More stories

  • in

    Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups

    1.Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.PubMed 
    Article 

    Google Scholar 
    3.Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol. 1999;65:4666–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Sorokin DY, Yu, Sorokin D, Tourova TP, Henstra AM, Stams AJM, et al. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 2008;154:1444–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Si Y, Zou Y, Liu X, Si X, Mao J. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere 2015;122:206–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol. 2011;13:1125–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Tan S, Liu J, Fang Y, Hedlund BP, Lian Z-H, Huang L-Y, et al. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J 2019;13:2044–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S, Senoo K. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ. 2017;32:180–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Liu J, Häggblom MM. Genome-guided identification of organohalide-respiring Deltaproteobacteria from the marine environment. MBio 2018;9:e02471–18.PubMed 
    PubMed Central 

    Google Scholar 
    11.Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol. 1996;178:2402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333:1296–1300.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Liu Y, Zhang J, Zhao L, Zhang X, Xie S. Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology. 2014;15:249–56.Article 

    Google Scholar 
    19.Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012;78:8264–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Expanding the world of marine bacterial and archaeal clades. Front Microbiol. 2016;6:1524.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-cell genomics reveals a diverse metabolic potential of uncultivated Desulfatiglans-related Deltaproteobacteria widely distributed in marine sediment. Front Microbiol. 2018;9:2038.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun. 2018;9:4999.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Joshi N, Sickle FJ. A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). 2011. https://github.com/najoshi/sickle.26.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–12.Article 

    Google Scholar 
    28.Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016;102:3–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Eren AM, Esen ÖC, Quince C, Vineis JH, Sogin ML, Delmont TO. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42.CAS 
    Article 

    Google Scholar 
    39.Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019;36:1925–7.PubMed Central 
    PubMed 

    Google Scholar 
    46.Bowers RM. The Genome Standards Consortium, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    56.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    57.Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Greening C. Greening lab metabolic marker gene databases. https://doi.org/10.26180/c.5230745.59.Zhou Z, Tran P, Liu Y, Kieft K, Anantharaman K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv. 2019. Preprint at https://doi.org/10.1101/761643.60.Terrapon N, Lombard V, Drula E, Coutinho PM, Henrissat B. The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In: Aoki-Kinoshita KF (ed). A Practical Guide to Using Glycomics Databases. (Springer Japan, Tokyo, 2017) pp 117–31.61.Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman FSL. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 2016;44:D663–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Callaghan AV, Wawrik B. AnHyDeg: a curated database of anaerobic hydrocarbon degradation genes. GitHub. 2016. https://github.com/AnaerobesRock/AnHyDeg.63.McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.McDaniel EA, Anantharaman K, McMahon KD. metabolisHMM: Phylogenomic analysis for exploration of microbial phylogenies and metabolic pathways. bioRxiv. 2019. Preprint at https://doi.org/10.1101/2019.12.20.884627.65.De Anda V, Zapata-Peñasco I, Poot-Hernandez AC, Eguiarte LE, Contreras-Moreira B, Souza V. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 2017;6:1–17.PubMed 
    PubMed Central 

    Google Scholar 
    66.Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ Jr. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Natl Acad Sci. 2014;111:E4668–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, et al. Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth and is mediated by genomically divergent microorganisms. Nat Microbiol. 2019;4:1356–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature 2018;560:49–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Han K, Li Z-F, Peng R, Zhu L-P, Zhou T, Wang L-G, et al. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep. 2013;3:1–7.
    Google Scholar 
    71.Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol. 2002;68:893–900.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Castaño-Cerezo S, Pastor JM, Renilla S, Bernal V, Iborra JL, Cánovas M. An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Micro Cell Fact. 2009;8:54.Article 
    CAS 

    Google Scholar 
    73.Meinke A, Gilkes NR, Kwan E, Kilburn DG, Warren RA, Miller RC,Jr. et al. CbhA) from the cellulolytic bacterium Cellulomonas fimi is a beta-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBH II. Mol Microbiol. 1994;12:413–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Zverlov VV, Hertel C, Bronnenmeier K, Hroch A, Kellermann J, Schwarz WH. The thermostable alpha-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial alpha-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol. 2000;35:173–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Galinier A, Josef Deutscher, Martin-Verstraete I. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. Edited by IB Holland. J Mol Biol. 1999; 286: 307–14.76.Schmetterer G, Valladares A, Pils D, Steinbach S, Pacher M, Muro-Pastor AM, et al. The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413. J Bacteriol. 2001;183:6429–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ducluzeau A-L, Ouchane S, Nitschke W. The cbb3 oxidases are an ancient innovation of the domain bacteria. Mol Biol Evol. 2008;25:1158–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Green GN, Fang H, Lin RJ, Newton G, Mather M, Georgiou CD, et al. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1988;263:13138–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Upadhyay AK, Hooper AB, Hendrich MP. NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea. J Am Chem Soc. 2006;128:4330–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Davidova IA, Marks CR, Suflita JM. Anaerobic hydrocarbon-degrading Deltaproteobacteria. In: McGenity TJ (ed). Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. (Springer International Publishing, Cham, 2019) pp 207–43.82.Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, et al. Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol. 2014;80:7592–603.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Temme HR, Carlson A, Novak PJ. Presence, diversity, and enrichment of respiratory reductive dehalogenase and non-respiratory hydrolytic and oxidative dehalogenase genes in terrestrial environments. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    84.Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M. The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett. 2001;496:40–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Aeckersberg F, Rainey FA, Widdel F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol. 1998;170:361–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 2007;449:898–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Krzycki JA. Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol. 2004;8:484–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Cole JR, Fathepure BZ, Tiedje JM. Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedjei DCB-1. Biodegradation 1995;6:167–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Micro Physiol. 2011;59:1–100.CAS 
    Article 

    Google Scholar 
    94.Liesack W, Finster K. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol. 1994;44:753–8.Article 

    Google Scholar 
    95.Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Tremblay P-L, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, et al. The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA. 2007;104:7600–5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu Y-L, Hugenholtz P, et al. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol. 2006;72:2080–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Bertagnolli AD, Konstantinidis KT, Stewart FJ. Non-denitrifier nitrous oxide reductases dominate marine biomes. Environ Microbiol Rep. 2020;12:681–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep. 2017;9:323–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. MBio 2017;8:e00671–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Marcia M, Ermler U, Peng G, Michel H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 2010;78:1073–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Lencina AM, Ding Z, Schurig-Briccio LA, Gennis RB. Characterization of the type III sulfide:quinone oxidoreductase from Caldivirga maquilingensis and its membrane binding. BBA-Bioenerg. 2013;1827:266–75.CAS 
    Article 

    Google Scholar 
    104.Onley JR, Ahsan S, Sanford RA, Löffler FE. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol. 2018;84:e01985–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Masuda Y, Yamanaka H, Xu Z-X, Shiratori Y, Aono T, Amachi S, et al. Diazotrophic Anaeromyxobacter isolates from soils. Appl Environ Microbiol. 2020;86:e01985–17.
    Google Scholar 
    106.Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol. 2011;13:2603–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Taubert M, Grob C, Howat AM, Burns OJ, Pratscher J, Jehmlich N, et al. Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environ Microbiol. 2017;19:2246–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Kaneko R, Hayashi T, Tanahashi M, Naganuma T. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Mar Biotechnol. 2007;9:429–36.CAS 
    Article 

    Google Scholar 
    109.Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Villar E, Cabrol L, Heimbürger-Boavida L-E. Widespread microbial mercury methylation genes in the global ocean. Env Microbiol Rep. 2020;12:277–87.CAS 
    Article 

    Google Scholar 
    111.Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 2017;11:2754–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Landgraf P, Antileo ER, Schuman EM, Dieterich DC. BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol Biol. 2015;1266:199–215.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Equatorial pliosaurid from Venezuela marks the youngest South American occurrence of the clade

    1.Madzia, D. & Cau, A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: Discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Benson, R. B. et al. A giant pliosaurid skull from the Late Jurassic of England. PLoS ONE 8, e65989. https://doi.org/10.1371/journal.pone.0065989 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Schumacher, B. A., Carpenter, K. & Everhart, M. J. A new Cretaceous pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas. J. Vertebrate Paleontol. 33, 613–628 (2013).Article 

    Google Scholar 
    4.Madzia, D. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England. PeerJ 4, e1998 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Zverkov, N. G., Fischer, V., Madzia, D. & Benson, R. B. J. Increased pliosaurid dental disparity across the Jurassic–Cretaceous transition. Palaeontology 61, 825–846 (2018).Article 

    Google Scholar 
    6.Madzia, D., Sachs, S. & Lindgren, J. Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geol. Mag. 156, 1201–1216 (2019).Article 

    Google Scholar 
    7.Tarlo, L. B. A review of the Upper Jurassic pliosaurs. Bull. Br. Museum (Nat. Hist.) Geol. Lond. 4(5), 145–189 (1960).
    Google Scholar 
    8.Noè, L. F. A taxonomic and functional study of the Callovian (Middle Jurassic) Pliosauroidea (Reptilia, Sauropterygia), PhD thesis, University of Derby, 616 pp (2001).9.Ketchum, H. F. & Benson, R. B. J. The cranial anatomy and taxonomy of Peloneustes philarchus (Sauropterygia, Pliosauridae) from the Peterborough member (Callovian, Middle Jurassic) of the United Kingdom. Palaeontology 54(3), 639–665 (2011).Article 

    Google Scholar 
    10.Knutsen, E. M. A taxonomic revision of the genus Pliosaurus (Owen, 1841a) Owen, 1841b. Norw. J. Geol. 92, 259–276 (2012).
    Google Scholar 
    11.Knutsen, E. M., Druckenmiller, P. S. & Hurum, J. H. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian of central Spitsbergen, Norway. Norw. J. Geol. 92, 235–258 (2012).
    Google Scholar 
    12.Williston, S. W. North American plesiosaurs. Field Columbian Museum, Pub. 73, Geological Series 2, 1–79 (1903).
    13.Williston, S. W. The skull of Brachauchenius, with special observations on the relationships of the plesiosaurs. US Natl. Museum Proc. 32, 477–489 (1907).Article 

    Google Scholar 
    14.Welles, S. P. & Slaughter, B. H. The first record of the plesiosaurian genus Polyptychodon (Pliosauridae) from the New World. J. Paleontol. 37, 131–133 (1963).
    Google Scholar 
    15.Hampe, O. Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungs-Institut Senckenberg 145, 1–32 (1992).
    Google Scholar 
    16.Carpenter, K. A review of short-necked plesiosaurs from the Cretaceous of the Western Interior, North America. Neues Jb. Geol. Paläontol. Abh. 201, 259–287 (1996).Article 

    Google Scholar 
    17.VonLoh, J. P. & Bell, G. L. Jr. Fossil Reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills Region, South Dakota. Dakoterra 5, 28–38 (1998).
    Google Scholar 
    18.Kear, B. P. Cretaceous marine reptiles of Australia: A review of taxonomy and distribution. Cretac. Res. 24, 277–303 (2003).Article 

    Google Scholar 
    19.Hampe, O. Considerations on a Brachauchenius skeleton (Pliosauroidea) from the lower Paja Formation (late Barremian) of Villa de Leyva area (Colombia). Fossil Record 8, 37–51 (2005).Article 

    Google Scholar 
    20.Liggett, G. A., Shimada, K., Bennett, S. C. & Schumacher, B. A. Cenomanian (Late Cretaceous) reptiles from northwestern Russell County, Kansas. PaleoBios 25, 9–17 (2005).
    Google Scholar 
    21.Schumacher, B. A. & Everhart, M. J. A stratigraphic and taxonomic review of plesiosaurs from the old “Fort Benton Group” of central Kansas: A new assessment of old records. Paludicola 5, 33–54 (2005).
    Google Scholar 
    22.Albright, B. L., Gillette, D. D. & Titus, A. L. Plesiosaurs from the Upper Cretaceous (Cenomanian-Turonian) tropic shale of southern Utah. Part 1: New records of the pliosaur Brachauchenius lucasi. J. Vertebrate Paleontol. 27, 41–58 (2007).Article 

    Google Scholar 
    23.Ketchum, H. F. & Benson, R. B. J. Global interrelationships of Plesiosauria (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of phylogenetic analyses. Biol. Rev. 85, 361–392 (2010).PubMed 
    Article 

    Google Scholar 
    24.Páramo-Fonseca, M. E., Gómez-Pérez, M., Noè, L. F. & Etayo-Serna, F. Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the Upper Barremian (Lower Cretaceous) of Villa de Leiva, Colombia, South America. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 40, 84–103 (2016).Article 

    Google Scholar 
    25.Gómez-Pérez, M. & Noè, L. F. Cranial anatomy of a new pliosaurid Acostasaurus pavachoquensis from the Lower Cretaceous of Colombia, South America. Palaeontogr. Abt. A 310, 5–42 (2017).Article 

    Google Scholar 
    26.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new large pliosaurid from the Barremian (Lower Cretaceous) of Sáchica, Boyacá, Colombia. Earth Sci. Res. J. 22, 223–238 (2018).Article 

    Google Scholar 
    27.Fischer, V. et al. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid. R. Soc. Open Sci. 2, 150552 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Fischer, V. et al. Plasticity and convergence in the evolution of short-necked plesiosaurs. Curr. Biol. 27, 1667-1676.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zverkov, N. G. On a typically Late Jurassic pliosaur from the Lower Cretaceous of Crimea. The International Scientific Conference on the Jurassic/Cretaceous boundary, Samara, Russia, 89–94 (2015).30.Angst, D. & Bardet, N. A new record of the pliosaur Brachauchenius lucasi [Williston, 1903] (Reptilia: Sauropterygia) of Turonian (Late Cretaceous) age, Morocco. Geol. Mag. 153, 449–459 (2016).CAS 
    Article 

    Google Scholar 
    31.Madzia, D. & Machalski, M. Isolated pliosaurid teeth from the Albian-Cenomanian (Cretaceous) of Annopol, Poland. Acta Geol. Pol. 67, 393–403 (2017).CAS 
    Article 

    Google Scholar 
    32.Lukeneder, A. & Zverkov, N. G. First evidence of a conical-toothed pliosaurid (Reptilia, Sauropterygia) in the Hauterivian of the Northern Calcareous Alps, Austria. Cretaceous Res. 106, 104248 (2020).Article 

    Google Scholar 
    33.Zverkov, N. G. & Pervushov, E. M. A gigantic pliosaurid from the Cenomanian (Upper Cretaceous) of the Volga Region, Russia. Cretaceous Res. 110, 104419 (2020).Article 

    Google Scholar 
    34.Kear, B. P., Ekrt, B., Prokop, J. & Georgalis, G. L. Turonian marine amniotes from the Bohemian Cretaceous Basin, Czech Republic. Geol. Mag. 151, 183–198 (2014).Article 

    Google Scholar 
    35.Benson, R. B. J. & Druckenmiller, P. S. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biol. Rev. 89, 1–23 (2014).PubMed 
    Article 

    Google Scholar 
    36.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new specimen of Stenorhynchosaurus munozi (Páramo-Fonseca et al., 2016) (Plesiosauria, Pliosauridae), from the Barremian of Colombia: new morphological features and ontogenetic implications. J. Vertebrate Paleontol. 39, e1663426 (2019).Article 

    Google Scholar 
    37.Albino, A. M., Carrillo-Briceño, J. D. & Neenan, J. M. An enigmatic snake from the Cenomanian of Northern South America. PeerJ 4, e2027. https://doi.org/10.7717/peerj.2027 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.de Juana, C. G., de Arocena, J. I. & Picard, X. Geologia de Venezuela y de sus Cuencas Petroliferas Vol. 103, 1 (Foninves, 1980).
    Google Scholar 
    39.Renz, O. Estratigrafía del Cretáceo en Venezuela occidental. Boletín de Geología 5(10), 3–48 (1959).
    Google Scholar 
    40.Guinot, G. & Carrillo-Briceño, J. D. Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela. Cretac. Res. 82, 1–20 (2018).Article 

    Google Scholar 
    41.Colbert, E. A new Cretaceous plesiosaur from Venezuela. Am. Mus. Novit. 1420, 1–22 (1949).
    Google Scholar 
    42.Bengston, P. & Kakabadze, M. V. Ammonites and the mid-Cretaceous saga. Cretac. Res. 88, 90–99 (2018).Article 

    Google Scholar 
    43.Páramo-Fonseca, M. E., O’Gorman, J. P., Gasparini, Z., Padilla, S. & Parra-Ruge, M. L. A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia. Cretaceous Res. 99, 30–40 (2019).Article 

    Google Scholar 
    44.Welles, S. P. A new species of elasmosaur from the Aptian of Colombia, and a review of the Cretaceous plesiosaurs. Univ. California Publ. Geol. Sci. 44, 1–96 (1962).
    Google Scholar 
    45.Carpenter, K. Revision of North American elasmosaurs from the Cretaceous of the Western Interior. Paludicola 2, 148–173 (1999).
    Google Scholar 
    46.Jaimes, J. J. & Parra, E. N. Callawayasaurus colombiensis (Welles) Carpenter 1999 el plesiosaurio de Villa de Leyva (Boyacá, Colombia). ¿Un nuevo espécimen?. Boletín de Geología 23(38), 9–19 (2001).
    Google Scholar 
    47.Goñi, R. & Gasparini, Z. B. Nuevos restos de “Alzadasaurus colombiensis” (Reptilia, Plesiosauria) del Cretácico temprano de Colombia. Geologia Norandina 7, S.49–54 (1983).
    Google Scholar 
    48.Meza-Velez, I. & O’Gorman, J. E. registro fósil de plesiosaurios (Diapsida, Sauropterygia) en el Perú. Rev. Peru. Biol. 28(2), 1–8 (2021).Article 

    Google Scholar 
    49.Jaillard, E., Cordova, A., Mazin, J.-M. & Mourier, T. La transgression du Cénomanien supérieur-Turonien inférieur dans le région de Jaén (Nord du Pérou): donnés sédimentologique et stratigraphiques: Découverte du premier saurien marin du Pérou, Série II. C. R. Acad. Sc. Paris 301(20), 1429–1432 (1985).
    Google Scholar 
    50.Carvalho, I., Velas Bôas, I. & Bergqvist, L. Plesiossauros da regiao equatorial Brasileira Bacia de Sao Luís (Cretáceo Superior) Brazil. Acta Geologica Leopoldensia 23(51), S33–S41 (2000).
    Google Scholar 
    51.Velas Bôas, I. & Carvalho, I. Répteis Marinhos (Mosasauria e Plesiosauria) do Cretáceo Superior da Bacia de São Luís (Maranhão, Brasil). O Cretáceo na Bacia de São Luís-Grajaú, 223–233 (2001).52.O’Gorman, J. P. & Varela, A. N. The oldest lower Upper Cretaceous plesiosaurs (Reptilia, Sauropterygia) from southern Patagonia, Argentina. Ameghiniana 47, 447–459 (2010).Article 

    Google Scholar 
    53.Ameghino, F. Sobre la presencia de vertebrados de aspecto mesozoico en la formación Santacruceña de la Patagonia austral. Revista del Jardín Zoológico de Buenos Aires 1, 76–84 (1893).
    Google Scholar 
    54.Zumberge, J. E. Source rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. Petroleum geochemistry and source rock potential of carbonate rocks. AAPG Stud. Geol. 18, 127133 (1984).
    Google Scholar 
    55.Tribovillard, N. P. et al. Cretaceous black shales of Venezuelan Andes: Preliminary results on stratigraphy and paleoenvironmental interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 313–321 (1991).Article 

    Google Scholar 
    56.Bralower, T. J. & Lorente, M. A. Paleogeography and stratigraphy of the La Luna Formation and related Cretaceous anoxic depositional systems. Palaios 18(4–5), 301–304 (2003).Article 

    Google Scholar 
    57.Zapata, E. et al. Biostratigraphic, sedimentologic, and chemostratigraphic study of the La Luna Formation (Late Turonian-Campanian) in the San Miguel and Las Hernández sections, western Venezuela. Palaios 18, 367–377. https://doi.org/10.1669/0883-1351(2003)018%3c0367:BSACSO%3e2.0.CO;2 (2003).Article 

    Google Scholar 
    58.MINISTERIO DE ENERGIA Y MINAS. Lexico Estratigraifico de Venezuela, 3’d ed. Boletin de Geologia 12, 1–828 (1997).
    Google Scholar 
    59.Carrillo Briceño, J. D., Alvarado-Ortega, J. & Patiño Torres, C. Primer registro de Xiphactinus Leidy, 1870 (Teleostei, Ichthyodectiformes) en el Cretácico Superior de América del Sur (Formación La Luna, Venezuela). Revista Brasileira de Paleontologia. 15(3), 327–335 (2012).Article 

    Google Scholar 
    60.Albino, A. M., Rothschild, B., Carrillo-Briceño, J. D. & Neenan, J. M. Spondyloarthropathy in vertebrae of the aquatic Cretaceous snake Lunaophis aquaticus, and its first recognition in modern snakes. Sci. Nat. 105(9), 51 (2018).Article 
    CAS 

    Google Scholar 
    61.Renz, O. Die Ammonoidea im Stratotyp des Vraconien bei Sainte Croix (Kanton Waadt). Schweizerische palaontologische Abhandlungen 87, 1–97 (1968).
    Google Scholar 
    62.Erlich, R. N., Macsotay, O., Nederbragt, A. J. & Lorente, M. A. Palaeoceanography, palaeoecology, and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 203–238 (1999).Article 

    Google Scholar 
    63.Renz, O. The Cretaceous Ammonites of Venezuela (Birkhäuser Verlag, 1982).
    Google Scholar 
    64.Moody, J. M. & Maisey, J. G. New Cretaceous marine vertebrate assemblages from North-Western Venezuela and their significance. J. Vertebr. Paleontol. 14(1), 1–8 (1994).Article 

    Google Scholar 
    65.Macsotay, O., Erlich, R. N. & Peraza, T. Sedimentary structures of the La Luna, Navay and Querecual Formations, Upper Cretaceous of Venezuela. Palaios 18(4–5), 334–348 (2003).Article 

    Google Scholar 
    66.Davis, C., Pratt, L. & Sliter, W. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In Evolution of the Cretaceous Ocean-Climate System Vol. 332 (eds Barrera, E. & Johnson, C. C.) 203–231 (Geological Society of America Special Paper Geological Society of America, 1999).
    Google Scholar 
    67.Martinez, J. I. & Hernandez, R. Evolution and drowning of the Late Cretaceous Venezuelan carbonate platform. J. S. Am. Earth Sci. 5(2), 197–210 (1992).Article 

    Google Scholar 
    68.Ford, A. B., & Houbolt, J. J. H. C. The microfacies of the Cretaceous of western Venezuela: International Sedimentary Petrographical Series 6. EJ Brill, Publisher, Leiden, Germany, 1–109 (1963).69.Caron, M. & Spezzaferri, S. Scanning electron microscope documentation of the lost holotypes of Mornod, 1949: Thalmanninella reicheli and Rotalipora montsalvensis. J. Foraminiferal Res. 36(4), 374–378 (2006).Article 

    Google Scholar 
    70.Veigal, R. & Dzelalija, F. A Regional Overview of the La Luna Formation and the Villeta Groups as Shale Gas/Shale Oil in the Catatumbo Magdalena Valley and Eastern Cordillera Regions, Colombia, Article #10565 21 (American Association of Petroleum Geologists, Search and Discovery, 2014).
    Google Scholar 
    71.Spickert, A. Petroleum System Analysis: Middle Magdalena Valley Basin, Colombia, South America. MSC Report 1–48 (University of Washington, 2014).
    Google Scholar 
    72.De Romero, L. M. et al. An integrated calcareous microfossil biostratigraphic and carbon-isotope stratigraphic framework for the La Luna Formation, western Venezuela. Palaios 18(4–5), 349–366 (2003).Article 

    Google Scholar 
    73.Mendez, C. E. La Formacion La Luna. Caracteristica de una cuenca anoxica en una plataforma de aguas someras. Proceedings of the 7th Congreso Geologico Venezolano, 852–866 (1981).74.Weiler, W. Fischreste aus der Umgebung von San Cristobal, SW. Venezuela. Zentralblatt für Mineralogie Geologie und Paläontologie (B). 1949, 240–255 (1940).
    Google Scholar 
    75.Sánchez-Villagra, M. R., Brinkmann, W. & Lozsán, R. The Paleozoic and Mesozoic vertebrate record of Venezuela: An overview, summary of previous discoveries and report of a mosasaur from the La Luna Formation (Cretaceous). Paläontol. Z. 82(2), 113–124 (2008).Article 

    Google Scholar 
    76.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971).Article 

    Google Scholar 
    77.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/ (2019).78.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Smith, J. B. & Dodson, P. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. J. Vertebr. Paleontol. 23, 1–12 (2003).Article 

    Google Scholar 
    80.de Blainville, H. D. Description de quelques espècesde reptiles de la Californie, précédé de l’analyse d’unsystème général d’Erpétologie et d’Amphibiologie. Nouvelles Annales du Museum National d’Histoire Naturelle Paris 4, 233–296 (1835).
    Google Scholar 
    81.Seeley, H. G. Note on some of the generic modifications of the plesiosaurian pectoral arch. Q. J. Geol. Soc. Lond. 30, 436–449 (1874).Article 

    Google Scholar 
    82.McHenry, C. R. Devourer of gods: The palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. Doctoral dissertation, University of Newcastle (2009).83.Sato, T., Hasegawa, Y. & Manabe, M. A new elasmosaurid plesiosaur from the Upper Cretaceous of Fukushima, Japan. Palaeontology 49, 467–484 (2006).Article 

    Google Scholar 
    84.Sachs, S. Redescription of Elasmosaurus platyurus Cope 1868 (Plesiosauria: Elasmosauridae) from the Upper Cretaceous (lower Campanian) of Kansas, USA. Paludicola 5, 92–106 (2005).
    Google Scholar 
    85.Welles, S. P. Elasmosaurid plesiosaurs with a description of new material from California and Colorado. Univ. California Publ. Geol. Sci. 13, 125–215 (1943).
    Google Scholar 
    86.Welles, S. P. A new elasmosaur from the Eagle Ford Shale of Texas. Part I. Systematic description. Fondren Sci. Series 1, 1–28 (1949).
    Google Scholar 
    87.Sachs, S. Remarks on the pectoral girdle of Hydrotherosaurus alexandrae (Plesiosauria: Elasmosauridae). PalArch Vertebr. Palaeontol. 4(1), 1–6 (2005).
    Google Scholar 
    88.O’Gorman, J. P. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. J. Vertebr. Paleontol. 39(5), e1692025 (2020).Article 

    Google Scholar 
    89.Sachs, S., Kear, B.P. & Lindgren, J. Re-description of Thalassomedon haningtoni—An elasmosaurid from the Cenomanian of North America. 5th Triennial Mosasaur Meeting—A Global Perspective on Mesozoic Marine Amniotes. Abstracts and Program (Sachs, S., Kear, B.P. & Lindgren, eds.), 38–40 (2016).90.Sachs, S. & Kear, B. P. Postcranium of the paradigm elasmosaurid plesiosaurian Libonectes morgani (Welles, 1949). Geol. Mag. 152, 694–710 (2015).Article 

    Google Scholar 
    91.Sachs, S. & Kear, B. P. Redescription of the elasmosaurid plesiosaurian Libonectes atlasense from the Upper Cretaceous of Morocco. Cretac. Res. 74, 205–222 (2017).Article 

    Google Scholar 
    92.Sachs, S., Lindgren, J., Madzia, D. & Kear, B. P. Cranial osteology of the mid-Cretaceous elasmosaurid Thalassomedon haningtoni from the Western Interior Seaway of North America. Cretaceous Res. 123,104769 (2021).93.McKean, R. S. A new species of polycotylid plesiosaur (Reptilia: Sauropterygia) from the Lower Turonian of Utah: Extending the stratigraphic range of Dolichorhynchops. Cretac. Res. 34, 184–199 (2012).Article 

    Google Scholar 
    94.Sachs, S., Madzia, D., Püttmann, T. & Kear, B. P. Enigmatic plesiosaur vertebral remains from the middle Turonian of Germany. Cretaceous Res. 110, 104406 (2020).Article 

    Google Scholar  More

  • in

    Pathways to sustaining tuna-dependent Pacific Island economies during climate change

    Ocean forcingsThe Nucleus for European Modelling of the Ocean (NEMO) ocean framework46, which includes an online coupling with the biogeochemical component PISCES in a 2° latitude × 2° longitude configuration47,48, was used to simulate the historical oceanic environment (hindcast simulation). This historical simulation was forced by the Drakkar Forcing Sets 5.2 (DFS5.2)49 on the basis of a corrected set of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis – Interim (ERA-Interim) over the period 1979−2011. Salinity, temperature and biogeochemical tracer concentrations (nitrate, phosphate, iron, silicate, alkalinity, dissolved oxygen and dissolved organic and inorganic carbon) were initialized from the World Ocean Atlas climatology (WOA09)50 and previous model climatology for iron and dissolved organic carbon51. To minimize any substantial numerical drift in the simulations related to a non-equilibrated initial state, we applied a spin-up of the ocean model and biogeochemical model for 66 years, cycling twice over the DFS5.2 forcing sets48.Overall, the model simulates basin-scale, historical SST and salinity distribution, together with seasonal and interannual (ENSO) variability with good fidelity52. Classical biases are associated with the coarse (2°) resolution, for example, the latitudinal position of the Kuroshio Current. In the tropical Pacific, there is a cold bias of −1 °C in the central equatorial zone (between 170° W and 100° W) and a warm bias of +1 °C in the eastern part of the basin (east of 90° W). Despite some local discrepancy between simulation outputs and satellite-derived chlorophyll concentration around islands and near the American coasts, simulated mean chlorophyll in the equatorial Pacific Ocean is close to observed values51,52.For future ocean projections, we first selected several ESMs from the CMIP5 intercomparison project53 on the basis of the ability of the models to produce accurate ENSO variability in the Pacific54. The four ESMs selected were IPSL-CM5A55, MIROC56, GFDL-ESM2G57 and MPI-MR58. We then extracted atmospheric fields from these models for the period 2011−2100 under RCP 8.5 to simulate ‘business-as-usual’ climate anomalies to build forcing sets for the NEMO–PISCES ocean model.All ESMs display large biases in their representation of Pacific climate, including the important South Pacific Convergence Zone59,60. These atmospheric biases propagated uncertainties associated with future atmospheres into the coupled, dynamical-biogeochemical oceanic framework. For example, they result in prominent distortions in the extension and position of the warm pool61 and can be expected to affect modelling of the open ocean ecosystem up to the higher trophic levels12.To mitigate the mean state model biases in the selected ESMs, we used a ‘pseudo-warming’ anomaly approach to force the ocean model. To do this, we extracted monthly anomalies (relative to 2010) of surface atmospheric temperature, zonal and meridional wind speeds, radiative heat fluxes, relative humidity and precipitation from the ESM models over the 2010–2100 period and applied a 31-year-wide Hanning filter to remove variability on timescales less than 15 years.Each ESM-filtered timeseries was superimposed onto the repeating 30-year historical forcing (that is, repeated three times to span the twenty-first century) to provide the forcing for the NEMO–PISCES projections. This procedure enabled us to retain a realistic climatology and high-frequency variability from observations subject to long-term trends due to climate change based on the ESMs (Supplementary Fig. 7).For consistency, the control simulation of NEMO–PISCES was forced using the same three, repeated, 30-year historical periods to correct any long-term drift generated internally without climate change forcing.It is important to note that use of all ESM acronyms (for example, IPSL) in the following text refers to NEMO–PISCES or SEAPODYM simulations derived from the ESM anomaly forcing, and not to the ESM models themselves.The four NEMO–PISCES simulations of future ocean conditions produced contrasting results in terms of dynamics and biogeochemistry (Supplementary Fig. 8). In particular, there was strong warming in the IPSL and MIROC simulations and weaker warming for GFDL and especially MPI. Spatial patterns in ocean warming produced by the NEMO–PISCES simulations differed mostly in intensity rather than spatial structure.Using NEMO–PISCES outputs to produce SEAPODYM forcingsThe outputs of NEMO–PISCES were used to provide environmental forcing variables for SEAPODYM, the model used to project the responses of the key life stages of skipjack, yellowfin and bigeye tuna to climate change (Supplementary Note 7). The following physical and biochemical forcing variables were used in SEAPODYM applications: three-dimensional (3D) temperature, dissolved oxygen (O2) concentration, zonal/meridional currents and primary production, and 2D euphotic depth. Before running SEAPODYM, these forcing variables were interpolated to a regular 2° Arakawa A grid and placed in the centre of the grid cells. Primary production was then vertically integrated throughout the water column, whereas the other 3D variables were integrated within three pelagic layers, defined according to the euphotic depth to provide the mean 2D fields for each variable per layer. Selected environmental variables from the historical ocean reanalysis and from four climate-driven ocean outputs are shown in Supplementary Fig. 3.These integrated variables were then used to force the SEAPODYM-LMTL (lower and mid-trophic level) sub-model. SEAPODYM-LMTL relies on primary production, temperature and ocean currents to simulate the biomass of six functional groups of micronekton—mid-trophic-level prey organisms of tunas (Supplementary Fig. 4)—residing or migrating through three pelagic layers within the upper 1,000 m of the water column (the epipelagic layer and the upper and lower mesopelagic layers), with depths linked to the depth of euphotic layer Z as 1.5Z, 4.5Z and 10Z (with 10Z limited to 1,000 m). The definition of these pelagic layers is derived from the diurnal vertical distributions of micronekton species62.Optimal parameterization of SEAPODYM during historical periodThe parameterization of SEAPODYM for each tuna species is highly sensitive to ocean forcing; that is, in its average state it is free from systematic biases, and it represents interannual variability and ENSO correctly. This sensitivity enables the model to reproduce observed variability within large, geo-referenced datasets of tuna catches and length distributions reflecting changes in fish abundance12. The environmental forcings in this study were obtained from the historical NEMO–PISCES reference simulations using a realistic atmospheric reanalysis based on a consistent set of atmospheric observations. Historical fishing datasets used to achieve model optimal parameterizations were compiled from the combination of data provided by the Pacific Community for the WCPO and by IATTC for the EPO. The model spatial resolution was 2° × 2°, and the resolution for time and age dimensions was one month. The skipjack tuna reference model was obtained by integrating all available geo-referenced data—catch, length-frequency of catch and tagging release–recapture data—into a likelihood function and obtaining the solution using the maximum likelihood estimation (MLE) approach (Supplementary Note 7). The initial habitat and movement parameters for bigeye and yellowfin tuna were also estimated by integrating tagging data into the model; however, the final parameterizations of the reference models for these two species were based mainly on fisheries data. The methodology and optimal reference solutions obtained for skipjack, yellowfin and bigeye tuna, and model validations with statistical metrics, are described in other publications documenting the use of SEAPODYM13,63,64,65.The structures of the populations of the three tuna species in December 2010 (the last time-step of the reanalysis) were used to set the initial conditions for the projections starting in 2011. A second historical simulation was run to remove the effects of fishing mortality (Supplementary Figs. 9 and 10) to establish the initial conditions for the unfished tuna populations (Supplementary Fig. 10). In these latter simulations, the stocks increase and reach an equilibrium state in a time that is defined by the lifespan of the species and the estimated stock–recruitment relationship. We assume that at the end of the 30-year reanalysis (December 2010), stocks of all three tropical tuna species are at their virgin (unfished) state and influenced by environmental variability and demographic processes only.Projections of climate change impacts on tunaPrevious studies on the impact of climate change on tropical tuna species in the Pacific Ocean produced projections based on the full-field NEMO–PISCES output from a single ESM (IPSL) under the IPCC business-as-usual scenario6,10,12,66,67. These projections were subject to biases, resulting in poor coherence between historical and projected environmental forcings and abrupt changes and biases when switching from a historical reanalysis to a projected time series12. To reduce this problem, we used an approach based on the four, bias-corrected, projected climates from NEMO–PISCES outputs (Supplementary Methods).Simulations of the SEAPODYM tuna model were run with parameters from the reference MLE models for the three tuna species, with forcings from the four NEMO–PISCES and mid-trophic simulations, under the RCP 8.5 scenario to project tuna population dynamics until mid-century. We estimated the virgin biomass of each species in the decade 2011−2020 and computed the relative change in biomass by 2050 (2044−2053) as follows:$$updelta _Bleft( {2050} right) = frac{1}{N}mathop {sum}limits_{t = 2011}^{2020} {left( {frac{{Bleft( {t + {Delta}t} right)}}{{B(t)}} – 1} right)}$$
    (1)
    where Δt is the time interval corresponding to 33 years and N is the number of monthly time steps in the selected time period (120 months between 2011 and 2020). We chose to average over 10 years at 33-year intervals to compare two distant periods with the same atmospheric variability, thus removing the possible effects of interannual variation and allowing better detection of the climate change signal.The relative biomass change δB (2050) was computed for the EEZs of Pacific SIDS and all high-seas areas in the WCPO and EPO (Supplementary Fig. 1).Sensitivity analyses to explore uncertaintyWe analysed the impacts of climate change on skipjack, yellowfin and bigeye tuna with an ensemble of simulations focusing on the greatest sources of uncertainty in the NEMO–PISCES variables and in SEAPODYM (Supplementary Fig. 11 and Supplementary Table 21). The methods used to explore these uncertainties, and the rationale for these analyses, are explained in the Supplementary Methods.Modelling tuna distribution under lower-emissions scenariosThe simulations based on RCP 8.5 project a redistribution of tuna biomass by 2050 as globally averaged surface temperature rises to 2 °C above pre-industrial levels by mid-century. To evaluate possible effects of a lower GHG emission scenario on tuna redistribution, we also estimated the responses of tropical tuna species to conditions similar to RCP 4.5 and RCP 2.6 by 2050.In the absence of ocean forcings and SEAPODYM outputs for RCP 4.5 and RCP 2.6, we used estimates based on the RCP 8.5 simulations using a ‘time-shift’ approach68. This method consists of identifying the time segment in RCP 8.5 in which a key variable (for example, CO2-equivalent (CO2e)) matches the value expected for the selected RCP in 2050. Accordingly, we selected the periods in the RCP 8.5 curve when total CO2e concentrations in the atmosphere reached those projected for RCP 4.5 and RCP 2.6 in 2050 (Supplementary Fig. 12). On the basis of this method, the equivalent of RCP 4.5 in 2050 is reached in 2037 under RCP 8.5, and the equivalent for RCP 2.6 in 2050 is reached in 2026.An important assumption of this method is that the dynamical pattern corresponding to a given change of global temperature is independent of the rate of change. This assumption is expected to be met for key features of the tropical Pacific Ocean because the upper ocean generally responds rapidly to changes in atmospheric forcing. However, this assumption is unlikely to hold for tuna population dynamics because interannual variability of tuna biomass is driven by demographic processes (recruitment and mortality), which are in turn influenced by environmental variability. Furthermore, due to the slow nature of demographic processes, the repercussions of environmental variability on tuna population dynamics are time lagged. For example, there is a time lag of 8 months between the Southern Oscillation Index and the biomass of young skipjack tuna (aged from 3 to 9 months)17, and a time lag of 12 months between the Southern Oscillation Index and total biomass of skipjack tuna (Supplementary Fig. 13). When combined with the effects of stock–recruitment relationships, and different generation times between tuna species, the speed and duration of climate change processes may have a profound effect on tuna biomass. Therefore, due to the rapidly changing ocean conditions in the RCP 8.5 scenario, the population status of a tuna species in the second and third decade cannot be assumed to be equivalent to that under a scenario with lower emissions by mid-century.To address the complications associated with the population dynamics of tuna in a changing environment, we generated synthetic RCP 4.5 and RCP 2.6 2011−2050 time series by recycling the years from RCP 8.5 simulations. Note that recycling the ‘equivalent’ years from RCP 8.5 simulations to imitate those projected for the RCP 4.5 and RCP 2.6 scenarios involves re-using the same years multiple times because of their lower rate of change. To avoid looping the forcings over the same year multiple times, we selected several years around the equivalent RCP 8.5 year while enlarging the temporal window with increasing differences in the rates of GHG change between the two scenarios and ensuring that the mean CO2e within this window was equal to those in the target RCP 4.5 or RCP 2.6 scenario. The inverse mapping of the RCP 8.5 curve from arrays of CO2e values to the equivalent years in the RCP 8.5 simulation (Supplementary Fig. 14) provided the selected range of RCP 8.5 years to imitate the RCP 4.5 and RCP 2.6 scenarios. The NEMO–PISCES model variables from those years were then used to compute monthly climatology for each year of the surrogate RCP 4.5 or RCP 2.6 forcing to provide smoothed time series of forcing variables over the complete time range. The temporal evolution of epipelagic ocean temperature is compared for four climate models and three RCP scenarios in Supplementary Fig. 14.The biomass changes projected for the three tuna species in 2050 under RCP 8.5 and under the lower surrogate emissions scenarios were then computed for all Pacific Island EEZs (Supplementary Fig. 15) following equation (1) (Supplementary Methods). The biomass changes projected under the RCP 4.5 forcing are smaller in magnitude than those for RCP 8.5, demonstrating that the effect of climate change is less pronounced in the simulations under this lower-emissions scenario.The simulations under the surrogate RCP 2.6 forcing did not follow the expected pattern and were deemed to be too unreliable for use in this study (Supplementary Methods).Estimating changes in tuna biomass in EEZs and the high seasFor this analysis, we produced reference biomasses for skipjack, yellowfin and bigeye tuna for the period 1979−2010 from quantitative assessment studies using SEAPODYM, which estimates population dynamics, habitats, movements and fisheries parameters with an MLE approach (Supplementary Note 7). The fit between observations and predictions (for catch and catch size frequencies) was used to validate the optimal solutions of the models within and outside the time window for the model parameter estimates. The fit was analysed spatially by fishery to ensure that there were no regional biases. Once the optimal solution was achieved, a final simulation was made with the same set of parameter estimates but without considering any fishing, to obtain the unfished biomass dynamics during both the historical period and the projection for the twenty-first century. The differences in unfished biomass between the historical period (2001−2010) and projections in 2050 (mean of 2046−2050) for each species were used to compute the weighted mean change in total tuna biomass in the EEZs of the ten Pacific SIDS, the high-seas areas shown in Supplementary Fig. 1 and the EEZs of the other Pacific SIDS listed in Supplementary Table 1 for the RCP 8.5 and RCP 4.5 emission scenarios by 2050.Estimating changes in catch in EEZs and the high seasTo evaluate the impacts of climate change scenarios on purse-seine fisheries, comparisons were restricted to the EEZs of the ten tuna-dependent Pacific SIDS and the high-seas areas, particularly EPO-C (Supplementary Fig. 1).To estimate the effects of projected changes in biomass of skipjack, yellowfin and bigeye tuna due to RCP 8.5 and RCP 4.5 on purse-seine catches in the EEZs of Pacific SIDS and in high-seas areas by 2050, in the absence of management interventions to reallocate catch entitlements to maintain historical access rights for Pacific SIDS, we assumed that there would be a direct relationship between projected changes in biomass and catch. Because purse-seine catches are composed of different proportions of the three tuna species, and because each species is projected to have a different response to climate change (Fig. 2), changes in purse-seine catches by 2050 were estimated using the weighted mean response of the three tuna species to RCP 8.5 and to RCP 4.5. These estimates were derived from the average relative abundance of each species in purse-seine catches in the EEZs of the ten Pacific SIDS (Supplementary Table 3) and in high-seas areas (Supplementary Table 4) and the projected percentage change in biomass of each species under each emission scenario (Supplementary Tables 17 and 18).The weighted average percentage changes in biomass of all tuna species combined were then applied to the 10-year average (2009−2018) purse-seine catches from the EEZs of the ten Pacific SIDS and high-seas areas (Supplementary Tables 3 and 4) to estimate the changes in purse-seine catches for these jurisdictions by 2050 under RCP 8.5 and RCP 4.5. In the case of Kiribati, which has three separate EEZ areas (Fig. 1), we estimated the change in catch for each EEZ area and amalgamated the results to produce the overall estimated change in purse-seine catch for the country.The projected percentage change in total purse-seine catch differs from the percentage change in total tuna biomass due to variation in the relative contributions of the three tuna species to total catch and to total biomass.Estimating the effects of tuna redistribution on economiesTo assess the effects of climate-driven redistribution of tuna on the economies of the 10 Pacific SIDS, we assumed that estimated changes in purse-seine catch within their EEZs due to the redistribution of tuna biomass described above would result in a proportional change in access fees earned from purse-seine fishing and associated operations.To estimate the effects of RCP 8.5 and RCP 4.5 on the capacity of Pacific Island governments to earn access fees from industrial tuna fishing, and the contributions of these access fees to total government revenue excluding grants (‘government revenue’), we used annual averages of government revenue, tuna-fishing access fees earned by the ten Pacific SIDS and the percentage contribution of access fees to government revenue for the period 2015−2018 (Supplementary Table 2) as a baseline. We applied the projected average percentage changes in total purse-seine catch in each EEZ for RCP 8.5 and RCP 4.5 (summarized in Supplementary Tables 17 and 18) to the average annual access fees received in 2015−2018 by each of the Pacific SIDS to estimate the change in value of their access fees by 2050 under each emissions scenario. The change in value of access fees was used to estimate decreases or increases in government revenue in 2050 relative to 2015–2018 under both emissions scenarios in US$ and percentage terms, assuming that the relative contributions of other sources of government revenue remain the same.The estimated percentage changes in government revenue for each Pacific SIDS do not account for (1) management responses; (2) variation in the value of access to particular EEZs and the willingness of fleets to pay for this access due to the effects of changes in tuna biomass on catchability of each species, levels of fishing effort/catch rates, the price of tuna or cost of landing tuna; and (3) the impact of tuna redistribution on the degree of control that Pacific SIDS exert over fisheries targeting tuna. The third factor is expected to be particularly important. For example, substantial movement of tuna from the EEZs of PNA countries into high-seas areas would be expected to limit the effectiveness of the VDS69 by reducing the degree of control over the fishery exerted by PNA members.Overall, it is important to note that the simple approach used to assess the potential effects of tuna redistribution on government revenue is intended only to provide indicative information on the magnitude of these impacts. To obtain robust estimates of climate-driven changes in government revenue, more complex bio-economic analyses will be required, beginning with, for example, a fleet-dynamics analysis to investigate the potential response of purse-seine vessels to redistribution of tuna and the flow-on effects on access fees.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Identifying gaps in the photographic record of the vascular plant flora of the Americas

    Keller Science Action Center, Field Museum of Natural History, Chicago, IL, USANigel C. A. Pitman, Tomomi Suwa, Juliana Philipp, Corine F. Vriesendorp, Abigail Derby Lewis & Sinem PerkMissouri Botanical Garden, St Louis, MO, USACarmen Ulloa Ulloa, James Miller & James SolomonAMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FrancePierre BonnetINRIA Sophia-Antipolis, ZENITH team, LIRMM – UMR 5506, Montpellier, FranceAlexis JolyInstitute for Conservation Research, San Diego Zoo Global, Escondido, CA, USAMathias W. ToblerBotanical Research Institute of Texas, Fort Worth, TX, USAJason H. BestFacultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, La Molina, PeruJohn P. JanovecLiberty Hyde Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USAKevin C. NixonNew York Botanical Garden, Bronx, NY, USABarbara M. Thiers & Melissa TuligSchool of Life Sciences, Arizona State University, Tempe, AZ, USAEdward E. GilbertJardim Botânico do Rio de Janeiro, Rio de Janeiro, BrazilRafaela Campostrini Forzza & Fabiana Luiza Ranzato FilardiUniversidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilGeraldo ZimbrãoRoyal Botanic Gardens, Kew, Richmond, United KingdomRobert TurnerInstituto de Botánica Darwinion, San Isidro, Buenos Aires, ArgentinaFernando O. Zuloaga & Manuel J. BelgranoInstituto de Limnología ‘Dr. Raúl A. Ringuelet’ (CONICET), Buenos Aires, ArgentinaChristian A. ZanottiHerbaria Basel, Department of Environmental Sciences, University of Basel, Basel, SwitzerlandJurriaan M. de VosDepartamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, BrazilEduardo L. Hettwer GiehlEnvironmental and Rural Science, University of New England, Armidale, New South Wales, AustraliaC. E. Timothy PaineDepartamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, BrazilRubens Texeira de QueirozEscuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, EcuadorKatya RomolerouxUniversidade Federal do Recôncavo da Bahia, Bahia, BrazilEverton Hilo de SouzaN.C.A.P. and T.S. conceived the study. N.C.A.P., T.S., C.U.U., J.M., J.S., J.P., C.F.V., A.D.L., P.B., A.J., M.W.T., J.H.B., J.P.J., K.C.N., B.M.T., M.T., E.E.G., R.C.F., G.Z., F.L.R.F., R.T., F.O.Z., M.J.B., C.A.Z., J.M.d.V., E.L.H.G., C.E.T.P., R.T.d.Q. and K.R. contributed photographic databases. S.P. queried the Flickr database. C.U.U. provided the taxonomic backbone for the analyses. T.S. assembled the master photographic database, standardized the taxonomy of contributed databases and carried out statistical analyses. T.S. supervised the four Field Museum volunteers who assisted in data collection. N.C.A.P. and T.S. wrote the paper. T.S. prepared Fig. 1a. N.C.A.P. prepared Fig. 1b. T.S. prepared the Supplementary Tables. All authors discussed the results and implications of the analyses, commented on the manuscript at all stages and contributed revisions. More

  • in

    Past abrupt changes, tipping points and cascading impacts in the Earth system

    1.Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).Article 

    Google Scholar 
    2.Lohmann, G., Butzin, M., Eissner, N., Shi, X. & Stepanek, C. Abrupt climate and weather changes across time scales. Paleoceanogr. Paleoclimatol. 35, e2019PA003782 (2020).Article 

    Google Scholar 
    3.Meehl, G. A. & Stocker, T. F. Global Climate Projections (Cambridge Univ. Press, 2007).4.Steiger, N. J. et al. Oceanic and radiative forcing of medieval megadroughts in the American Southwest. Sci. Adv. 5, eaax0087 (2019).Article 

    Google Scholar 
    5.Lustig, T., Klassen, S., Evans, D., French, R. & Moffat, I. Evidence for the breakdown of an Angkorian hydraulic system, and its historical implications for understanding the Khmer Empire. J. Archaeol. Sci. Rep. 17, 195–211 (2018).
    Google Scholar 
    6.Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).Article 

    Google Scholar 
    7.Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).Article 

    Google Scholar 
    8.Rocha, J. C., Peterson, G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).Article 

    Google Scholar 
    9.Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).Article 

    Google Scholar 
    10.Pedro, J. B. et al. The last deglaciation: timing the bipolar seesaw. Clim. Past 7, 671–683 (2011).Article 

    Google Scholar 
    11.Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).Article 

    Google Scholar 
    12.McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).Article 

    Google Scholar 
    13.Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfli, W. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanogr. Paleoclimatol. 5, 469–477 (1990).Article 

    Google Scholar 
    14.Gasson, E. G. W., DeConto, R. M., Pollard, D. & Clark, C. D. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).15.MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich Events. Paleoceanography 8, 775–784 (1993).Article 

    Google Scholar 
    16.Bassis, J. N., Petersen, S. V. & Mac Cathles, L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332–334 (2017).Article 

    Google Scholar 
    17.Obase, T. & Abe-Ouchi, A. Abrupt Bølling-Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).Article 

    Google Scholar 
    18.Boers, N. Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).19.Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. & Svensson, A. Millennial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010).Article 

    Google Scholar 
    20.Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).Article 

    Google Scholar 
    21.Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the last glacial. Science 335, 570–573 (2012).Article 

    Google Scholar 
    22.Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).Article 

    Google Scholar 
    23.Gibson, K. A. & Peterson, L. C. A 0.6 million year record of millennial-scale climate variability in the tropics. Geophys. Res. Lett. 41, 969–975 (2014).Article 

    Google Scholar 
    24.Goni, M. F. S. et al. Contrasting impacts of Dansgaars-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008); corrigendum 27, 1789 (2008).25.Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).Article 

    Google Scholar 
    26.Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).Article 

    Google Scholar 
    27.Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 

    Google Scholar 
    28.Su, Z., Ingersoll, A. P. & He, F. On the abruptness of Bølling-Allerød warming. J. Clim. 29, 4965–4975 (2016).Article 

    Google Scholar 
    29.Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and younger dryas sea levels revisited with boreholes at tahiti. Science 327, 1235–1237 (2010).Article 

    Google Scholar 
    30.Wagner, J. D. M. et al. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 3, 110–113 (2010).Article 

    Google Scholar 
    31.Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).Article 

    Google Scholar 
    32.Birks, H. H. South to north: contrasting late-glacial and early-Holocene climate changes and vegetation responses between south and north Norway. Holocene 25, 37–52 (2015).Article 

    Google Scholar 
    33.Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).Article 

    Google Scholar 
    34.Novello, V. F. et al. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7, 44267 (2017).Article 

    Google Scholar 
    35.Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).Article 

    Google Scholar 
    36.Reichart, G. J., Lourens, L. J. & Zachariasse, W. J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography 13, 607–621 (1998).Article 

    Google Scholar 
    37.Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).Article 

    Google Scholar 
    38.Davies, M. H. et al. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223 (2011).39.Abdul, N. A., Mortlock, R. A., Wright, J. D. & Fairbanks, R. G. Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata. Paleoceanography 31, 330–344 (2016).Article 

    Google Scholar 
    40.Soulet, G. et al. Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet. Sci. Lett. 296, 57–66 (2010).Article 

    Google Scholar 
    41.Yanchilina, A. G. et al. Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea’s shelf and subsequent substantial salinification in the early Holocene. Mar. Geol. 383, 14–34 (2017).Article 

    Google Scholar 
    42.Toucanne, S. et al. The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca 20-18 ka ago. Earth Planet. Sci. Lett. 290, 459–473 (2010).Article 

    Google Scholar 
    43.Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).Article 

    Google Scholar 
    44.Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    45.Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).Article 

    Google Scholar 
    46.Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).Article 

    Google Scholar 
    47.Shuman, B. N. & Marsicek, J. The structure of Holocene climate change in mid-latitude North America. Quat. Sci. Rev. 141, 38–51 (2016).Article 

    Google Scholar 
    48.Alley, R. B. & Agustsdottir, A. M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 24, 1123–1149 (2005).Article 

    Google Scholar 
    49.Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).Article 

    Google Scholar 
    50.Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 369, 1010–1035 (2011).Article 

    Google Scholar 
    51.Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).Article 

    Google Scholar 
    52.Williams, J. W. & Burke, K. in Climate Change and Biodiversity (eds Lovejoy, T. & Hannah, L.) 128–141 (Yale Univ. Press, 2019).53.deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).Article 

    Google Scholar 
    54.Gupta, A., Das, M. & Anderson, D. Solar influence on the Indian summer monsoon during the Holocene. Geophys. Res. Lett. 32, L17703 (2005).55.Buntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 ad. Nat. Geosci. 9, 231–236 (2016).Article 

    Google Scholar 
    56.Walker, M. et al. Formal subdivision of the holocene series/epoch: a summary. J. Geol. Soc. India 93, 135–141 (2019).Article 

    Google Scholar 
    57.Bradley, R. & Bakke, J. Is there evidence for a 4.2 ka BP event in the northern North Atlantic region? Clim. Past 15, 1665–1676 (2019).Article 

    Google Scholar 
    58.Butzer, K. W. Collapse, environment, and society. Proc. Natl Acad. Sci. USA 109, 3632–3639 (2012).Article 

    Google Scholar 
    59.Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).Article 

    Google Scholar 
    60.Trauth, M. H. et al. Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis. Clim. Dynam. 53, 2557–2572 (2019).Article 

    Google Scholar 
    61.Claussen, M., Bathiany, S., Brovkin, V. & Kleinen, T. Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity. Nat. Geosci. 6, 954–958 (2013).Article 

    Google Scholar 
    62.Kropelin, S. et al. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765–768 (2008).Article 

    Google Scholar 
    63.Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).Article 

    Google Scholar 
    64.Kuper, R. & Kropelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).Article 

    Google Scholar 
    65.Miao, X. D. et al. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology 35, 119–122 (2007).Article 

    Google Scholar 
    66.Williams, J. W., Shuman, B. & Bartlein, P. J. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob. Planet. Change 66, 195–207 (2009).Article 

    Google Scholar 
    67.Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).Article 

    Google Scholar 
    68.Umbanhowar, C. E., Camill, P., Geiss, C. E. & Teed, R. Asymmetric vegetation responses to mid-Holocene aridity at the prairie-forest ecotone in south-central Minnesota. Quat. Res. 66, 53–66 (2006).Article 

    Google Scholar 
    69.Williams, J. W., Shuman, B., Bartlein, P. J., Diffenbaugh, N. S. & Webb, T. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38, 135–138 (2010).Article 

    Google Scholar 
    70.Shuman, B. Patterns, processes, and impacts of abrupt climate change in a warm world: the past 11,700 years. WIREs Clim. Change 3, 19–43 (2012).Article 

    Google Scholar 
    71.Bocinsky, R. K., Rush, J., Kintigh, K. W. & Kohler, T. A. Exploration and exploitation in the macrohistory of the pre-Hispanic Pueblo Southwest. Sci. Adv. 2, e1501532 (2016).72.Graybilll, D. A., Gregory, D. A., Funkhouser, G. S. & Nials, F. in Environmental Change and Human Adaptation in the Ancient American Southwest (eds Doyel, D. E. & Dean, J. S.) 69–123 (Univ. Utah Press, 2006).73.Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 

    Google Scholar 
    74.Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).Article 

    Google Scholar 
    75.Wagner, T. J. W. & Eisenman, I. False alarms: how early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10333–10341 (2015).
    Google Scholar 
    76.Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).Article 

    Google Scholar 
    77.Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004).78.Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of atlantic meridional overturning circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).79.Ditlevsen, P. D. & Johnsen, S. J. Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, L19703 (2010).80.Cimatoribus, A. A., Drijfhout, S. S., Livina, V. & van der Schrier, G. Dansgaard-Oeschger events: bifurcation points in the climate system. Clim. Past 9, 323–333 (2013).Article 

    Google Scholar 
    81.Thomas, Z. A. et al. Early warnings and missed alarms for abrupt monsoon transitions. Clim. Past 11, 1621–1633 (2015).Article 

    Google Scholar 
    82.Stegner, M. A., Ratajczak, Z., Carpenter, S. R. & Williams, J. W. Inferring critical transitions in paleoecological time series with irregular sampling and variable time-averaging. Quat. Sci. Rev. 207, 49–63 (2019).Article 

    Google Scholar 
    83.Litzow, M. A., Urban, J. D. & Laurel, B. J. Increased spatial variance accompanies reorganization of two continental shelf ecosystems. Ecol. Appl. 18, 1331–1337 (2008).Article 

    Google Scholar 
    84.Bathiany, S., Claussen, M. & Fraedrich, K. Detecting hotspots of atmosphere-vegetation interaction via slowing down. Part 1: a stochastic approach. Earth Syst. Dynam. 4, 63–78 (2013).Article 

    Google Scholar 
    85.Weinans, E. et al. Finding the direction of lowest resilience inmultivariate complex systems. J. R. Soc. Interface 16, 20190629 (2019).Article 

    Google Scholar 
    86.Feng, Q. Y., Viebahn, J. P. & Dijkstra, H. A. Deep ocean early warning signals of an Atlantic MOC collapse. Geophys. Res. Lett. 41, 6009–6015 (2014).Article 

    Google Scholar 
    87.Praetorius, S. K. & Mix, A. C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444–448 (2014).Article 

    Google Scholar 
    88.Guttal, V. & Jayaprakash, C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol. 2, 3–12 (2009).Article 

    Google Scholar 
    89.Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).Article 

    Google Scholar 
    90.Dekker, M. M., von der Heydt, A. S. & Dijkstra, H. A. Cascading transitions in the climate system. Earth Syst. Dynam. 9, 1243–1260 (2018).Article 

    Google Scholar 
    91.Downey, S. S., Haas, W. R. & Shennan, S. J. European Neolithic societies showed early warning signals of population collapse. Proc. Natl Acad. Sci. USA 113, 9751–9756 (2016).Article 

    Google Scholar 
    92.Spielmann, K. A., Peeples, M. A., Glowacki, D. M. & Dugmore, A. Early warning signals of social transformation: a case study from the US Southwest. PLoS ONE 11, e0163685 (2016).93.Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).Article 

    Google Scholar 
    94.Cailleret, M. et al. Early-warning signals of individual tree mortality based on annual radial growth. Front. Plant Sci. 9, 1964 (2019).95.Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).Article 

    Google Scholar 
    96.Klose, A. K., Karle, V., Winkelmann, R. & Donges, J. F. Emergence of cascading dynamics in interacting tipping elements of ecology and climate. R. Soc. Open Sci. 7, 200599 (2020).Article 

    Google Scholar 
    97.Bathiany, S., Hidding, J. & Scheffer, M. Edge detection reveals abrupt and extreme climate events. J. Clim. 33, 6399–6421 (2020).Article 

    Google Scholar 
    98.Flach, M. et al. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques. Earth Syst. Dynam. 8, 677–696 (2017).Article 

    Google Scholar 
    99.Reeves, J., Chen, J., Wang, X. L. L., Lund, R. & Lu, Q. Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).Article 

    Google Scholar 
    100.Flato, G. M. Earth system models: an overview. WIREs Clim. Change 2, 783–800 (2011).Article 

    Google Scholar 
    101.Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).Article 

    Google Scholar 
    102.Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim. Past 16, 117–140 (2020).Article 

    Google Scholar 
    103.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).Article 

    Google Scholar  More

  • in

    Honing in on bioluminescent milky seas from space

    We processed DNB imagery from three key regions per the historical record of mariner sightings2—the northwest Indian Ocean (5° S–20° N, 40–70° E) and Indonesian waters surrounding Java (15° S–0°, 100–115° E) and the Banda Sea (11–1° S, 120–135° E). Our search window spanned 2012–2021, during the periods December–March and July–September corresponding to the peak modes of ship sightings. Data processing and detection criteria are described in “Methods” section.Our search yielded 12 DNB-detected events (listed in Table 1) whose properties met the strict criteria for milky seas. Physically unexplainable in terms of thermal emissions (which would require scene temperatures exceeding 600 K), uncorrelated with clouds/airglow, invisible during the day, and persistent over multiple consecutive nights, these luminous bodies drifted and evolved in ways that were consistent with the analyzed ocean surface currents. The start and end dates of detection were in many cases bound by the observable periods as defined by the lunar cycle. Here, we highlight three exemplary cases, with additional details for all cases summarized in Supplementary Discussion 2.Table 1 Day/Night Band detected milky sea events identified in this study.Full size tableSocotra, July/August 2013On 31 July 2013, the Suomi NPP DNB detected a luminous body with well-defined boundaries (Fig. 2), located east of Socotra in the northwest Indian Ocean, at (14.0° N, 57.0° E). Uncorrelated with the observed cloud field (Fig. 2a–c), the body drifted northeast with the currents at ~ 0.44 m s−1, stretching and curving in a manner consistent with the analysed ocean-surface currents (Fig. 2d–f), which showed a clockwise-rotating eddy located to its south.Figure 2Three-night sequence over 2–4 August 2013 of a bioluminescent milky sea in the Arabian Sea for (a–c) DNB log10—scaled radiance imagery (W cm−2 sr−1), showing a ~ 9000 km2 luminous body persisting amidst the ephemeral cloud cover, and (d–f) a pan-out of HYCOM sea surface currents (magenta box in (d) corresponds to domain of (a–c), with approximate location of the luminous body noted) shown for comparison against the body’s observed structural evolution and drift.Full size imageWhereas DNB imagery showed only dark ocean during the daytime overpasses of the same location, these glowing waters persisted on successive nights over a two-week period. By 2 August the milky sea covered ~ 9000 km2 (involving roughly 5 × 1021 to 5 × 1022 luminous bacteria, per “Methods” section). The DNB lost sight of the milky sea on 14 August due to moonlight, and it was not seen again in the following moon-free period.Suomi NPP’s daytime chlorophyll-a (Chla) retrievals, a proxy for the amount of organic material in the surface waters, showed structural similarities to the milky sea, but were more widespread (Supplementary Fig. S1). Moreover, the most elevated regions of Chla ( > 1 mg m−3) occurred not directly atop, but adjacent to the most luminous waters—a recurring property among the cases documented in this research which may indicate regions of algal stress where (potentially luminous) bacteria would proliferate. On several nights, a faint signature of the luminous body was detectable beneath analyzed cloud cover; its light scattering upward through the clouds in a way similar to the behaviour of city lights in DNB imagery.Somali Sea, January 2018On 12 January 2018, both Suomi NPP and NOAA-20 captured a luminous structure offshore of southern Somalia. Over the next 5 days it stretched into a narrow filament that paralleled the Somali coast, mirroring the behaviour of other winter-mode Somali Sea cases described in Supplementary Discussion 2. Over 18–23 January, the luminous filament extended east/northeast, forming a comma-shape (Fig. 3a–c), with a sharply-defined southeastern edge and gradually fading brightness on its northwestern side. By 20 January, it spanned ~ 15,000 km2, suggesting involvement of roughly 8 × 1021 to 8 × 1022 bacteria. Its scale, shape, time, and location were similar to the Lima-sighted milky sea4,14, as well as to a subset of the surface reports in Supplementary Discussion 1.Figure 3Three-night sequence over 20–22 January 2018 of a bioluminescent milky sea in the Somali Sea for (a–c) DNB log10 – scaled radiance imagery (W cm−2 sr−1), showing a ~ 15,000 km2 luminous feature persistent amidst the variable cloud field. Focusing on 22 January, (d) VIIRS-derived night time SST (K; with cloud cover in black) at 2156Z, (e) daytime VIIRS-retrieved Chla (mg m−3) at 1007Z, and (f) pan-out of HYCOM sea surface currents at 2100Z with approximate location of DNB-observed luminous body.Full size imageComparing the luminous body to satellite retrievals of Sea Surface Temperature (SST; Fig. 3d) showed its eastern boundary aligned with the edge of an oceanic front, residing within relatively cool (298–299 K) waters that extended northeast from the Somali coastal upwelling zone. These cooler SSTs corresponded to elevated Chla values in the range of ~ 0.5–1.0 mg m−3 (Fig. 3e). As in the 2013 Socotra case, the area of elevated Chla was more extensive than the luminous region. Ocean surface currents (Fig. 3f) showed the body’s eastern boundary embedded within counter-clockwise flow and drifting north/northwest at ~ 0.8 m s−1.Java, July–September 2019The DNB detected a large milky sea in the east Indian Ocean, immediately south of Java, Indonesia in 2019. The event spanned two complete moon-free cycles (26 July–9 August, and 25 August–7 September). On the night of 25 July, the DNB detected a luminous anomaly south of Surakarta, Java, near 9.5° S, 111° E. The detection amidst moderate moonlight conditions suggested a particularly strong source of emission. Imagery on subsequent moonless nights confirmed that the initial detection was in fact part of a much larger milky sea, spanning ~ 100,000 km2—approximately the same size as Iceland. A milky sea of this scale suggests involvement of roughly 6 × 1022 to 6 × 1023 luminous bacteria, which would qualify as the largest event on record. Undetectable during the day, the contiguous feature reappeared in nightly imagery throughout the two observable moon-free periods (Fig. 4).Figure 4Day/night comparison of DNB log10—scaled radiance imagery (W cm−2 sr−1) of a bioluminescent milky sea near Java for the period 2–4 August 2019 for (a–c) daytime imagery, and (d–f) night time imagery. The amorphous luminous body, located immediately south of Java and detectable only at night, covered ~ 100,000 km2 of ocean surface. Bright patches seen over Java in (d–f) are city lights.Full size imageSituated within quiescent, low-shear waters (Supplementary Fig. S2) between counter-clockwise-spinning warm-core eddies to its southeast and southwest (Fig. 4), this massive milky sea rotated clockwise like a cog between gears, its centre near 9.0° S, 110.0° E. By 30 July, its northern boundary approached within 25 km of the Java coast, and a 500 km2 area of its core was so bright that certain infrared-detected cumulus clouds appeared in the DNB imagery as dark, attenuating objects in contrast to the glowing waters below them (Supplementary Fig. S3).The DNB radiances measured in the brightest areas of these luminous waters approached Crescent- to Quarter-Moon illumination levels. Based on scotopic vision sensitivity to bioluminescent emission (Supplementary Fig. S4) and direct comparisons against legacy OLS imagery (Supplementary Fig. S5), portions of this milky sea may have appeared visually bright to dark-adapted human vision—perhaps even attaining the classical snowfield effect described in the historical mariner accounts.After losing sight of the luminous body on 10 August due to moonlight contamination, the DNB recaptured it on 25 August and tracked it for 2 weeks thereafter, as described in Supplementary Discussion 2. The longevity of this event, which lasted for at least 45 nights, by far eclipsed all other cases encountered in this study—indicating that significant milky seas offer a reasonable time window for reaching them if a rapid-response team is on the ready.Satellite retrievals of ocean surface properties for the 2019 Java case (Fig. 5) showed cooler waters and elevated Chla along the Java coast. A stream of higher Chla ( > 2 mg m−3), embedded within a tongue of these cooler waters, extended southward and immediately east of the luminous body, following the flow of the south-eastern eddy (Fig. 5b). At this time, the luminous waters were confined to a narrow range of SST over 298 ± 1 K (~ 25 ± 1 °C) and moderate Chla over 1 ± 0.5 mg m−3, demarcated from the surrounding waters at abrupt boundaries defined by coastal upwelling to the north and the two eddies to the south.Figure 5Multi-parameter analysis of the 2019 Java milky sea on 2 August 2019 for (a) night time DNB log10—scaled radiance imagery (W cm−2 sr−1) at 1752Z, (b) pan-out of HYCOM sea surface currents valid at 1800Z (magenta box shows domain of (a), with approximate location of luminous body shaded), (c) VIIRS-retrieved SST (with cloud cover and land surfaces in black) valid at 1752Z, and (d) daytime VIIRS-retrieved Chla at 0554Z.Full size imageFigure 6 relates DNB radiance, SST, and Chla for 10 nights (27 July–5 August) of the 2019 Java case, centred on the luminous body. DNB radiances correlated positively with Chla over 0.5–1.5 mg m−3, and negatively with SST over 297–299 K. The brightest milky sea waters corresponded to asymptotic SST values of ~ 298 K and Chla of ~ 1.2 mg m−3, respectively, and notably, did not overlap with the strongest parts of the algal bloom. The SST values, hovering around 298 K for most DNB-detected cases in this study, may hold significance, as this temperature regime promotes rapid growth of V. harveyi and P. leiognathi over a wide range of ocean salinity values20.Figure 6Relationship between DNB-measured milky sea radiances and ocean surface fields for the 2019 Java case (27 July–5 August, centred on the luminous body). Radiance-specific distributions (i.e., for a given radiance level, each row sums to 100%) are shown as a function of (a) SST and (b) Chla. The DNB noise floor (where SNR = 1) is drawn as a horizontal dashed line.Full size image More

  • in

    Colour and motion affect a dune wasp’s ability to detect its cryptic spider predators

    1.Smith, M. Q. R. P. & Ruxton, G. D. Camouflage in predators. Biol. Rev. 63, 178–216 (2020).
    Google Scholar 
    2.Anderson, A. G. & Dodson, G. N. Colour change ability and its effect on prey capture success in female Misumenoides formosipes crab spiders. Ecol. Entomol. 40, 106–113 (2015).Article 

    Google Scholar 
    3.Gonzálvez, F. G. & Rodríguez-Gironés, M. A. Seeing is believing: information content and behavioural response to visual and chemical cues. Proc. R. Soc. Lond. Ser. B Biol. Sci. 280, 20130886–20130888 (2013).
    Google Scholar 
    4.Schwantes, C. J., Carper, A. L. & Bowers, M. D. Solitary floral specialists do not respond to cryptic flower-occupying predators. J. Insect Behav. 31, 642–655 (2018).Article 

    Google Scholar 
    5.Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, Princeton, 2014).Book 

    Google Scholar 
    6.Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).Article 

    Google Scholar 
    7.Burnett, N. P., Badger, M. A. & Combes, S. A. Wind and obstacle motion affect honeybee flight strategies in cluttered environments. J. Exp. Biol. 223, jeb222471-9 (2020).
    Google Scholar 
    8.Hennessy, G. et al. Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 161, 23–31 (2020).Article 

    Google Scholar 
    9.Thery, M. & Casas, J. The multiple disguises of spiders: web colour and decorations, body colour and movement. Philos. Trans. R. Soc. B Biol. Sci. 364, 471–480 (2009).Article 

    Google Scholar 
    10.Oxford, G. & Gillespie, R. Evolution and ecology of spider coloration. Annu. Rev. Entomol. 43, 619–643 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Rodríguez-Morales, D. et al. Context-dependent crypsis: a prey’s perspective of a color polymorphic predator. Sci. Nat. 105, 81 (2018).Article 
    CAS 

    Google Scholar 
    12.Gavini, S. S., Quintero, C. & Tadey, M. Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecol. 95, 100–107 (2019).ADS 
    Article 

    Google Scholar 
    13.Morse, D. H. Predatory risk to insects foraging at flowers. Oikos 46, 223–228 (1986).Article 

    Google Scholar 
    14.Brechbuhl, R., Casas, J. & Bacher, S. Ineffective crypsis in a crab spider: a prey community perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 277, 739–746 (2010).
    Google Scholar 
    15.Rodríguez-Gironés, M. A. & Maldonado, M. Detectable but unseen: imperfect crypsis protects crab spiders from predators. Anim. Behav. 164, 83–90 (2020).Article 

    Google Scholar 
    16.Heiling, A., Herberstein, M. & Chittka, L. Pollinator attraction: crab-spiders manipulate flower signals. Nature 421, 334–334 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Llandres, A. L. & Rodríguez-Gironés, M. A. Spider movement, UV reflectance and size, but not spider Crypsis, affect the response of honeybees to Australian crab spiders. PLoS ONE 6, e17136–e17211 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Vieira, C., Ramires, E. N., Vasconcellos-Neto, J., Poppi, R. J. & Romero, G. Q. Crab spider lures prey in flowerless neighborhoods. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    19.Robertson, I. C. & Maguire, D. K. Crab spiders deter insect visitations to slickspot peppergrass flowers. Oikos 109, 577–582 (2005).Article 

    Google Scholar 
    20.Yokoi, T. & Fujisaki, K. Hesitation behaviour of hoverflies Sphaerophoria spp. to avoid ambush by crab spiders. Sci. Nat. 96, 195–200 (2008).Article 
    CAS 

    Google Scholar 
    21.Defrize, J., Thery, M. & Casas, J. Background colour matching by a crab spider in the field: a community sensory ecology perspective. J. Exp. Biol. 213, 1425–1435 (2010).PubMed 
    Article 

    Google Scholar 
    22.Reader, T., Higginson, A. D., Barnard, C. J. & Gilbert, F. S. The effects of predation risk from crab spiders on bee foraging behavior. Behav. Ecol. 17, 933–939 (2006).Article 

    Google Scholar 
    23.Ings, T. & Chittka, L. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 18, 1520–1524 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Ings, T. C., Wang, M. Y. & Chittka, L. Colour-independent shape recognition of cryptic predators by bumblebees. Behav. Ecol. Sociobiol. 66, 487–496 (2011).Article 

    Google Scholar 
    25.Collett, T. S. & Zeil, J. Flights of learning. Curr. Dir. Psychol. Sci. 5, 149–155 (1996).Article 

    Google Scholar 
    26.Stürzl, W., Zeil, J., Boeddeker, N. & Hemmi, J. M. How wasps acquire and use views for homing. Curr. Biol. 26, 470–482 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Zeil, J., Kelber, A. & Voss, R. Structure and function of learning flights in bees and wasps. J. Exp. Zool. A Ecol. Genet. Physiol. 199, 245–252 (1996).CAS 

    Google Scholar 
    28.Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., & Lindemann, J. P. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front. Neural Circuits. 6, 1–23 (2012).Article 

    Google Scholar 
    29.Lehrer, M. Small-scale navigation in the honeybee: active acquisition of visual information about the goal. J. Evol. Biol. 199, 253–261 (1996).CAS 

    Google Scholar 
    30.Lehrer, M. & Campan, R. Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190, 1–13 (2004).Article 

    Google Scholar 
    31.Nityananda, V., Skorupski, P. & Chittka, L. Can bees see at a glance?. J. Exp. Biol. 217, 1933–1939 (2014).PubMed 

    Google Scholar 
    32.Kral, K. & Poteser, M. Motion parallax as a source of distance information in locusts and mantids. J. Insect Behav. 10, 145–163 (1997).Article 

    Google Scholar 
    33.Dukas, R. Effects of predation risk on pollinators and plants. in Cognitive ecology of pollination 214–236 (Cambridge University Press, Cambridge, 2019).
    Google Scholar 
    34.Rodríguez-Morales, D. et al.. Response of flower visitors to the morphology and color of crab spiders in a coastal environment of the Gulf of Mexico. Isr. J. Ecol. Evol. 66, 32–40 (2019).Article 

    Google Scholar 
    35.Uexküll, J. V. A Foray Into the Worlds of Animals and Humans: With a Theory of Meaning Vol. 12 (University of Minnesota Press, Minnesota, 2013).
    Google Scholar 
    36.Caves, E. M., Nowicki, S. & Johnsen, S. V. Uexküll revisited: addressing human biases in the study of animal perception. Integr. Comp. Biol. 215, 1184–1212 (2019).
    Google Scholar 
    37.Álvarez-Molina, L. L. et al. Biological flora of coastal dunes and wetlands: Palafoxia lindenii A. Gray. J. Coast. Res. 29, 680–693 (2013).
    Google Scholar 
    38.Evans, H. E., O’Neill, K. M. & Evans, H. E. The Sand Wasps: Natural History and Behavior (Harvard University Press, Harvard, 2009).
    Google Scholar 
    39.Alcock, J. & Ryan, A. F. The behavior of microbembex nigrifons. Pan-Pac. Entomol. 49, 144–148 (1973).
    Google Scholar 
    40.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    42.Peitsch, D. et al. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 170, 23–40 (1992).CAS 
    Article 

    Google Scholar 
    43.Feller, K. D. et al. Surf and turf vision: patterns and predictors of visual acuity in compound eye evolution. Arthropod Struct. Dev. 60, 101002 (2021).PubMed 
    Article 

    Google Scholar 
    44.van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2019).Article 

    Google Scholar 
    45.Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).PubMed 
    Article 

    Google Scholar 
    46.McLean, D. J. & Volponi, M. A. S. trajr: An R package for characterisation of animal trajectories. Ethology 124, 440–448 (2018).Article 

    Google Scholar 
    47.Fu, A.W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A. & Wong, R.C.-W. Scaling and time warping in time series querying. VLDB J. 17, 899–921 (2008).Article 

    Google Scholar 
    48.Hu, B., Chen, Y., & Keogh, E. Time series classification under more realistic assumptions. in Proceedings of the 2013 SIAM international conference on data mining 578–586 (Society for Industrial and Applied Mathematics, 2013).
    Google Scholar 
    49.Keogh, E. & Ratanamahatana, C. A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7, 358–386 (2005).Article 

    Google Scholar 
    50.Pewsey, A., Neuhäuser, M. & Ruxton, G. D. Circular Statistics in R (Oxford University Press, Oxford, 2013).MATH 

    Google Scholar  More

  • in

    Habitat monitoring and conservation prioritization of Western Hoolock Gibbon in upper Brahmaputra Valley, Assam, India

    1.Brown, J. H., Mehlman, D. W. & Stevens, G. C. Spatial variation in abundance. Ecology 76, 2028–2043 (1985).Article 

    Google Scholar 
    2.Rylands, A. B. Primate communities in Amazonian forests: Their habitats and food resources. Experientia 43, 267–279 (1987).Article 

    Google Scholar 
    3.Chapman, C. A. & Peres, C. A. Primate conservation in the new millennium: The role of scientists. Evol. Anthropol. 10, 16–33 (2001).Article 

    Google Scholar 
    4.Anderson, J., Cowlishaw, G. & Rowcliff, J. M. Effects of forest fragmentation on the abundance of Colobus angolensis palliates in Kenya’s coastal forests. Int. J. Primatol. 28, 637–655 (2007).Article 

    Google Scholar 
    5.Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportion of suitable habitat: A review. Oikos 7, 340–346 (1994).
    Google Scholar 
    6.Marsh, L. K. Primates in Fragments: Ecology and Conservation (Kluwer/Plenum, 2003).Book 

    Google Scholar 
    7.Harcourt, A. H. Ecological indicators of risk for primates, as judged by susceptibility to logging. In Behavioral Ecology and Conservation Biology (ed Caro, T. M.) pp. 56–79. (Oxford University Press, 1998).8.Harcourt, A. H. Empirical estimates of minimum viable population sizes for primates: Tens to tens of thousands?. Anim. Conserv. 5, 237–244 (2002).Article 

    Google Scholar 
    9.Lindenmayer, D. B. Future directions for biodiversity conservation in managed forests: Indicator species, impact studies and monitoring programs. For. Ecol. Manag. 115, 277–287 (1999).Article 

    Google Scholar 
    10.Das, J. et al. Distribution of hoolock gibbon (Bunopithecus hoolock hoolock) in India and Bangladesh. Zoos Print J. 18, 969–976 (2003).Article 

    Google Scholar 
    11.Das, J., Biswas, J., Bhattacherjee, P. C. & Mohnot, S. M. The distribution and abundance of hoolock gibbons in India. In The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology (eds Lappan, S. & Whittacker, D. J.) 409–433 (Springer, 2009).Chapter 

    Google Scholar 
    12.Islam, M. A. & Feeroz, M. M. Ecology of hoolock gibbons in Bangladesh. Primates 33, 451–464 (1992).Article 

    Google Scholar 
    13.Brockelman, W. Y. et al. Census of eastern hoolock gibbons (Hoolock leuconedys) in Mahamyaing Wildlife Sanctuary, Sagaing Division, Myanmar. In The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology (eds Lappan, S. & Whittaker, D. J.) 435–452 (Springer, 2009).Chapter 

    Google Scholar 
    14.Fan, F. P. et al. Distribution and conservation status of the vulnerable eastern hoolock gibbon Hoolock leuconedys in China. Oryx 45, 129–134 (2011).Article 

    Google Scholar 
    15.Kumar, A., Devi, A., Gupta, A.K., & Sarma, K. Population and Behavioural Ecology and Conservation of Hoolock Gibbon in Northeast India. In: Rare Animals of India (ed Singaravelan, N) 242–266 (Bentham Science Publisher, 2013).16.Kakati, K. Impact on Forest Fragmentation on the Hoolock Gibbon in Assam, India. PhD thesis, University of Cambridge.17.Ray, P. C. et al. Habitat characteristics and their effects on the density of groups of western hoolock gibbon (Hoolock hoolock) in Namdapha National Park, Arunachal Pradesh, India. Int. J. Primatol. 36(3), 445–459 (2015).Article 

    Google Scholar 
    18.Leighton, D.R. Gibbons: Territoriality and monogamy. In Primate Societies (ed Smuts, B. B. et al.) 135–145 (University of Chicago Press, 1987).19.Palombit, R. A. A preliminary study of vocal communication in wild long-tailed macaques (Macaca fascicularis). II. Potential of calls to regulate intragroup spacing. Int. J. Primatol. 13, 183–207 (1992).Article 

    Google Scholar 
    20.Das, J. Socioecology of hoolock gibbon Hylobates hoolock hoolock (Harlan, 1834) in Response to Habitat Change. PhD thesis. Department of Zoology, Gauhati University, Guwahati, India (2002).21.Sarma, K. Studies on Population Status, Behavioural and Habitat Ecology of Eastern Hoolock gibbon (Hoolock leuconedys) in Arunachal Pradesh, India. PhD thesis. Department of Forestry, North Eastern Regional Institute of Science & Technology (NERIST), Itanagar, India (2015).22.Kakati, K. Food Selection and Ranging in the Hoolock Gibbon (Hylobates hoolock) in Borajan Reserve Forest, Assam. MSc dissertation. Wildlife Institute of India, Dehradun, India (1997).23.Sharma, N., Madhusudan, M. D. & Sinha, A. Local and landscape correlates of primate distribution and persistence in the remnant lowland rainforests of the Upper Brahmaputra valley, northeastern India. Conserv. Biol. 28, 95–106 (2013).PubMed 
    Article 

    Google Scholar 
    24.Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J., & Possingham, H.P. prioritizr: Systematic conservation prioritization in R. Available at https://github.com/prioritizr/prioritizr (2018).25.Champion, H. G. & Seth, S. K. Revised Survey of Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    26.Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K. & Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theor. Appl. Climatol. 114, 61–71 (2013).ADS 
    Article 

    Google Scholar 
    27.Nath, K. K. & Deka, R. L. Climate change and agriculture over Assam. In Climate Change and Agriculture Over India (eds Rao, G. S. L. H. V. et al.) 224–243 (PHI Learning Private Ltd., 2010).
    Google Scholar 
    28.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    29.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    30.Phillips, S.J., Dudík, M., & Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 655–662 (2004).31.Flory, A. R., Kumar, S., Stohlgren, T. J. & Cryan, P. M. Environmental conditions associated with bat whitenose syndrome mortality in the north-eastern United States. J. Appl. Ecol. 49, 680–689 (2012).
    Google Scholar 
    32.Mas, J. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 20, 139–152 (1999).ADS 
    Article 

    Google Scholar 
    33.Hazarika, N., Das, A. & Borah, S. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote. Sens. 39, 107–118 (2015).
    Google Scholar 
    34.Twisa, S. & Buchroithner, M. F. Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land 8, 1–15 (2019).Article 

    Google Scholar 
    35.Garcia, M. & Alvarez, R. TM digital processing of a tropical forest region in southern Mexico. Int. J. Remote Sens. 15, 1611–1632 (1994).ADS 
    Article 

    Google Scholar 
    36.Xiao, H. & Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 85, 245–257 (2007).Article 

    Google Scholar 
    37.Gao, J. & Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int J Appl Earth Obs Geoinf 12, 9–16 (2010).Article 

    Google Scholar 
    38.Richards, J. A. & Jia, X. Interpretation of hyperspectral image data. In Remote Sensing Digital Image Analysis: An Introduction 359–388 (Springer, 2006).
    Google Scholar 
    39.Rosenfield, G. H. & Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. PhotogrammEng Remote Sens. 52, 223–227 (1986).
    Google Scholar 
    40.Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991).ADS 
    Article 

    Google Scholar 
    41.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    42.McGarigal, K., Cushman, S.A., Neel, M.C., & Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at www.umass.edu/landeco/research/fragstats/fragstats.html (2002).43.Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J., & Possingham, H.P. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. Available at https://CRAN.R-project.org/package=prioritizr (2020).44.Sharma, N., Madhusudan, M. D., Sarkar, P., Bawri, M. & Sinha, A. Trends in extinction and persistence of diurnal primates in the fragmented lowland rainforests of the Upper Brahmaputra Valley, northeastern India. Oryx 46, 308–311 (2012).Article 

    Google Scholar 
    45.Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).Article 

    Google Scholar 
    46.Corbane, C. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. 37, 7–16 (2015).Article 

    Google Scholar 
    47.Kakati, K., Raghavan, R., Chellam, R., Qureshi, Q. & Chivers, D. J. Status of western hoolock gibbon (Hoolock hoolock) populations in non-protected forests of eastern Assam. Primate Conserv. 24, 127–137 (2009).Article 

    Google Scholar 
    48.Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2, 1–10 (2005).Article 

    Google Scholar 
    50.Sarma, K., Kumar, A., Krishna, M., Medhi, M. & Tripathi, O. P. Predicting suitable habitats for the Vulnerable Eastern Hoolock Gibbon Hoolock leuconedys, in India using the Maxent model. Folia Primatol. 86, 387–397 (2015).Article 

    Google Scholar 
    51.Sharma, N., Madhusudan, M. D. & Sinha, A. Socio-economic drivers of forest cover change in Assam: A historical perspective. Econ. Polit. Wkly. 47, 64–72 (2012).
    Google Scholar 
    52.Sarma, K., Kumar, A., Krishna, M., Tripathi, O. P. & Gajurel, P. R. Ground feeding observations on corn (Zea mays) by eastern hoolock gibbon (Hoolock leuconedys). Curr. Sci. 104, 587–589 (2013).
    Google Scholar 
    53.Chetry, D., Chetry, R., & Bhattacharjee, P.C. Hoolock: The Ape of India. Gibbon Conservation Centre, Assam, India (2007). More