Adaptive ecological niche migration does not negate extinction susceptibility
1.Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).Article
PubMed
PubMed Central
Google Scholar
2.Edie, S. M., Huang, S., Collins, K. S., Roy, K. & Jablonski, D. Loss of biodiversity dimensions through shifting climates and ancient mass extinctions. Integr. Comp. Biol. 58, 1179–1190. https://doi.org/10.1093/icb/icy111 (2018).Article
PubMed
Google Scholar
3.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111. https://doi.org/10.1038/S51586-019-1132-4 (2019).ADS
CAS
Article
PubMed
Google Scholar
4.Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351. https://doi.org/10.1126/science.1203060 (2011).ADS
CAS
Article
PubMed
Google Scholar
5.Smits, P. & Finnegan, S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. B Biol. Sci. 374, 1. https://doi.org/10.1098/rstb.2019.0392 (2019).Article
Google Scholar
6.Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927. https://doi.org/10.1111/j.1469-185X.2011.00178.x (2011).Article
PubMed
Google Scholar
7.Edgar, K. M., Hull, P. M. & Ezard, T. H. G. Evolutionary history biases inferences of ecology and environment from δ13C but not δ18O values. Nat. Commun. 8, 1106. https://doi.org/10.1038/s41467-017-01154-7 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
8.Knappertsbusch, M. Morphological variability of Globorotalia menardii (planktonic foraminifera) in two DSDP cores from the Caribbean Sea and the Eastern Equatorial Pacific. Carnets de Géologie/Notebooks Geol. CG2007 1–34. https://doi.org/10.4267/2042/8455 (2007).9.Wade, B. S., Al-Sabouni, N., Hemleben, C. & Kroon, D. Symbiont bleaching in fossil planktonic foraminifera. Evol. Ecol. 22, 253–265. https://doi.org/10.1007/s10682-007-9176-6 (2008).Article
Google Scholar
10.Wade, B. S. & Olsson, R. K. Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 39–46. https://doi.org/10.1016/j.palaeo.2009.08.026 (2009).Article
Google Scholar
11.Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene climatic optimum. Geology 41, 15–18. https://doi.org/10.1130/G33388.1 (2013).ADS
Article
Google Scholar
12.Pearson, P. N. & Ezard, T. H. G. Evolution and speciation in the Eocene planktonic foraminifer Turborotalia. Paleobiology 40, 130–143. https://doi.org/10.1666/13004 (2014).Article
Google Scholar
13.Wade, B. S., Poole, C. R. & Boyd, J. L. Giantism in Oligocene planktonic foraminifera Paragloborotalia opima: Morphometric constraints from the equatorial Pacific Ocean. Newsl. Stratigr. 49, 421–444. https://doi.org/10.1127/nos/2016/0270 (2016).Article
Google Scholar
14.Brombacher, A., Wilson, P. A., Bailey, I. & Ezard, T. H. G. The breakdown of static and evolutionary allometries during climatic upheaval. Am. Nat. https://doi.org/10.5061/dryad.8jf2k (2017).15.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kučera, M. Disruptive selection and bet-hedging in planktonic Foraminifera: Shell morphology as predictor of extinctions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2014.00064 (2014).Article
Google Scholar
16.Weinkauf, M. F. G., Bonitz, F. G. W., Martini, R. & Kučera, M. An extinction event in planktonic Foraminifera preceded by stabilizing selection. PLoS ONE 14, 1–21. https://doi.org/10.1371/journal.pone.0223490 (2019).CAS
Article
Google Scholar
17.Falzioni, F., Petrizzo, M. R. & Valagussa, M. A morphometric methodology to assess planktonic foraminiferal response to environmental perturbations: The case study of Oceanic Anoxic Event 2, Late Cretaceous. Bollettino della Società Paleontologica Italiana 57, 103–124. https://doi.org/10.4435/BSPI.2018.07 (2018).Article
Google Scholar
18.Si, W. & Aubry, M. P. Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene thermal maximum, implications for paleoclimate. Paleoceanogr. Paleoclimatol. 33, 112–125. https://doi.org/10.1002/2017PA003219 (2018).ADS
Article
Google Scholar
19.Fox, L. R., Stukins, S., Hill, T. & Miller, G. Quantifying the effect of anthropogenic climate change on calcifying plankton. Sci. Rep. 10, 1620. https://doi.org/10.1038/s41598-020-58501-w (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
20.Todd, C. L., Schmidt, D. N., Robinson, M. M. & De Schepper, S. Planktonic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003738 (2020).Article
Google Scholar
21.Shaw, J. O. et al. Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum. Paleobiology https://doi.org/10.1017/pab.2021.7 (2021).Article
Google Scholar
22.Schmidt, D. N., Thierstein, H. R. & Bollmann, J. The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 159–180. https://doi.org/10.1016/j.palaeo.2004.06.002 (2004).Article
Google Scholar
23.Brierley, C. M. & Fedorov, A. V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene–Pleistocene climate evolution. Paleoceanogr. Paleoclimatol. 25, 1–16. https://doi.org/10.1029/2009PA001809 (2010).Article
Google Scholar
24.Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Mar. Micropaleontol. 101, 127–145. https://doi.org/10.1016/j.marmicro.2013.02.002 (2013).ADS
Article
Google Scholar
25.
Grubbs, F. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21. https://doi.org/10.1080/00401706.1969.10490657 (1969).Article
Google Scholar
26.Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60. https://doi.org/10.1214/aoms/1177730491 (1947).MathSciNet
Article
MATH
Google Scholar
27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean 1–350 (Springer, 2017). https://doi.org/10.1007/978-3-66250297-6.Book
Google Scholar
28.Schmidt, D. N., Thierstein, H. R., Bollmann, J. & Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 303, 207–210. https://doi.org/10.1126/science.1090592 (2004).ADS
CAS
Article
PubMed
Google Scholar
29.Rillo, M., Miller, G., Kučera, M. & Ezard, T. Predictability of intraspecific size variation in extant planktonic foraminifera. BioRxiv https://doi.org/10.1101/468165 (2018).Article
Google Scholar
30.Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection 327 (Blakiston Company, 1949).
Google Scholar
31.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315. https://doi.org/10.1111/j.1558-5646.1987.tb05799.x (1987).CAS
Article
PubMed
Google Scholar
32.Williams, G. C. Natural Selection. Domains Levels and Challenges 53–103 ( Oxford University Press, 1992).
Google Scholar
33.West-Eberhard, M. J. Developmental Plasticity and Evolution 794 (Oxford University Press, 2003).Book
Google Scholar
34.Slatkin, M. Hedging one’s evolutionary bets. Nature 250, 704705. https://doi.org/10.1038/250704b0 (1974).Article
Google Scholar
35.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44. https://doi.org/10.1016/0169-5347(89)90138-9 (1989).CAS
Article
PubMed
Google Scholar
36.Grafen, A. Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 799–803. https://doi.org/10.1098/rspb.1999.0708 (1999).Article
Google Scholar
37.Wade, B. S. & Twitchett, R. J. Extinction, dwarfing and the Lilliput effect: Extinction, dwarfing and the Lilliput effect. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 1–3. https://doi.org/10.1016/j.palaeo.2009.08.019 (2009).Article
Google Scholar
38.Wade, B. S. et al. Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Dentoglobigerina and Globoquadrina. In Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al.) Lawrence, KS, Cushman Foundation for Foraminiferal Research, Special Publication No. 46 (2018) 331–384.39.Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology 35–49 (Oxford University Press, 1991).
Google Scholar
40.O’Brien, C. L. et al. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl. Acad. Sci. 117, 25302–25309. https://doi.org/10.1073/pnas.2003914117 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.Stoecker, D. K., Johnson, M. D., De Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310. https://doi.org/10.3354/ame01340 (2009).Article
Google Scholar
42.Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396. https://doi.org/10.5194/bg-16-3377-2019 (2019).ADS
CAS
Article
Google Scholar
43.Luciani, V., D’Onofrio, R., Dickens, G. R. & Wade, B. S. Did photosymbiont bleaching lead to the Demise planktic foraminifer Morozovella at the Early Eocene climatic optimum. Paleoceanography 32, 1115–1136. https://doi.org/10.1002/2017PA003138 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
44.Lutz, B. P. Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7, 151–176 (2010).
Google Scholar
45.Norris, R. D. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals, and foraminifera. Paleontol. Soc. Pap. 4, 68–100. https://doi.org/10.1017/S1089332600000401 (1998).Article
Google Scholar
46.Ezard, T. H. G., Edgar, K. M. & Hull, P. M. Environmental and biological controls on size-specific δ13C and δ18O in recent planktonic foraminifera. Paleoceanography 30, 151–173. https://doi.org/10.1002/2014PA002735 (2015).ADS
Article
Google Scholar
47.Hughes, T. P. et al. Global warming transforms coral reef assemblages Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS
CAS
Article
PubMed
Google Scholar
48.Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56, 1587–1602. https://doi.org/10.4319/lo.2011.56.5.1587 (2011).ADS
Article
Google Scholar
49.Spezzaferri, S., El Kateb, A., Pisapia, C. & Hallock, P. In situ observations of foraminiferal bleaching in the Maldives, Indian Ocean. J. Foraminifer. Res. 48, 75–84. https://doi.org/10.2113/gsjfr.48.1.75 (2018).Article
Google Scholar
50.Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the World’s Coral Reefs 1985–2012. Sci. Rep. 6, 38402. https://doi.org/10.1038/srep38402 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
51.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
52.Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138. https://doi.org/10.1007/s003380050249 (1997).Article
Google Scholar
53.Saravanan, R., Ranjith, L., Jasmine, S. & Joshi, K. K. Coral bleaching: Causes, consequences and mitigation. Mar. Fish. Inf. Serv. Tech. Extens. Ser. 231, 3–9 (2017).
Google Scholar
54.Kucera, M. & Darling, K. F. Cryptic species of planktonic foraminifera: Their effect on palaeoceanographic reconstructions . Proc. R. Soc Lond. Ser. A Math. Phys. Eng. Sci. 360, 695–718. https://doi.org/10.1098/rsta.2001.0962 (2002).ADS
Article
Google Scholar
55.Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kucera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073. https://doi.org/10.1111/j.1365-294X.2012.05686 (2012).Article
PubMed
Google Scholar
56.Matsui, H. et al. Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific. Paleoceanography 31, 715–731. https://doi.org/10.1002/2016PA002950 (2016).ADS
Article
Google Scholar
57.Morard, R., Reinelt, M., Chiessi, C. M., Groeneveld, J. & Kucera, M. Tracing shifts in oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata. Paleoceanography 31, 1193–1205. https://doi.org/10.1002/2016PA002977 (2016).ADS
Article
Google Scholar
58.Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30. https://doi.org/10.1371/journal.pone.0225246 (2019).CAS
Article
Google Scholar
59.Prasanna, K., Ghosh, P., Bhattacharya, S. K., Mohan, K. & Anilkumar, N. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean. Sci. Rep. 6, 21533. https://doi.org/10.1038/srep21533 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
60.Waterson, A. M., Edgar, K. M., Schmidt, D. N. & Valdes, P. J. Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography 32, 74–89. https://doi.org/10.1002/2016PA002964 (2017).ADS
Article
Google Scholar
61.Andre, A. et al. Disconnection between genetic and morphological diversity in the planktonic foraminifer Neogloboquadrina pachyderma from the Indian sector of the Southern Ocean. Mar. Micropaleontol. 144, 1424. https://doi.org/10.1016/j.marmicro.2018.10.001 (2018).Article
Google Scholar
62.Schiebel, R. et al. Advances in planktonic foraminifer research: New perspectives for paleoceanography. Rev. Micropaléontol. 61, 113–138. https://doi.org/10.1016/j.revmic.2018.10.001 (2018).Article
Google Scholar
63.Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152. https://doi.org/10.1126/science.abb6643 (2021).ADS
CAS
Article
PubMed
Google Scholar
64.Pälike, H. et al. Site 1338. Proceedings of the Integrated Ocean Drilling Program, vol 320/321. https://doi.org/10.2204/iodp.proc.320321.101.2010 (2010).65.Drury, A. J., Lee, G. P., Pennock, G. M. & John, C. M. Data report: Late Miocene to early Pliocene coccolithophore and
foraminiferal preservation at Site U1338 from scanning electron microscopy. In Proceedings of the Integrated Ocean Drilling Program, 320/321 (eds Pälike, H. et al.) https://doi.org/10.2204/iodp.proc.320321.218.2014 (Integrated Ocean Drilling Program Management International, Inc., Tokyo, 2014).66.Fox, L. R. & Wade, B. S. Systematic taxonomy of early-middle Miocene planktonic foraminifera from the Equatorial Pacific Ocean: Integrated Ocean Drilling Program, Site U1338. J. Foraminifer. Res. 43, 374–405. https://doi.org/10.2113/gsjfr.43.4.374 (2015).Article
Google Scholar
67.Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142. https://doi.org/10.1016/j.earscirev.2010.09.003 (2011).ADS
Article
Google Scholar
68.Kennett, J. P. & Srinivasan, M. S. Neogene Planktonic Foraminifera: A Phylogenetic Atlas 1–265 (Hutchinson Ross Publishing Co., 1983).
Google Scholar
69.Lyle, M., Joy Drury, A., Tian, J., Wilkens, R. & Westerhold, T. Late Miocene to Holocene high-resolution eastern equatorial pacific carbonate records: Stratigraphy linked by dissolution and paleoproductivity. Clim. Past 15, 1715–1739. https://doi.org/10.5194/cp-15-1715-2019 (2019).Article
Google Scholar
70.Kotov, S. & Pälike, H. QAnalySeries—A cross-platform time series tuning and analysis tool. AGU https://doi.org/10.1002/essoar.10500226.1 (2018).Article
Google Scholar
71.Brombacher, A., Wilson, P. A. & Ezard, T. H. G. Calibration of the repeatability of foraminiferal test size and shape measures with recommendations for future use. Mar. Micropaleontol. 133, 21–27. https://doi.org/10.1016/j.marmicro.2017.05.003 (2017).ADS
Article
Google Scholar
72.Brombacher, A., Elder, L. E., Hull, P. M., Wilson, P. A. & Ezard, T. H. G. Calibration of test diameter and area as proxies for body size in the planktonic foraminifer Globoconella puncticulata. J. Foraminifer. Res. 48, 241–245. https://doi.org/10.2113/gsjfr.48.3.241 (2018).Article
Google Scholar
73.Silverman, B. W. Density Estimation for Statistics and Data Analysis 176 (Chapman & Hall/CRC, 1986).Book
Google Scholar
74.R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org (2020).75.Cohen, J. Statistical Power Analysis for the Behavioural Sciences (Lawrence Earlbaum Associates, 1988).MATH
Google Scholar
76.Champely, S. pwr: Basic Functions for Power Analysis. R package version 1.3–0 (2020) https://CRAN.R-project.org/package=pwr.77.Edgar, K. M., Pälike, H. & Wilson, P. A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 28, 468–480. https://doi.org/10.1002/palo.20045 (2013).ADS
Article
Google Scholar
78.Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography https://doi.org/10.1029/2008PA001683 (2009).Article
Google Scholar
79.Rasmussen, T. L. & Thomsen, E. Holocene temperature and salinity variability of the Atlantic Water inflow to the Nordic seas. Holocene 20, 1223–1234. https://doi.org/10.1177/0959683610371996 (2010).ADS
Article
Google Scholar
80.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).MathSciNet
Article
MATH
Google Scholar
81.Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).82.Fay, M. P. asht: Applied Statistical Hypothesis Tests. R package version 0.9.6. https://CRAN.R-project.org/package=asht (2020).83.Arnholt, A. T. & Evans, B. BSDA: Basic Statistics and Data Analysis. R package version 1.2.0. https://CRAN.R-project.org/package=BSDA (2017). More