. & Negrelle, R. R. Tropical rain forest and climate dynamics of the Atlantic lowland, Southern Brazil, during the Late Quaternary. Quat. Res. 56, 383–389 (2001).Article 

    Google Scholar 
    84.Behling, H., Pillar, V. D., Orlóci, L. & Bauermann, S. G. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 277–297 (2004).Article 

    Google Scholar 
    85.Behling, H., Pillar, V. D. & Bauermann, S. G. Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev. Palaeobot. Palynol. 133, 235–248 (2005).Article 

    Google Scholar  More

  • in

    Pathways to sustaining tuna-dependent Pacific Island economies during climate change

    Ocean forcingsThe Nucleus for European Modelling of the Ocean (NEMO) ocean framework46, which includes an online coupling with the biogeochemical component PISCES in a 2° latitude × 2° longitude configuration47,48, was used to simulate the historical oceanic environment (hindcast simulation). This historical simulation was forced by the Drakkar Forcing Sets 5.2 (DFS5.2)49 on the basis of a corrected set of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis – Interim (ERA-Interim) over the period 1979−2011. Salinity, temperature and biogeochemical tracer concentrations (nitrate, phosphate, iron, silicate, alkalinity, dissolved oxygen and dissolved organic and inorganic carbon) were initialized from the World Ocean Atlas climatology (WOA09)50 and previous model climatology for iron and dissolved organic carbon51. To minimize any substantial numerical drift in the simulations related to a non-equilibrated initial state, we applied a spin-up of the ocean model and biogeochemical model for 66 years, cycling twice over the DFS5.2 forcing sets48.Overall, the model simulates basin-scale, historical SST and salinity distribution, together with seasonal and interannual (ENSO) variability with good fidelity52. Classical biases are associated with the coarse (2°) resolution, for example, the latitudinal position of the Kuroshio Current. In the tropical Pacific, there is a cold bias of −1 °C in the central equatorial zone (between 170° W and 100° W) and a warm bias of +1 °C in the eastern part of the basin (east of 90° W). Despite some local discrepancy between simulation outputs and satellite-derived chlorophyll concentration around islands and near the American coasts, simulated mean chlorophyll in the equatorial Pacific Ocean is close to observed values51,52.For future ocean projections, we first selected several ESMs from the CMIP5 intercomparison project53 on the basis of the ability of the models to produce accurate ENSO variability in the Pacific54. The four ESMs selected were IPSL-CM5A55, MIROC56, GFDL-ESM2G57 and MPI-MR58. We then extracted atmospheric fields from these models for the period 2011−2100 under RCP 8.5 to simulate ‘business-as-usual’ climate anomalies to build forcing sets for the NEMO–PISCES ocean model.All ESMs display large biases in their representation of Pacific climate, including the important South Pacific Convergence Zone59,60. These atmospheric biases propagated uncertainties associated with future atmospheres into the coupled, dynamical-biogeochemical oceanic framework. For example, they result in prominent distortions in the extension and position of the warm pool61 and can be expected to affect modelling of the open ocean ecosystem up to the higher trophic levels12.To mitigate the mean state model biases in the selected ESMs, we used a ‘pseudo-warming’ anomaly approach to force the ocean model. To do this, we extracted monthly anomalies (relative to 2010) of surface atmospheric temperature, zonal and meridional wind speeds, radiative heat fluxes, relative humidity and precipitation from the ESM models over the 2010–2100 period and applied a 31-year-wide Hanning filter to remove variability on timescales less than 15 years.Each ESM-filtered timeseries was superimposed onto the repeating 30-year historical forcing (that is, repeated three times to span the twenty-first century) to provide the forcing for the NEMO–PISCES projections. This procedure enabled us to retain a realistic climatology and high-frequency variability from observations subject to long-term trends due to climate change based on the ESMs (Supplementary Fig. 7).For consistency, the control simulation of NEMO–PISCES was forced using the same three, repeated, 30-year historical periods to correct any long-term drift generated internally without climate change forcing.It is important to note that use of all ESM acronyms (for example, IPSL) in the following text refers to NEMO–PISCES or SEAPODYM simulations derived from the ESM anomaly forcing, and not to the ESM models themselves.The four NEMO–PISCES simulations of future ocean conditions produced contrasting results in terms of dynamics and biogeochemistry (Supplementary Fig. 8). In particular, there was strong warming in the IPSL and MIROC simulations and weaker warming for GFDL and especially MPI. Spatial patterns in ocean warming produced by the NEMO–PISCES simulations differed mostly in intensity rather than spatial structure.Using NEMO–PISCES outputs to produce SEAPODYM forcingsThe outputs of NEMO–PISCES were used to provide environmental forcing variables for SEAPODYM, the model used to project the responses of the key life stages of skipjack, yellowfin and bigeye tuna to climate change (Supplementary Note 7). The following physical and biochemical forcing variables were used in SEAPODYM applications: three-dimensional (3D) temperature, dissolved oxygen (O2) concentration, zonal/meridional currents and primary production, and 2D euphotic depth. Before running SEAPODYM, these forcing variables were interpolated to a regular 2° Arakawa A grid and placed in the centre of the grid cells. Primary production was then vertically integrated throughout the water column, whereas the other 3D variables were integrated within three pelagic layers, defined according to the euphotic depth to provide the mean 2D fields for each variable per layer. Selected environmental variables from the historical ocean reanalysis and from four climate-driven ocean outputs are shown in Supplementary Fig. 3.These integrated variables were then used to force the SEAPODYM-LMTL (lower and mid-trophic level) sub-model. SEAPODYM-LMTL relies on primary production, temperature and ocean currents to simulate the biomass of six functional groups of micronekton—mid-trophic-level prey organisms of tunas (Supplementary Fig. 4)—residing or migrating through three pelagic layers within the upper 1,000 m of the water column (the epipelagic layer and the upper and lower mesopelagic layers), with depths linked to the depth of euphotic layer Z as 1.5Z, 4.5Z and 10Z (with 10Z limited to 1,000 m). The definition of these pelagic layers is derived from the diurnal vertical distributions of micronekton species62.Optimal parameterization of SEAPODYM during historical periodThe parameterization of SEAPODYM for each tuna species is highly sensitive to ocean forcing; that is, in its average state it is free from systematic biases, and it represents interannual variability and ENSO correctly. This sensitivity enables the model to reproduce observed variability within large, geo-referenced datasets of tuna catches and length distributions reflecting changes in fish abundance12. The environmental forcings in this study were obtained from the historical NEMO–PISCES reference simulations using a realistic atmospheric reanalysis based on a consistent set of atmospheric observations. Historical fishing datasets used to achieve model optimal parameterizations were compiled from the combination of data provided by the Pacific Community for the WCPO and by IATTC for the EPO. The model spatial resolution was 2° × 2°, and the resolution for time and age dimensions was one month. The skipjack tuna reference model was obtained by integrating all available geo-referenced data—catch, length-frequency of catch and tagging release–recapture data—into a likelihood function and obtaining the solution using the maximum likelihood estimation (MLE) approach (Supplementary Note 7). The initial habitat and movement parameters for bigeye and yellowfin tuna were also estimated by integrating tagging data into the model; however, the final parameterizations of the reference models for these two species were based mainly on fisheries data. The methodology and optimal reference solutions obtained for skipjack, yellowfin and bigeye tuna, and model validations with statistical metrics, are described in other publications documenting the use of SEAPODYM13,63,64,65.The structures of the populations of the three tuna species in December 2010 (the last time-step of the reanalysis) were used to set the initial conditions for the projections starting in 2011. A second historical simulation was run to remove the effects of fishing mortality (Supplementary Figs. 9 and 10) to establish the initial conditions for the unfished tuna populations (Supplementary Fig. 10). In these latter simulations, the stocks increase and reach an equilibrium state in a time that is defined by the lifespan of the species and the estimated stock–recruitment relationship. We assume that at the end of the 30-year reanalysis (December 2010), stocks of all three tropical tuna species are at their virgin (unfished) state and influenced by environmental variability and demographic processes only.Projections of climate change impacts on tunaPrevious studies on the impact of climate change on tropical tuna species in the Pacific Ocean produced projections based on the full-field NEMO–PISCES output from a single ESM (IPSL) under the IPCC business-as-usual scenario6,10,12,66,67. These projections were subject to biases, resulting in poor coherence between historical and projected environmental forcings and abrupt changes and biases when switching from a historical reanalysis to a projected time series12. To reduce this problem, we used an approach based on the four, bias-corrected, projected climates from NEMO–PISCES outputs (Supplementary Methods).Simulations of the SEAPODYM tuna model were run with parameters from the reference MLE models for the three tuna species, with forcings from the four NEMO–PISCES and mid-trophic simulations, under the RCP 8.5 scenario to project tuna population dynamics until mid-century. We estimated the virgin biomass of each species in the decade 2011−2020 and computed the relative change in biomass by 2050 (2044−2053) as follows:$$updelta _Bleft( {2050} right) = frac{1}{N}mathop {sum}limits_{t = 2011}^{2020} {left( {frac{{Bleft( {t + {Delta}t} right)}}{{B(t)}} – 1} right)}$$
    (1)
    where Δt is the time interval corresponding to 33 years and N is the number of monthly time steps in the selected time period (120 months between 2011 and 2020). We chose to average over 10 years at 33-year intervals to compare two distant periods with the same atmospheric variability, thus removing the possible effects of interannual variation and allowing better detection of the climate change signal.The relative biomass change δB (2050) was computed for the EEZs of Pacific SIDS and all high-seas areas in the WCPO and EPO (Supplementary Fig. 1).Sensitivity analyses to explore uncertaintyWe analysed the impacts of climate change on skipjack, yellowfin and bigeye tuna with an ensemble of simulations focusing on the greatest sources of uncertainty in the NEMO–PISCES variables and in SEAPODYM (Supplementary Fig. 11 and Supplementary Table 21). The methods used to explore these uncertainties, and the rationale for these analyses, are explained in the Supplementary Methods.Modelling tuna distribution under lower-emissions scenariosThe simulations based on RCP 8.5 project a redistribution of tuna biomass by 2050 as globally averaged surface temperature rises to 2 °C above pre-industrial levels by mid-century. To evaluate possible effects of a lower GHG emission scenario on tuna redistribution, we also estimated the responses of tropical tuna species to conditions similar to RCP 4.5 and RCP 2.6 by 2050.In the absence of ocean forcings and SEAPODYM outputs for RCP 4.5 and RCP 2.6, we used estimates based on the RCP 8.5 simulations using a ‘time-shift’ approach68. This method consists of identifying the time segment in RCP 8.5 in which a key variable (for example, CO2-equivalent (CO2e)) matches the value expected for the selected RCP in 2050. Accordingly, we selected the periods in the RCP 8.5 curve when total CO2e concentrations in the atmosphere reached those projected for RCP 4.5 and RCP 2.6 in 2050 (Supplementary Fig. 12). On the basis of this method, the equivalent of RCP 4.5 in 2050 is reached in 2037 under RCP 8.5, and the equivalent for RCP 2.6 in 2050 is reached in 2026.An important assumption of this method is that the dynamical pattern corresponding to a given change of global temperature is independent of the rate of change. This assumption is expected to be met for key features of the tropical Pacific Ocean because the upper ocean generally responds rapidly to changes in atmospheric forcing. However, this assumption is unlikely to hold for tuna population dynamics because interannual variability of tuna biomass is driven by demographic processes (recruitment and mortality), which are in turn influenced by environmental variability. Furthermore, due to the slow nature of demographic processes, the repercussions of environmental variability on tuna population dynamics are time lagged. For example, there is a time lag of 8 months between the Southern Oscillation Index and the biomass of young skipjack tuna (aged from 3 to 9 months)17, and a time lag of 12 months between the Southern Oscillation Index and total biomass of skipjack tuna (Supplementary Fig. 13). When combined with the effects of stock–recruitment relationships, and different generation times between tuna species, the speed and duration of climate change processes may have a profound effect on tuna biomass. Therefore, due to the rapidly changing ocean conditions in the RCP 8.5 scenario, the population status of a tuna species in the second and third decade cannot be assumed to be equivalent to that under a scenario with lower emissions by mid-century.To address the complications associated with the population dynamics of tuna in a changing environment, we generated synthetic RCP 4.5 and RCP 2.6 2011−2050 time series by recycling the years from RCP 8.5 simulations. Note that recycling the ‘equivalent’ years from RCP 8.5 simulations to imitate those projected for the RCP 4.5 and RCP 2.6 scenarios involves re-using the same years multiple times because of their lower rate of change. To avoid looping the forcings over the same year multiple times, we selected several years around the equivalent RCP 8.5 year while enlarging the temporal window with increasing differences in the rates of GHG change between the two scenarios and ensuring that the mean CO2e within this window was equal to those in the target RCP 4.5 or RCP 2.6 scenario. The inverse mapping of the RCP 8.5 curve from arrays of CO2e values to the equivalent years in the RCP 8.5 simulation (Supplementary Fig. 14) provided the selected range of RCP 8.5 years to imitate the RCP 4.5 and RCP 2.6 scenarios. The NEMO–PISCES model variables from those years were then used to compute monthly climatology for each year of the surrogate RCP 4.5 or RCP 2.6 forcing to provide smoothed time series of forcing variables over the complete time range. The temporal evolution of epipelagic ocean temperature is compared for four climate models and three RCP scenarios in Supplementary Fig. 14.The biomass changes projected for the three tuna species in 2050 under RCP 8.5 and under the lower surrogate emissions scenarios were then computed for all Pacific Island EEZs (Supplementary Fig. 15) following equation (1) (Supplementary Methods). The biomass changes projected under the RCP 4.5 forcing are smaller in magnitude than those for RCP 8.5, demonstrating that the effect of climate change is less pronounced in the simulations under this lower-emissions scenario.The simulations under the surrogate RCP 2.6 forcing did not follow the expected pattern and were deemed to be too unreliable for use in this study (Supplementary Methods).Estimating changes in tuna biomass in EEZs and the high seasFor this analysis, we produced reference biomasses for skipjack, yellowfin and bigeye tuna for the period 1979−2010 from quantitative assessment studies using SEAPODYM, which estimates population dynamics, habitats, movements and fisheries parameters with an MLE approach (Supplementary Note 7). The fit between observations and predictions (for catch and catch size frequencies) was used to validate the optimal solutions of the models within and outside the time window for the model parameter estimates. The fit was analysed spatially by fishery to ensure that there were no regional biases. Once the optimal solution was achieved, a final simulation was made with the same set of parameter estimates but without considering any fishing, to obtain the unfished biomass dynamics during both the historical period and the projection for the twenty-first century. The differences in unfished biomass between the historical period (2001−2010) and projections in 2050 (mean of 2046−2050) for each species were used to compute the weighted mean change in total tuna biomass in the EEZs of the ten Pacific SIDS, the high-seas areas shown in Supplementary Fig. 1 and the EEZs of the other Pacific SIDS listed in Supplementary Table 1 for the RCP 8.5 and RCP 4.5 emission scenarios by 2050.Estimating changes in catch in EEZs and the high seasTo evaluate the impacts of climate change scenarios on purse-seine fisheries, comparisons were restricted to the EEZs of the ten tuna-dependent Pacific SIDS and the high-seas areas, particularly EPO-C (Supplementary Fig. 1).To estimate the effects of projected changes in biomass of skipjack, yellowfin and bigeye tuna due to RCP 8.5 and RCP 4.5 on purse-seine catches in the EEZs of Pacific SIDS and in high-seas areas by 2050, in the absence of management interventions to reallocate catch entitlements to maintain historical access rights for Pacific SIDS, we assumed that there would be a direct relationship between projected changes in biomass and catch. Because purse-seine catches are composed of different proportions of the three tuna species, and because each species is projected to have a different response to climate change (Fig. 2), changes in purse-seine catches by 2050 were estimated using the weighted mean response of the three tuna species to RCP 8.5 and to RCP 4.5. These estimates were derived from the average relative abundance of each species in purse-seine catches in the EEZs of the ten Pacific SIDS (Supplementary Table 3) and in high-seas areas (Supplementary Table 4) and the projected percentage change in biomass of each species under each emission scenario (Supplementary Tables 17 and 18).The weighted average percentage changes in biomass of all tuna species combined were then applied to the 10-year average (2009−2018) purse-seine catches from the EEZs of the ten Pacific SIDS and high-seas areas (Supplementary Tables 3 and 4) to estimate the changes in purse-seine catches for these jurisdictions by 2050 under RCP 8.5 and RCP 4.5. In the case of Kiribati, which has three separate EEZ areas (Fig. 1), we estimated the change in catch for each EEZ area and amalgamated the results to produce the overall estimated change in purse-seine catch for the country.The projected percentage change in total purse-seine catch differs from the percentage change in total tuna biomass due to variation in the relative contributions of the three tuna species to total catch and to total biomass.Estimating the effects of tuna redistribution on economiesTo assess the effects of climate-driven redistribution of tuna on the economies of the 10 Pacific SIDS, we assumed that estimated changes in purse-seine catch within their EEZs due to the redistribution of tuna biomass described above would result in a proportional change in access fees earned from purse-seine fishing and associated operations.To estimate the effects of RCP 8.5 and RCP 4.5 on the capacity of Pacific Island governments to earn access fees from industrial tuna fishing, and the contributions of these access fees to total government revenue excluding grants (‘government revenue’), we used annual averages of government revenue, tuna-fishing access fees earned by the ten Pacific SIDS and the percentage contribution of access fees to government revenue for the period 2015−2018 (Supplementary Table 2) as a baseline. We applied the projected average percentage changes in total purse-seine catch in each EEZ for RCP 8.5 and RCP 4.5 (summarized in Supplementary Tables 17 and 18) to the average annual access fees received in 2015−2018 by each of the Pacific SIDS to estimate the change in value of their access fees by 2050 under each emissions scenario. The change in value of access fees was used to estimate decreases or increases in government revenue in 2050 relative to 2015–2018 under both emissions scenarios in US$ and percentage terms, assuming that the relative contributions of other sources of government revenue remain the same.The estimated percentage changes in government revenue for each Pacific SIDS do not account for (1) management responses; (2) variation in the value of access to particular EEZs and the willingness of fleets to pay for this access due to the effects of changes in tuna biomass on catchability of each species, levels of fishing effort/catch rates, the price of tuna or cost of landing tuna; and (3) the impact of tuna redistribution on the degree of control that Pacific SIDS exert over fisheries targeting tuna. The third factor is expected to be particularly important. For example, substantial movement of tuna from the EEZs of PNA countries into high-seas areas would be expected to limit the effectiveness of the VDS69 by reducing the degree of control over the fishery exerted by PNA members.Overall, it is important to note that the simple approach used to assess the potential effects of tuna redistribution on government revenue is intended only to provide indicative information on the magnitude of these impacts. To obtain robust estimates of climate-driven changes in government revenue, more complex bio-economic analyses will be required, beginning with, for example, a fleet-dynamics analysis to investigate the potential response of purse-seine vessels to redistribution of tuna and the flow-on effects on access fees.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More