Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches
1.Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).ADS
CAS
PubMed
Article
Google Scholar
2.Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).Article
Google Scholar
3.Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).ADS
Article
Google Scholar
4.Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article
Google Scholar
5.Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).Article
Google Scholar
6.Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).Article
Google Scholar
7.Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).Article
Google Scholar
8.Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).CAS
Article
Google Scholar
9.WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).
Google Scholar
10.Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).ADS
Article
Google Scholar
11.Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).Article
Google Scholar
12.Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).Book
Google Scholar
13.Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).Article
Google Scholar
14.Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).Article
Google Scholar
15.Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).
Google Scholar
16.Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).
Google Scholar
17.Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).
Google Scholar
18.Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).
Google Scholar
19.Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).Article
Google Scholar
20.Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).Article
Google Scholar
21.Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).Chapter
Google Scholar
22.Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).
Google Scholar
23.Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).CAS
Article
Google Scholar
24.Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS
PubMed
Article
Google Scholar
25.Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).CAS
PubMed
Article
Google Scholar
26.Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).ADS
Article
CAS
Google Scholar
27.Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).Article
Google Scholar
28.Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).CAS
PubMed
Article
Google Scholar
29.Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).Article
Google Scholar
30.Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).ADS
CAS
Google Scholar
31.Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
33.Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).CAS
PubMed
Article
Google Scholar
34.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS
PubMed
Article
Google Scholar
35.Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).PubMed
Article
Google Scholar
36.Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).CAS
PubMed
Article
Google Scholar
37.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS
PubMed
Article
Google Scholar
38.Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).ADS
PubMed Central
Article
CAS
PubMed
Google Scholar
39.de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).Article
Google Scholar
40.Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).CAS
Article
Google Scholar
41.Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
42.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
43.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
44.Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).PubMed
PubMed Central
Article
Google Scholar
45.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed
Article
Google Scholar
46.Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).CAS
PubMed
Article
Google Scholar
47.Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
48.Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).ADS
CAS
PubMed
Article
Google Scholar
49.Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).Article
Google Scholar
50.Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).Article
CAS
Google Scholar
51.Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).Article
Google Scholar
52.Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).
Google Scholar
53.Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).Article
Google Scholar
54.Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).Article
Google Scholar
55.Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).56.Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).
Google Scholar
57.Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).
Google Scholar
58.Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).
Google Scholar
59.Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).
Google Scholar
60.Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).
Google Scholar
61.Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).CAS
PubMed
Article
Google Scholar
62.LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).
Google Scholar
63.Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article
Google Scholar
64.Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).Article
Google Scholar
65.Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).Article
Google Scholar
66.Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).
Google Scholar
67.Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
68.Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
69.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
70.Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)71.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
72.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).Article
Google Scholar
73.Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).CAS
PubMed
Article
Google Scholar
74.Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).CAS
PubMed
Article
Google Scholar
75.Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).
Google Scholar
76.Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
77.Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).PubMed
PubMed Central
Article
Google Scholar
78.Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).PubMed
Article
Google Scholar
79.Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).PubMed
PubMed Central
Article
Google Scholar
80.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).PubMed
Article
Google Scholar
81.Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).Article
Google Scholar
82.Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article
CAS
Google Scholar
84.Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).Article
Google Scholar
85.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article
Google Scholar
86.Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed
Article
Google Scholar
87.Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).PubMed
PubMed Central
Article
Google Scholar
88.Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
Google Scholar
89.Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).
Google Scholar More
