Complex population structure of the Atlantic puffin revealed by whole genome analyses
1.Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
2.Velarde, E., Anderson, D. W. & Ezcurra, E. Seabird clues to ecosystem health. Science 365, 116–117 (2019).CAS
PubMed
PubMed Central
Google Scholar
3.Piatt, J. F., Sydeman, W. J. & Wiese, F. Introduction: a modern role for seabirds as indicators. Mar. Ecol. Prog. Ser. 352, 199–204 (2007).Article
Google Scholar
4.Boersma, P. D., Clark, J. A. & Hillgarth, N. Seabird conservation. In Biology of Marine Birds (eds. Schreiber, E. & Burger, J.) 559–579 (CRC Press Boca Raton, 2002).5.Denlinger, L. & Wohl, K. Seabird harvest regimes in the circumpolar nations. Conservation of Arctic Flora and Fauna (CAFF), (2001).6.Merkel, F. & Barry, T. Seabird Harvest in the Arctic. Conservation of Arctic Flora and Fauna (CAFF), (2008).7.Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird. Conserv. Int. 22, 1–34 (2012).Article
Google Scholar
8.Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950-2010. PLoS ONE 10, e0129342 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
9.Frederiksen, M. Seabirds in the North East Atlantic. Summary of status, trends and anthropogenic impact. TemaNord 587, 21–24 (2010).
Google Scholar
10.Chardine, J. & Mendenhall, V. Human Disturbance at Arctic Seabird Colonies. Conservation of Arctic Flora and Fauna (CAFF), (1998).11.Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).PubMed
PubMed Central
Article
Google Scholar
12.Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS
PubMed
Article
Google Scholar
13.Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697 (2010).CAS
PubMed
Article
Google Scholar
14.Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752 (2001).CAS
PubMed
Article
Google Scholar
15.Friesen, V. L. Speciation in seabirds: why are there so many species… and why aren’t there more? J. Ornithol. 156, 27–39 (2015).Article
Google Scholar
16.Taylor, R. S. et al. Sympatric population divergence within a highly pelagic seabird species complex (Hydrobates spp.). J. Avian Biol. 49, 1–14 (2018).Article
Google Scholar
17.Rexer‐Huber, K. et al. Genomics detects population structure within and between ocean basins in a circumpolar seabird: the white‐chinned petrel. Mol. Ecol. 28, 4552–4572 (2019).PubMed
Article
CAS
Google Scholar
18.Clucas, G. V. et al. Comparative population genomics reveals key barriers to dispersal in Southern Ocean penguins. Mol. Ecol. 27, 4680–4697 (2018).CAS
PubMed
Article
Google Scholar
19.Frugone, M. J. et al. More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Mol. Phylogenet. Evol. 139, 106563 (2019).PubMed
Article
Google Scholar
20.Cristofari, R. et al. Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci. Rep. 9, 2021 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
21.Tigano, A., Shultz, A. J., Edwards, S. V., Robertson, G. J. & Friesen, V. L. Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecol. Evol. 7, 2370–2381 (2017).PubMed
PubMed Central
Article
Google Scholar
22.Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).CAS
PubMed
Article
Google Scholar
23.Somvichian-Clausen, A. Behind the stunning photo of a puffin gorging on fish. Natl Geographic (2017).24.Huijbens, E. H. & Einarsson, N. Feasting on Friends: Whales, Puffins, and Tourism in Iceland. In Tourism Experiences and Animal Consumption (ed. Kline, C.) 10–27 (Routledge, 2018).25.Lund, K. A., Kjartansdóttir, K. & Loftsdóttir, K. ‘Puffin love’: performing and creating Arctic landscapes in Iceland through souvenirs. Tour. Stud. 18, 142–158 (2018).Article
Google Scholar
26.Hodgetts, L. M. Animal bones and human society in the late younger stone age of arctic Norway. (Durham University, 1999).27.Dove, C. J. & Wickler, S. Identification of bird species used to make a Viking age feather pillow. Arctic 69, 29–36 (2016).Article
Google Scholar
28.Harris, M. P. & Wanless, S. The puffin (T & AD Poyser, Bloomsbury Publishing, 2011).29.BirdLife International. Fratercula arctica. The IUCN Red List of Threatened Species 2017 (2017)30.Anker-Nilssen, T. & Aarvak, T. The population ecology of puffins at Røst. Status after the breeding season 2001. NINA Oppdragsmeld. 736, 1–40 (2002).
Google Scholar
31.Anker-Nilssen, T. et al. Key-site monitoring in Norway 2019, including Svalbard and Jan Mayen. SEAPOP Short Report 1–2020 (2020).32.Lilliendahl, K. et al. Recruitment failure of Atlantic puffins Fratercula arctica and sandeels Ammodytes marinus in Vestmannaeyjar Islands. N.áttúrufræðingurinn 83, 65–79 (2013).
Google Scholar
33.Walker, S. J. & Meijer, H. J. M. Size variation in mid-Holocene North Atlantic Puffins indicates a dynamic response to climate change. PLoS ONE 16, e0246888 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Burnham, K. K., Burnham, J. L. & Johnson, J. A. Morphological measurements of Atlantic puffin (Fratercula arctica naumanni) in High-Arctic Greenland. Polar Res. 39. https://doi.org/10.33265/polar.v39.5242 (2020).35.Gaston, A. J. & Provencher, J. F. A specimen of the high arctic subspecies of Atlantic Puffin, Fratercula arctica naumanni, in Canada. Can. Field-Nat. 126, 50–54 (2012).Article
Google Scholar
36.Salomonsen, F. The Atlantic Alcidae. vol. 6 (Elanders boktryckeri aktiebolag, 1944).37.Moen, S. M. Morphologic and genetic variation among breeding colonies of the Atlantic puffin (Fratercula arctica). Auk 108, 755–763 (1991).
Google Scholar
38.Harris, M. P. Measurements and weights of British Puffins. Bird. Study 26, 179–186 (1979).Article
Google Scholar
39.Kim, J. A., Kang, S.-G., Yang, J. W., Hur, W.-H. & Kil, H.-J. Complete mitochondrial genome of Aethia cristatella (Charadriiformes: Alcidae). Mitochondrial DNA Part B 5, 31–32 (2020).Article
Google Scholar
40.Eo, S. H. & An, J. The complete mitochondrial genome sequence of Japanese murrelet (Aves: Alcidae) and its phylogenetic position in Charadriiformes. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 4574–4575 (2016).CAS
PubMed
Google Scholar
41.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Article
Google Scholar
42.Sánchez-Barreiro, F. et al. Historical Population Declines Prompted Significant Genomic Erosion in the Northern and Southern White Rhinoceros (Ceratotherium Simum). Molecular Ecology. 1–15 https://doi.org/10.1111/mec.16043 (2021).43.Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).CAS
PubMed
Article
Google Scholar
44.Lombal, A. J., O’dwyer, J. E., Friesen, V., Woehler, E. J. & Burridge, C. P. Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds. Biol. Rev. Camb. Philos. Soc. 95, 625–651 (2020).PubMed
Article
Google Scholar
45.Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785 (2007).CAS
PubMed
Article
Google Scholar
46.Breton, A. R., Diamond, A. W. & Kress, S. W. Encounter, survival, and movement probabilities from an Atlantic puffin (Fratercula arctica) metapopulation. Ecol. Monogr. 75, 133–149 (2006).47.Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878.e3 (2017).CAS
PubMed
Article
Google Scholar
48.Burg, T. M. & Croxall, J. P. Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol. Ecol. 10, 2647–2660 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Lowther, P. E., Diamond, T., Kress, S. W., Robertson, G. J. & Gill, F. Atlantic Puffin (Fratercula arctica). The Birds of North America Online 18, (2002).50.Wojczulanis-Jakubas, K. et al. Weak population genetic differentiation in the most numerous Arctic seabird, the little auk. Polar Biol. 37, 621–630 (2014).Article
Google Scholar
51.Smith, A. L., Monteiro, L., Hasegawa, O. & Friesen, V. L. Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol. Phylogenet. Evol. 43, 755–773 (2007).PubMed
Article
Google Scholar
52.Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gottinger Stud. 3, 595–708 (1847).
Google Scholar
53.James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390 (1970).Article
Google Scholar
54.Yamamoto, T. et al. Geographical variation in body size of a pelagic seabird, the streaked shearwater Calonectris leucomelas. J. Biogeogr. 43, 801–808 (2016).Article
Google Scholar
55.Barrett, R. T., Anker-Nilssen, T. & Krasnov, Y. V. Can Norwegian and Russian razorbills (Alca torda) be identified by their measurements? Mar. Ornithol. 25, 5–8 (1997).
Google Scholar
56.Anker-Nilssen, T., Aarvak, T. & Bangjord, G. Mass mortality of Atlantic Puffins Fratercula arctica off Central Norway, spring 2002: causes and consequences. Atl. Seab. 5, 57–72 (2003).
Google Scholar
57.Pearce, R. L. et al. Mitochondrial DNA suggests high gene flow in ancient murrelets. Condor 104, 84–91 (2002).Article
Google Scholar
58.Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).59.Milot, E., Weimerskirch, H. & Bernatchez, L. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol. Ecol. 17, 1658–1673 (2008).CAS
PubMed
Article
Google Scholar
60.Edwards, S. & Bensch, S. Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol. Ecol. 18, 2930–2936 (2009).CAS
PubMed
Article
Google Scholar
61.IPCC. Global Warming of 1.5 °C—Summary for Policy Makers. (2018).62.Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).PubMed
Article
Google Scholar
64.Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9, 1056–1082 (2014).CAS
PubMed
Article
Google Scholar
65.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–33 (2013).Article
Google Scholar
67.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
Article
Google Scholar
70.Matschiner, M. Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics 32, 1250–1252 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
71.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
Article
PubMed Central
Google Scholar
72.Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Watterson, G. A. Heterosis or neutrality? Genetics 85, 789–814 (1977).CAS
PubMed
PubMed Central
Article
Google Scholar
74.Chakraborty, R. & Mitochondrial, D. N. A. polymorphism reveals hidden heterogeneity within some Asian populations. Am. J. Hum. Genet. 47, 87–94 (1990).CAS
PubMed
PubMed Central
Google Scholar
75.Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).Article
Google Scholar
77.Orlando, L. & Librado, P. Origin and evolution of deleterious mutations in horses. Genes 10, 649 (2019).78.Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).PubMed
PubMed Central
Article
Google Scholar
79.Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
80.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS
PubMed
Google Scholar
84.Lichstein, J. W. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).Article
Google Scholar
85.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Pante, E., Simon-Bouhet, B. & Irisson, J.-O. marmap—R package. (2019).87.Goslee, S. & Urban, D. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw., Artic. 22, 1–19 (2007).
Google Scholar
88.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article
Google Scholar
89.Blanchet, F. G., Legendre, P. & Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Modell. 215, 325–336 (2008).Article
Google Scholar
90.Benestan, L. M. et al. Population genomics and history of speciation reveal fishery management gaps in two related redfish species (Sebastes mentella and Sebastes fasciatus). Evol. Appl. 14, 588–606 (2021).CAS
PubMed
Article
Google Scholar
91.Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 8, 551–566 (2018).PubMed
Article
Google Scholar
92.Kersten, O. Code for Population Genomics Analyses of Atlantic Puffin (Fratercula arctica) using Whole Genome Sequencing (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4899575 (2021). More